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Abstract: Discrete fractional calculus (DFC) use to analyse nonlocal behaviour of models has
acquired great importance in recent years. The aim of this paper is to address the discrete fractional
operator underlying discrete Atangana-Baleanu (AB)-fractional operator having 7-discrete generalized
Mittag-Lefller kernels in the sense of Riemann type (ABR). In this strategy, we use the 7-discrete
AB-fractional sums in order to obtain the Griiss type and certain other related variants having discrete
generalized 7-Mittag-Leftler function in the kernel. Meanwhile, several other variants found by means
of Young, weighted-arithmetic-geometric mean techniques with a discretization are formulated in the
time domain AZ. At first, the proposed technique is compared to discrete AB-fractional sums that
uses classical approach to derive the numerous inequalities, showing how the parameters used in
the proposed discrete 7i-fractional sums can be estimated. Moreover, the numerical meaning of the
suggested study is assessed by two examples. The obtained results show that the proposed technique
can be used efficiently to estimate the response of the neural networks and dynamic loads.

Keywords: discrete fractional calculus; Atangana-Baleanu fractional differences and sums; discrete
Mittag-Lefller function; Griiss type inequality; Young inequality

1. Introduction

DFC has captivated a lot of consideration across various analysis and engineering disciplines,
particularly in modelling [1], neural networks [2] and image encryption [3]. The developing approach
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portraying real-world problems have been exhibited to be helpful in numerical devices to analyze,
comprehend and predict the nature within humankind live [4—10]. In 1974, Daiz et al. [11] introduced
the idea of DFC and composed it with an infinite sum. Later on, in 1988, Gray et al. [12] extended
this concept and implemented it on the finite sum. This concept is known as the nabla difference
operator in the literature. Atici and Eloe [13] proposed the theory of fractional difference equations,
although the practical implementation is presented in [14]. Yilmazer [15] proposed discrete fractional
solution of a nonhomogeneous non-Fuchsian differential equations. Yilmazer and Ali [16] derived the
discrete fractional solutions of the Hydrogen atom type equations. Many researchers’ focus is
directed towards modeling and analysis of various problems in bio-mathematical sciences. This field
demonstrates several distinguished kernels depending on discrete power law, discrete exponential-law
and discrete Mittag-Leffler law kernels which correspond to the Liouville-Caputo, Caputo-Fabrizio
and the Atangana-Baleanu nabla(delta) difference operators generalized 7Z time scale [17-19].

Numerous utilities have been developed via DFC such as the solution of fractional difference
equations and discrete boundary value problems are proposed in terms of new mathematical
techniques [20-23]. Therefore, the conventional methodology of DFC have some intriguing and
less-acknowledged opportunities for modelling. DFC is proposed to depict the customary practice of
time scale analysis, with discussing its numerical approximations in #Z. Furthermore, we observe that
fi-discrete fractional calculus is tremendously momentous in applied sciences and can also address the
requirements of synchronous operation of various mechanisms, see [24-26].

Among the computational models formulated in fractional calculus, discrete AB-fractional
operators, which is a universal operator of fractional calculus that has been traditionally employed to
develop modern operators and their characterizations have been proposed in research article [27, 28].
Moreover, DFC has been theoretically presented more by introducing and analyzing discrete forms of
these fractional operators [13]. Here, we intend to find the discrete fractional inequalities analogous to
fractional operators having 7%-discrete Mittag-Leffler kernels, encompassing and simplifying these
operators in such a manner as to recuperate certain appropriate traits such as discrete inequalities for
AB-fractional sums.

Mathematical inequalities [29-38] initially alluded to adjust, harmony, and coordination. Until
modern times, refinements of inequalities were characterized as invariance to change [39-43]. Physics
comprehends fractional inequalities as predictability, while Psychology accentuates that inequality is
the trait of magnificence and art [44].

