Loading [MathJax]/jax/output/SVG/jax.js
Research article

On generalizations of trapezoid and Bullen type inequalities based on generalized fractional integrals

  • Received: 06 August 2022 Revised: 16 September 2022 Accepted: 28 September 2022 Published: 25 October 2022
  • MSC : 26D07, 26D10, 26D15

  • In this paper, we establish an integral identity involving differentiable functions and generalized fractional integrals. Then, using the newly established identity, we prove some new general versions of Bullen and trapezoidal type inequalities for differentiable convex functions. The main benefit of the newly established inequalities is that they can be converted into similar inequalities for classical integrals, Riemann-Liouville fractional integrals, k-Riemann-Liouville fractional integrals, Hadamard fractional integrals, etc. Moreover, the inequalities presented in the paper are extensions of several existing inequalities in the literature.

    Citation: Hüseyin Budak, Fatma Ertuğral, Muhammad Aamir Ali, Candan Can Bilişik, Mehmet Zeki Sarikaya, Kamsing Nonlaopon. On generalizations of trapezoid and Bullen type inequalities based on generalized fractional integrals[J]. AIMS Mathematics, 2023, 8(1): 1833-1847. doi: 10.3934/math.2023094

    Related Papers:

    [1] Sabila Ali, Shahid Mubeen, Rana Safdar Ali, Gauhar Rahman, Ahmed Morsy, Kottakkaran Sooppy Nisar, Sunil Dutt Purohit, M. Zakarya . Dynamical significance of generalized fractional integral inequalities via convexity. AIMS Mathematics, 2021, 6(9): 9705-9730. doi: 10.3934/math.2021565
    [2] Muhammad Imran Asjad, Waqas Ali Faridi, Mohammed M. Al-Shomrani, Abdullahi Yusuf . The generalization of Hermite-Hadamard type Inequality with exp-convexity involving non-singular fractional operator. AIMS Mathematics, 2022, 7(4): 7040-7055. doi: 10.3934/math.2022392
    [3] Miguel Vivas-Cortez, Muhammad Aamir Ali, Artion Kashuri, Hüseyin Budak . Generalizations of fractional Hermite-Hadamard-Mercer like inequalities for convex functions. AIMS Mathematics, 2021, 6(9): 9397-9421. doi: 10.3934/math.2021546
    [4] Saad Ihsan Butt, Erhan Set, Saba Yousaf, Thabet Abdeljawad, Wasfi Shatanawi . Generalized integral inequalities for ABK-fractional integral operators. AIMS Mathematics, 2021, 6(9): 10164-10191. doi: 10.3934/math.2021589
    [5] Hengxiao Qi, Muhammad Yussouf, Sajid Mehmood, Yu-Ming Chu, Ghulam Farid . Fractional integral versions of Hermite-Hadamard type inequality for generalized exponentially convexity. AIMS Mathematics, 2020, 5(6): 6030-6042. doi: 10.3934/math.2020386
    [6] Jia-Bao Liu, Saad Ihsan Butt, Jamshed Nasir, Adnan Aslam, Asfand Fahad, Jarunee Soontharanon . Jensen-Mercer variant of Hermite-Hadamard type inequalities via Atangana-Baleanu fractional operator. AIMS Mathematics, 2022, 7(2): 2123-2141. doi: 10.3934/math.2022121
    [7] Maimoona Karim, Aliya Fahmi, Shahid Qaisar, Zafar Ullah, Ather Qayyum . New developments in fractional integral inequalities via convexity with applications. AIMS Mathematics, 2023, 8(7): 15950-15968. doi: 10.3934/math.2023814
    [8] Shuhong Yu, Tingsong Du . Certain inequalities in frame of the left-sided fractional integral operators having exponential kernels. AIMS Mathematics, 2022, 7(3): 4094-4114. doi: 10.3934/math.2022226
    [9] Shuang-Shuang Zhou, Saima Rashid, Muhammad Aslam Noor, Khalida Inayat Noor, Farhat Safdar, Yu-Ming Chu . New Hermite-Hadamard type inequalities for exponentially convex functions and applications. AIMS Mathematics, 2020, 5(6): 6874-6901. doi: 10.3934/math.2020441
    [10] Mehmet Eyüp Kiriş, Miguel Vivas-Cortez, Gözde Bayrak, Tuğba Çınar, Hüseyin Budak . On Hermite-Hadamard type inequalities for co-ordinated convex function via conformable fractional integrals. AIMS Mathematics, 2024, 9(4): 10267-10288. doi: 10.3934/math.2024502
  • In this paper, we establish an integral identity involving differentiable functions and generalized fractional integrals. Then, using the newly established identity, we prove some new general versions of Bullen and trapezoidal type inequalities for differentiable convex functions. The main benefit of the newly established inequalities is that they can be converted into similar inequalities for classical integrals, Riemann-Liouville fractional integrals, k-Riemann-Liouville fractional integrals, Hadamard fractional integrals, etc. Moreover, the inequalities presented in the paper are extensions of several existing inequalities in the literature.



    In literature, the theory of inequality plays an important role in mathematics. There are many studies on the known Hermite-Hadamard inequality and related inequalities such as trapezoid, midpoint, Simpson's inequality, and Bullen's inequality.

    Over the years, many articles have focused on finding trapezoid and midpoint inequalities that give boundaries to the right and left side of Hermite-Hadamard inequality, respectively. For example, Dragomir and Agarwal first established trapezoid inequalities in convex activities in [8], while Kirmacı first, found the midpoint of convex activity in [22]. In addition to [28], Qaisar and Hussain introduced several generalized inequalities of midpoint type. Sarikaya et al. and Iqbal et al. prove fractional trapezoid inequality and midpoint inequality for convex functions in [17,32], respectively. In [4,5], researchers established some generalized midpoint type inequalities for Riemann-Liouville fractional integrals.

