In this paper, we propose to establish some fractional parametrized three-point integral inequalities. We start by developing a new integral identity. Based on this identity, we derive many types of integral inequality, including Ostrowski, midpoint, trapeze, Simpson, and Bullen. A number of known results are also derived. The findings' applications are given.
Citation: Rabah Debbar, Abdelkader Moumen, Hamid Boulares, Badreddine Meftah, Mohamed Bouye. Some fractional integral type inequalities for differentiable convex functions[J]. AIMS Mathematics, 2025, 10(5): 11899-11917. doi: 10.3934/math.2025537
[1] | Hüseyin Budak, Ebru Pehlivan . Weighted Ostrowski, trapezoid and midpoint type inequalities for RiemannLiouville fractional integrals. AIMS Mathematics, 2020, 5(3): 1960-1984. doi: 10.3934/math.2020131 |
[2] | Chanon Promsakon, Muhammad Aamir Ali, Hüseyin Budak, Mujahid Abbas, Faheem Muhammad, Thanin Sitthiwirattham . On generalizations of quantum Simpson's and quantum Newton's inequalities with some parameters. AIMS Mathematics, 2021, 6(12): 13954-13975. doi: 10.3934/math.2021807 |
[3] | Thanin Sitthiwirattham, Muhammad Aamir Ali, Hüseyin Budak, Sotiris K. Ntouyas, Chanon Promsakon . Fractional Ostrowski type inequalities for differentiable harmonically convex functions. AIMS Mathematics, 2022, 7(3): 3939-3958. doi: 10.3934/math.2022217 |
[4] | Hüseyin Budak, Fatma Ertuğral, Muhammad Aamir Ali, Candan Can Bilişik, Mehmet Zeki Sarikaya, Kamsing Nonlaopon . On generalizations of trapezoid and Bullen type inequalities based on generalized fractional integrals. AIMS Mathematics, 2023, 8(1): 1833-1847. doi: 10.3934/math.2023094 |
[5] | Xuexiao You, Fatih Hezenci, Hüseyin Budak, Hasan Kara . New Simpson type inequalities for twice differentiable functions via generalized fractional integrals. AIMS Mathematics, 2022, 7(3): 3959-3971. doi: 10.3934/math.2022218 |
[6] | Shuhong Yu, Tingsong Du . Certain inequalities in frame of the left-sided fractional integral operators having exponential kernels. AIMS Mathematics, 2022, 7(3): 4094-4114. doi: 10.3934/math.2022226 |
[7] | Maimoona Karim, Aliya Fahmi, Shahid Qaisar, Zafar Ullah, Ather Qayyum . New developments in fractional integral inequalities via convexity with applications. AIMS Mathematics, 2023, 8(7): 15950-15968. doi: 10.3934/math.2023814 |
[8] | Muhammad Amer Latif, Humaira Kalsoom, Zareen A. Khan . Hermite-Hadamard-Fejér type fractional inequalities relating to a convex harmonic function and a positive symmetric increasing function. AIMS Mathematics, 2022, 7(3): 4176-4198. doi: 10.3934/math.2022232 |
[9] | Muhammad Tariq, Hijaz Ahmad, Soubhagya Kumar Sahoo, Artion Kashuri, Taher A. Nofal, Ching-Hsien Hsu . Inequalities of Simpson-Mercer-type including Atangana-Baleanu fractional operators and their applications. AIMS Mathematics, 2022, 7(8): 15159-15181. doi: 10.3934/math.2022831 |
[10] | Mustafa Gürbüz, Yakup Taşdan, Erhan Set . Ostrowski type inequalities via the Katugampola fractional integrals. AIMS Mathematics, 2020, 5(1): 42-53. doi: 10.3934/math.2020004 |
In this paper, we propose to establish some fractional parametrized three-point integral inequalities. We start by developing a new integral identity. Based on this identity, we derive many types of integral inequality, including Ostrowski, midpoint, trapeze, Simpson, and Bullen. A number of known results are also derived. The findings' applications are given.
Integral inequalities are both theoretically fascinating and practically important, as they contribute significantly to the study of the properties of solutions of differential and integral equations, facilitate error estimations, and play a significant role in ensuring the best approximation of computations in numerical integration. In particular, Newton-Cotes inequalities are an effective way to assess the accuracy of integrals in numerical analysis as well as in many other scientific fields, such as engineering, physics, and economics.
Convexity theory has important geometric and algebraic characteristics and properties, as well as a wide range of applications, and is closely and strongly related to inequality. There have been several notable works that have contributed to this area of research. For more details, we advise the interested readers to [1,2,3]. We remember that a function S:I⊂R→R is said to be convex, if
S(˜ı∘l1+(1−˜ı∘)l2)≤˜ı∘S(l1)+(1−˜ı∘)S(l2) |
holds for all l1,l2∈I and all ˜ı∘∈[0,1] ([4]).
Fractional calculus is a subfield of mathematical analysis that builds upon standard calculus by integrating derivatives and integrals of non-integer order. It is used to faithfully depict non-local and non-Markovian occurrences in a variety of scientific fields. To improve the modeling of many scientific and technical processes, we have developed a number of fractional integral operators; for Hadamard inequalities, see [5,6,7], for exploring other types of fractional integrals [8,9,10].
However, the Riemann-Liouville operators, is the most commonly encountered operators, and are defined as follows:
Definition 1. [11] Assume that S∈L1[l1,l2]. For order α>0 with l1≥0, the Riemann-Liouville fractional integrals are defined by
Iαl+1S(s)=1Γ(α)s∫l1(s−˜ı∘)α−1S(˜ı∘)d˜ı∘, s>l1,Iαl2S(s)=1Γ(α)l2∫s(˜ı∘−s)α−1S(˜ı∘)d˜ı∘, l2>s, |
respectively, where Γ(α)=∞∫0 e−ssα−1ds, represents the gamma function with I0l+1S(s)=I0l−2S(s)=S(s).
This idea has been accepted and approved in many scientific and technical fields due to its wide range of applications. Also, several subfields of mathematics have adopted this principle, including integral inequalities for many classes of functions, the most widespread being convex functions.
Sarikaya and Yildirim [12] gave the following Hermite-Hadamard type inequalities:
C(ε1+ε22)≤2υ−1Γ(υ+1)(ε2−ε1)υ(Iυ(ε1+ε22)+C(ε2)+Iυ(ε1+ε22)−C(ε1))≤C(ε1)+C(ε2)2. | (1.1) |
Nasri et al. [10] created the midpoint-type inequalities using a similar methodology. Bullen and trapezoid type inequalities were established by Saleh et al. [13]. Hai and Wang [4] developed the Simpson-type inequalities.
We direct readers to several current developments and applications of fractional calculus, including [14,15,16].
