In this paper, we establish an integral identity involving differentiable functions and generalized fractional integrals. Then, using the newly established identity, we prove some new general versions of Bullen and trapezoidal type inequalities for differentiable convex functions. The main benefit of the newly established inequalities is that they can be converted into similar inequalities for classical integrals, Riemann-Liouville fractional integrals, k-Riemann-Liouville fractional integrals, Hadamard fractional integrals, etc. Moreover, the inequalities presented in the paper are extensions of several existing inequalities in the literature.
Citation: Hüseyin Budak, Fatma Ertuğral, Muhammad Aamir Ali, Candan Can Bilişik, Mehmet Zeki Sarikaya, Kamsing Nonlaopon. On generalizations of trapezoid and Bullen type inequalities based on generalized fractional integrals[J]. AIMS Mathematics, 2023, 8(1): 1833-1847. doi: 10.3934/math.2023094
[1] | Sabila Ali, Shahid Mubeen, Rana Safdar Ali, Gauhar Rahman, Ahmed Morsy, Kottakkaran Sooppy Nisar, Sunil Dutt Purohit, M. Zakarya . Dynamical significance of generalized fractional integral inequalities via convexity. AIMS Mathematics, 2021, 6(9): 9705-9730. doi: 10.3934/math.2021565 |
[2] | Muhammad Imran Asjad, Waqas Ali Faridi, Mohammed M. Al-Shomrani, Abdullahi Yusuf . The generalization of Hermite-Hadamard type Inequality with exp-convexity involving non-singular fractional operator. AIMS Mathematics, 2022, 7(4): 7040-7055. doi: 10.3934/math.2022392 |
[3] | Miguel Vivas-Cortez, Muhammad Aamir Ali, Artion Kashuri, Hüseyin Budak . Generalizations of fractional Hermite-Hadamard-Mercer like inequalities for convex functions. AIMS Mathematics, 2021, 6(9): 9397-9421. doi: 10.3934/math.2021546 |
[4] | Saad Ihsan Butt, Erhan Set, Saba Yousaf, Thabet Abdeljawad, Wasfi Shatanawi . Generalized integral inequalities for ABK-fractional integral operators. AIMS Mathematics, 2021, 6(9): 10164-10191. doi: 10.3934/math.2021589 |
[5] | Hengxiao Qi, Muhammad Yussouf, Sajid Mehmood, Yu-Ming Chu, Ghulam Farid . Fractional integral versions of Hermite-Hadamard type inequality for generalized exponentially convexity. AIMS Mathematics, 2020, 5(6): 6030-6042. doi: 10.3934/math.2020386 |
[6] | Jia-Bao Liu, Saad Ihsan Butt, Jamshed Nasir, Adnan Aslam, Asfand Fahad, Jarunee Soontharanon . Jensen-Mercer variant of Hermite-Hadamard type inequalities via Atangana-Baleanu fractional operator. AIMS Mathematics, 2022, 7(2): 2123-2141. doi: 10.3934/math.2022121 |
[7] | Maimoona Karim, Aliya Fahmi, Shahid Qaisar, Zafar Ullah, Ather Qayyum . New developments in fractional integral inequalities via convexity with applications. AIMS Mathematics, 2023, 8(7): 15950-15968. doi: 10.3934/math.2023814 |
[8] | Shuhong Yu, Tingsong Du . Certain inequalities in frame of the left-sided fractional integral operators having exponential kernels. AIMS Mathematics, 2022, 7(3): 4094-4114. doi: 10.3934/math.2022226 |
[9] | Shuang-Shuang Zhou, Saima Rashid, Muhammad Aslam Noor, Khalida Inayat Noor, Farhat Safdar, Yu-Ming Chu . New Hermite-Hadamard type inequalities for exponentially convex functions and applications. AIMS Mathematics, 2020, 5(6): 6874-6901. doi: 10.3934/math.2020441 |
[10] | Mehmet Eyüp Kiriş, Miguel Vivas-Cortez, Gözde Bayrak, Tuğba Çınar, Hüseyin Budak . On Hermite-Hadamard type inequalities for co-ordinated convex function via conformable fractional integrals. AIMS Mathematics, 2024, 9(4): 10267-10288. doi: 10.3934/math.2024502 |
In this paper, we establish an integral identity involving differentiable functions and generalized fractional integrals. Then, using the newly established identity, we prove some new general versions of Bullen and trapezoidal type inequalities for differentiable convex functions. The main benefit of the newly established inequalities is that they can be converted into similar inequalities for classical integrals, Riemann-Liouville fractional integrals, k-Riemann-Liouville fractional integrals, Hadamard fractional integrals, etc. Moreover, the inequalities presented in the paper are extensions of several existing inequalities in the literature.
In literature, the theory of inequality plays an important role in mathematics. There are many studies on the known Hermite-Hadamard inequality and related inequalities such as trapezoid, midpoint, Simpson's inequality, and Bullen's inequality.