    Many mathematicians have focused the results of Simpson-type for convex functions. More precisely, some inequalities of Simpson's type for s -convex functions are proved by using differentiable functions [1]. In the papers [33,34], it is investigated the new variants of Simpson's type inequalities based on the differentiable convex mapping. For more information about Simpson type inequalities for various convex classes, we refer the reader to Refs. [9,12,16,24,27,29,30] and the references therein.

    In [6], Bullen established the well-known Bullen inequalities in the literature in 1978. In [35], Sarikaya et al. proved generalized Bullen inequality for generalized convex function. Erden and Sarikaya established the generalized Bullen-type inequalities involving local fractional integrals on fractal sets in [11]. Du et al. used the generalized fractional integrals to obtain Bullen-type inequalities in [10]. In [7], Çakmak proved some Bullen type inequalities for conformable fractional integrals.

    On the other hand recently, Sarikaya and Ertugral [36] have defined a new class of fractional integrals, called generalized fractional and they used these integrals to prove general version of Hermite-Hadamard type inequalities for convex functions. In [39], the authors used generalized fractional integrals and proved some trapezoidal type inequalities for harmonic convex functions. Budak et al. [3] proved several variants of Ostrowski's and Simpson's type for differentiable convex functions via generalized fractional integrals. For more inequalities via fractional integrals, one can consult [2,18,19,20,37,38,40] and references therein.

    Inspired by the ongoing studies, we prove some new inequalities of Bullen type inequalities for differentiable convex functions using the generalized fractional integrals. The main benefit of the inequalities and operators used to obtain them is that these inequalities can be turned into some existing results for Riemann integrals and new results for Riemann-Liouville fractional integral inequalities and k-fractional integrals.

    In this section, we recall some basic notations and notions of the fractional integrals. We also recall some inequalities via different fractional integrals.

    Definition 2.1. [15,21] Let FL1[θ,ϑ]. The Riemann-Liouville fractional integrals (RLFIs) Jαθ+F and JαϑF of order α>0 are defined as follows:

    Jαθ+F(ϰ)=1Γ(α)ϰθ(ϰλ)α1F(λ)dλ,ϰ>θ

    and

    JαϑF(ϰ)=1Γ(α)ϑϰ(λϰ)α1F(λ)dλ,ϰ<ϑ,

    respectively, where Γ is the well-known Gamma function and its described as follows:

    Γ(α)=0euuα1du.

    Definition 2.2. [26] Let FL1[θ,ϑ]. The k-fractional integrals (KFIs) Jα,kθ+F and Jα,kϑ,kF of order α,k>0 are defined as follows:

    Jα,kθ+F(ϰ)=1kΓk(α)ϰθ(ϰλ)αk1F(λ)dλ,ϰ>θ

    and

    Jα,kϑF(ϰ)=1kΓk(α)ϑϰ(λϰ)αk1F(λ)dλ,ϰ<ϑ,

    respectively, where Γk is the well-known k-Gamma function and its described as follows:

    Γk(α)=0eukkuα1du.

    Definition 2.3. [36] Let FL1[θ,ϑ]. The generalized fractional integrals (GFIs) θ+IφF and ϑIφF with θ0 are defined as follows:

    θ+IφF(ϰ)=ϰθφ(ϰλ)ϰλF(λ)dλ,ϰ>θ

    and

    ϑIφF(ϰ)=ϑϰφ(λϰ)λϰF(λ)dλ,ϰ<ϑ,

    respectively, where φ:[0,)[0,) is a function. For more properties of the the functions φ, one can consult [36].

    Remark 2.4. The importance of the GFIs is that these can be turned into classical Riemann integrals, RLFIs and KFIs for φ(λ)=λ, φ(λ)=λαΓ(α) and φ(λ)=λαkkΓk(α), respectively.

    Theorem 2.5. Let F:IR be a convex function on I with θ,ϑI such that θ<ϑ. If FL1[θ,ϑ], the following inequality holds:

    F(θ+ϑ2)12Λ(1)[θ+IφF(ϑ)+ϑIφF(θ)]F(θ)+F(ϑ)2,

    where Λ(1)=10φ((ϑθ)λ)λdλ.

    Remark 2.6. In Theorem 2.5, we have

    (i) If we set φ(λ)=λ, then we have the following classical Hermite-Hadamard inequality (see, [31,p. 137]):

    F(θ+ϑ2)1ϑθϑθF(ϰ)dϰF(θ)+F(ϑ)2.

    (ii) If we set φ(λ)=λαΓ(α), then we have the following RLFIs Hermite-Hadamard inequality (see, [32]):

    F(θ+ϑ2)Γ(α+1)2(ϑθ)α[Jαθ+F(ϑ)+JαϑF(θ)]F(θ)+F(ϑ)2.

    (iii) If we set φ(λ)=λαkkΓk(α), then we have the following KFIs Hermite-Hadamard inequality (see, [14]):

    F(θ+ϑ2)Γk(α+k)2(ϑθ)αk[Jα,kθ+F(ϑ)+Jα,kϑF(θ)]F(θ)+F(ϑ)2.

    In this section, firstly we need to give a lemma for differentiable functions which will help us to prove our main theorems. Then, we present some midpoint type inequalities which are the generalization of those given in earlier works.

    Throughout this study, for brevity, we define

    Λ1(λ)=λ0φ(ϰθ2u)uduΛ2(λ)=λ0φ(ϑϰ2u)udu.