Motivated and inspired by the works introduced by Sarikaya [17] and Xi and Qi [18], as well as by the use of Riemann-Liouville integral operators, we first prove a new fractional integral identity. From this identity, we establish several new parameterized fractional integral inequalities for functions whose first derivatives are convex. Numerous known results are derived. Applications of the finding are provided.
The following lemma is required to support our findings.
Lemma 1. Let S:[l1,l2]→R be a differentiable function on [l1,l2] with l1<l2, and S′∈L1[l1,l2]; then the following equality holds:
λS(l1)+(2−λ−μ)S(κ)+μS(l2)2−(Γ(α+1)2(l2−κ)αIακ+S(l2)+Γ(α+1)2(κ−l1)αIακ−S(l1))=κ−l121∫0(˜ıα∘−λ)S′((1−˜ı∘)l1+˜ı∘κ)d˜ı∘+l2−κ21∫0(μ−(1−˜ı∘)α)S′((1−˜ı∘)κ+˜ı∘l2)d˜ı∘, | (2.1) |
where λ,μ∈[0,1],α>0 and κ∈[l1,l2].
Proof. The first integral of the right side of (2.1) may be integrated by parts to yield
κ−l121∫0(˜ıα∘−λ)S′((1−˜ı∘)l1+˜ı∘κ)d˜ı∘=12(˜ıα∘−λ)S((1−˜ı∘)l1+˜ı∘κ)|10−α21∫0˜ıα−1∘S((1−˜ı∘)l1+˜ı∘κ)d˜ı∘=1−λ2S(κ)+λ2S(l1)−α2(κ−l1)ακ∫l1(u−l1)α−1S(u)du=1−λ2S(κ)+λ2S(l1)−Γ(α+1)2(κ−l1)αIακ−S(l1). | (2.2) |
Similarly, the second integral gives
l2−κ21∫0(μ−(1−˜ı∘)α)S′((1−˜ı∘)x+˜ı∘l2)d˜ı∘=12(μ−(1−˜ı∘)α)S((1−˜ı∘)κ+˜ı∘l2)|10−α21∫0(1−˜ı∘)α−1S((1−˜ı∘)κ+˜ı∘l2)d˜ı∘=μ2S(l2)+1−μ2S(κ)−α2(l2−κ)αl2∫κ(l2−u)α−1S(u)du=μ2S(l2)+1−μ2S(κ)−Γ(α+1)2(l2−κ)αIακ+S(l2). | (2.3) |
Adding (2.2) and (2.3), we get the desired result.
Theorem 1. Let S be as in Lemma 1. If |S′| is convex, then we have
|λS(l1)+(2−λ−μ)S(κ)+μS(l2)2−(Γ(α+1)2(l2−κ)αIακ+S(l2)+Γ(α+1)2(κ−l1)αIακ−S(l1))|≤κ−l12(2−(α+1)(α+2)λ2(α+1)(α+2)+2αα+1λ1+1α−αα+2λ1+2α)|S′(l1)|+(κ−l12(2−(α+2)λ2(α+2)+2α2(α+2)λ1+2α)+l2−κ2(2−(α+2)μ2(α+2)+2α2(α+2)μ1+2α))|S′(κ)|+l2−κ2(2−(α+1)(α+2)μ2(α+1)(α+2)+2αα+1μ1+1α−αα+2μ1+2α)|S′(l2)|, |
where λ,μ∈[0,1],α>0 and κ∈ [l1,l2].
Proof. Using the absolute value of both sides of (2.1) and the convexity of |S′|, we deduce
|λS(l1)+(2−λ−μ)S(κ)+μS(l2)2−(Γ(α+1)2(l2−κ)αIακ+S(l2)+Γ(α+1)2(κ−l1)αIακ−S(l1))|≤κ−l121∫0|˜ıα∘−λ||S′((1−˜ı∘)l1+˜ı∘κ)|d˜ı∘+l2−κ21∫0|μ−(1−˜ı∘)α||S′((1−˜ı∘)κ+˜ı∘l2)|d˜ı∘≤κ−l121∫0|˜ıα∘−λ|((1−˜ı∘)|S′(l1)|+˜ı∘|S′(κ)|)d˜ı∘+l2−κ21∫0|μ−(1−˜ı∘)α|((1−˜ı∘)|S′(κ)|+˜ı∘|S′(l2)|)d˜ı∘=κ−l12(2−(α+1)(α+2)λ2(α+1)(α+2)+2αα+1λ1+1α−αα+2λ1+2α)|S′(l1)|+(κ−l12(2−(α+2)λ2(α+2)+2α2(α+2)λ1+2α)+l2−κ2(2−(α+2)μ2(α+2)+2α2(α+2)μ1+2α))|S′(κ)|+l2−κ2(2−(α+1)(α+2)μ2(α+1)(α+2)+2αα+1μ1+1α−αα+2μ1+2α)|S′(l2)|, |
1∫0|˜ıα∘−λ|(1−˜ı∘)d˜ı∘=2−(α+1)(α+2)λ2(α+1)(α+2)+2αα+1λ1+1α−αα+2λ1+2α, | (2.4) |
1∫0|˜ıα∘−λ|˜ı∘d˜ı∘=2−(α+2)λ2(α+2)+2α2(α+2)λ1+2α, | (2.5) |
1∫0|μ−(1−˜ı∘)α|(1−˜ı∘)d˜ı∘=2−(α+2)μ2(α+2)+2α2(α+2)μ1+2α | (2.6) |
and
1∫0|μ−(1−˜ı∘)α|˜ı∘d˜ı∘=2−(α+1)(α+2)μ2(α+1)(α+2)+2αα+1μ1+1α−αα+2μ1+2α, | (2.7) |
which concludes the proof.