Numerous investigations have been directed on fractional inequalities in the natural science [45],
engineering sciences, see [41,46—48] and the references cited therein. Landscapes, structures, and
mechanical equipment all demonstrate inequalities attributes. Therefore, we intend to find the discrete
version of the Griiss type and some further connected modifications by the 7-discrete AB-fractional
sums depending on %-discrete generalized Mittag-Lefller kernel. This stands as an inspiration for the
current paper. The intensively investigated Griiss inequality can be presented as follows:

Theorem 1.1. (See [49]) Let ¥,G : [c,d] — R be two positive functions such that o < F (x) < A and
B <G(x) < Bforall x € [c,d] and a,B, A, B € R. Then

d d d
1 1
‘d_cff(x)g(x)dx—(d_—c)zf?‘(x)dxfg(x)dx' (1.1)
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1
s A= a)(B - ),
where the constant 1/4 can not be improved.

The Griiss inequality Eq (1.1) has been broadly and intensely investigated in engineering and
applied analysis, and various developed consequences have been acquired so far. Nevertheless, the
prevalent existence of Griiss inequality in scientific fields is not in direct proportion to the
consideration it has acknowledged. In application viewpoint, practically all mechanical structures are
found to have inequality Eq (1.1), and the vast majority of them have the qualities of discrete and
continuous fractional operators [50-63].

Inspired by the excellent dynamical properties of 7-discrete AB-fractional sums differences
formulation [64], the limitations of fractional calculus can be ameliorated via discrete and continuous
state-of-the-art techniques for effective information chaotic map applications, that can be inferred as a
generalization of nonlocal/nonsingular type kernels. These investigations promote further
sum/difference operators and related inequalities. It is our aim in this investigation to explore the
discrete version of the Griiss type and certain other associated variants with some traditional and
forthright inequalities in the frame of 7-discrete AB-fractional sums. We also would like to mention
that besides these variants, several other intriguing generalizations are derived. The comparison of
Griiss type with other discrete fractional calculus frameworks is currently under investigation. Finally,
two examples are presented that correlate with some well-known inequalities in the relative literature
and with the proposed strategy.

2. Preliminaries on discrete fractional calculus

In this section, we evoke some basic ideas related to fractional operator, discrete generalized Mittag
Leffler functions and the time scale calculus, see the detailed information in [13]. For the sake of
simplicity, we use the notation, for ¢,d € Rand 7 > 0, N.;; = {c,c + hi,c + 2A,...} and Ny =
{d,d+nh,d+2h,...}.

2.1. Basics on delta and nabla h-factorials

Definition 2.1. ( [65])The backward difference operator of a function ¥ on #Z is stated as
F (1) = F (pn(D)
h 9

where p;(f) = t — & denotes the backward jump operator. Also, the forward difference operator of a
function ¥ on /iZ is stated as

V. F(t) =

2.1)

F(on(®) — F (1)

AT (1) = - (2.2)
where 0(f) = t + h denotes the forward jump operator.
Definition 2.2. ( [65]) (i) For any ¢, € R and /i > 0, the delta 7i-factorial function is stated as
(@) _ g« r(% + 1)
L R (2.3)
I'(z+1-0a)
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where I" denotes the Euler gamma function. For 7 = 1, then #@ = r(’—”)) Also, the division by a pole

I't+1-a
leads to zero.
(i1) For any ¢, @ € R and 7 > 0, the nabla 7-factorial function is stated as

I't+a
l;a) = ha(h—t) (24)
['(:)
For 7 = 1, we observe that 1% = %
Lemma 2.3. ( [64]) Let t € T = N_, then for all t € T*, we obtain
= ((x=0;" (x -1y
X = . 2.5
’h{ (+ D! } .| 2.5)
Lemma 2.4. ( [66]) For the time scale T = N, then the nabla Taylor polynomial
— x =1
B,(x,1) = St L € Ny, (2.6)

o

2.2. Nabla h-discrete Mittag-Leffler function
Now we present the concept of nabla 7-discrete Mittag-Leftler function which is introduced by [6].