    Lemma 3.1. Let F:[θ,ϑ]R be differentiable function on (θ,ϑ) with θ<ϑ. If FL[θ,ϑ], then we have the following identity for GFIs:

    (ϑθ)F(ϰ)+(ϰθ)F(θ)+(ϑϰ)F(ϑ)2ϰθ2Λ1(1)[ϰIφF(ϰ+θ2)+θ+IφF(ϰ+θ2)]ϑϰ2Λ2(1)[ϰ+IφF(ϰ+ϑ2)+ϑIφF(ϰ+ϑ2)]=(ϰθ)24Λ1(1)10Λ1(λ)F(1+λ2ϰ+1λ2θ)dλ(ϰθ)24Λ1(1)10Λ1(λ)F(1λ2ϰ+1+λ2θ)dλ(ϑϰ)24Λ2(1)10Λ2(λ)F(1+λ2ϰ+1λ2ϑ)dλ+(ϑϰ)24Λ2(1)10Λ2(λ)F(1λ2ϰ+1+λ2ϑ)dλ. (3.1)

    Proof. First, we consider

    (ϰθ)24Λ1(1)10Λ1(λ)F(1+λ2ϰ+1λ2θ)dλ(ϰθ)24Λ1(1)10Λ1(λ)F(1λ2ϰ+1+λ2θ)dλ(ϑϰ)24Λ2(1)10Λ2(λ)F(1+λ2ϰ+1λ2ϑ)dλ+(ϑϰ)24Λ2(1)10Λ2(λ)F(1λ2ϰ+1+λ2ϑ)dλ=(ϰθ)24Λ1(1)I1(ϰθ)24Λ1(1)I2(ϑϰ)24Λ2(1)I3+(ϑϰ)24Λ2(1)I4. (3.2)

    By integration by parts, we have

    I1=10Λ1(λ)F(1+λ2ϰ+1λ2θ)dλ=2Λ1(λ)ϰθF(1+λ2ϰ+1λ2θ)|102ϰθ10φ(ϰθ2λ)λF(1+λ2ϰ+1λ2θ)dλ=2Λ1(1)ϰθF(ϰ)2ϰθϰθ+ϰ2φ(yϰ+θ2)yϰ+θ2F(y)dy=2Λ1(1)ϰθF(ϰ)2ϰθ ϰIφF(ϰ+θ2) (3.3)

    and similarly

    I2=10Λ1(λ)F(1λ2ϰ+1+λ2θ)dλ=2Λ1(1)ϰθF(θ)+2ϰθ θ+IφF(ϰ+θ2) (3.4)
    I3=10Λ2(λ)F(1+λ2ϰ+1λ2ϑ)dλ=2Λ2(1)ϑϰF(ϰ)+2ϑϰ ϰ+IφF(ϰ+ϑ2) (3.5)
    I4=10Λ2(λ)F(1λ2ϰ+1+λ2ϑ)dλ=2Λ2(1)ϑϰF(ϰ)2ϑϰ ϑIφF(ϰ+ϑ2). (3.6)

    By substituting the equalities (3.3)–(3.6) in (3.2), then we obtain the desired result.

    Remark 3.2. If we choose φ(λ)=λ for all λ[θ,ϑ] in Lemma 3.1, then Lemma 3.1 reduces to [23,Lemma 1].

    Theorem 3.3. Let F:[θ,ϑ]R be differentiable function on (θ,ϑ). If |F| is convex function, then we have the following inequality for GFIs:

    |(ϑθ)F(ϰ)+(ϰθ)F(θ)+(ϑϰ)F(ϑ)2ϰθ2Λ1(1)[ϰIφF(ϰ+θ2)+θ+IφF(ϰ+θ2)]ϑϰ2Λ2(1)[ϰ+IφF(ϰ+ϑ2)+ϑIφF(ϰ+ϑ2)]|(ϰθ)24Λ1(1)(10|Λ1(λ)|dλ)(|F(ϰ)|+|F(θ)|)+(ϑϰ)24Λ2(1)(10|Λ2(λ)|dλ)(|F(ϰ)|+|F(ϑ)|). (3.7)

    Proof. By taking modulus in Lemma 3.1, we have

    |(ϑθ)F(ϰ)+(ϰθ)F(θ)+(ϑϰ)F(ϑ)2ϰθ2Λ1(1)[ϰIφF(ϰ+θ2)+ θ+IφF(ϰ+θ2)]ϑϰ2Λ2(1)[ϰ+IφF(ϰ+ϑ2)+ ϑIφF(ϰ+ϑ2)]|(ϰθ)24Λ1(1)10|Λ1(λ)||F(1+λ2ϰ+1λ2θ)|dλ+(ϰθ)24Λ1(1)10|Λ1(λ)||F(1λ2ϰ+1+λ2θ)|dλ+(ϑϰ)24Λ2(1)10|Λ2(λ)||F(1+λ2ϰ+1λ2ϑ)|dλ+(ϑϰ)24Λ2(1)10|Λ2(λ)||F(1λ2ϰ+1+λ2ϑ)|dλ. (3.8)

    By using the convexity of |F| we get

    |(ϑθ)F(ϰ)+(ϰθ)F(θ)+(ϑϰ)F(ϑ)2(ϰθ)2Λ1(1)[ϰIφF(ϰ+θ2)+ θ+IφF(ϰ+θ2)](ϑϰ)2Λ2(1)[ϰ+IφF(ϰ+ϑ2)+ ϑIφF(ϰ+ϑ2)]|(ϰθ)24Λ1(1)[|F(ϰ)|210|Λ1(λ)|(1+λ)dλ+|F(θ)|210|Λ1(λ)|(1λ)dλ]+(ϰθ)24Λ1(1)[|F(ϰ)|210|Λ1(λ)|(1λ)dλ+|F(θ)|210|Λ1(λ)|(1+λ)dλ]+(ϑϰ)24Λ2(1)[|F(ϰ)|210|Λ2(λ)|(1+λ)dλ+|F(ϑ)|210|Λ2(λ)|(1λ)dλ]+(ϑϰ)24Λ2(1)[|F(ϰ)|210|Λ2(λ)|(1λ)dλ+|F(ϑ)|10|Λ2(λ)|(1+λ)dλ](ϰθ)24Λ1(1)[|F(ϰ)|+|F(θ)|](10|Λ1(λ)|dλ)+(ϑϰ)24Λ2(1)[|F(ϰ)|+|F(ϑ)|](10|Λ2(λ)|dλ).