Corollary 1. Putting α=1 in Theorem 1, we obtain
|λS(l1)+(2−λ−μ)S(κ)+μS(l2)2−(12(κ−l1)κ∫l1S(u)du+12(l2−κ)l2∫κS(u)du)|≤κ−l12(2−(α+1)(α+2)λ2(α+1)(α+2)+2αα+1λ1+1α−αα+2λ1+2α)|S′(l1)|+(κ−l12(2−(α+2)λ2(α+2)+2α2(α+2)λ1+2α)+l2−κ2(2−(α+2)μ2(α+2)+2α2(α+2)μ1+2α))|S′(κ)|+l2−κ2(2−(α+1)(α+2)μ2(α+1)(α+2)+2αα+1μ1+1α−αα+2μ1+2α)|S′(l2)|. |
Corollary 2. In Theorem 1, if we choose λ=μ=0, then we obtain
|S(κ)−(Γ(α+1)2(l2−κ)αIακ+S(l2)+Γ(α+1)2(κ−l1)αIακ−S(l1))|≤κ−l12(α+1)(α+2)|S′(l1)|+l2−l12(α+2)|S′(κ)|+l2−κ2(α+1)(α+2)|S′(l2)|. |
Moreover, if we take α=1, then we obtain
|S(κ)−(12(κ−l1)κ∫l1S(u)du+12(l2−κ)l2∫κS(u)du)|≤κ−l112|S′(l1)|+l2−l16|S′(κ)|+l2−κ12|S′(l2)|. |
Corollary 3. In Theorem 1, if we take λ=μ=1, then we obtain
|S(l1)+S(l2)2−(Γ(α+1)2(l2−κ)αIακ+S(l2)+Γ(α+1)2(κ−l1)αIακ−S(l1))|≤α(α+3)(κ−l1)4(α+1)(α+2)|S′(l1)|+α(l2−l1)4(α+2)|S′(κ)|+α(α+3)(l2−κ)4(α+1)(α+2)|S′(l2)|. |
Moreover, if we take α=1, then we obtain
|S(l1)+S(l2)2−(12(κ−l1)κ∫l1S(u)du+12(l2−κ)l2∫κS(u)du)|≤κ−l16|S′(l1)|+l2−l112|S′(κ)|+l2−κ6|S′(l2)|. |
Corollary 4. In Theorem 1, if we take κ=l1+l22, then we obtain
|λS(l1)+(2−λ−μ)S(l1+l22)+μS(l2)2−2α−1Γ(α+1)(l2−l1)α(Iαl1+l22+S(l2)+Iαl1+l22−S(l1))|≤l2−l14((2−(α+1)(α+2)λ2(α+1)(α+2)+2αα+1λ1+1α−αα+2λ1+2α)|S′(l1)|+(4−(α+2)(λ+μ)2(α+2)+αα+2(λ1+2α+μ1+2α))|S′(l1+l22)|+(2−(α+1)(α+2)μ2(α+1)(α+2)+2αα+1μ1+1α−αα+2μ1+2α)|S′(l2)|). |
Corollary 5. Using the convexity of |S′| i.e., |S′(l1+l22)|≤12|S′(l1)|+12|S′(l2)|, Corollary 4 becomes
|λS(l1)+(2−λ−μ)S(l1+l22)+μS(l2)2−2α−1Γ(α+1)(l2−l1)α(Iαl1+l22+S(l2)+Iαl1+l22−S(l1))|≤l2−l14((4−(3λ+μ)(α+1)4(α+1)+α2(α+2)(μ1+2α−λ1+2α)+2αα+1λ1+1α)|S′(l1)|+(4−(λ+3μ)(α+1)4(α+1)+α2(α+2)(λ1+2α−μ1+2α)+2αα+1μ1+1α)|S′(l2)|). |
Corollary 6. In Corollary 4, if we take α=1, then we obtain
|λS(l1)+(2−λ−μ)S(l1+l22)+μS(l2)2−1l2−l1l2∫l1S(u)du|≤l2−l14(1−3λ+6λ2−2λ36|S′(l1)|+1−3μ+6μ2−2μ36|S′(l2)|+4−3(λ+μ)+2(λ3+μ3)6|S′(l1+l22)|). |
Corollary 7. Using the convexity of |S′|, Corollary 6 becomes
|λS(l1)+(2−λ−μ)S(l1+l22)+μS(l2)2−1l2−l1l2∫l1S(u)du|≤l2−l14(6−3(3λ+μ)+12λ2+2(μ3−λ3)12|S′(l1)|+6−3(λ+3μ)+12μ2+2(λ3−μ3)12|S′(l2)|). |
Corollary 8. In Corollary 4, if we take λ=μ, then we obtain
|λS(l1)+2(1−λ)S(l1+l22)+λS(l2)2−2α−1Γ(α+1)(l2−l1)α(Iαl1+l22+S(l2)+Iαl1+l22−S(l1))|≤l2−l14((2−(α+1)(α+2)λ2(α+1)(α+2)+2αα+1λ1+1α−αα+2λ1+2α)(|S′(l1)|+|S′(l2)|)+(2−(α+2)λα+2+2αα+2λ1+2α)|S′(l1+l22)|). |
Remark 1. Corollary 8 recaptures.
● Corollary 3 with s=1 from [13], if we take λ=0.
● The second point of Remark 3.6 from [19] if we take λ=12.
● Theorem 2.2 with l1=1 (inequality (2.17)) from [20], if we take λ=13.
● The first point of Remark 3.6 from [19], if we take λ=1.
Corollary 9. Using the convexity of |S′|, Corollary 8 gives
|λS(l1)+2(1−λ)S(l1+l22)+λS(l2)2−2α−1Γ(α+1)(l2−l1)α(Iαl1+l22+S(l2)+Iαl1+l22−S(l1))|≤l2−l14(1−(α+1)λα+1+2αα+1λ1+1α)(|S′(l1)|+|S′(l2)|). |
Remark 2. Corollary 9 recaptures.
● Theorem 5 from [21], if we take λ=0.
● Corollary 3.3 from [22], if we take λ=12.
● Theorem 2.3 with l1=1 (inequality (2.21)) from [20], if we take λ=13.
● Corollary 5.4 from [23], if we take λ=1.
Corollary 10. In Corollary 8, if we take α=1, then we get
|λS(l1)+2(1−λ)S(l1+l22)+λS(l2)2−1l2−l1l2∫l1S(u)du|≤l2−l14(1−3λ+6λ2−2λ36(|S′(l1)|+|S′(l2)|)+2−3λ+2λ33|S′(l1+l22)|). |
Remark 3. Corollary 10 recaptures.
● Corollary 3 from [24], if we take λ=0.
● Corollary 10 from [17], if we take λ=12.
● Corollary 2.4 from [25], if we take λ=13.
● Corollary 2 from [26], if we take λ=1.
Corollary 11. Using the convexity of |S′|, Corollary 10 gives
|λS(l1)+2(1−λ)S(l1+l22)+λS(l2)2−1l2−l1l2∫l1S(u)du|≤l2−l18(1−2λ+2λ2)(|S′(l1)|+|S′(l2)|). |
Remark 4. Corollary 11 recaptures.
● Theorem 2.2 from [27], if we take λ=0.
● Corollary 3.2 from [28] and Remark 3.2 from [29], if we take λ=12.
● Theorem 5 from [30], if we take λ=13.
● Theorem 2.2 from [31], if we take λ=1.
The following special functions are used for the following outcomes.
The incomplete beta function is given by
Ba(t,f)=a∫0˜ıt−1∘(1−˜ı∘)f−1d˜ı∘, t,f>0 and 0<a<1. |
When we replace a by 1, we obtain the classical beta function.
The hypergeometric function is given by
2F1(a,b,c;z)=1B(b,c−b)1∫0˜ıb−1∘(1−˜ı∘)c−b−1(1−z˜ı∘)−ad˜ı∘, |
where c>b>0,|z|<1 and B(.,.) is the beta function.
To establish our next result, we need the following lemma.
Lemma 2. [32] Let S: [l1,l2]→(0,∞), if Sq is convex on [l1,l2] for all q∈(0,1], we can derive two important consequences below.