Definition 2.5. ( [6]) Let a,0,Q € C having R(a) > 0 such that A € R with |14%| < 1, then the nabla
discrete Mittag-leffler function is defined

ar+o-1

E_(1LQ) =) I'—" 1 <1. 2.7
WE_(1,Q) 20] Fargy W< @7

For o = 1, we have

7

y L. - )
E_(L,y)= ;E_(4,y) = E A
h a( ’)7) h a,l( ’y) - r(

—, |AR"| < 1. 2.
wrl) |An®| < (2.8)

The following remark illustrates the strengthening properties why AZ is important.

Remark 1. In view of 7iZ :
L. letting 72 = 1, we attain the nabla discrete Mittag-Leffler function stated in [67, 68].
II. letting O < & < 1, the interval of convergence to which A lies. Observe that, when 7 — 0, then

@ € (0, 1). Moreover, when 7 — 1 guarantee convergence for 4 = =, a € (0, %).

For further investigation of the discrete Mittag-Leffler function we refer the reader to [4].

2.3. Left and right delta fractional sums on hZ

Definition 2.6. ( [26]) For some ¢ € N, @ > 0 and let d = ¢ + t/i. Assume that a function ¥ be defined
on T = N.; NNy Then the delta 7-fractional sums in the left and right case are defined as follows

x/h—a
(A F)(1) = L D (=) F@h,  xelx+ah:xeT)
r(a) t=c/h
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and
_ | e
WACF)E) = —— (h - o))\ "Fhh, xe{x—ah:xeT)
respectively.

2.4. Left and right nabla fractional sums on hZ

Definition 2.7. ( [6,66]) Assume that 7 > 0 and the backward jump operator is p(x) = x—7%. A function
¥ : N.; — Ris said to be nabla i-fractional sum of order a, if

x/h—a

- |
(VPO = 5o > @ p)y " F Wik, x € Nev.
t=c/h+1

Also, the nabla right 7z-fractional sum of order @ > O(ending at d) for ¥ : N,; — R is described as
follows

d/h—1

= 1 _
GV TIO = s ) W= pl) ™ T hh

1=x/h

2.5. Nabla h-fractional differences with h-discrete Mittag Leffler kernels

Now, we demonstrate the some new concepts which we will be utilized for proving coming results
of this paper, see [4]. Also, we use the notation, A = —ﬁ and p(x) = x — A.

Definition 2.8. ( [64]) For a € [0,1], i > 0 with |[1A% < 1 and let ¥ be a function defined on
N.z N 4xN with ¢ < d such that ¢ = d(mod h), then the left nabla ABC-fractional difference (in the
sense of Atangana and Baleanu) is described as

(T = B ST i (1x— piy
t=c/h+1 (29)
and in the left Riemann sense by
= l-a+ah= & .
(*BRYeF ) (x) = B(a, Vi Z RF (R wE (A, x — p(eh)).
1=c/h+1 (210)

Definition 2.9. ( [64]) For 0 < a < 1 and let the left si-fractional sum concern to (fBR,V\gT)(x) defined
on N, is stated as follows

1-«a

ABw-a _
(V)0 = B(a, 7)1 — a + ah)

F(x)
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x/h
[0 _

"Bl —a+ahl(a)

t=c/h+1

The right %-fractional sum is defined on ,;N by
B -«
 B(a,h)(1 - @+ ah)

a
"Bl —a+ahl(a)

(4B °F)(x) F (x)

d/h—1

D W= p(0)i T F (.

1=x/h

3. Discrete Griiss type inequalities

D o= ph))i F (W

(2.11)

(2.12)

In this section, we present a different concept of Griiss type inequalities, which consolidates the

ideas of 7i-discrete AB-fractional sums.