    This completes the proof.

    Remark 3.4. If we choose φ(λ)=λ for all λ[θ,ϑ] in Theorem 3.7, then Theorem 3.7 reduces to [23,Theorem 1].

    Remark 3.5. If we choose φ(λ)=λαΓ(α), α>1, for all λ[θ,ϑ] in Theorem 3.7, then Theorem 3.7 reduces to [25,Theorem 1].

    Remark 3.6. If we take ϰ=θ (or ϰ=ϑ) in Theorem 3.7, then we have the following Trapezoid type inequality which is proved by Ertuğral et al. in [13];

    |F(θ)+F(ϑ)212Λ2(1)[θ+IφF(θ+ϑ2)+ ϑIφF(θ+ϑ2)]|ϑθ4Δ(1)(10|Δ(λ)|dλ)(|F(θ)|+|F(ϑ)|),

    where

    Δ(λ)=λ0φ(ϑθ2u)udu.

    Corollary 3.7. Under assumption of Theorem 3.7, if we take ϰ=θ+ϑ2 in Theorem 3.7 then we have the following Bullen type inequality

    |12[F(θ)+F(ϑ)2+F(θ+ϑ2)]14Ψ(1)[θ+ϑ2IφF(3θ+ϑ4)+θ+IφF(3θ+ϑ4)]14Ψ(1)[θ+ϑ2+IφF(θ+3ϑ4)+ϑIφF(θ+3ϑ4)]|ϑθ8Ψ(1)(10|Ψ(λ)|dλ)(|F(θ+ϑ2)|+|F(θ)|+|F(ϑ)|2)ϑθ8Ψ(1)(10|Ψ(λ)|dλ)(|F(θ)|+|F(ϑ)|),

    where

    Ψ(λ)=λ0φ(ϑθ4u)udu.

    Corollary 3.8. If we choose φ(λ)=λ for all λ[θ,ϑ] in Corollary 3.7, then Corollary 3.7 reduces to [23,Corollary 1].

    Corollary 3.9. If we choose φ(λ)=λαΓ(α), α>1, for all λ[θ,ϑ] in Corollary 3.7, then we have the following Bullen type inequality for RLFIs

    |12[F(θ)+F(ϑ)2+F(θ+ϑ2)]4α1Γ(α+1)(ϑθ)α1[Jαθ+ϑ2F(3θ+ϑ4)+Jαθ+F(3θ+ϑ4)]4α1Γ(α+1)(ϑϰ)α1[Jαθ+ϑ2+F(θ+3ϑ4)+JαϑF(θ+3ϑ4)]|ϑθ8(α+1)(|F(θ+ϑ2)|+|F(θ)|+|F(ϑ)|2)ϑθ8(α+1)(|F(θ)|+|F(ϑ)|).

    Theorem 3.10. Let F:[θ,ϑ]R be differentiable function on (θ,ϑ). If |F|q, q>1, is convex function, then we have the following inequality for GFIs:

    |(ϑθ)F(ϰ)+(ϰθ)F(θ)+(ϑϰ)F(ϑ)2ϰθ2Λ1(1)[ϰIφF(ϰ+θ2)+θ+IφF(ϰ+θ2)]ϑϰ2Λ2(1)[ϰ+IφF(ϰ+ϑ2)+ϑIφF(ϰ+ϑ2)]|(ϰθ)24Λ1(1)(10|Λ1(λ)|pdλ)1p[(3|F(ϰ)|q+|F(θ)|q4)1q+(|F(ϰ)|q+3|F(θ)|q4)1q]+(ϑϰ)24Λ2(1)(10|Λ2(λ)|pdλ)1p[(3|F(ϰ)|q+|F(ϑ)|q4)1q+(|F(ϰ)|q+3|F(ϑ)|q4)1q](ϰθ)222qΛ1(1)(10|Λ1(λ)|pdλ)1p[|F(ϰ)|+|F(θ)|]+(ϑϰ)222qΛ2(1)(10|Λ2(λ)|pdλ)1p[|F(ϰ)|+|F(ϑ)|], (3.9)

    where 1p+1q=1.

    Proof. By using the well-known Hölder inequality in (3.8), we obtain

    |(ϑθ)F(ϰ)+(ϰθ)F(θ)+(ϑϰ)F(ϑ)2ϰθ2Λ1(1)[ϰIφF(ϰ+θ2)+θ+IφF(ϰ+θ2)]ϑϰ2Λ2(1)[ϰ+IφF(ϰ+ϑ2)+ϑIφF(ϰ+ϑ2)]|(ϰθ)24Λ1(1)(10|Λ1(λ)|pdλ)1p(10|F(1+λ2ϰ+1λ2θ)|qdλ)1q+(ϰθ)24Λ1(1)(10|Λ1(λ)|p)(10|F(1λ2ϰ+1+λ2θ)|qdλ)1q+(ϑϰ)24Λ2(1)(10|Λ2(λ)|p)1p(10|F(1+λ2ϰ+1λ2ϑ)|qdλ)1q+(ϑϰ)24Λ2(1)(10|Λ2(λ)|p)1p(10|F(1λ2ϰ+1+λ2ϑ)|qdλ)1q. (3.10)

    Since |F|q is convex, we have

    10|F(1+λ2ϰ+1λ2θ)|qdλ10[1+λ2|F(ϰ)|q+1λ2|F(θ)|q]dλ=3|F(ϰ)|q+|F(θ)|q4 (3.11)

    and smililarly

    10|F(1λ2ϰ+1+λ2θ)|qdλ|F(ϰ)|q+3|F(θ)|q410|F(1+λ2ϰ+1λ2ϑ)|qdλ3|F(ϰ)|q+|F(ϑ)|q410|F(1λ2ϰ+1+λ2ϑ)|qdλ|F(ϰ)|q+3|F(ϑ)|q4. (3.12)

    By substituting inequalities (3.11) and (3.12) into (3.10), we obtain the first inequalty in (3.9).