(i) For 0<q≤12, we have
S((1−˜ı∘)l1+˜ı∘l2)≤q21q−1((1−˜ı∘)1qS(l1)+˜ı1q∘S(l2)+(2q−2)˜ı12q∘(1−˜ı∘)12q(S(l1)S(l2))12). |
(ii) For 12<q≤1, we have
S((1−˜ı∘)l1+˜ı∘l2)≤(1−˜ı∘)1qS(l1)+˜ı1q∘S(l2)+(21q−2)˜ı12q∘(1−˜ı∘)12q(S(l1)S(l2))12. |
Theorem 2. Let S be as in Lemma 1. If |S′|q is convex, then we have:
For 0<q<12
|λS(l1)+(2−λ−μ)S(κ)+μS(l2)2−(Γ(α+1)2(l2−κ)αIακ+S(l2)+Γ(α+1)2(κ−l1)αIακ−S(l1))|≤q21q(κ−l1)4(φ(q,α,λ)|S′(l1)|+ψ(q,α,z)|S′(κ)|+(2q−2)l2(q,α,λ)(|S′(l1)||S′(κ)|)12)+q21q(l2−κ)4(ψ(q,α,μ)|S′(κ)|+φ(q,α,μ)|S′(l2)|+(2q−2)l2(q,α,μ)(|S′(l2)||S′(κ)|)12). |
For 12<q<1
|λS(l1)+(2−λ−μ)S(κ)+μS(l2)2−(Γ(α+1)2(l2−κ)αIακ+S(l2)+Γ(α+1)2(κ−l1)αIακ−S(l1))|≤κ−l12(φ(q,α,λ)|S′(l1)|+ψ(q,α,λ)|S′(κ)|+(21q−2)l2(q,α,λ)(|S′(l1)||S′(κ)|)12)+l2−κ2(ψ(q,α,μ)|S′(κ)|+φ(q,α,μ)|S′(l2)|+(21q−2)l2(q,α,μ)(|S′(l2)||S′(κ)|)12), |
where 0<q<1,λ,μ∈[0,1],α>0 and κ∈ [l1,l2].
Proof. Using the absolute value of both sides of (2.1), we deduce
|λS(l1)+(2−λ−μ)S(κ)+μS(l2)2−(Γ(α+1)2(l2−κ)αIακ+S(l2)+Γ(α+1)2(κ−l1)αIακ−S(l1))|≤κ−l121∫0|˜ıα∘−λ||S′((1−˜ı∘)l1+˜ı∘κ)|d˜ı∘+l2−κ21∫0|μ−(1−˜ı∘)α||S′((1−˜ı∘)κ+˜ı∘l2)|d˜ı∘. | (2.8) |
Assume that 0<q<12, from the convexity of |S′|q and Lemma 2, we obtain
|S′((1−˜ı∘)l1+˜ı∘κ)|≤q21q−1((1−˜ı∘)1q|S′(l1)|+˜ı1q∘|S′(κ)|+(2q−2)˜ı12q∘(1−˜ı∘)12q(|S′(l1)||S′(κ)|)12) | (2.9) |
and
|S′((1−˜ı∘)κ+˜ı∘l2)|≤q21q−1((1−˜ı∘)1q|S′(κ)|+˜ı1q∘|S′(l2)|+(2q−2)˜ı12q∘(1−˜ı∘)12q(|S′(κ)||S′(l2)|)12). | (2.10) |
Using (2.9) and (2.10) in (2.8), we obtain
|λS(l1)+(2−λ−μ)S(κ)+μS(l2)2−(Γ(α+1)2(l2−κ)αIακ+S(l2)+Γ(α+1)2(κ−l1)αIακ−S(l1))|≤q21q(κ−l1)41∫0|˜ıα∘−λ|((1−˜ı∘)1q|S′(l1)|+˜ı1q∘|S′(κ)|+(2q−2)˜ı12q∘(1−˜ı∘)12q(|S′(l1)||S′(κ)|)12)d˜ı∘+q21q(l2−κ)41∫0|μ−(1−˜ı∘)α|((1−˜ı∘)1q|S′(κ)|+˜ı1q∘|S′(l2)|+(2q−2)˜ı12q∘(1−˜ı∘)12q(|S′(l2)||S′(κ)|)12)d˜ı∘=q21q(κ−l1)4((1∫0|˜ıα∘−λ|(1−˜ı∘)1qd˜ı∘)|S′(l1)|+(1∫0|˜ıα∘−λ|˜ı1q∘d˜ı∘)|S′(κ)| | (2.11) |
+(2q−2)(1∫0|˜ıα∘−λ|˜ı12q∘(1−˜ı∘)12qd˜ı∘)(|S′(l1)||S′(κ)|)12)+q21q(l2−κ)4((1∫0|μ−(1−˜ı∘)α|(1−˜ı∘)1qd˜ı∘)|S′(κ)|+(1∫0|μ−(1−˜ı∘)α|˜ı1q∘d˜ı∘)|S′(l2)|+(2q−2)(1∫0|μ−(1−˜ı∘)α|˜ı12q∘(1−˜ı∘)12qd˜ı∘)(|S′(l2)||S′(κ)|)12)=q21q(κ−l1)4(φ(q,α,λ)|S′(l1)|+ψ(q,α,z)|S′(κ)|+(2q−2)l2(q,α,λ)(|S′(l1)||S′(κ)|)12)+q21q(l2−κ)4(ψ(q,α,μ)|S′(κ)|+φ(q,α,μ)|S′(l2)|+(2q−2)l2(q,α,μ)(|S′(l2)||S′(κ)|)12). |
Now, assume that 12<q<1; from the convexity of |S′|q and Lemma 2, we have
|S′((1−˜ı∘)l1+˜ı∘κ)|≤(1−˜ı∘)1q|S′(l1)|+˜ı1q∘|S′(κ)|+(21q−2)˜ı12q∘(1−˜ı∘)12q(|S′(l1)||S′(κ)|)12 | (2.12) |
and
|S′((1−˜ı∘)κ+˜ı∘l2)|≤(1−˜ı∘)1q|S′(κ)|+˜ı1q∘|S′(l2)|+(21q−2)˜ı12q∘(1−˜ı∘)12q(|S′(κ)||S′(l2)|)12. | (2.13) |
Using (2.12) and (2.13) in (2.8), we obtain