Theorem 3.1. Let @ € (0,1) and let F be a positive function on N.;. Suppose that there exist two

positive functions ¢y, ¢, on N, such that
$1(x) <F () < o(x), VYx €Ny
Then, for x € {c,c + h,c + 2h, ...}, one has

V@) PV F ] + P9I 0] 9, [ ()]
> MV (0] P9 )] + PV F 0] PV F ()

c

Proof. From Eq (3.1), for 6, 1 € N, we have
(62(8) = F(O)F (D) — ¢1(D) = 0.
Therefore,
$2OF (D) + $1(DF (0) = $1(D)2(0) + F (O)F ().

Taking product both sides of Eq (3.4) by B(wh)l;“ we get

(1-a+ah)’

1-a)hpOF D A-aD)FO) A -)¢(Dd0) = (- a)FO)F (Y
B(a,W)(1 —a+ah) Bla,n)(1 —a+ah) ~ Ble,h)(1-a+ah) Bla,h)(1l-a+ah)

a(e—p(H)"

S We have

Replacing A by ¢ in Eq (3.5) and conducting product both sides by
a(x —p(0);" a(x —p0);"
— O (1) + -

B(a, H)(a) B(a, H)[(a) $1(DF (6)

3.1

(3.2)

(3.3)

(3.4)

(3.5)
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a(x — p(0);™" a(x — p(0);™"
2 W‘ﬁl(ﬂfﬁzw) WT( YF (1).

Summing both sides for t € {c,c + h, ¢ + 2#, ...}, we get

x/h x/h

Z M¢2(9)T(Lh)h+ Z Mﬁbl(‘mh?’w)

Byl B(a, I '(a) S B(a, M) (a)
a(x - pt);! I a(x - p)”
> W%(m)h@(@) + L:czm“ﬂ Wg:(gﬂf( .

Adding Egs (3.5) and (3.6), we have

x/h

(1 - ) (O)F (1) N Z a(x — p(h));™!
B(a,h)(1 — a + ah) B(a, W)I'(@)

$2(O)F ()h
1=c/h+1
x/h

N (1 - a)p1(D)F (6) N Z a(x — p(h));™
B(a,n)(1 — a + ah) B(a, MI'(@)

¢ (0)

1=c/hi+1

, (-3 Ds®) {7 ol p@)

= B(a, h)(1 — a + ah) W¢1(Lh)h¢z(9)

1=c/h+1
x/h

(I -a)F(O)F (D N Z a(x — p(h));™ F(O)F (I,

B(a, h)(1 — a + ah) Bt B(a, ) (@)
arrives at
620 ", IF @] +FO) 2V, [01(0)] 2 92(6) 17V, [6:1(0)] + FO) 75, [F ).
Taking product both sides of Eq (3.7) by B(ﬁ,h)il%’ we have
(1 _ﬁ)¢2(9) AB _a (1 ,8)7:(9) AB —a
sa gm0 N G —pepme 0]
(1 IB)¢2(0) AB —a (1 IB)T(G) AB —a

25 -prpmc OO sE R e 7 Ol
Also, replacing 6 by 7 in Eq (3.8) and conducting product both sides by £ ﬁE(ﬂp;?r)(%)l , we have

Blx — P(_))h ABS—a Blx —P(_))h ABG

W‘/’z(@) Vi [ F ]+ W¢(9) Vi [1(0)]

ﬁ( _p(_))h ABo. IB( _p(_))h ABG
—W%(@) vV, [d1(x)] + WT(Q) VA F 0]

Summing both sides for 7 € {c,c + i, c + 2#, ...}, we get

x/h /h
B UL | o ar Ba—pUMT e
“B@nrE UMV (i APV

2, g T e 3 ST 6,00

(3.6)

(3.7)

(3.8)
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x/h N\ BT x/h T
Bx—pGM)y o Blx—pGRYET
- YR mh°v e — - " F(RRBVIYF )
> 2 S G (I OV [$1(x0)] +j:;+1 BGmEE UV F W)
3.9)

Adding Eqgs (3.8) and (3.9), then in view of Definition 2.9, yields the inequality Eq (3.11). This
completes the proof.

