Research article

Some fractional integral type inequalities for differentiable convex functions

  • Received: 01 April 2025 Revised: 01 May 2025 Accepted: 09 May 2025 Published: 22 May 2025
  • MSC : 26A51, 26D10, 26D15

  • In this paper, we propose to establish some fractional parametrized three-point integral inequalities. We start by developing a new integral identity. Based on this identity, we derive many types of integral inequality, including Ostrowski, midpoint, trapeze, Simpson, and Bullen. A number of known results are also derived. The findings' applications are given.

    Citation: Rabah Debbar, Abdelkader Moumen, Hamid Boulares, Badreddine Meftah, Mohamed Bouye. Some fractional integral type inequalities for differentiable convex functions[J]. AIMS Mathematics, 2025, 10(5): 11899-11917. doi: 10.3934/math.2025537

    Related Papers:

    [1] Hüseyin Budak, Ebru Pehlivan . Weighted Ostrowski, trapezoid and midpoint type inequalities for RiemannLiouville fractional integrals. AIMS Mathematics, 2020, 5(3): 1960-1984. doi: 10.3934/math.2020131
    [2] Chanon Promsakon, Muhammad Aamir Ali, Hüseyin Budak, Mujahid Abbas, Faheem Muhammad, Thanin Sitthiwirattham . On generalizations of quantum Simpson's and quantum Newton's inequalities with some parameters. AIMS Mathematics, 2021, 6(12): 13954-13975. doi: 10.3934/math.2021807
    [3] Thanin Sitthiwirattham, Muhammad Aamir Ali, Hüseyin Budak, Sotiris K. Ntouyas, Chanon Promsakon . Fractional Ostrowski type inequalities for differentiable harmonically convex functions. AIMS Mathematics, 2022, 7(3): 3939-3958. doi: 10.3934/math.2022217
    [4] Hüseyin Budak, Fatma Ertuğral, Muhammad Aamir Ali, Candan Can Bilişik, Mehmet Zeki Sarikaya, Kamsing Nonlaopon . On generalizations of trapezoid and Bullen type inequalities based on generalized fractional integrals. AIMS Mathematics, 2023, 8(1): 1833-1847. doi: 10.3934/math.2023094
    [5] Xuexiao You, Fatih Hezenci, Hüseyin Budak, Hasan Kara . New Simpson type inequalities for twice differentiable functions via generalized fractional integrals. AIMS Mathematics, 2022, 7(3): 3959-3971. doi: 10.3934/math.2022218
    [6] Shuhong Yu, Tingsong Du . Certain inequalities in frame of the left-sided fractional integral operators having exponential kernels. AIMS Mathematics, 2022, 7(3): 4094-4114. doi: 10.3934/math.2022226
    [7] Maimoona Karim, Aliya Fahmi, Shahid Qaisar, Zafar Ullah, Ather Qayyum . New developments in fractional integral inequalities via convexity with applications. AIMS Mathematics, 2023, 8(7): 15950-15968. doi: 10.3934/math.2023814
    [8] Muhammad Amer Latif, Humaira Kalsoom, Zareen A. Khan . Hermite-Hadamard-Fejér type fractional inequalities relating to a convex harmonic function and a positive symmetric increasing function. AIMS Mathematics, 2022, 7(3): 4176-4198. doi: 10.3934/math.2022232
    [9] Muhammad Tariq, Hijaz Ahmad, Soubhagya Kumar Sahoo, Artion Kashuri, Taher A. Nofal, Ching-Hsien Hsu . Inequalities of Simpson-Mercer-type including Atangana-Baleanu fractional operators and their applications. AIMS Mathematics, 2022, 7(8): 15159-15181. doi: 10.3934/math.2022831
    [10] Mustafa Gürbüz, Yakup Taşdan, Erhan Set . Ostrowski type inequalities via the Katugampola fractional integrals. AIMS Mathematics, 2020, 5(1): 42-53. doi: 10.3934/math.2020004
  • In this paper, we propose to establish some fractional parametrized three-point integral inequalities. We start by developing a new integral identity. Based on this identity, we derive many types of integral inequality, including Ostrowski, midpoint, trapeze, Simpson, and Bullen. A number of known results are also derived. The findings' applications are given.



    Integral inequalities are both theoretically fascinating and practically important, as they contribute significantly to the study of the properties of solutions of differential and integral equations, facilitate error estimations, and play a significant role in ensuring the best approximation of computations in numerical integration. In particular, Newton-Cotes inequalities are an effective way to assess the accuracy of integrals in numerical analysis as well as in many other scientific fields, such as engineering, physics, and economics.

    Convexity theory has important geometric and algebraic characteristics and properties, as well as a wide range of applications, and is closely and strongly related to inequality. There have been several notable works that have contributed to this area of research. For more details, we advise the interested readers to [1,2,3]. We remember that a function S:IRR is said to be convex, if

    S(˜ıl1+(1˜ı)l2)˜ıS(l1)+(1˜ı)S(l2)

    holds for all l1,l2I and all ˜ı[0,1] ([4]).

    Fractional calculus is a subfield of mathematical analysis that builds upon standard calculus by integrating derivatives and integrals of non-integer order. It is used to faithfully depict non-local and non-Markovian occurrences in a variety of scientific fields. To improve the modeling of many scientific and technical processes, we have developed a number of fractional integral operators; for Hadamard inequalities, see [5,6,7], for exploring other types of fractional integrals [8,9,10].

    However, the Riemann-Liouville operators, is the most commonly encountered operators, and are defined as follows:

    Definition 1. [11] Assume that SL1[l1,l2]. For order α>0 with l10, the Riemann-Liouville fractional integrals are defined by

    Iαl+1S(s)=1Γ(α)sl1(s˜ı)α1S(˜ı)d˜ı,   s>l1,Iαl2S(s)=1Γ(α)l2s(˜ıs)α1S(˜ı)d˜ı,   l2>s,

    respectively, where Γ(α)=0 essα1ds, represents the gamma function with I0l+1S(s)=I0l2S(s)=S(s).

    This idea has been accepted and approved in many scientific and technical fields due to its wide range of applications. Also, several subfields of mathematics have adopted this principle, including integral inequalities for many classes of functions, the most widespread being convex functions.