|λS(l1)+(2−λ−μ)S(κ)+μS(l2)2−(Γ(α+1)2(l2−κ)αIακ+S(l2)+Γ(α+1)2(κ−l1)αIακ−S(l1))|≤κ−l121∫0|˜ıα∘−λ|((1−˜ı∘)1q|S′(l1)|+˜ı1q∘|S′(κ)|+(21q−2)˜ı12q∘(1−˜ı∘)12q(|S′(l1)||S′(κ)|)12)d˜ı∘+l2−κ21∫0|μ−(1−˜ı∘)α|((1−˜ı∘)1q|S′(κ)|+˜ı1q∘|S′(l2)|+(21q−2)˜ı12q∘(1−˜ı∘)12q(|S′(κ)||S′(l2)|)12)d˜ı∘=κ−l12((1∫0|˜ıα∘−λ|(1−˜ı∘)1qd˜ı∘)|S′(l1)|+(1∫0|˜ıα∘−λ|˜ı1q∘d˜ı∘)|S′(κ)|+(21q−2)(1∫0|ℑα−λ|˜ı12q∘(1−˜ı∘)12qd˜ı∘)(|S′(l1)||S′(κ)|)12)+l2−x2((1∫0|μ−˜ıα∘|˜ı1q∘d˜ı∘)|S′(κ)|+(1∫0|μ−˜ıα∘|(1−˜ı∘)1qd˜ı∘)|S′(l2)|+(21q−2)(1∫0|μ−˜ıα∘|(1−˜ı∘)12q˜ı12q∘d˜ı∘)(|S′(κ)||S′(l2)|)12)=κ−l12(φ(q,α,λ)|S′(l1)|+ψ(q,α,λ)|S′(κ)|+(21q−2)l2(q,α,λ)(|S′(l1)||S′(κ)|)12)+l2−κ2(ψ(q,α,μ)|S′(κ)|+φ(q,α,μ)|S′(l2)|+(21q−2)l2(q,α,μ)(|S′(κ)||S′(l2)|)12), | (2.14) |
where we have used
φ(q,α,z)=1∫0|˜ıα∘−z|(1−˜ı∘)1qd˜ı∘=qz1+q−2qz1+q(1−z1α)1q+1+B1−z1α(1+qq,α+1)−Bz1α(α+1,1+qq), |
ψ(q,α,z)=1∫0|˜ıα∘−z|˜ı1q∘d˜ı∘=(1−z)q(q+1)−zαq2(1+q)(αq+q+1)+2αq2(1+q)(αq+q+1)zαq+1+qαq |
and
l2(q,α,z)=1∫0|˜ıα∘−λ|˜ı12q∘(1−˜ı∘)12qd˜ı∘=z(Bz1α(1+2q2q,1+2q2q)−B1−z1α(1+2q2q,1+2q2q))−(Bz1α(2q(α+1)+12q,1+2q2q)−B1−z1α(2q(α+1)+12q,1+2q2q)). |
The desired result follows from (2.11) and (2.14).
Corollary 12. Putting α=1 in Theorem 2, we obtain
For 0<q<12
|λS(l1)+(2−λ−μ)S(κ)+μS(l2)2−(12(κ−l1)κ∫l1S(u)du+12(l2−κ)l2∫κS(u)du)|≤q21q(κ−l1)4(qλ+q2(2λ−1)+2q2(1−λ)1+2qq(1+q)(1+2q)|S′(l1)|+(1−λ)q(q+1)−λq2+2q2λ2q+1q(1+q)(2q+1)|S′(κ)|+(2q−2)ω(q,λ)(|S′(l1)||S′(κ)|)12)+q21q(l2−κ)4((1−μ)q(q+1)−μq2+2q2μ2q+1q(1+q)(2q+1)|S′(κ)|+qμ+q2(2μ−1)+2q2(1−μ)1+2qq(1+q)(1+2q)|S′(l2)|+(2q−2)ω(q,μ)(|S′(κ)||S′(l2)|)12). |
For 12<q<1
|λS(l1)+(2−λ−μ)S(κ)+μS(l2)2−(12(κ−l1)κ∫l1S(u)du+12(l2−κ)l2∫κS(u)du)|≤κ−l12(qλ+q2(2λ−1)+2q2(1−λ)1+2qq(1+q)(1+2q)|S′(l1)|+(1−λ)q(q+1)−λq2+2q2λ2q+1q(1+q)(2q+1)|S′(κ)|+(21q−2)ω(q,λ)(|S′(l1)||S′(κ)|)12)+l2−κ2((1−μ)q(q+1)−μq2+2q2μ2q+1q(1+q)(2q+1)|S′(κ)|+qμ+q2(2μ−1)+2q2(1−μ)1+2qq(1+q)(1+2q)|S′(l2)|+(21q−2)ω(q,μ)(|S′(κ)||S′(l2)|)12), |
where
ω(q,z)=z(Bz(1+2q2q,1+2q2q)−B1−z(1+2q2q,1+2q2q))−(Bz(2q(α+1)+12q,1+2q2q)−B1−z(2q(α+1)+12q,1+2q2q)). |
Theorem 3. Let S be as in Lemma 1. If |S′|q is convex then we have
|λS(l1)+(2−λ−μ)S(κ)+μS(l2)2−(Γ(α+1)2(l2−κ)αIακ+S(l2)+Γ(α+1)2(κ−l1)αIακ−S(l1))|≤κ−l12(2−(α+1)(α+2)λ2(α+1)(α+2)+2αα+1λ1+1α−αα+2λ1+2α)|S′(l1)|+(κ−l12(2−(α+2)λ2(α+2)+2α2(α+2)λ1+2α)+l2−κ2(2−(α+2)μ2(α+2)+2α2(α+2)μ1+2α))|S′(κ)|+l2−κ2(2−(α+1)(α+2)μ2(α+1)(α+2)+2αα+1μ1+1α−αα+2μ1+2α)|S′(l2)|, |
where q>1 with 1p+1q=1, B(.,.) and 2F1(.,.,.;.) are beta and hypergeometric functions, respectively.
Proof. Using the absolute value of both sides of (2.1), then applying Hölder's inequality and convexity of |S′|q, it yields
|λS(l1)+(2−λ−μ)S(κ)+μS(l2)2−(Γ(α+1)2(l2−κ)αIακ+S(l2)+Γ(α+1)2(κ−l1)αIακ−S(l1))|≤κ−l12(1∫0|˜ıα∘−λ|pd˜ı∘)1p(1∫0|S′((1−˜ı∘)l1+˜ı∘κ)|qd˜ı∘)1q+l2−κ2(1∫0|μ−(1−˜ı∘)α|pd˜ı∘)1p(1∫0|S′((1−˜ı∘)κ+˜ı∘l2)|qd˜ı∘)1q≤κ−l12(1∫0|˜ıα∘−λ|pd˜ı∘)1p(1∫0((1−˜ı∘)|S′(l1)|q+˜ı∘|S′(κ)|q)d˜ı∘)1q+l2−κ2(1∫0|μ−(1−˜ı∘)α|pd˜ı∘)1p(1∫0((1−˜ı∘)|S′(κ)|q+˜ı∘|S′(l2)|q)d˜ı∘)1q=κ−l12(λp+1αB(1α,p+1)α+(1−λ)p+1(2F1(α−1α,1,p+2;(1−λ)))α(p+1))1p(|S′(l1)|q+|S′(κ)|q2)1q+l2−κ2(μp+1αB(1α,p+1)α+(1−μ)p+1(2F1(α−1α,1,p+2;(1−μ)))α(p+1))1p(|S′(κ)|q+|S′(l2)|q2)1q, |
where we have utilized
1∫0|˜ıα∘−z|pd˜ı∘=zp+1αB(1α,p+1)α+(1−z)p+1(2F1(α−1α,1,p+2;1−z))α(p+1). | (2.15) |
The proof is finished.