    For the proof of second inequality, let θ1=|F(θ)|q, ϑ1=3|F(ϰ)|q, θ2=3|F(ϰ)|q and ϑ2=|F(ϑ)|q. Using the fact that

    nk=1(θk+ϑk)snk=1θsk+nk=1ϑsk,0s<1

    and 1+31q4 then the desired result can be obtained straightforwardly.

    Remark 3.11. If we choose φ(λ)=λ for all λ[θ,ϑ] in Theorem 3.10, then Theorem 3.10 reduces to [23,Theorem 2].

    Remark 3.12. If we choose φ(λ)=λαΓ(α), α>1, for all λ[θ,ϑ] in Theorem 3.10, then we have the following inequality for RLFIs

    |(ϑθ)F(ϰ)+(ϰθ)F(θ)+(ϑϰ)F(ϑ)22α1Γ(α+1)(ϰθ)α1[JαϰF(ϰ+θ2)+Jαθ+F(ϰ+θ2)]2α1Γ(α+1)(ϑϰ)α1[Jαϰ+F(ϰ+ϑ2)+JαϑF(ϰ+ϑ2)]|(ϰθ)24(1αp+1)1p[(3|F(ϰ)|q+|F(θ)|q4)1q+(|F(ϰ)|q+3|F(θ)|q4)1q]+(ϑϰ)24(1αp+1)1p[(3|F(ϰ)|q+|F(ϑ)|q4)1q+(|F(ϰ)|q+3|F(ϑ)|q4)1q](ϰθ)222q(1αp+1)1p[|F(ϰ)|+|F(θ)|]+(ϑϰ)222q(1αp+1)1p[|F(ϰ)|+|F(ϑ)|],

    which is the same Theorem 2 of [25].

    Remark 3.13. If we take ϰ=θ (or ϰ=ϑ) in Theorem 3.10, then we have the following Trapezoid type inequality

    |F(θ)+F(ϑ)212Λ2(1)[θ+IφF(θ+ϑ2)+ϑIφF(θ+ϑ2)]|ϑθ4Δ(1)(10|Δ(λ)|pdλ)1p[(3|F(θ)|q+|F(ϑ)|q4)1q+(|F(θ)|q+3|F(ϑ)|q4)1q]ϑθ22qΔ(1)(10|Δ(λ)|pdλ)1p[|F(θ)|+|F(ϑ)|],

    which is proved by Ertuğral et al. [13].

    Corollary 3.14. Under assumption of Theorem 3.10, if we take ϰ=θ+ϑ2 in Theorem 3.10 then we have the following Bullen type inequalities

    |12[F(θ)+F(ϑ)2+F(θ+ϑ2)]14Ψ(1)[θ+ϑ2IφF(3θ+ϑ4)+θ+IφF(3θ+ϑ4)]14Ψ(1)[θ+ϑ2+IφF(θ+3ϑ4)+ϑIφF(θ+3ϑ4)]|ϑθ16Ψ(1)(10|Ψ(λ)|pdλ)1p{[(3|F(θ+ϑ2)|q+|F(θ)|q4)1q+(|F(θ+ϑ2)|q+3|F(θ)|q4)1q]+[(3|F(θ+ϑ2)|q+|F(ϑ)|q4)1q+(|F(θ+ϑ2)|q+3|F(ϑ)|q4)1q]}ϑθ22q+1Ψ(1)(10|Ψ(λ)|pdλ)1p(|F(θ+ϑ2)|+|F(θ)|+|F(ϑ)|2).

    Remark 3.15. If we choose φ(λ)=λ for all λ[θ,ϑ] in Corollary 3.14, then we have the following inequality

    |12[F(θ)+F(ϑ)2+F(θ+ϑ2)]1(ϑθ)ϑθF(ϰ)dϰ|ϑθ16(1p+1)1p[(3|F(θ+ϑ2)|q+|F(θ)|q4)1q+(|F(θ+ϑ2)|q+3|F(θ)|q4)1q]+ϑθ16(1p+1)1p[(3|F(θ+ϑ2)|q+|F(ϑ)|q4)1q+(|F(θ+ϑ2)|q+3|F(ϑ)|q4)1q]ϑθ16(4p+1)1p[|F(θ)|+|F(ϑ)|+2|F(θ+ϑ2)|]. (3.13)

    The first inequality of (3.13) is the same by [23,Corolalry 2].

    Theorem 3.16. Let F:[θ,ϑ]R be differentiable function on (θ,ϑ). If |F|q, q1, is convex function, then we have the following inequality for GFIs:

    |(ϑθ)F(ϰ)+(ϰθ)F(θ)+(ϑϰ)F(ϑ)2ϰθ2Λ1(1)[ϰIφF(ϰ+θ2)+θ+IφF(ϰ+θ2)]ϑϰ2Λ2(1)[ϰ+IφF(ϰ+ϑ2)+ϑIφF(ϰ+ϑ2)]|(ϰθ)24Λ1(1)(10|Λ1(λ)|dλ)11q{(β1|F(ϰ)|q+β2|F(θ)|q2)1q+(β2|F(ϰ)|q+β1|F(θ)|q2)1q}+(ϑϰ)24Λ2(1)(10|Λ2(λ)|dλ)11q{(β3|F(ϰ)|q+β4|F(ϑ)|q2)1q+(β4|F(ϰ)|q+β3|F(ϑ)|q2)1q},

    where the numbers β1,β2,β3 and β4 are defined by

    β1=10|Λ1(λ)|(1+λ)dλ,β2=10|Λ1(λ)|(1λ)dλ,β3=10|Λ2(λ)|(1+λ)dλ,β4=10|Λ2(λ)|(1λ)dλ.