    Sarikaya and Yildirim [12] gave the following Hermite-Hadamard type inequalities:

    C(ε1+ε22)2υ1Γ(υ+1)(ε2ε1)υ(Iυ(ε1+ε22)+C(ε2)+Iυ(ε1+ε22)C(ε1))C(ε1)+C(ε2)2. (1.1)

    Nasri et al. [10] created the midpoint-type inequalities using a similar methodology. Bullen and trapezoid type inequalities were established by Saleh et al. [13]. Hai and Wang [4] developed the Simpson-type inequalities.

    We direct readers to several current developments and applications of fractional calculus, including [14,15,16].

    Motivated and inspired by the works introduced by Sarikaya [17] and Xi and Qi [18], as well as by the use of Riemann-Liouville integral operators, we first prove a new fractional integral identity. From this identity, we establish several new parameterized fractional integral inequalities for functions whose first derivatives are convex. Numerous known results are derived. Applications of the finding are provided.

    The following lemma is required to support our findings.

    Lemma 1. Let S:[l1,l2]R be a differentiable function on [l1,l2] with l1<l2, and SL1[l1,l2]; then the following equality holds:

    λS(l1)+(2λμ)S(κ)+μS(l2)2(Γ(α+1)2(l2κ)αIακ+S(l2)+Γ(α+1)2(κl1)αIακS(l1))=κl1210(˜ıαλ)S((1˜ı)l1+˜ıκ)d˜ı+l2κ210(μ(1˜ı)α)S((1˜ı)κ+˜ıl2)d˜ı, (2.1)

    where λ,μ[0,1],α>0 and κ[l1,l2].

    Proof. The first integral of the right side of (2.1) may be integrated by parts to yield

    κl1210(˜ıαλ)S((1˜ı)l1+˜ıκ)d˜ı=12(˜ıαλ)S((1˜ı)l1+˜ıκ)|10α210˜ıα1S((1˜ı)l1+˜ıκ)d˜ı=1λ2S(κ)+λ2S(l1)α2(κl1)ακl1(ul1)α1S(u)du=1λ2S(κ)+λ2S(l1)Γ(α+1)2(κl1)αIακS(l1). (2.2)

    Similarly, the second integral gives

    l2κ210(μ(1˜ı)α)S((1˜ı)x+˜ıl2)d˜ı=12(μ(1˜ı)α)S((1˜ı)κ+˜ıl2)|10α210(1˜ı)α1S((1˜ı)κ+˜ıl2)d˜ı=μ2S(l2)+1μ2S(κ)α2(l2κ)αl2κ(l2u)α1S(u)du=μ2S(l2)+1μ2S(κ)Γ(α+1)2(l2κ)αIακ+S(l2). (2.3)

    Adding (2.2) and (2.3), we get the desired result.

    Theorem 1. Let S be as in Lemma 1. If |S| is convex, then we have

    |λS(l1)+(2λμ)S(κ)+μS(l2)2(Γ(α+1)2(l2κ)αIακ+S(l2)+Γ(α+1)2(κl1)αIακS(l1))|κl12(2(α+1)(α+2)λ2(α+1)(α+2)+2αα+1λ1+1ααα+2λ1+2α)|S(l1)|+(κl12(2(α+2)λ2(α+2)+2α2(α+2)λ1+2α)+l2κ2(2(α+2)μ2(α+2)+2α2(α+2)μ1+2α))|S(κ)|+l2κ2(2(α+1)(α+2)μ2(α+1)(α+2)+2αα+1μ1+1ααα+2μ1+2α)|S(l2)|,

    where λ,μ[0,1],α>0 and κ [l1,l2].

    Proof. Using the absolute value of both sides of (2.1) and the convexity of |S|, we deduce

    |λS(l1)+(2λμ)S(κ)+μS(l2)2(Γ(α+1)2(l2κ)αIακ+S(l2)+Γ(α+1)2(κl1)αIακS(l1))|κl1210|˜ıαλ||S((1˜ı)l1+˜ıκ)|d˜ı+l2κ210|μ(1˜ı)α||S((1˜ı)κ+˜ıl2)|d˜ıκl1210|˜ıαλ|((1˜ı)|S(l1)|+˜ı|S(κ)|)d˜ı+l2κ210|μ(1˜ı)α|((1˜ı)|S(κ)|+˜ı|S(l2)|)d˜ı=κl12(2(α+1)(α+2)λ2(α+1)(α+2)+2αα+1λ1+1ααα+2λ1+2α)|S(l1)|+(κl12(2(α+2)λ2(α+2)+2α2(α+2)λ1+2α)+l2κ2(2(α+2)μ2(α+2)+2α2(α+2)μ1+2α))|S(κ)|+l2κ2(2(α+1)(α+2)μ2(α+1)(α+2)+2αα+1μ1+1ααα+2μ1+2α)|S(l2)|,
    10|˜ıαλ|(1˜ı)d˜ı=2(α+1)(α+2)λ2(α+1)(α+2)+2αα+1λ1+1ααα+2λ1+2α, (2.4)
    10|˜ıαλ|˜ıd˜ı=2(α+2)λ2(α+2)+2α2(α+2)λ1+2α, (2.5)
    10|μ(1˜ı)α|(1˜ı)d˜ı=2(α+2)μ2(α+2)+2α2(α+2)μ1+2α (2.6)

    and

    10|μ(1˜ı)α|˜ıd˜ı=2(α+1)(α+2)μ2(α+1)(α+2)+2αα+1μ1+1ααα+2μ1+2α, (2.7)

    which concludes the proof.

    Corollary 1. Putting α=1 in Theorem 1, we obtain

    |λS(l1)+(2λμ)S(κ)+μS(l2)2(12(κl1)κl1S(u)du+12(l2κ)l2κS(u)du)|κl12(2(α+1)(α+2)λ2(α+1)(α+2)+2αα+1λ1+1ααα+2λ1+2α)|S(l1)|+(κl12(2(α+2)λ2(α+2)+2α2(α+2)λ1+2α)+l2κ2(2(α+2)μ2(α+2)+2α2(α+2)μ1+2α))|S(κ)|+l2κ2(2(α+1)(α+2)μ2(α+1)(α+2)+2αα+1μ1+1ααα+2μ1+2α)|S(l2)|.

