Research article Special Issues

New formulation for discrete dynamical type inequalities via $ h $-discrete fractional operator pertaining to nonsingular kernel

  • Received: 18 December 2020 Accepted: 26 January 2021 Published: 20 February 2021
  • Discrete fractional calculus (DFC) use to analyse nonlocal behaviour of models has acquired great importance in recent years. The aim of this paper is to address the discrete fractional operator underlying discrete Atangana-Baleanu (AB)-fractional operator having $ \hbar $-discrete generalized Mittag-Leffler kernels in the sense of Riemann type (ABR). In this strategy, we use the $ \hbar $-discrete AB-fractional sums in order to obtain the Grüss type and certain other related variants having discrete generalized $ \hbar $-Mittag-Leffler function in the kernel. Meanwhile, several other variants found by means of Young, weighted-arithmetic-geometric mean techniques with a discretization are formulated in the time domain $ \hbar\mathbb{Z} $. At first, the proposed technique is compared to discrete AB-fractional sums that uses classical approach to derive the numerous inequalities, showing how the parameters used in the proposed discrete $ \hbar $-fractional sums can be estimated. Moreover, the numerical meaning of the suggested study is assessed by two examples. The obtained results show that the proposed technique can be used efficiently to estimate the response of the neural networks and dynamic loads.

    Citation: Maysaa Al Qurashi, Saima Rashid, Sobia Sultana, Hijaz Ahmad, Khaled A. Gepreel. New formulation for discrete dynamical type inequalities via $ h $-discrete fractional operator pertaining to nonsingular kernel[J]. Mathematical Biosciences and Engineering, 2021, 18(2): 1794-1812. doi: 10.3934/mbe.2021093

    Related Papers:

  • Discrete fractional calculus (DFC) use to analyse nonlocal behaviour of models has acquired great importance in recent years. The aim of this paper is to address the discrete fractional operator underlying discrete Atangana-Baleanu (AB)-fractional operator having $ \hbar $-discrete generalized Mittag-Leffler kernels in the sense of Riemann type (ABR). In this strategy, we use the $ \hbar $-discrete AB-fractional sums in order to obtain the Grüss type and certain other related variants having discrete generalized $ \hbar $-Mittag-Leffler function in the kernel. Meanwhile, several other variants found by means of Young, weighted-arithmetic-geometric mean techniques with a discretization are formulated in the time domain $ \hbar\mathbb{Z} $. At first, the proposed technique is compared to discrete AB-fractional sums that uses classical approach to derive the numerous inequalities, showing how the parameters used in the proposed discrete $ \hbar $-fractional sums can be estimated. Moreover, the numerical meaning of the suggested study is assessed by two examples. The obtained results show that the proposed technique can be used efficiently to estimate the response of the neural networks and dynamic loads.