Corollary 13. Putting α=1 in Theorem 3, we obtain
|λS(l1)+(2−λ−μ)S(κ)+μS(l2)2−(12(κ−l1)κ∫l1S(u)du+12(l2−κ)l2∫κS(u)du)|≤κ−l12(λp+1+(1−λ)p+1(p+1))1p(|S′(l1)|q+|S′(κ)|q2)1q+l2−κ2(μp+1+(1−μ)p+1α(p+1))1p(|S′(κ)|q+|S′(l2)|q2)1q. |
Theorem 4. Let S be as in Lemma 1. If |S′|q is convex, where q≥1, then we have
|λS(l1)+(2−λ−μ)S(κ)+μS(l2)2−(Γ(α+1)2(l2−κ)αIακ+S(l2)+Γ(α+1)2(κ−l1)αIακ−S(l1))|≤κ−l12(1−(α+1)λ+2αλ1+1αα+1)1−1q((2−(α+1)(α+2)λ2(α+1)(α+2)+2αα+1λ1+1α−αα+2λ1+2α)|S′(l1)|q |
+2−(α+2)λ+2αλ1+2α2(α+2)|S′(κ)|q)1q+l2−κ2(1−(α+1)μ+2αμ1+1αα+1)1−1q(2−(α+2)μ+2αμ1+2α2(α+2)|S′(κ)|q+(2−(α+1)(α+2)μ2(α+1)(α+2)+2αα+1μ1+1α−αα+2μ1+2α)|S′(l2)|q)1q, |
where λ,μ∈[0,1],α>0 and κ∈ [ε1,l2].
Proof. Using the absolute value of both sides of (2.1), then applying power mean inequality, and convexity of |S′|q, it yields
|λS(l1)+(2−λ−μ)S(κ)+μS(l2)2−(Γ(α+1)2(l2−κ)αIακ+S(l2)+Γ(α+1)2(κ−l1)αIακ−S(l1))|≤κ−l12(1∫0|˜ıα∘−λ|d˜ı∘)1−1q(1∫0|˜ıα∘−λ||S′((1−˜ı∘)l1+˜ı∘κ)|qd˜ı∘)1q+l2−κ2(1∫0|μ−(1−˜ı∘)α|d˜ı∘)1−1q(1∫0|μ−(1−˜ı∘)α||S′((1−˜ı∘)κ+˜ı∘l2)|qd˜ı∘)1q≤κ−l12(1∫0|˜ıα∘−λ|d˜ı∘)1−1q(1∫0|˜ıα∘−λ|((1−˜ı∘)|S′(l1)|q+˜ı∘|S′(κ)|q)d˜ı∘)1q+l2−κ2(1∫0|μ−(1−˜ı∘)α|d˜ı∘)1−1q×(1∫0|μ−(1−˜ı∘)α|((1−˜ı∘)|S′(κ)|q+˜ı∘|S′(l2)|q)d˜ı∘)1q=κ−l12(1−(α+1)λ+2αλ1+1αα+1)1−1q×((2−(α+1)(α+2)λ2(α+1)(α+2)+2αα+1λ1+1α−αα+2λ1+2α)|S′(l1)|q+2−(α+2)λ+2αλ1+2α2(α+2)|S′(κ)|q)1q+l2−κ2(1−(α+1)μ+2αμ1+1αα+1)1−1q(2−(α+2)μ+2αμ1+2α2(α+2)|S′(κ)|q+(2−(α+1)(α+2)μ2(α+1)(α+2)+2αα+1μ1+1α−αα+2μ1+2α)|S′(l2)|q)1q, |
where (2.4)–(2.7) have been utilized. The proof is finished.
Corollary 14. Putting α=1 in Theorem 4, we obtain
|λS(l1)+(2−λ−μ)S(κ)+μS(l2)2−(12(κ−l1)κ∫l1S(u)du+12(l2−κ)l2∫κS(u)du)|≤κ−l12(1−2λ+2λ22)1−1q(1−3λ+6λ2−2λ36|S′(l1)|q+2−3λ+2λ36|S′(κ)|q)1q+l2−κ2(1−2μ+2μ22)1−1q(2−3μ+2μ36|S′(κ)|q+1−3μ+6μ2−2μ36|S′(l2)|q)1q. |
Theorem 5. Let S be as in Lemma 1. If |S′|q is convex, then we have
|λS(l1)+(2−λ−μ)S(κ)+μS(l2)2−(Γ(α+1)2(l2−κ)αIακ+S(l2)+Γ(α+1)2(κ−l1)αIακ−S(l1))|≤κ−l12(λp+1αB(1α,p+1)αp+(1−λ)p+1(2F1(α−1α,1,p+2;(1−λ)))α(p+1)p+|S′(l1)|q+|S′(κ)|q2q)+l2−κ2(μp+1αB(1α,p+1)αp+(1−μ)p+1(2F1(α−1α,1,p+2;(1−μ)))α(p+1)p+|S′(κ)|q+|S′(l2)|q2q), |
where q>1 with 1p+1q=1,λ,μ∈[0,1],α>0 and κ∈ [l1,l2].
Proof. Using the absolute value of both sides of (2.1), then applying Young's inequality and convexity of |S′|q, we have
|λS(l1)+(2−λ−μ)S(κ)+μS(l2)2−(Γ(α+1)2(l2−κ)αIακ+S(l2)+Γ(α+1)2(κ−l1)αIακ−S(l1))|≤κ−l121∫0|˜ıα∘−λ||S′((1−˜ı∘)l1+˜ı∘κ)|d˜ı∘+l2−κ21∫0|μ−(1−˜ı∘)α||S′((1−˜ı∘)κ+˜ı∘l2)|d˜ı∘≤κ−l12(1p1∫0|˜ıα∘−λ|pd˜ı∘+1q1∫0|S′((1−˜ı∘)l1+ℑκ)|qd˜ı∘)+l2−κ2(1p1∫0|μ−(1−˜ı∘)α|pd˜ı∘+1q1∫0|S′((1−˜ı∘)κ+˜ı∘l2)|qd˜ı∘)≤κ−l12(1p1∫0|˜ıα∘−λ|pd˜ı∘+1q1∫0((1−˜ı∘)|S′(l1)|q+˜ı∘|S′(κ)|q)d˜ı∘)+l2−κ2(1p1∫0|μ−˜ıα∘|pd˜ı∘+1q1∫0((1−˜ı∘)|S′(κ)|q+˜ı∘|S′(l2)|q)d˜ı∘)=κ−l12(λp+1αB(1α,p+1)αp+(1−λ)p+1(2F1(α−1α,1,p+2;(1−λ)))α(p+1)p+|S′(l1)|q+|S′(κ)|q2q)+l2−κ2(μp+1αB(1α,p+1)αp+(1−μ)p+1(2F1(α−1α,1,p+2;(1−μ)))α(p+1)p+|S′(κ)|q+|S′(l2)|q2q). |
The proof is finished.