    Corollary 2. In Theorem 1, if we choose λ=μ=0, then we obtain

    |S(κ)(Γ(α+1)2(l2κ)αIακ+S(l2)+Γ(α+1)2(κl1)αIακS(l1))|κl12(α+1)(α+2)|S(l1)|+l2l12(α+2)|S(κ)|+l2κ2(α+1)(α+2)|S(l2)|.

    Moreover, if we take α=1, then we obtain

    |S(κ)(12(κl1)κl1S(u)du+12(l2κ)l2κS(u)du)|κl112|S(l1)|+l2l16|S(κ)|+l2κ12|S(l2)|.

    Corollary 3. In Theorem 1, if we take λ=μ=1, then we obtain

    |S(l1)+S(l2)2(Γ(α+1)2(l2κ)αIακ+S(l2)+Γ(α+1)2(κl1)αIακS(l1))|α(α+3)(κl1)4(α+1)(α+2)|S(l1)|+α(l2l1)4(α+2)|S(κ)|+α(α+3)(l2κ)4(α+1)(α+2)|S(l2)|.

    Moreover, if we take α=1, then we obtain

    |S(l1)+S(l2)2(12(κl1)κl1S(u)du+12(l2κ)l2κS(u)du)|κl16|S(l1)|+l2l112|S(κ)|+l2κ6|S(l2)|.

    Corollary 4. In Theorem 1, if we take κ=l1+l22, then we obtain

    |λS(l1)+(2λμ)S(l1+l22)+μS(l2)22α1Γ(α+1)(l2l1)α(Iαl1+l22+S(l2)+Iαl1+l22S(l1))|l2l14((2(α+1)(α+2)λ2(α+1)(α+2)+2αα+1λ1+1ααα+2λ1+2α)|S(l1)|+(4(α+2)(λ+μ)2(α+2)+αα+2(λ1+2α+μ1+2α))|S(l1+l22)|+(2(α+1)(α+2)μ2(α+1)(α+2)+2αα+1μ1+1ααα+2μ1+2α)|S(l2)|).

    Corollary 5. Using the convexity of |S| i.e., |S(l1+l22)|12|S(l1)|+12|S(l2)|, Corollary 4 becomes

    |λS(l1)+(2λμ)S(l1+l22)+μS(l2)22α1Γ(α+1)(l2l1)α(Iαl1+l22+S(l2)+Iαl1+l22S(l1))|l2l14((4(3λ+μ)(α+1)4(α+1)+α2(α+2)(μ1+2αλ1+2α)+2αα+1λ1+1α)|S(l1)|+(4(λ+3μ)(α+1)4(α+1)+α2(α+2)(λ1+2αμ1+2α)+2αα+1μ1+1α)|S(l2)|).

    Corollary 6. In Corollary 4, if we take α=1, then we obtain

    |λS(l1)+(2λμ)S(l1+l22)+μS(l2)21l2l1l2l1S(u)du|l2l14(13λ+6λ22λ36|S(l1)|+13μ+6μ22μ36|S(l2)|+43(λ+μ)+2(λ3+μ3)6|S(l1+l22)|).

    Corollary 7. Using the convexity of |S|, Corollary 6 becomes

    |λS(l1)+(2λμ)S(l1+l22)+μS(l2)21l2l1l2l1S(u)du|l2l14(63(3λ+μ)+12λ2+2(μ3λ3)12|S(l1)|+63(λ+3μ)+12μ2+2(λ3μ3)12|S(l2)|).

    Corollary 8. In Corollary 4, if we take λ=μ, then we obtain

    |λS(l1)+2(1λ)S(l1+l22)+λS(l2)22α1Γ(α+1)(l2l1)α(Iαl1+l22+S(l2)+Iαl1+l22S(l1))|l2l14((2(α+1)(α+2)λ2(α+1)(α+2)+2αα+1λ1+1ααα+2λ1+2α)(|S(l1)|+|S(l2)|)+(2(α+2)λα+2+2αα+2λ1+2α)|S(l1+l22)|).

    Remark 1. Corollary 8 recaptures.

    Corollary 3 with s=1 from [13], if we take λ=0.

    The second point of Remark 3.6 from [19] if we take λ=12.

    Theorem 2.2 with l1=1 (inequality (2.17)) from [20], if we take λ=13.

    The first point of Remark 3.6 from [19], if we take λ=1.

    Corollary 9. Using the convexity of |S|, Corollary 8 gives

    |λS(l1)+2(1λ)S(l1+l22)+λS(l2)22α1Γ(α+1)(l2l1)α(Iαl1+l22+S(l2)+Iαl1+l22S(l1))|l2l14(1(α+1)λα+1+2αα+1λ1+1α)(|S(l1)|+|S(l2)|).

    Remark 2. Corollary 9 recaptures.

    Theorem 5 from [21], if we take λ=0.

    Corollary 3.3 from [22], if we take λ=12.

    Theorem 2.3 with l1=1 (inequality (2.21)) from [20], if we take λ=13.

    Corollary 5.4 from [23], if we take λ=1.

    Corollary 10. In Corollary 8, if we take α=1, then we get

    |λS(l1)+2(1λ)S(l1+l22)+λS(l2)21l2l1l2l1S(u)du|l2l14(13λ+6λ22λ36(|S(l1)|+|S(l2)|)+23λ+2λ33|S(l1+l22)|).

    Remark 3. Corollary 10 recaptures.

    Corollary 3 from [24], if we take λ=0.

    Corollary 10 from [17], if we take λ=12.

    Corollary 2.4 from [25], if we take λ=13.

    Corollary 2 from [26], if we take λ=1.

    Corollary 11. Using the convexity of |S|, Corollary 10 gives

    |λS(l1)+2(1λ)S(l1+l22)+λS(l2)21l2l1l2l1S(u)du|l2l18(12λ+2λ2)(|S(l1)|+|S(l2)|).

    Remark 4. Corollary 11 recaptures.

    Theorem 2.2 from [27], if we take λ=0.

    Corollary 3.2 from [28] and Remark 3.2 from [29], if we take λ=12.

    Theorem 5 from [30], if we take λ=13.

    Theorem 2.2 from [31], if we take λ=1.

    The following special functions are used for the following outcomes.

    The incomplete beta function is given by

    Ba(t,f)=a0˜ıt1(1˜ı)f1d˜ı, t,f>0 and 0<a<1.

    When we replace a by 1, we obtain the classical beta function.