Some special cases which can be derived immediately from Theorem 3.1.
Choosing 7 = 1, then we attain a new result for discrete AB-fractional sum.

Corollary 1. Let a € (0, 1) and let F be a positive function on N,. Suppose that there exist two positive
functions ¢y, ¢, on N, such that

d1(x) < F(x) < ¢r(x), VxeN. (3.10)
Then, for x € {c,c+ 1,c + 2, ...}, one has

AV [y (0] 2BV [F ()] + AEV[F (2] 25V ()]
> ABYF [y ()] 2BV [y (0)] + 2BV [F ()] BV E[F ()], (3.11)

Theorem 3.2. Let o, € (0,1) and let ¥ and G be two positive functions on N, ;. Suppose that Eq
(3.1) satisfies and also one assumes that there exist two positive functions 1, , on N, such that

Qi(x) £ G(x) < W(x), VYxeNg. (3.12)

Then, for x € {c,c + h,c + 2h, ...}, one has

M) 2BV [9a(0] 25V, [6(0] + A5V [F (0] 25V, [ ()]
> A5V (o (0] 28V, [ ()] + 25V, [F (0] 25V [6 ()],
(M) V]2V, [G(0] + APV, [Qa(0] 25V [F ()]
> V(1] V[ )] + 25V, [F (0] 25V, F[6 ),
(M) 2BV Q] 25V, [ (0)] + A5V [F (0] 259,06
> A5 P[ga(0)] 25V, [G0] + 259, F[F (0] 25V, [ Q)]
(M) V(61 (0] 25V, [ )] + A5V, [F (0] 59,0 (6]
> 25V P [61(0] 259, [G(0)] + 25V, [ (0)] 25V, [ F (). (3.13)

Proof. To prove Eq (M), from Eqgs (3.1) and (3.12), we have for 4,0 € N_; that

(¢2(0) = F ()G — (D) > 0. (3.14)

Therefore,
$ (G + Q(DF (0) = Q1 (Dp2(0) + GDF (6). (3.15)
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Taking product both sides of Eq (3.17) by m we get

(1 — ) (6)G(1) N (1 = a)Q(D)F (0)
Bla,h)(1 —a+ah) B(a,h)(1 —a+ ah)
(1= a)i(Déa(0) N (1 - )G(O)F (0)

T Bla,)(1 —a+ah) B(a,h)(1 —a+ah) (3.16)
Moreover, replacing A by ¢ in Eq (3.17) and conducting product both sides by —QI(BX(Z ;;;)r)fj , we have
alx - p(0),;" alx - p(0),"
B@. @) ()G + B @) Qi (DF (6)
a(x - p(0);" a(x - p(0);™
2 B@ @) 2 W0+ gr—r 5y GWF O (3.17)
Summing both sides for t € {c,c + A, ¢ + 24, ...}, we get
el - pli); I a(x - pan)y
%‘1 S T OGN+ %}1 St T T ©)
G alx = p);! O alx = p();!
> ;1 o O] ne0) + ;1 B @) ST ).
Then, we have
SV GWha(0) + 7V, (R (0]F (0)
> PV u0]2(6) + PV, (G001 F(6). (3.18)

Taking product both sides of Eq (3.18) by 3 @ h)l_ﬁ we have

J)(1-B+Bh)°
1-5 AB —[3 1-8 By
BBR—prpn - n G0N0+ gaaa 7 e Vi (@I ©)

1-8 ABGA[Q) -B
2 BB —prpm  n a6+ g h)(l B¢

ABY PIG(0]F (). (3.19)

Bl—p@)F"
B(@B,MI(B)
B(B h)r@ )