    Proof. By using well-known power mean inequality in (3.8), we obtain

    |(ϑθ)F(ϰ)(ϰθ)F(θ)+(ϑϰ)F(ϑ)2ϰθ2Λ1(1)[ϰIφF(ϰ+θ2)+θ+IφF(ϰ+θ2)]ϑϰ2Λ2(1)[ϰ+IφF(ϰ+ϑ2)+ϑIφF(ϰ+ϑ2)]|(ϰθ)24Λ1(1)(10|Λ1(λ)|dλ)11q{(10|Λ1(λ)||F(1+λ2ϰ+1λ2θ)|qdλ)1q+(10|Λ1(λ)||F(1λ2ϰ+1+λ2θ)|qdλ)1q}+(ϑϰ)24Λ2(1)(10|Λ2(λ)|dλ)11q{(10|Λ2(λ)||F(1+λ2ϰ+1λ2ϑ)|qdλ)1q+(10|Λ2(λ)||F(1λ2ϰ+1+λ2ϑ)|qdλ)1q}. (3.14)

    Since |F|q is convex, we have

    10|Λ1(λ)||F(1+λ2ϰ+1λ2θ)|qdλ10|Λ1(λ)|[1+λ2|F(ϰ)|q+1λ2|F(θ)|q]dλ10|Λ1(λ)|(1+λ)|F(ϰ)|q2dλ+10|Λ1(λ)|(1λ)|F(θ)|q2dλ[β1|F(ϰ)|q+β2|F(θ)|q]2 (3.15)

    and similarly

    10|Λ1(λ)||F(1λ2ϰ+1+λ2θ)|qdλβ2|F(ϰ)|q+β1|F(θ)|q2 (3.16)
    10|Λ2(λ)||F(1+λ2ϰ+1λ2ϑ)|qdλβ3|F(ϰ)|q+β4|F(ϑ)|q2 (3.17)
    10|Λ2(λ)||F(1λ2ϰ+1+λ2ϑ)|qdλβ4|F(ϰ)|q+β3|F(ϑ)|q2. (3.18)

    By considering the inequalities (3.15)–(3.18) in (3.14), then we obtain the required result.

    Remark 3.17. If we choose φ(λ)=λ for all λ[θ,ϑ] in Theorem 3.16, then Theorem 3.16 reduces to [23,Theorem 3].

    Remark 3.18. If we choose φ(λ)=λαΓ(α), α>1, for all λ[θ,ϑ] in Theorem 3.16, then Theorem 3.16 reduces to [25,Theorem 3].

    Remark 3.19. If we take ϰ=θ (or ϰ=ϑ) in Theorem 3.16, then we have the following Trapezoid type inequality which proved by Ertuğral et al. in [13]:

    |F(θ)+F(ϑ)212Λ2(1)[θ+IφF(θ+ϑ2)+ϑIφF(θ+ϑ2)]|(ϑθ)24Δ(1)(10|Δ(λ)|dλ)11q[(β5|F(ϰ)|q+β6|F(ϑ)|q2)1q+(β5|F(ϰ)|q+β6|F(ϑ)|q2)1q],

    where β5 and β6 are defined by

    β5=10|Δ(λ)|(1+λ)dλ,       β6=10|Δ1(λ)|(1λ)dλ.

    Corollary 3.20. Under assumption of Theorem 3.16, if we take ϰ=θ+ϑ2 then Theorem 3.16 reduces to following inequalities

    |12[F(θ)+F(ϑ)2+F(θ+ϑ2)]ϑθ4Λ1(1)[θ+ϑ2IφF(3θ+ϑ4)+θ+IφF(3θ+ϑ4)]ϑθ4Λ2(1)[θ+ϑ2+IφF(θ+3ϑ4)+ϑIφF(θ+3ϑ4)]|ϑθ16Λ1(1)(10|Λ1(λ)|dλ)11q{[β1|F(θ+ϑ2)|q+β2|F(θ)|q]1q+[β2|F(θ+ϑ2)|q+β1|F(θ)|q]1q}+ϑθ24+1qΛ2(1)(10|Λ2(λ)|dλ)11q{[β3|F(θ+ϑ2)|q+β4|F(ϑ)|q]1q+[β4|F(θ+ϑ2)|q+β3|F(ϑ)|q]1q}.

    Corollary 3.21. If we choose φ(λ)=λ Corollary 3.20, then we have the following inequality

    |12[F(θ)+F(ϑ)2+F(θ+ϑ2)]1(ϑθ)ϑθF(ϰ)dϰ|ϑθ16(12)11q{(5|F(θ+ϑ2)|q+|F(θ)|q6)1q+(|F(θ+ϑ2)|q+5|F(θ)|q6)1q+(5|F(θ+ϑ2)|q+|F(ϑ)|q6)1q+(|F(θ+ϑ2)|q+5|F(ϑ)|q6)1q}.

    In this work, we established some new integral inequalities for differentiable convex functions via the GFIs. We also discussed many special cases of newly established inequalities and obtained several new midpoint and trapezoidal type inequalities for differentiable convex functions through different integral operators. It is an interesting and new problem that researchers can obtain similar inequalities for different kinds of convexity in their future work.

    This work was partially supported by National Natural Science Foundation of China (No. 11971241).