    The hypergeometric function is given by

    2F1(a,b,c;z)=1B(b,cb)10˜ıb1(1˜ı)cb1(1z˜ı)ad˜ı,

    where c>b>0,|z|<1 and B(.,.) is the beta function.

    To establish our next result, we need the following lemma.

    Lemma 2. [32] Let S: [l1,l2](0,), if Sq is convex on [l1,l2] for all q(0,1], we can derive two important consequences below.

    (i) For 0<q12, we have

    S((1˜ı)l1+˜ıl2)q21q1((1˜ı)1qS(l1)+˜ı1qS(l2)+(2q2)˜ı12q(1˜ı)12q(S(l1)S(l2))12).

    (ii) For 12<q1, we have

    S((1˜ı)l1+˜ıl2)(1˜ı)1qS(l1)+˜ı1qS(l2)+(21q2)˜ı12q(1˜ı)12q(S(l1)S(l2))12.

    Theorem 2. Let S be as in Lemma 1. If |S|q is convex, then we have:

    For 0<q<12

    |λS(l1)+(2λμ)S(κ)+μS(l2)2(Γ(α+1)2(l2κ)αIακ+S(l2)+Γ(α+1)2(κl1)αIακS(l1))|q21q(κl1)4(φ(q,α,λ)|S(l1)|+ψ(q,α,z)|S(κ)|+(2q2)l2(q,α,λ)(|S(l1)||S(κ)|)12)+q21q(l2κ)4(ψ(q,α,μ)|S(κ)|+φ(q,α,μ)|S(l2)|+(2q2)l2(q,α,μ)(|S(l2)||S(κ)|)12).

    For 12<q<1

    |λS(l1)+(2λμ)S(κ)+μS(l2)2(Γ(α+1)2(l2κ)αIακ+S(l2)+Γ(α+1)2(κl1)αIακS(l1))|κl12(φ(q,α,λ)|S(l1)|+ψ(q,α,λ)|S(κ)|+(21q2)l2(q,α,λ)(|S(l1)||S(κ)|)12)+l2κ2(ψ(q,α,μ)|S(κ)|+φ(q,α,μ)|S(l2)|+(21q2)l2(q,α,μ)(|S(l2)||S(κ)|)12),

    where 0<q<1,λ,μ[0,1],α>0 and κ [l1,l2].

    Proof. Using the absolute value of both sides of (2.1), we deduce

    |λS(l1)+(2λμ)S(κ)+μS(l2)2(Γ(α+1)2(l2κ)αIακ+S(l2)+Γ(α+1)2(κl1)αIακS(l1))|κl1210|˜ıαλ||S((1˜ı)l1+˜ıκ)|d˜ı+l2κ210|μ(1˜ı)α||S((1˜ı)κ+˜ıl2)|d˜ı. (2.8)

    Assume that 0<q<12, from the convexity of |S|q and Lemma 2, we obtain

    |S((1˜ı)l1+˜ıκ)|q21q1((1˜ı)1q|S(l1)|+˜ı1q|S(κ)|+(2q2)˜ı12q(1˜ı)12q(|S(l1)||S(κ)|)12) (2.9)

    and

    |S((1˜ı)κ+˜ıl2)|q21q1((1˜ı)1q|S(κ)|+˜ı1q|S(l2)|+(2q2)˜ı12q(1˜ı)12q(|S(κ)||S(l2)|)12). (2.10)

    Using (2.9) and (2.10) in (2.8), we obtain

    |λS(l1)+(2λμ)S(κ)+μS(l2)2(Γ(α+1)2(l2κ)αIακ+S(l2)+Γ(α+1)2(κl1)αIακS(l1))|q21q(κl1)410|˜ıαλ|((1˜ı)1q|S(l1)|+˜ı1q|S(κ)|+(2q2)˜ı12q(1˜ı)12q(|S(l1)||S(κ)|)12)d˜ı+q21q(l2κ)410|μ(1˜ı)α|((1˜ı)1q|S(κ)|+˜ı1q|S(l2)|+(2q2)˜ı12q(1˜ı)12q(|S(l2)||S(κ)|)12)d˜ı=q21q(κl1)4((10|˜ıαλ|(1˜ı)1qd˜ı)|S(l1)|+(10|˜ıαλ|˜ı1qd˜ı)|S(κ)| (2.11)
    +(2q2)(10|˜ıαλ|˜ı12q(1˜ı)12qd˜ı)(|S(l1)||S(κ)|)12)+q21q(l2κ)4((10|μ(1˜ı)α|(1˜ı)1qd˜ı)|S(κ)|+(10|μ(1˜ı)α|˜ı1qd˜ı)|S(l2)|+(2q2)(10|μ(1˜ı)α|˜ı12q(1˜ı)12qd˜ı)(|S(l2)||S(κ)|)12)=q21q(κl1)4(φ(q,α,λ)|S(l1)|+ψ(q,α,z)|S(κ)|+(2q2)l2(q,α,λ)(|S(l1)||S(κ)|)12)+q21q(l2κ)4(ψ(q,α,μ)|S(κ)|+φ(q,α,μ)|S(l2)|+(2q2)l2(q,α,μ)(|S(l2)||S(κ)|)12).

    Now, assume that 12<q<1; from the convexity of |S|q and Lemma 2, we have

    |S((1˜ı)l1+˜ıκ)|(1˜ı)1q|S(l1)|+˜ı1q|S(κ)|+(21q2)˜ı12q(1˜ı)12q(|S(l1)||S(κ)|)12 (2.12)

    and

    |S((1˜ı)κ+˜ıl2)|(1˜ı)1q|S(κ)|+˜ı1q|S(l2)|+(21q2)˜ı12q(1˜ı)12q(|S(κ)||S(l2)|)12. (2.13)