Corollary 15. Putting α=1 in Theorem 5, we obtain
|λS(l1)+(2−λ−μ)S(κ)+μS(l2)2−(12(κ−l1)κ∫l1S(u)du+12(l2−κ)l2∫κS(u)du)|≤κ−l12(λp+1αB(1α,p+1)αp+(1−λ)p+1(2F1(α−1α,1,p+2;(1−λ)))α(p+1)p+|S′(l1)|q+|S′(κ)|q2q)+l2−κ2(μp+1αB(1α,p+1)αp+(1−μ)p+1(2F1(α−1α,1,p+2;(1−μ)))α(p+1)p+|S′(κ)|q+|S′(l2)|q2q). |
We'll look at the means for arbitrary real values l1and l2.
The formula for the arithmetic mean is A(l1,l2)=l1+l22.
The formula for the weighted arithmetic mean is A(p,q,l1,l2)=pl1+ql2p+q. The geometric mean is equal to G(l1,l2)=√l1l2.
The harmonic mean is equal to H(l1,l2)=21l2+1l1=2l1l2l1+l2.
L(l1,l2)=l2−l1lnl2−lnl1, l1,l2>0 and l1≠l2, is the logarithmic mean.
Lp(l1,l2)=(l2−l1(p+1)(l2−l1))1p, l1,l2>0,l1≠l2 and p∈R∖{−1,0}, is the p-logarithmic mean.
Proposition 1. For real numbers l1,l2,c such that 0<l1<c<l2, we have
|2A(l31,l32)−(L33(l1,c)+L33(c,l2))|≤l2−l12(4A(l22,l21)+2G2(l1,l2)−c2). |
Proof. Applying second inequality of Corollary 3 to the function S(u)=u3, yields the statement.
Proposition 2. For real numbers l1,l2 such that 0<l1<l2, we have
|A(1,3,l2,A(H(l1,l2),l1))−G2(l1,l2)L−1(l1,l2)|≤l2−l11536l2l1(91l22+125l21). |
Proof. The application of Corollary 7 with λ=12 and μ=34 on the interval [1l2,1l1], gives
|12S(1l2)+34S(l1+l22l1l2)+34S(1l1)2−l1l2l2−l11l1∫1l2S(u)du|≤l2−l11536l1l2(91|S′(1l2)|+125|S′(1l1)|). |
Applying the above inequality to the function S(u)=1u the derivative S′(u)=−1u2. So, we obtain |S′(1l1)|=l21, |S′(1l2)|=l22, and
l1l2l2−l11l1∫1l2S(u)du=l1l2l2−l1(ln1l1−ln1l2)=l1l2l2−l1(lnl2−lnl1)=(√l1l2)2lnl2−lnl1l2−l1=G2(l1,l2)L−1(l1,l2). |
We also note
12S(1l2)+34S(l1+l22l1l2)+34S(1l1)2=12l2+342l1l2l1+l2+34l12=14l2+34(2l1l2l1+l2+l1)2=14l2+34(H(l1,l2)+l1)2=14l2+34A(H(l1,l2),l1)=A(1,3,l2,A(H(l1,l2),l1)). |
In this study, we have established a new integral identity. We have derived several fractional parametrized Newton-Cotes type inequalities for differentiable convex first derivatives. We have discussed some case that can be derived from the finding. We have provided some applications to inequalities involving means. It is our hope that this paper's findings will inspire more study in this area.
Rabah Debbar, Abdelkader Moumen, Hamid Boulares, Badreddine Meftah: Conceptualization, Methodology, Validation, Formal analysis, Investigation, Writing-original draft preparation, Writing-review and editing; Mohamed Bouye: Writing-original draft preparation, Writing-review and editing. All authors have read and approved the final version of the manuscript for publication.
The authors declare they have not used Artificial Intelligence (AI) tools in the creation of this research.
The authors extend their appreciation to the Deanship of Research and Graduate Studies at King Khalid University for funding this work through Large group research project under Grant Number RGP2/158/46.
All authors declare no conflicts of interest in this paper.
[1] |
M. Alomari, M. Darus, S. S. Dragomir, P. Cerone, Ostrowski type inequalities for functions whose derivatives are s-convex in the second sense, Appl. Math. Lett., 23 (2010), 1071–1076. https://doi.org/10.1016/j.aml.2010.04.038 doi: 10.1016/j.aml.2010.04.038
![]() |
[2] |
M. W. Alomari, M. E. Özdemir, H. Kavurmac, On companion of Ostrowski inequality for mappings whose first derivatives absolute value are convex with applications, Miskolc Math. Notes, 13 (2012), 233–248. https://doi.org/10.18514/mmn.2012.480 doi: 10.18514/mmn.2012.480
![]() |
[3] |
M. U. Awan, M. Z. Javed, M. T. Rassias, M. A. Noor, K. I. Noor, Simpson type inequalities and applications, J. Anal., 29 (2021), 1403–1419. https://doi.org/10.1007/s41478-021-00319-4 doi: 10.1007/s41478-021-00319-4
![]() |
[4] | C. P. Niculescu, L. E. Persson, Convex functions and their applications. A contemporary approach, New York: Springer, 2006. https://doi.org/10.1007/0-387-31077-0 |
[5] |
G. Farid, G. M. Habibullah, An extension of Hadamard fractional integral, Int. J. Math. Anal., 9 (2015), 471–482. https://doi.org/10.12988/ijma.2015.5118 doi: 10.12988/ijma.2015.5118
![]() |
[6] |
Y. C. Kwun, G. Farid, W. Nazeer, S. Ullah, S. M. Kang, Generalized Riemann-Liouville k-fractional integrals associated with Ostrowski type inequalities and error bounds of Hadamard inequalities, IEEE Access, 6 (2018), 64946–64953. https://doi.org/10.1109/ACCESS.2018.2878266 doi: 10.1109/ACCESS.2018.2878266
![]() |
[7] |
M. Z. Sarıkaya, F. Ertuğral, On the generalized Hermite-Hadamard inequalities, An. Univ. Craiova Ser. Mat. Inform., 47 (2020), 193–213. https://doi.org/10.52846/ami.v47i1.1139 doi: 10.52846/ami.v47i1.1139
![]() |
[8] |
F. Jarad, E. Uğurlu, T. Abdeljawad, D. Baleanu, On a new class of fractional operators, Adv. Differ. Equ., 2017 (2017), 247. https://doi.org/10.1186/s13662-017-1306-z doi: 10.1186/s13662-017-1306-z
![]() |
[9] |
U. N. Katugampola, New approach to a generalized fractional integral, Appl. Math. Comput., 218 (2011), 860–865. https://doi.org/10.1016/j.amc.2011.03.062 doi: 10.1016/j.amc.2011.03.062
![]() |
[10] | S. Mubeen, G. M. Habibullah, k-Fractional integrals and application, Int. J. Contemp. Math. Sciences, 7 (2012), 89–94. |