Blx - pE)T
—F (0
BE.ITE) O

Further, replacing 6 by 7 in Eq (3.19) and conducting product both sides by , we have

= Bx - p(@);" -
v, [Q(X)]W¢2(9) + 2PV [Q(0)]
Bx = p@®);"

B(B, mI'(B)

Summing both sides for 7 € {c, ¢ + i, ¢ + 2#, ...}, we get

> APV 0, (v)] $2(0) + YV [G(v)] (3.20)

x/h x/h oz BT
ABG-a Bx = p(jh),” ABS Blx = p(aNy "
PV I6W] ;1 T R ) %}1 ~Sanrg T U
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x/h xmn
_ Blx — (i) B = Gy
4BV—(I Q —h h h ABV_(I —h h h
> PV l(x)]j:;h+1 B U+ VG )]MZM sg.nre

(3.21)

Adding Eqs (3.19) and (3.21), we conclude the desired inequality Eq (M;).
To prove Eqs (M;,)—(M,), we utilize the following inequalities:

(M) (00) - GO)F (D) — ¢1(D) = 0,

(M3)  (¢2(0) - F(O))GD) — () <0,
(My)  ($1(0) - F(@O))GWD) — Qi) < 0.

Some special cases which can be derived immediately from Theorem 3.2.
Choosing 7 = 1, then we attain a new result for discrete AB-fractional sums.

Corollary 2. Let o, € (0, 1) and let ¥ and G be two positive functions on N.. Suppose that Eq (3.1)
satisfies and also one assumes that there exist two positive functions Q, <), on N, such that

Qi(x) < G(x) < Q(x), VYxeN.
Then, for x € {c,c+ 1,c + 2, ...}, one has

(Ms) BV P[,(0] BV [G0)] + BV PIF ()] 5V [ ()]

> AV H[g(0)] 2BV [ (0] + AEVA[F (0] 28V [G()],
(Mg) BV [4,(0)] 2BV P[G(0)] + A5V [ (0] 22V [F (0)]

> 45504, ()] A8V A[Qa(0)] + BV [F (0] 2PV A G0,
(M7) AV [Q(0)] A5V go(x0)] + 2BV F ()] A5V [G(w)]

> 4GP, (0)] 4BV [G0] + 2BV [F (0] 2BV ()],
(Mg) 2BV 7[4,(0] PV [Qu(0)] + 2BV A[F (0)] 2BV [G()]

> B[, (0] BV [G0] + 4BV, (0] 2BV A[F ().

Theorem 3.3. Let o, € (0,1) and let F and G be two positive functions on N.; with p,q > 0
satisfying é + é = 1. Then, for x € {c,c + h,c + 2h, ...}, one has

| — | —

(Mo) I;?BV PlFP )] 27V, 167 (0] + 5?’*%‘*[@%} AV [ Fa(x)]
> BV P F G0 2BV, [GF (0],

(M) ABG o[G0 2BV P[P ()] + qABV-“W( 0BV 167 (x)]

?BV‘“[gq-lw-l(x)]ABV‘ﬂ[fgoc)]
(My)) ;?BV G2 (0] BV P[FP(x0)] + qABV‘@[T%x)]ABV‘ﬁ[g‘I(x)]

_ IV S
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> 4BV o[ FiGr (0] PV P[F G,
i?ﬁ;a [G7(0)] 25V, P[F2(0] + %I?B?g“[?‘%x)] A5y A1 G ()]
> ABY (7l G ()] 4BV P G (). (3.22)

Proof. According to the well-known Young’s inequality:

la‘”+lbanb, Ya,b >0, p,q >0, l+1: 1, (3.23)
p q P q
setting a = ¥ (0)G(1) and b = F(1)G(6), 6,4 > 0, we have
1 1
;(T(O)Q(/l))p + ;](7’(/1)Q(9))q > (F(OGDONF (DG(0)). (3.24)
Taking product both sides of Eq (3.24) by B(a’h)l(l‘—f%cm), we have
1d-aF"OG"W 10~ O)F(DGIO) _ (A ~ O)F OGDNT (VGO) (3.25)
pB(a,h)(1 —a+ah) qB(a,h)(1—-a+ah) B(a,h)(1 — a + ah) ) )
Moreover, replacing A by 7 in Eq (3.25) and conducting product both sides by %, we have

Fr@) a(x —pt);™" G1(6) a(x — p(1)),; a(x = p(0);™!