    Using (2.12) and (2.13) in (2.8), we obtain

    |λS(l1)+(2λμ)S(κ)+μS(l2)2(Γ(α+1)2(l2κ)αIακ+S(l2)+Γ(α+1)2(κl1)αIακS(l1))|κl1210|˜ıαλ|((1˜ı)1q|S(l1)|+˜ı1q|S(κ)|+(21q2)˜ı12q(1˜ı)12q(|S(l1)||S(κ)|)12)d˜ı+l2κ210|μ(1˜ı)α|((1˜ı)1q|S(κ)|+˜ı1q|S(l2)|+(21q2)˜ı12q(1˜ı)12q(|S(κ)||S(l2)|)12)d˜ı=κl12((10|˜ıαλ|(1˜ı)1qd˜ı)|S(l1)|+(10|˜ıαλ|˜ı1qd˜ı)|S(κ)|+(21q2)(10|αλ|˜ı12q(1˜ı)12qd˜ı)(|S(l1)||S(κ)|)12)+l2x2((10|μ˜ıα|˜ı1qd˜ı)|S(κ)|+(10|μ˜ıα|(1˜ı)1qd˜ı)|S(l2)|+(21q2)(10|μ˜ıα|(1˜ı)12q˜ı12qd˜ı)(|S(κ)||S(l2)|)12)=κl12(φ(q,α,λ)|S(l1)|+ψ(q,α,λ)|S(κ)|+(21q2)l2(q,α,λ)(|S(l1)||S(κ)|)12)+l2κ2(ψ(q,α,μ)|S(κ)|+φ(q,α,μ)|S(l2)|+(21q2)l2(q,α,μ)(|S(κ)||S(l2)|)12), (2.14)

    where we have used

    φ(q,α,z)=10|˜ıαz|(1˜ı)1qd˜ı=qz1+q2qz1+q(1z1α)1q+1+B1z1α(1+qq,α+1)Bz1α(α+1,1+qq),
    ψ(q,α,z)=10|˜ıαz|˜ı1qd˜ı=(1z)q(q+1)zαq2(1+q)(αq+q+1)+2αq2(1+q)(αq+q+1)zαq+1+qαq

    and

    l2(q,α,z)=10|˜ıαλ|˜ı12q(1˜ı)12qd˜ı=z(Bz1α(1+2q2q,1+2q2q)B1z1α(1+2q2q,1+2q2q))(Bz1α(2q(α+1)+12q,1+2q2q)B1z1α(2q(α+1)+12q,1+2q2q)).

    The desired result follows from (2.11) and (2.14).

    Corollary 12. Putting α=1 in Theorem 2, we obtain

    For 0<q<12

    |λS(l1)+(2λμ)S(κ)+μS(l2)2(12(κl1)κl1S(u)du+12(l2κ)l2κS(u)du)|q21q(κl1)4(qλ+q2(2λ1)+2q2(1λ)1+2qq(1+q)(1+2q)|S(l1)|+(1λ)q(q+1)λq2+2q2λ2q+1q(1+q)(2q+1)|S(κ)|+(2q2)ω(q,λ)(|S(l1)||S(κ)|)12)+q21q(l2κ)4((1μ)q(q+1)μq2+2q2μ2q+1q(1+q)(2q+1)|S(κ)|+qμ+q2(2μ1)+2q2(1μ)1+2qq(1+q)(1+2q)|S(l2)|+(2q2)ω(q,μ)(|S(κ)||S(l2)|)12).

    For 12<q<1

    |λS(l1)+(2λμ)S(κ)+μS(l2)2(12(κl1)κl1S(u)du+12(l2κ)l2κS(u)du)|κl12(qλ+q2(2λ1)+2q2(1λ)1+2qq(1+q)(1+2q)|S(l1)|+(1λ)q(q+1)λq2+2q2λ2q+1q(1+q)(2q+1)|S(κ)|+(21q2)ω(q,λ)(|S(l1)||S(κ)|)12)+l2κ2((1μ)q(q+1)μq2+2q2μ2q+1q(1+q)(2q+1)|S(κ)|+qμ+q2(2μ1)+2q2(1μ)1+2qq(1+q)(1+2q)|S(l2)|+(21q2)ω(q,μ)(|S(κ)||S(l2)|)12),

    where

    ω(q,z)=z(Bz(1+2q2q,1+2q2q)B1z(1+2q2q,1+2q2q))(Bz(2q(α+1)+12q,1+2q2q)B1z(2q(α+1)+12q,1+2q2q)).

    Theorem 3. Let S be as in Lemma 1. If |S|q is convex then we have

    |λS(l1)+(2λμ)S(κ)+μS(l2)2(Γ(α+1)2(l2κ)αIακ+S(l2)+Γ(α+1)2(κl1)αIακS(l1))|κl12(2(α+1)(α+2)λ2(α+1)(α+2)+2αα+1λ1+1ααα+2λ1+2α)|S(l1)|+(κl12(2(α+2)λ2(α+2)+2α2(α+2)λ1+2α)+l2κ2(2(α+2)μ2(α+2)+2α2(α+2)μ1+2α))|S(κ)|+l2κ2(2(α+1)(α+2)μ2(α+1)(α+2)+2αα+1μ1+1ααα+2μ1+2α)|S(l2)|,

    where q>1 with 1p+1q=1, B(.,.) and 2F1(.,.,.;.) are beta and hypergeometric functions, respectively.

    Proof. Using the absolute value of both sides of (2.1), then applying Hölder's inequality and convexity of |S|q, it yields

    |λS(l1)+(2λμ)S(κ)+μS(l2)2(Γ(α+1)2(l2κ)αIακ+S(l2)+Γ(α+1)2(κl1)αIακS(l1))|κl12(10|˜ıαλ|pd˜ı)1p(10|S((1˜ı)l1+˜ıκ)|qd˜ı)1q+l2κ2(10|μ(1˜ı)α|pd˜ı)1p(10|S((1˜ı)κ+˜ıl2)|qd˜ı)1qκl12(10|˜ıαλ|pd˜ı)1p(10((1˜ı)|S(l1)|q+˜ı|S(κ)|q)d˜ı)1q+l2κ2(10|μ(1˜ı)α|pd˜ı)1p(10((1˜ı)|S(κ)|q+˜ı|S(l2)|q)d˜ı)1q=κl12(λp+1αB(1α,p+1)α+(1λ)p+1(2F1(α1α,1,p+2;(1λ)))α(p+1))1p(|S(l1)|q+|S(κ)|q2)1q+l2κ2(μp+1αB(1α,p+1)α+(1μ)p+1(2F1(α1α,1,p+2;(1μ)))α(p+1))1p(|S(κ)|q+|S(l2)|q2)1q,

    where we have utilized

    10|˜ıαz|pd˜ı=zp+1αB(1α,p+1)α+(1z)p+1(2F1(α1α,1,p+2;1z))α(p+1). (2.15)

    The proof is finished.