    加载中


    [1] F. M. Atici, S. Sengul, Modeling with fractional difference equations, J. Math. Analy. Appl., 369 (2010), 1–9. doi: 10.1016/j.jmaa.2010.02.009
    [2] G. C. Wu, D. Baleanu, Discrete fractional logistic map and its chaos, Nonlinear Dyn., 75 (2014), 283–287. doi: 10.1007/s11071-013-1065-7
    [3] G. C. Wu, Z. G. Deng, D. Baleanu, D. Q. Zeng, New variable-order fractional chaotic systems for fast image encryption, Chaos, 29 (2019), 083103. doi: 10.1063/1.5096645
    [4] T. Abdeljawad, D. Baleanu, On fractional derivatives with generalized Mittag-Leffler kernels, Adv. Differ. Equations, 2018 (2018), 1–15. doi: 10.1186/s13662-017-1452-3
    [5] T. Abdeljawad, S. Banerjee, G. C. Wu, Discrete tempered fractional calculus for new chaotic systems with short memory and image encryption, Optik, 218 (2020), 163698. doi: 10.1016/j.ijleo.2019.163698
    [6] T. Abdeljawad, F. Jarad, J. Alzabut, Fractional proportional differences with memory, Eur. Phys. J. Spec. Top., 226 (2017), 3333–3354. doi: 10.1140/epjst/e2018-00053-5
    [7] A. Atangana, D. Baleanu, New fractional derivative with non-local and non-singular kernel, Therm. Sci., 20 (2016), 757–763. doi: 10.2298/TSCI160112019H
    [8] D. Baleanu, J. A. T. Machado, A. C. J. Luo, Fractional Dynamics and Control, Springer Science and Business Media, London, UK, 2012.
    [9] M. Caputo, M. Fabrizio, A new definition of fractional derivative without singular kernel, Prog. Fract. Differ. Appl., 1 (2015), 73–85.
    [10] J. Danane, K. Allali, Z. Hammouch, Mathematical analysis of a fractional differential model of HBV infection with antibody immune response, Chaos, Solitons Fractals, 136 (2020), 109787. doi: 10.1016/j.chaos.2020.109787
    [11] J. B.$\acute{D}$aiz, T. J. Osler, Differences of fractional order, Math. Comput., 28 (1974), 185–202. doi: 10.1090/S0025-5718-1974-0346352-5
    [12] H. L. Gray, N. F. Zhang, On a new definition of the fractional difference, Math. Compt., 50 (1988), 513–529. doi: 10.1090/S0025-5718-1988-0929549-2
    [13] F. M. Atici, P. W. Eloe, Discrete fractional calculus with the nabla operator, Electron. J. Qual. Theory Differ. Equations, 3 (2009), 1–12.
    [14] S. Sengul, Discrete fractional calculus and its applications to tumor growth, Master Thesis, Western Kentucky University, 2010.
    [15] R. Yilmazer, Discrete fractional solutions of a non-homogeneous non-Fuchsian differential equations, Thermal Sci., 23 (2019), S121–S127. doi: 10.2298/TSCI180917336Y
    [16] R. Yilmazer, K. K. Ali, On discrete fractional solutions of the Hydrogen atom type equations, Thermal Sci., 23 (2019), S1935–S1941.
    [17] T. Abdeljawad, On delta and nabla Caputo fractional differences and dual identities, Discrete Dyn. Nat. Soc., 2013 (2013), 1–12.
    [18] T. Abdeljawad, F. M. Atici, On the definitions of nabla fractional operators, Abstr. Appl. Anal., 2012 (2012), 1–13.
    [19] T. Abdeljawad, Fractional difference operators with discrete generalized Mittag-Leffler kernels, Chaos Solitons Fractals, 126 (2019), 315–324. doi: 10.1016/j.chaos.2019.06.012
    [20] A. Fernandez, T. Abdeljawad, D. Baleanu, Relations between fractional models with three-parameter Mittag-Leffler kernels, Adv. Differ. Equations, 2020 (2020), 1–13. doi: 10.1186/s13662-019-2438-0
    [21] G. C. Wu, T. Abdeljawad, J. Liu, D. Baleanu, K. T. Wu, Mittag-Leffler stability analysis of fractional discrete-time neural networks via fixed point technique, Nonlinear Anal. Modell. Control, 24 (2019), 919–936.
    [22] L. L. Huang, J. H. Park, G. C. Wu, Variable-order fractional discrete-time recurrent neural networks, J. Comput. Appl. Math., 370 (2019), 112633.
    [23] X. F. Wang, G. Chen, Synchronization in small-world dynamical networks, Int. J. Bifurc. Chaos, 12 (2002), 187–192. doi: 10.1142/S0218127402004292
    [24] T. Abdeljawad, Different type kernel h-fractional differences and their fractional $\check{\hbar}$-sums, Chaos Solitons Fractals, 116 (2018), 146–156. doi: 10.1016/j.chaos.2018.09.022
    [25] C. S. Goodrich, Continuity of solutions to discrete fractional initial value problems, Comput. Math. Appl., 59 (2010), 3489–3499. doi: 10.1016/j.camwa.2010.03.040