> Bl G’ + 7 B@ (@) V() > ?(H)Q(H)WT nG(1). (3.26)
Summing both sides for f € {c,c + A, c + 2A, ...}, we get
Fro) L oa-pa)y’ GO K alx - ph);”
— D grahyh + 22 — T gy
p ;1 B, il@ 0 Ty %1 Banr@
e - )T
> F(0)G0) ;“1 Wy—'(m)hg(m)h. (3.27)
Adding Egs (3.24) and (3.27), we get
1 (1-)FPO6") Fre) G al - p(th)); "
pBan(-a+ah) p :% TB@ hia 7
1 (1-)FUDGO)  GUO) A alx—ph);”
Bl -atah) | g L:;i TB@hr@ | O
(1 = )F OGDOFDG®) L alx - p(h)i”
> et T TOGO ;1 S i) T WG
(3.28)
In view of Definition 2.9, yields
P(O) 1p= 90 , o _
e VLGP (] + g AV [FP(x)] > F(0)G0) 25V, [F ()G(0)]. (3.29)
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Again, taking product both sides of Eq (3.29) by Wh)l(l;f

G We have

Fr(6) (1 - B)APV-[GP(x)] LGO1-p ABY o [Fr(x)] (1= B) MV [F()G()]

> 0)G(0).
p BGH-Bip T g BEMI-Bip - BRI _pipn 9O

(3.30)
Further, replacing 6 by 7 in Eq (3.29) and conducting product both sides by ﬁ—g (ZH(?F)(;Z , we have
1 4po- Blx - pO)h AB _ Blx — PO);-,
-4 Vv ar P P V @ P (1
NG W e T+ O R AL
> MV [F (G >]w¢0g® (3.31)

BB, mIp)

After summing the above inequality Eq (3.31) both sides for # € {c,c + i, c + 2h, ...}, yields the
desired assertion Eq (Mp).

The remaining variants can be derived by adopting the same technique and accompanying the
selection of parameters in Young inequality.

¥ (6) G
(M) a= F b= G 70,6 #0,
(M) a=F@OG WD, b=Fi(DGO),

2 2
(M) a=FrOF D, b=G«OGW), F(),G) 0.

Repeating the foregoing argument, we obtain Eqs (M)—(M;,).

(1) Letting 7 = 1, then we attain a result for discrete AB-fractional sums.

Corollary 3. Let o, € (0, 1) and let ¥ and G be two positive functions on N, with p,q > 0 satisfying
Ly %1 = 1. Then, for x € {c,c + 1,c + 2, ...}, one has

(My3) é VAF (@] V167 (0] + qABV‘ﬁ[g%x)]ABV“’[?‘I(x)]
> PVPIFGW] VU GF ()],
(M14) %? QU] PV PIF ()] + ~ AB?‘“[‘F’(x)] VPG (x)
> MV g ET ()] 8V ﬁ[?@(x)]
(M)s) })? G W] VT (x)] + q”V‘“[?—‘Z(xﬂ*‘BV [67(x0)]
> AV IFIGh (x)] ABV‘ﬁ[?‘g(x)]
e B I TS i )
> AV [F PG ()| BV A F I G (). (3.32)
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Example 3.4. Let ,8 € (0,1) and let ¥ and G be two positive functions on N.; with p,g > 0
satisfying p + g = 1. Then, for x € {c,c + h, c + 2h, ...}, one has