    Corollary 13. Putting α=1 in Theorem 3, we obtain

    |λS(l1)+(2λμ)S(κ)+μS(l2)2(12(κl1)κl1S(u)du+12(l2κ)l2κS(u)du)|κl12(λp+1+(1λ)p+1(p+1))1p(|S(l1)|q+|S(κ)|q2)1q+l2κ2(μp+1+(1μ)p+1α(p+1))1p(|S(κ)|q+|S(l2)|q2)1q.

    Theorem 4. Let S be as in Lemma 1. If |S|q is convex, where q1, then we have

    |λS(l1)+(2λμ)S(κ)+μS(l2)2(Γ(α+1)2(l2κ)αIακ+S(l2)+Γ(α+1)2(κl1)αIακS(l1))|κl12(1(α+1)λ+2αλ1+1αα+1)11q((2(α+1)(α+2)λ2(α+1)(α+2)+2αα+1λ1+1ααα+2λ1+2α)|S(l1)|q
    +2(α+2)λ+2αλ1+2α2(α+2)|S(κ)|q)1q+l2κ2(1(α+1)μ+2αμ1+1αα+1)11q(2(α+2)μ+2αμ1+2α2(α+2)|S(κ)|q+(2(α+1)(α+2)μ2(α+1)(α+2)+2αα+1μ1+1ααα+2μ1+2α)|S(l2)|q)1q,

    where λ,μ[0,1],α>0 and κ [ε1,l2].

    Proof. Using the absolute value of both sides of (2.1), then applying power mean inequality, and convexity of |S|q, it yields

    |λS(l1)+(2λμ)S(κ)+μS(l2)2(Γ(α+1)2(l2κ)αIακ+S(l2)+Γ(α+1)2(κl1)αIακS(l1))|κl12(10|˜ıαλ|d˜ı)11q(10|˜ıαλ||S((1˜ı)l1+˜ıκ)|qd˜ı)1q+l2κ2(10|μ(1˜ı)α|d˜ı)11q(10|μ(1˜ı)α||S((1˜ı)κ+˜ıl2)|qd˜ı)1qκl12(10|˜ıαλ|d˜ı)11q(10|˜ıαλ|((1˜ı)|S(l1)|q+˜ı|S(κ)|q)d˜ı)1q+l2κ2(10|μ(1˜ı)α|d˜ı)11q×(10|μ(1˜ı)α|((1˜ı)|S(κ)|q+˜ı|S(l2)|q)d˜ı)1q=κl12(1(α+1)λ+2αλ1+1αα+1)11q×((2(α+1)(α+2)λ2(α+1)(α+2)+2αα+1λ1+1ααα+2λ1+2α)|S(l1)|q+2(α+2)λ+2αλ1+2α2(α+2)|S(κ)|q)1q+l2κ2(1(α+1)μ+2αμ1+1αα+1)11q(2(α+2)μ+2αμ1+2α2(α+2)|S(κ)|q+(2(α+1)(α+2)μ2(α+1)(α+2)+2αα+1μ1+1ααα+2μ1+2α)|S(l2)|q)1q,

    where (2.4)–(2.7) have been utilized. The proof is finished.

    Corollary 14. Putting α=1 in Theorem 4, we obtain

    |λS(l1)+(2λμ)S(κ)+μS(l2)2(12(κl1)κl1S(u)du+12(l2κ)l2κS(u)du)|κl12(12λ+2λ22)11q(13λ+6λ22λ36|S(l1)|q+23λ+2λ36|S(κ)|q)1q+l2κ2(12μ+2μ22)11q(23μ+2μ36|S(κ)|q+13μ+6μ22μ36|S(l2)|q)1q.

    Theorem 5. Let S be as in Lemma 1. If |S|q is convex, then we have

    |λS(l1)+(2λμ)S(κ)+μS(l2)2(Γ(α+1)2(l2κ)αIακ+S(l2)+Γ(α+1)2(κl1)αIακS(l1))|κl12(λp+1αB(1α,p+1)αp+(1λ)p+1(2F1(α1α,1,p+2;(1λ)))α(p+1)p+|S(l1)|q+|S(κ)|q2q)+l2κ2(μp+1αB(1α,p+1)αp+(1μ)p+1(2F1(α1α,1,p+2;(1μ)))α(p+1)p+|S(κ)|q+|S(l2)|q2q),

    where q>1 with 1p+1q=1,λ,μ[0,1],α>0 and κ [l1,l2].

    Proof. Using the absolute value of both sides of (2.1), then applying Young's inequality and convexity of |S|q, we have

    |λS(l1)+(2λμ)S(κ)+μS(l2)2(Γ(α+1)2(l2κ)αIακ+S(l2)+Γ(α+1)2(κl1)αIακS(l1))|κl1210|˜ıαλ||S((1˜ı)l1+˜ıκ)|d˜ı+l2κ210|μ(1˜ı)α||S((1˜ı)κ+˜ıl2)|d˜ıκl12(1p10|˜ıαλ|pd˜ı+1q10|S((1˜ı)l1+κ)|qd˜ı)+l2κ2(1p10|μ(1˜ı)α|pd˜ı+1q10|S((1˜ı)κ+˜ıl2)|qd˜ı)κl12(1p10|˜ıαλ|pd˜ı+1q10((1˜ı)|S(l1)|q+˜ı|S(κ)|q)d˜ı)+l2κ2(1p10|μ˜ıα|pd˜ı+1q10((1˜ı)|S(κ)|q+˜ı|S(l2)|q)d˜ı)=κl12(λp+1αB(1α,p+1)αp+(1λ)p+1(2F1(α1α,1,p+2;(1λ)))α(p+1)p+|S(l1)|q+|S(κ)|q2q)+l2κ2(μp+1αB(1α,p+1)αp+(1μ)p+1(2F1(α1α,1,p+2;(1μ)))α(p+1)p+|S(κ)|q+|S(l2)|q2q).

    The proof is finished.

    Corollary 15. Putting α=1 in Theorem 5, we obtain

    |λS(l1)+(2λμ)S(κ)+μS(l2)2(12(κl1)κl1S(u)du+12(l2κ)l2κS(u)du)|κl12(λp+1αB(1α,p+1)αp+(1λ)p+1(2F1(α1α,1,p+2;(1λ)))α(p+1)p+|S(l1)|q+|S(κ)|q2q)+l2κ2(μp+1αB(1α,p+1)αp+(1μ)p+1(2F1(α1α,1,p+2;(1μ)))α(p+1)p+|S(κ)|q+|S(l2)|q2q).