[11] |
A. A. Kilbas, H. M. Srivastava, J. J. Trujillo, Theory and applications of fractional differential equations, North-Holland Math. Stud., 204 (2006). https://doi.org/10.1016/S0304-0208(06)80001-0 doi: 10.1016/S0304-0208(06)80001-0
![]() |
[12] |
M. E. Özdemir, E. Setm A. Alomari, Integral inequalities via several kinds of convexity, Creat. Math. Inform., 20 (2011), 62–73. https://doi.org/10.37193/CMI.2011.01.08 doi: 10.37193/CMI.2011.01.08
![]() |
[13] |
N. Nasri, F. Aissaoui, K. Bouhali, A. Frioui, B. Meftah, K. Zennir, T. Radwan, Fractional weighted midpoint-type inequalities for s-convex functions, Symmetry, 15 (2023), 612. https://doi.org/10.3390/sym15030612 doi: 10.3390/sym15030612
![]() |
[14] |
F. Alsharari, R. Fakhfakh, A. Lakhdari, On fractal-fractional Simpson-type inequalities: New insights and refinements of classical results, Mathematics, 12 (2024), 3886. https://doi.org/10.3390/math12243886 doi: 10.3390/math12243886
![]() |
[15] |
S. S. Dragomir, Hermite-Hadamard type inequalities for generalized Riemann-Liouville fractional integrals of h-convex functions, Math. Method. Appl. Sci., 44 (2019), 2364–2380. https://doi.org/10.1002/mma.5893 doi: 10.1002/mma.5893
![]() |
[16] | B. Meftah, A. Azaizia, Fractional Ostrowski type inequalities for functions whose first derivatives are MT-preinvex, Matua Revista Del Programa De Matematicas, 1 (2019), 33–43. |
[17] | M. Z. Sarikaya, On the some generalization of inequalities associated with Bullen, Simpson, midpoint and trapezoid type, Acta Univ. Apulensis Math. Inform., 73 (2023), 33–52. |
[18] |
B. Y. Xi, F. Qi, Some integral inequalities of Hermite-Hadamard type for convex functions with applications to means, J. Funct. Spaces, 2012 (2012), 980438. https://doi.org/10.1155/2012/980438 doi: 10.1155/2012/980438
![]() |
[19] |
W. Saleh, A. Lakhdari, T. Abdeljawad, B. Meftah, On fractional biparameterized Newton-type inequalities, J. Inequal. Appl., 2023 (2023), 122. https://doi.org/10.1186/s13660-023-03033-w doi: 10.1186/s13660-023-03033-w
![]() |
[20] | X. R. Hai, S. H. Wang, Simpson type inequalities for convex function based on the generalized fractional integrals, Turkish J. Ineq., 5 (2021), 1–15. |
[21] |
H. Budak, K. Özcelik, On Hermite-Hadamard type inequalities for Riemann-Liouville fractional integrals, Miskolc Math. Notes, 21 (2020), 91–99. https://doi.org/10.18514/MMN.2020.3129 doi: 10.18514/MMN.2020.3129
![]() |
[22] |
F. Hezenci, H. Budak, H. Kara, A study on conformable fractional version of Bullen-type inequalities, Turkish J. Math., 47 (2023), 1306–1317. https://doi.org/10.55730/1300-0098.3429 doi: 10.55730/1300-0098.3429
![]() |
[23] |
H. Budak, F. Ertuğral, M. Z. Sarikaya, New generalization of Hermite-Hadamard type inequalities via generalized fractional integrals, An. Univ. Craiova Ser. Mat. Inform., 47 (2020), 369–386. https://doi.org/10.52846/ami.v47i2.1309 doi: 10.52846/ami.v47i2.1309
![]() |
[24] |
N. Azzouza, B. Meftah, Some weighted integral inequalities for differentiable beta-convex functions, J. Interdiscip. Math., 25 (2021), 373–393. https://doi.org/10.1080/09720502.2021.1932858 doi: 10.1080/09720502.2021.1932858
![]() |
[25] |
A. Kashuri, B. Meftah, P. O. Mohammed, Some weighted Simpson type inequalities for differentiable s-convex functions and their applications, J. Fract. Calc. Nonlin. Syst., 1 (2020), 75–94. https://doi.org/10.48185/jfcns.v1i1.150 doi: 10.48185/jfcns.v1i1.150
![]() |
[26] |
H. Kavurmaci, M. Avci, M. E. Özdemir, New inequalities of Hermite-Hadamard type for convex functions with applications, J. Inequal. Appl., 2011 (2011), 86. https://doi.org/10.1186/1029-242X-2011-86 doi: 10.1186/1029-242X-2011-86
![]() |
[27] |
U. S. Kirmaci, Inequalities for differentiable mappings and applications to special means of real numbers and to midpoint formula, Appl. Math. Comput., 147 (2004), 137–146. https://doi.org/10.1016/S0096-3003(02)00657-4 doi: 10.1016/S0096-3003(02)00657-4
![]() |
[28] | S. Hamida, B. Meftah, Fractional Bullen type inequalities for differentiable preinvex functions, ROMAI J., 16 (2020), 63–74. |
[29] |
H. R. Hwang, K. L. Tseng, K. C. Hsu, New inequalities for fractional integrals and their applications, Turkish J. Math., 40 (2016), 471–486. https://doi.org/10.3906/mat-1411-61 doi: 10.3906/mat-1411-61
![]() |
[30] |
M. Z. Sarikaya, E. Set, M. E. Özdemir, On new inequalities of Simpson's type for convex functions, Comput. Math. Appl., 60 (2010), 2191–2199. https://doi.org/10.1016/j.camwa.2010.07.033 doi: 10.1016/j.camwa.2010.07.033
![]() |
[31] |
S. S. Dragomir, R. P. Agarwal, Two inequalities for differentiable mappings and applications to special means of real numbers and to trapezoidal formula, Appl. Math. Lett., 11 (1998), 91–95. https://doi.org/10.1016/S0893-9659(98)00086-X doi: 10.1016/S0893-9659(98)00086-X
![]() |
[32] |
T. Zhang, A. Chen, Some new estimates of Hermite-Hadamard inequality with application, Axioms, 12 (2023), 688. https://doi.org/10.3390/axioms12070688 doi: 10.3390/axioms12070688
![]() |