    The authors declare no conflict of interest.



    [1] M. Alomari, M. Darus, S. S. Dragomir, New inequalities of Simpson's type for s-convex functions with applications, Res. Rep. Collect., 12 (2009).
    [2] M. U. Awan, S. Talib, Y. M. Chu, M. A. Noor, K. I. Noor, Some new refinements of Hermite-Hadamard-type inequalities involving-Riemann-Liouville fractional integrals and applications, Math. Probl. Eng., 2020 (2020), 3051920. https://doi.org/10.1155/2020/3051920 doi: 10.1155/2020/3051920
    [3] H. Budak, F. Hezenci, H. Kara, On parameterized inequalities of Ostrowski and Simpson type for convex functions via generalized fractional integral, Math. Method. Appl. Sci., 44 (2021), 12522–12536. https://doi.org/10.1002/mma.7558 doi: 10.1002/mma.7558
    [4] H. Budak, P. Agarwal, New generalized midpoint type inequalities for fractional integral, Miskolc Math. Notes, 20 (2019), 781–793. https://doi.org/10.18514/MMN.2019.2525 doi: 10.18514/MMN.2019.2525
    [5] H. Budak, R. Kapucu, New generalization of midpoint type inequalities for fractional integral, An. Ştiint. Univ Al. I. Cuza Iaşi. Mat. (N.S), 67 (2021). https://doi.org/10.47743/anstim.2021.00009 doi: 10.47743/anstim.2021.00009
    [6] P. S. Bullen, Error estimates for some elementary quadrature rules, Publ. Elektrotehn. Fak. Ser. Mat. Fiz., 602/633 (1978), 97–103.
    [7] M. Çakmak, Some Bullen-type inequalities for conformable fractional integrals, Gen. Math., 28 (2020), 3–17.
    [8] S. S. Dragomir, R. P. Agarwal, Two inequalities for differentiable mappings and applications to special means of real numbers and to trapezoidal formula, Appl. Math. Lett., 11 (1998), 91–95. https://doi.org/10.1016/S0893-9659(98)00086-X doi: 10.1016/S0893-9659(98)00086-X
    [9] T. Du, Y. Li, Z. Yang, A generalization of Simpson's inequality via differentiable mapping using extended (s,m)-convex functions, Appl. Math. Comput., 293 (2017), 358–369. https://doi.org/10.1016/j.amc.2016.08.045 doi: 10.1016/j.amc.2016.08.045
    [10] T. Du, C. Luo, Z. Cao, On the Bullen-type inequalities via generalized fractional integrals and their applications, Fractals, 29 (2021). https://doi.org/10.1142/S0218348X21501887 doi: 10.1142/S0218348X21501887
    [11] S. Erden, M. Z. Sarikaya, Generalized Bullen-type inequalities for local fractional integrals and its applications, Palestine J. Math., 9 (2020), 945–956.
    [12] F. Ertuğral, M. Z. Sarikaya, Simpson type integral inequalities for generalized fractional integral, RACSAM Rev. R. Acad. A, 113 (2019), 3115–3124. https://doi.org/10.1007/s13398-019-00680-x doi: 10.1007/s13398-019-00680-x
    [13] F. Ertuğral, M. Z. Sarikaya, H. Budak, On Hermite-Hadamard type inequalities associated with the generalized fractional integrals, Filomat, 2022, In press.
    [14] G. Farid, A. U. Rehman, M. Zahra, On Hadamard inequalities for k-fractional integrals, Nonlinear Funct. Anal. Appl., 21 (2016), 463–478.
    [15] R. Gorenflo, F. Mainardi, Fractional calculus: Integral and differential equations of fractional order, Springer Verlag, Wien, 1997.
    [16] İ. İşcan, Hermite-Hadamard and Simpson-like type inequalities for differentiable harmonically convex functions, J. Math., 2014 (2014). https://doi.org/10.1155/2014/346305 doi: 10.1155/2014/346305
    [17] M. Iqbal, S. Qaisar, M. Muddassar, A short note on integral inequality of type Hermite-Hadamard through convexity, J. Comput. Anal. Appl., 21 (2016), 946–953.
    [18] A. Kashuri, R. Liko, Generalized trapezoidal type integral inequalities and their applications, J. Anal., 28 (2020), 1023–1043. https://doi.org/10.1007/s41478-020-00232-2 doi: 10.1007/s41478-020-00232-2
    [19] M. A. Khan, A. Iqbal, M. Suleman, Y. M. Chu, Hermite-Hadamard type inequalities for fractional integrals via Green's function, J. Inequal. Appl., 2018 (2018), 1–15. https://doi.org/10.1186/s13660-018-1751-6 doi: 10.1186/s13660-018-1751-6
    [20] M. A. Khan, T. Ali, S. S. Dragomir, M. Z. Sarikaya, Hermite-Hadamard type inequalities for conformable fractional integrals, RACSAM Rev. R. Acad. A, 112 (2018), 1033–1048. https://doi.org/10.1007/s13398-017-0408-5 doi: 10.1007/s13398-017-0408-5
    [21] A. A. Kilbas, H. M. Srivastava, J. J. Trujillo, Theory and applications of fractional differential equations, Elsevier, Amsterdam, 2006.
    [22] U. S. Kirmaci, Inequalities for differentiable mappings and applications to special means of real numbers to midpoint formula, Appl. Math. Comput., 147 (2004), 137–146. https://doi.org/10.1016/S0096-3003(02)00657-4 doi: 10.1016/S0096-3003(02)00657-4
    [23] M. A. Latif, Inequalities of Hermite-Hadamard type for functions whose derivatives in absolute value are convex with applications, Arab J. Math. Sci., 21 (2015), 84–97. https://doi.org/10.1016/j.ajmsc.2014.01.002 doi: 10.1016/j.ajmsc.2014.01.002