    We'll look at the means for arbitrary real values l1and l2.

    The formula for the arithmetic mean is A(l1,l2)=l1+l22.

    The formula for the weighted arithmetic mean is A(p,q,l1,l2)=pl1+ql2p+q. The geometric mean is equal to G(l1,l2)=l1l2.

    The harmonic mean is equal to H(l1,l2)=21l2+1l1=2l1l2l1+l2.

    L(l1,l2)=l2l1lnl2lnl1, l1,l2>0 and l1l2, is the logarithmic mean.

    Lp(l1,l2)=(l2l1(p+1)(l2l1))1p, l1,l2>0,l1l2 and pR{1,0}, is the p-logarithmic mean.

    Proposition 1. For real numbers l1,l2,c such that 0<l1<c<l2, we have

    |2A(l31,l32)(L33(l1,c)+L33(c,l2))|l2l12(4A(l22,l21)+2G2(l1,l2)c2).

    Proof. Applying second inequality of Corollary 3 to the function S(u)=u3, yields the statement.

    Proposition 2. For real numbers l1,l2 such that 0<l1<l2, we have

    |A(1,3,l2,A(H(l1,l2),l1))G2(l1,l2)L1(l1,l2)|l2l11536l2l1(91l22+125l21).

    Proof. The application of Corollary 7 with λ=12 and μ=34 on the interval [1l2,1l1], gives

    |12S(1l2)+34S(l1+l22l1l2)+34S(1l1)2l1l2l2l11l11l2S(u)du|l2l11536l1l2(91|S(1l2)|+125|S(1l1)|).

    Applying the above inequality to the function S(u)=1u the derivative S(u)=1u2. So, we obtain |S(1l1)|=l21, |S(1l2)|=l22, and

    l1l2l2l11l11l2S(u)du=l1l2l2l1(ln1l1ln1l2)=l1l2l2l1(lnl2lnl1)=(l1l2)2lnl2lnl1l2l1=G2(l1,l2)L1(l1,l2).

    We also note

    12S(1l2)+34S(l1+l22l1l2)+34S(1l1)2=12l2+342l1l2l1+l2+34l12=14l2+34(2l1l2l1+l2+l1)2=14l2+34(H(l1,l2)+l1)2=14l2+34A(H(l1,l2),l1)=A(1,3,l2,A(H(l1,l2),l1)).

    In this study, we have established a new integral identity. We have derived several fractional parametrized Newton-Cotes type inequalities for differentiable convex first derivatives. We have discussed some case that can be derived from the finding. We have provided some applications to inequalities involving means. It is our hope that this paper's findings will inspire more study in this area.

    Rabah Debbar, Abdelkader Moumen, Hamid Boulares, Badreddine Meftah: Conceptualization, Methodology, Validation, Formal analysis, Investigation, Writing-original draft preparation, Writing-review and editing; Mohamed Bouye: Writing-original draft preparation, Writing-review and editing. All authors have read and approved the final version of the manuscript for publication.

    The authors declare they have not used Artificial Intelligence (AI) tools in the creation of this research.

    The authors extend their appreciation to the Deanship of Research and Graduate Studies at King Khalid University for funding this work through Large group research project under Grant Number RGP2/158/46.

    All authors declare no conflicts of interest in this paper.