M) pIVIIF@IVIG0] + ¢ L7 IF 0] V6

> VTG W]V, TG (),
M) pIVIIFT IV (F @IG W) + ¢ 27,06 W] PTG ()]

> PV G WV T,
M) pIVIF@IIVIG W] + 42V, 6] PV F 4 (0]

> UVTFGWII G T (),
M) pIVIF G W)V ]+ a V16 0] V1T 6 ()]

> VAP0V ). (3.33)

Proof. The example can be proved with the aid of the weighted AM—-GM inequality with the same
technique as we did in Theorem 3.3 and utilizing the following assumptions:

(My7) a=F OGN, b = F()G(®).
_FW GO
(Mis) a= =2 b= 2oy TO.60 #0.
(M) a=TF@O)G ), b= Tq(/l)Q(G),
M) a=229 b= TD o0 66 %0

Ok GO

Example 3.5. Let @ € (0, 1) and let ¥ and G be two positive functions on N, ; with p, g > 1 satisfying
L1 -1 Let
P q

v = gel\; n Z((g)) and T = ggk?)i g((g)) (3.34)
Then, for x € {c,c + i, ¢ + 2A, ...}, one has
(i) 0= PVIF W]V, )] < (ABV [FG@)])’,
(i) 0 BV, [F20] éB@;“[g%x)] - (?Bi;“[?‘g(x)]) < \/j;\/_ﬁ(?ﬁg“[?g(x)]),
i) 0< PV [P @] PV 18] - (PVIFGWN < (PN [F G,
Proof. From Eq (3.34) and the inequality
(Z2_ ) -ZD)g29 5 0, s e, (3.35)

G(0) Gg(0)
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then we can write as,
F2O) +yTG(0) < (y + TIF (O)G(O).

Taking product both sides of Eq (3.36) by W we have

(1—a+ah)’

(1 - a)F20) N (1-@)G*() < l-a
Ba. )l -—a+ah)  Bah(l-a+ah) ~ Bah(-a+ah)

(y + OF(O)G(O).

a(e—p(D)"

St We have

Replacing 0 by ¢ in Eq (3.36) and conducting product both sides by

PO gy 4y PO o) < (4 ) 2P

B(a, M(@) B(a, (@) Be @ PID:

Summing both sides for t € {c,c + i, ¢ + 24, ...}, we get

Uh - (x — p(h))T L a(x - p(t)i”

i 2
FHIR+YT ), s

2(th)h
B, M@ 2, g

t=c/h+1

el = p)
<(y+T) %:1 ST @G

Adding Egs (3.37) and (3.39), yields

VIl YT VG < o+ D PV F G

on the other hand, it follows from yY > 0 and

(V4917200 - Y195 [621) >

that

2 BV 0] YTV, G2(0] < AT 20] + YT A5V GR )
then from Eqgs (3.40) and (3.42), we obtain,
4y APV [FA (0] PV [GR (0] < (y + DBV [FG))).

Which implies (/). By some change of (i), analogously, we get (ii) and (iii).

(3.36)

(3.37)

(3.38)

(3.39)

(3.40)

(3.41)

(3.42)

(3.43)
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4. Conclusions

Unlike some known and established inequalities in the literature, the Griiss type inequalities have
been presented via the %-discrete AB-fractional sums with different values of parameters on the
domain %Z that can be implemented to solve the qualitative properties of difference equations. Our
consequences can be applied to overcome the obstacle of obtaining estimation on the explicit bounds
of unknown functions and also to extend and unify continuous inequalities by using the simple
technique. Several novel consequences have been derived by the use of discrete 7fi-fractional sums.
The noted consequences can also be extended to the weighted function case. Certainly, the case
h — 1 recaptures the outcomes of the discrete AB-fractional sums. For indicating the strength of the
offered fallouts, we employ them to investigate numerous initial value problems of fractional
difference equations.
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