    [24] M. Matloka, Some inequalities of Simpson type for h-convex functions via fractional integrals, Abstr. Appl. Anal., 2015 (2015). https://doi.org/10.1155/2015/956850 doi: 10.1155/2015/956850
    [25] F. C. Mitroi, M. V. Mihai, Hermite-Hadamard type inequalities obtained via Riemann-Liouville fractional calculus, Acta Math. Univ. Comen., 83 (2014), 209–215.
    [26] S. Mubeen, G. M. Habibullah, k-fractional integrals and application, Int. J. Contemp. Math. Sci., 7 (2012), 89–94.
    [27] M. E. Ozdemir, A. O. Akdemir, H. Kavurmacı, On the Simpson's inequality for convex functions on the coordinates, Turk. J. Anal. Number Theor., 2 (2014), 165–169.
    [28] S. Qaisar, S. Hussain, On Hermite-Hadamard type inequalities for functions whose first derivative absolute values are convex and concave, Fasciculi Math., 58 (2017), 155–166. https://doi.org/10.1515/fascmath-2017-0011 doi: 10.1515/fascmath-2017-0011
    [29] J. Park, On Simpson-like type integral inequalities for differentiable preinvex functions, Appl. Math. Sci., 7 (2013), 6009–6021. https://doi.org/10.12988/ams.2013.39498 doi: 10.12988/ams.2013.39498
    [30] J. Park, On some integral inequalities for twice differentiable quasi-convex and convex functions via fractional integrals, Appl. Math. Sci., 9 (2015), 3057–3069. https://doi.org/10.12988/ams.2015.53248 doi: 10.12988/ams.2015.53248
    [31] J. E. Pečarić, F. Proschan, Y. L. Tong, Convex functions, partial orderings and statistical applications, Academic Press, Boston, 1992.
    [32] M. Z. Sarikaya, E. Set, H. Yaldiz, N. Başak, Hermite-Hadamard's inequalities for fractional integrals and relatedfractional inequalities, Math. Comput. Model., 57 (2013), 2403–2407. https://doi.org/10.1016/j.mcm.2011.12.048 doi: 10.1016/j.mcm.2011.12.048
    [33] M. Z. Sarikaya, E. Set, M. E. Özdemir, On new inequalities of Simpson's type for convex functions, RGMIA Res. Rep. Collect., 13 (2010). https://doi.org/10.1016/j.camwa.2010.07.033 doi: 10.1016/j.camwa.2010.07.033
    [34] M. Z. Sarikaya, E. Set, M. E. Özdemir, On new inequalities of Simpson's type for s-convex functions, Comput. Math. Appl., 60 (2020), 2191–2199. https://doi.org/10.1016/j.camwa.2010.07.033 doi: 10.1016/j.camwa.2010.07.033
    [35] M. Z. Sarikaya, H. Budak, Some integral inequalities for local fractional integrals, Int. J. Anal. Appl., 14 (2017), 9–19. https://doi.org/10.1016/j.amc.2015.11.096 doi: 10.1016/j.amc.2015.11.096
    [36] M. Z. Sarikaya, F. Ertugral, On the generalized Hermite-Hadamard inequalities, Ann. Univ. Craiova-Mat., 47 (2020), 193–213. https://doi.org/10.52846/ami.v47i1.1139 doi: 10.52846/ami.v47i1.1139
    [37] E. Set, J. Choi, A. Gözpinar, Hermite-Hadamard type inequalities for the generalized k-fractional integral operators, J. Inequal. Appl., 2017 (2017), 1–17. https://doi.org/10.1186/s13660-017-1476-y doi: 10.1186/s13660-017-1476-y
    [38] M. Vivas-Cortez, M. A. Ali, A. Kashuri, H. Budak, Generalizations of fractional Hermite-Hadamard-Mercer like inequalities for convex functions, AIMS Math., 6 (2021), 9397–9421. https://doi.org/10.3934/math.2021546 doi: 10.3934/math.2021546
    [39] D. Zhao, M. A. Ali, A. Kashuri, H. Budak, Generalized fractional integral inequalities of Hermite-Hadamard type for harmonically convex functions, Adv. Differ. Equ., 2020 (2020), 1–14. https://doi.org/10.1186/s13662-020-02589-x doi: 10.1186/s13662-020-02589-x
    [40] D. Zhao, M. A. Ali, A. Kashuri, H. Budak, M. Z. Sarikaya, Hermite-Hadamard-type inequalities for the interval-valued approximately h-convex functions via generalized fractional integrals, J. Inequal. Appl., 2020 (2020), 1–38. https://doi.org/10.1186/s13660-020-02488-5 doi: 10.1186/s13660-020-02488-5
  • This article has been cited by:

    1. Ziyi Zhou, Tingsong Du, Analytical properties and related inequalities derived from multiplicative Hadamard k-fractional integrals, 2024, 189, 09600779, 115715, 10.1016/j.chaos.2024.115715
    2. Xiaohua Zhang, Yu Peng, Tingsong Du, (k,s)-fractional integral operators in multiplicative calculus, 2025, 195, 09600779, 116303, 10.1016/j.chaos.2025.116303
    3. Arslan Munir, Hüseyin Budak, Irza Faiz, Shahid Qaisar, Generalizations of Simpson type inequality for (α,m)-convex functions, 2024, 38, 0354-5180, 3295, 10.2298/FIL2410295M
  • Reader Comments
  • © 2023 the Author(s), licensee AIMS Press. This is an open access article distributed under the terms of the Creative Commons Attribution License (http://creativecommons.org/licenses/by/4.0)
通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索

Metrics

Article views(1822) PDF downloads(140) Cited by(3)

/

DownLoad:  Full-Size Img  PowerPoint
Return
Return

Catalog