    [26] N. R. O. Bastos, R. A. C. Ferreira, D. F. M. Torres, Necessary optimality conditions for fractional difference problems of the calculus of variations, Discrete Contin. Dyn. Syst., 29 (2011), 417–437. doi: 10.3934/dcds.2011.29.417
    [27] M. T. Holm, The Laplace transform in discrete fractional calculus, Comput. Math. Appl., 62 (2011), 1591–1601. doi: 10.1016/j.camwa.2011.04.019
    [28] A. G. M. Selvam, J. Alzabut, R. Dhineshbabu, S. Rashid, M. Rehman, Discrete fractional order two-point boundary value problem with some relevant physical applications, J. Inequal. Appl., 2020 (2020), 1–19. doi: 10.1186/s13660-019-2265-6
    [29] S. Rashid, Z. Hammouch, R. Ashraf, Y. M. Chu, New computation of unified bounds via a more general fractional operator using generalized Mittag-Leffler function in the kernel, CMES-Comput. Modell. Eng. Sci., 126 (2021), 359–378.
    [30] Z. Khan, S. Rashid, R. Ashraf, D. Baleanu, Y. M. Chu, Generalized trapezium-type inequalities in the settings of fractal sets for functions having generalized convexity property, Adv. Differ. Equations, 2020 (2020), 1–24. doi: 10.1186/s13662-019-2438-0
    [31] S. B. Chen, S. Rashid, Z. Hammouch, M. A. Noor, R. Ashraf, Y. M. Chu, Integral inequalities via Raina's fractional integrals operator with respect to a monotone function, Adv. Differ. Equations, 2020 (2020), 1–20. doi: 10.1186/s13662-019-2438-0
    [32] S. Rashid, R. Ashraf, K. S. Nisar, T. Abdeljawad, Estimation of integral inequalities using the generalized fractional derivative operator in the Hilfer sense, J. Math., 2020 (2020), 1626091.
    [33] S. Rashid, H. Ahmad, A. Khalid, Y. M. Chu, On discrete fractional integral inequalities for a class of functions, Complexity, 2020 (2020), 8845867.
    [34] T. Abdeljawad, S. Rashid, Z. Hammouch, Y. M. Chu, Some new Simpson-type inequalities for generalized p-convex function on fractal sets with applications, Adv. Differ. Equations, 2020 (2020), 1–26. doi: 10.1186/s13662-019-2438-0
    [35] T. Abdeljawad, S. Rashid, A. A. AL.Deeb, Z. hammouch, Y. M. Chu, Certain new weighted estimates proposing generalized proportional fractional operator in another sense, Adv. Differ. Equations, 2020 (2020), 1–16. doi: 10.1186/s13662-019-2438-0
    [36] S. B. Chen, S. Rashid, M. A. Noor, R. Ashraf, Y. M. Chu, A new approach on fractional calculus and probability density function, AIMS Math., 5 (2020), 7041–7054. doi: 10.3934/math.2020451
    [37] H. G. Jile, S. Rashid, M. A. Noor, A. Suhail, Y. M. Chu, Some unified bounds for exponentially tgs-convex functions governed by conformable fractional operators, AIMS Math., 5 (2020), 6108–6123. doi: 10.3934/math.2020392
    [38] T. Abdeljawad, S. Rashid, Z. Hammouch, Y. M. Chu, Some new local fractional inequalities associated with generalized $(s, m)$-convex functions and applications, Adv. Differ. Equations, 2020 (2020), 1–27. doi: 10.1186/s13662-019-2438-0
    [39] S. Rashid, F. Jarad, M. A. Noor, H. Kalsoom, Y. M. Chu, Inequalities by means of generalized proportional fractional integral operators with respect to another function, Mathematics, 7 (2019), 1225. doi: 10.3390/math7121225
    [40] G. A. Anastassiou, About discrete fractional calculus with inequalities, in Intelligent mathematics: computational analysis, Springer, Berlin, Heidelberg, (2011), 575–585.
    [41] B. Zheng, Some new discrete fractional inequalities and their applications in fractional difference equations, J. Math. Inequal., 9 (2015), 823–839.
    [42] M. Bohner, R. A. C. Ferreira, Some discrete fractional inequalities of Chebyshev type, Afr. Diaspora J. Math., 11 (2011), 132–137.
    [43] F. M. Atici, Y. Yaldiz, Refinements on the discrete Hermite-Hadamard inequality, Arabian J. Math. 7 (2018), 175–182.
    [44] B. G. Pachpatte, Integral and Finite Difference Inequalities and Applications, in Mathematics Studies, Elsevier, (2006).
    [45] R. L. Magin, Fractional Calculus in Bioengineering, Redding: Begell House, 2006.
    [46] M. K. Wang, H. H. Chu, Y. M. Li, Y. M. Chu, Answers to three conjectures on convexity of three functions involving complete elliptic integrals of the first kind, Appl. Anal. Discrete Math., 14 (2020), 255–271. doi: 10.2298/AADM190924020W
    [47] W. M. Qian, Z. Y. He, Y. M. Chu, Approximation for the complete elliptic integral of the first kind, RACSAM, 114 (2020), 1–12. doi: 10.1007/s13398-019-00732-2