    [1] M. Alomari, M. Darus, S. S. Dragomir, P. Cerone, Ostrowski type inequalities for functions whose derivatives are s-convex in the second sense, Appl. Math. Lett., 23 (2010), 1071–1076. https://doi.org/10.1016/j.aml.2010.04.038 doi: 10.1016/j.aml.2010.04.038
    [2] M. W. Alomari, M. E. Özdemir, H. Kavurmac, On companion of Ostrowski inequality for mappings whose first derivatives absolute value are convex with applications, Miskolc Math. Notes, 13 (2012), 233–248. https://doi.org/10.18514/mmn.2012.480 doi: 10.18514/mmn.2012.480
    [3] M. U. Awan, M. Z. Javed, M. T. Rassias, M. A. Noor, K. I. Noor, Simpson type inequalities and applications, J. Anal., 29 (2021), 1403–1419. https://doi.org/10.1007/s41478-021-00319-4 doi: 10.1007/s41478-021-00319-4
    [4] C. P. Niculescu, L. E. Persson, Convex functions and their applications. A contemporary approach, New York: Springer, 2006. https://doi.org/10.1007/0-387-31077-0
    [5] G. Farid, G. M. Habibullah, An extension of Hadamard fractional integral, Int. J. Math. Anal., 9 (2015), 471–482. https://doi.org/10.12988/ijma.2015.5118 doi: 10.12988/ijma.2015.5118
    [6] Y. C. Kwun, G. Farid, W. Nazeer, S. Ullah, S. M. Kang, Generalized Riemann-Liouville k-fractional integrals associated with Ostrowski type inequalities and error bounds of Hadamard inequalities, IEEE Access, 6 (2018), 64946–64953. https://doi.org/10.1109/ACCESS.2018.2878266 doi: 10.1109/ACCESS.2018.2878266
    [7] M. Z. Sarıkaya, F. Ertuğral, On the generalized Hermite-Hadamard inequalities, An. Univ. Craiova Ser. Mat. Inform., 47 (2020), 193–213. https://doi.org/10.52846/ami.v47i1.1139 doi: 10.52846/ami.v47i1.1139
    [8] F. Jarad, E. Uğurlu, T. Abdeljawad, D. Baleanu, On a new class of fractional operators, Adv. Differ. Equ., 2017 (2017), 247. https://doi.org/10.1186/s13662-017-1306-z doi: 10.1186/s13662-017-1306-z
    [9] U. N. Katugampola, New approach to a generalized fractional integral, Appl. Math. Comput., 218 (2011), 860–865. https://doi.org/10.1016/j.amc.2011.03.062 doi: 10.1016/j.amc.2011.03.062
    [10] S. Mubeen, G. M. Habibullah, k-Fractional integrals and application, Int. J. Contemp. Math. Sciences, 7 (2012), 89–94.
    [11] A. A. Kilbas, H. M. Srivastava, J. J. Trujillo, Theory and applications of fractional differential equations, North-Holland Math. Stud., 204 (2006). https://doi.org/10.1016/S0304-0208(06)80001-0 doi: 10.1016/S0304-0208(06)80001-0
    [12] M. E. Özdemir, E. Setm A. Alomari, Integral inequalities via several kinds of convexity, Creat. Math. Inform., 20 (2011), 62–73. https://doi.org/10.37193/CMI.2011.01.08 doi: 10.37193/CMI.2011.01.08
    [13] N. Nasri, F. Aissaoui, K. Bouhali, A. Frioui, B. Meftah, K. Zennir, T. Radwan, Fractional weighted midpoint-type inequalities for s-convex functions, Symmetry, 15 (2023), 612. https://doi.org/10.3390/sym15030612 doi: 10.3390/sym15030612
    [14] F. Alsharari, R. Fakhfakh, A. Lakhdari, On fractal-fractional Simpson-type inequalities: New insights and refinements of classical results, Mathematics, 12 (2024), 3886. https://doi.org/10.3390/math12243886 doi: 10.3390/math12243886
    [15] S. S. Dragomir, Hermite-Hadamard type inequalities for generalized Riemann-Liouville fractional integrals of h-convex functions, Math. Method. Appl. Sci., 44 (2019), 2364–2380. https://doi.org/10.1002/mma.5893 doi: 10.1002/mma.5893
    [16] B. Meftah, A. Azaizia, Fractional Ostrowski type inequalities for functions whose first derivatives are MT-preinvex, Matua Revista Del Programa De Matematicas, 1 (2019), 33–43.
    [17] M. Z. Sarikaya, On the some generalization of inequalities associated with Bullen, Simpson, midpoint and trapezoid type, Acta Univ. Apulensis Math. Inform., 73 (2023), 33–52.
    [18] B. Y. Xi, F. Qi, Some integral inequalities of Hermite-Hadamard type for convex functions with applications to means, J. Funct. Spaces, 2012 (2012), 980438. https://doi.org/10.1155/2012/980438 doi: 10.1155/2012/980438
    [19] W. Saleh, A. Lakhdari, T. Abdeljawad, B. Meftah, On fractional biparameterized Newton-type inequalities, J. Inequal. Appl., 2023 (2023), 122. https://doi.org/10.1186/s13660-023-03033-w doi: 10.1186/s13660-023-03033-w
    [20] X. R. Hai, S. H. Wang, Simpson type inequalities for convex function based on the generalized fractional integrals, Turkish J. Ineq., 5 (2021), 1–15.
    [21] H. Budak, K. Özcelik, On Hermite-Hadamard type inequalities for Riemann-Liouville fractional integrals, Miskolc Math. Notes, 21 (2020), 91–99. https://doi.org/10.18514/MMN.2020.3129 doi: 10.18514/MMN.2020.3129
    [22] F. Hezenci, H. Budak, H. Kara, A study on conformable fractional version of Bullen-type inequalities, Turkish J. Math., 47 (2023), 1306–1317. https://doi.org/10.55730/1300-0098.3429 doi: 10.55730/1300-0098.3429
    [23] H. Budak, F. Ertuğral, M. Z. Sarikaya, New generalization of Hermite-Hadamard type inequalities via generalized fractional integrals, An. Univ. Craiova Ser. Mat. Inform., 47 (2020), 369–386. https://doi.org/10.52846/ami.v47i2.1309 doi: 10.52846/ami.v47i2.1309
    [24] N. Azzouza, B. Meftah, Some weighted integral inequalities for differentiable beta-convex functions, J. Interdiscip. Math., 25 (2021), 373–393. https://doi.org/10.1080/09720502.2021.1932858 doi: 10.1080/09720502.2021.1932858
    [25] A. Kashuri, B. Meftah, P. O. Mohammed, Some weighted Simpson type inequalities for differentiable s-convex functions and their applications, J. Fract. Calc. Nonlin. Syst., 1 (2020), 75–94. https://doi.org/10.48185/jfcns.v1i1.150 doi: 10.48185/jfcns.v1i1.150
    [26] H. Kavurmaci, M. Avci, M. E. Özdemir, New inequalities of Hermite-Hadamard type for convex functions with applications, J. Inequal. Appl., 2011 (2011), 86. https://doi.org/10.1186/1029-242X-2011-86 doi: 10.1186/1029-242X-2011-86
    [27] U. S. Kirmaci, Inequalities for differentiable mappings and applications to special means of real numbers and to midpoint formula, Appl. Math. Comput., 147 (2004), 137–146. https://doi.org/10.1016/S0096-3003(02)00657-4 doi: 10.1016/S0096-3003(02)00657-4
    [28] S. Hamida, B. Meftah, Fractional Bullen type inequalities for differentiable preinvex functions, ROMAI J., 16 (2020), 63–74.
    [29] H. R. Hwang, K. L. Tseng, K. C. Hsu, New inequalities for fractional integrals and their applications, Turkish J. Math., 40 (2016), 471–486. https://doi.org/10.3906/mat-1411-61 doi: 10.3906/mat-1411-61
    [30] M. Z. Sarikaya, E. Set, M. E. Özdemir, On new inequalities of Simpson's type for convex functions, Comput. Math. Appl., 60 (2010), 2191–2199. https://doi.org/10.1016/j.camwa.2010.07.033 doi: 10.1016/j.camwa.2010.07.033
    [31] S. S. Dragomir, R. P. Agarwal, Two inequalities for differentiable mappings and applications to special means of real numbers and to trapezoidal formula, Appl. Math. Lett., 11 (1998), 91–95. https://doi.org/10.1016/S0893-9659(98)00086-X doi: 10.1016/S0893-9659(98)00086-X
    [32] T. Zhang, A. Chen, Some new estimates of Hermite-Hadamard inequality with application, Axioms, 12 (2023), 688. https://doi.org/10.3390/axioms12070688 doi: 10.3390/axioms12070688
  • Reader Comments
  • © 2025 the Author(s), licensee AIMS Press. This is an open access article distributed under the terms of the Creative Commons Attribution License (http://creativecommons.org/licenses/by/4.0)
通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索

Metrics

Article views(182) PDF downloads(31) Cited by(0)

/

DownLoad:  Full-Size Img  PowerPoint
Return
Return

Catalog