    [48] Z. H. Yang, W. M. Qian, W. Zhang, Y. M. Chu, Notes on the complete elliptic integral of the first kind, Math. Inequal. Appl., 23 (2020), 77–93.
    [49] G. Grüss, Über das Maximum des absoluten Betrages von $\frac{1}{b-a}\int_{a}^{b}f(x)g(x)dx-\frac{1}{(b-a)^{2}}\int_{a}^{b}f(x)dx\int_{a}^{b}g(x)dx$, Math. Z. 39 (1935), 215–226.
    [50] E. Akin, S. Asliyüce, A. F. Güvenilir, B. Kaymakçalan, Discrete Grüss type inequality on fractional calculus, J. Inequal. Appl. 2015(2015), 1–7.
    [51] S. Rashid, F. Jarad, M. A. Noor, K. I. Noor, D. Baleanu, J. B. Liu, On Grüss inequalities within generalized K-fractional integrals, Adv. Differ. Equations, 2020 (2020), 1–18. doi: 10.1186/s13662-019-2438-0
    [52] T. Abdeljawad, F. M. Atici, On the definitions of nabla fractional operators, Abstr. Appl. Anal. 2012 (2012), 1–13.
    [53] C. Goodrich, A. C. Peterson, Discrete Fractional Calculus, Springer, Berlin, 2015.
    [54] G. A. Anastassiou, About discrete fractional calculus with inequalities, in Intelligent Mathematics: Computational Analysis, Springer, Berlin, Heidelberg, (2011), 575–585.
    [55] F. M. Atici, Y. Yaldiz, Refinements on the discrete Hermite-Hadamard inequality, Arabian J. Math., 7 (2018), 175–182. doi: 10.1007/s40065-017-0196-y
    [56] M. Bohner, R. A. C. Ferreira, Some discrete fractional inequalities of Chebyshev type, Afr. Diaspora J. Math., 11 (2011), 132–137.
    [57] S. Rashid, Y. M. Chu, J. Singh, D. Kumar, A unifying computational framework for novel estimates involving discrete fractional calculus approaches, Alexandria Eng. J., 60 (2021), 2677–2685. doi: 10.1016/j.aej.2021.01.003
    [58] P. O. Mohammed, T. Abdeljawad, Integral inequalities for a fractional operator of a function with respect to another function with nonsingular kernel, Adv. Differ. Equations, 2020 (2020), 1–19. doi: 10.1186/s13662-019-2438-0
    [59] T. Abdeljawad, P. O. Mohammed, A. Kashuri, New modified conformable fractional integral inequalities of Hermite–Hadamard type with applications, J. Funct. Spaces, 2020 (2020), 4352357.
    [60] P. O. Mohammed, T. Abdeljawad, Opial integral inequalities for generalized fractional operators with nonsingular kernel, J. Inequal. Appl., 2020 (2020), 1–12. doi: 10.1186/s13660-019-2265-6
    [61] A. Fernandez, P. O. Mohammed, Hermite-Hadamard inequalities in fractional calculus defined using Mittag-Leffler kernels, Math. Methods Appl. Sci., (2020), 1–18.
    [62] L. Xu, Y. M. Chu, S. Rashid, A. A. El. Deeb, K. S. Nisar, On new unified bounds for a family of functions via fractional $q$-calculus theory, J. Funct. Spaces, 2020 (2020), 4984612.
    [63] T. Abdeljawad, S. Rashid, H. Khan, Y. M. Chu, On new fractional integral inequalities for p-convexity within interval-valued functions, Adv. Differ. Equations, 2020 (2020), 1–17. doi: 10.1186/s13662-019-2438-0
    [64] T. Abdeljawad, Different type kernel h-fractional differences and their fractional $\hbar$-sums, Chaos, Solitons Fractals, 116 (2018), 146–156. doi: 10.1016/j.chaos.2018.09.022
    [65] I. Suwan, T. Abdeljawad, F. Jarad, Monotonicity analysis for nabla h-discrete fractional Atangana-Baleanu differences, Chaos, Solitons Fractals, 117 (2018), 50–59. doi: 10.1016/j.chaos.2018.10.010
    [66] I. Suwan, S. Owies, T. Abdeljawad, Monotonicity results for h-discrete fractional operators and application, Adv. Differ. Equations, 2018 (2018), 1–17. doi: 10.1186/s13662-017-1452-3
    [67] T. Abdeljawad, On delta and nabla Caputo fractional differences and dual identities, Discrete Dyn. Nat. Soc., 2013 (2013), 1–12.
    [68] T. Abdeljawad, Fractional difference operators with discrete generalized Mittag-Leffler kernels, Chaos, Solitons Fractals, 126 (2019), 315–324. doi: 10.1016/j.chaos.2019.06.012
  • Reader Comments
  • © 2021 the Author(s), licensee AIMS Press. This is an open access article distributed under the terms of the Creative Commons Attribution License (http://creativecommons.org/licenses/by/4.0)
通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索

Metrics

Article views(1918) PDF downloads(110) Cited by(12)

Article outline

/

DownLoad:  Full-Size Img  PowerPoint
Return
Return

Catalog