Over the years, many articles have focused on finding trapezoid and midpoint inequalities that give boundaries to the right and left side of Hermite-Hadamard inequality, respectively. For example, Dragomir and Agarwal first established trapezoid inequalities in convex activities in [8], while Kirmacı first, found the midpoint of convex activity in [22]. In addition to [28], Qaisar and Hussain introduced several generalized inequalities of midpoint type. Sarikaya et al. and Iqbal et al. prove fractional trapezoid inequality and midpoint inequality for convex functions in [17,32], respectively. In [4,5], researchers established some generalized midpoint type inequalities for Riemann-Liouville fractional integrals.
Many mathematicians have focused the results of Simpson-type for convex functions. More precisely, some inequalities of Simpson's type for s -convex functions are proved by using differentiable functions [1]. In the papers [33,34], it is investigated the new variants of Simpson's type inequalities based on the differentiable convex mapping. For more information about Simpson type inequalities for various convex classes, we refer the reader to Refs. [9,12,16,24,27,29,30] and the references therein.
In [6], Bullen established the well-known Bullen inequalities in the literature in 1978. In [35], Sarikaya et al. proved generalized Bullen inequality for generalized convex function. Erden and Sarikaya established the generalized Bullen-type inequalities involving local fractional integrals on fractal sets in [11]. Du et al. used the generalized fractional integrals to obtain Bullen-type inequalities in [10]. In [7], Çakmak proved some Bullen type inequalities for conformable fractional integrals.
On the other hand recently, Sarikaya and Ertugral [36] have defined a new class of fractional integrals, called generalized fractional and they used these integrals to prove general version of Hermite-Hadamard type inequalities for convex functions. In [39], the authors used generalized fractional integrals and proved some trapezoidal type inequalities for harmonic convex functions. Budak et al. [3] proved several variants of Ostrowski's and Simpson's type for differentiable convex functions via generalized fractional integrals. For more inequalities via fractional integrals, one can consult [2,18,19,20,37,38,40] and references therein.
Inspired by the ongoing studies, we prove some new inequalities of Bullen type inequalities for differentiable convex functions using the generalized fractional integrals. The main benefit of the inequalities and operators used to obtain them is that these inequalities can be turned into some existing results for Riemann integrals and new results for Riemann-Liouville fractional integral inequalities and k-fractional integrals.
In this section, we recall some basic notations and notions of the fractional integrals. We also recall some inequalities via different fractional integrals.
Definition 2.1. [15,21] Let F∈L1[θ,ϑ]. The Riemann-Liouville fractional integrals (RLFIs) Jαθ+F and Jαϑ−F of order α>0 are defined as follows:
Jαθ+F(ϰ)=1Γ(α)∫ϰθ(ϰ−λ)α−1F(λ)dλ,ϰ>θ |
and
Jαϑ−F(ϰ)=1Γ(α)∫ϑϰ(λ−ϰ)α−1F(λ)dλ,ϰ<ϑ, |
respectively, where Γ is the well-known Gamma function and its described as follows:
Γ(α)=∫∞0e−uuα−1du. |
Definition 2.2. [26] Let F∈L1[θ,ϑ]. The k-fractional integrals (KFIs) Jα,kθ+F and Jα,kϑ−,kF of order α,k>0 are defined as follows:
Jα,kθ+F(ϰ)=1kΓk(α)∫ϰθ(ϰ−λ)αk−1F(λ)dλ,ϰ>θ |
and
Jα,kϑ−F(ϰ)=1kΓk(α)∫ϑϰ(λ−ϰ)αk−1F(λ)dλ,ϰ<ϑ, |
respectively, where Γk is the well-known k-Gamma function and its described as follows:
Γk(α)=∫∞0e−ukkuα−1du. |
Definition 2.3. [36] Let F∈L1[θ,ϑ]. The generalized fractional integrals (GFIs) θ+IφF and ϑ−IφF with θ≥0 are defined as follows:
θ+IφF(ϰ)=∫ϰθφ(ϰ−λ)ϰ−λF(λ)dλ,ϰ>θ |
and
ϑ−IφF(ϰ)=∫ϑϰφ(λ−ϰ)λ−ϰF(λ)dλ,ϰ<ϑ, |
respectively, where φ:[0,∞)→[0,∞) is a function. For more properties of the the functions φ, one can consult [36].
Remark 2.4. The importance of the GFIs is that these can be turned into classical Riemann integrals, RLFIs and KFIs for φ(λ)=λ, φ(λ)=λαΓ(α) and φ(λ)=λαkkΓk(α), respectively.
Theorem 2.5. Let F:I→R be a convex function on I with θ,ϑ∈I such that θ<ϑ. If F∈L1[θ,ϑ], the following inequality holds:
F(θ+ϑ2)≤12Λ(1)[θ+IφF(ϑ)+ϑ−IφF(θ)]≤F(θ)+F(ϑ)2, |
where Λ(1)=∫10φ((ϑ−θ)λ)λdλ.
Remark 2.6. In Theorem 2.5, we have
(i) If we set φ(λ)=λ, then we have the following classical Hermite-Hadamard inequality (see, [31,p. 137]):
F(θ+ϑ2)≤1ϑ−θ∫ϑθF(ϰ)dϰ≤F(θ)+F(ϑ)2. |
(ii) If we set φ(λ)=λαΓ(α), then we have the following RLFIs Hermite-Hadamard inequality (see, [32]):
F(θ+ϑ2)≤Γ(α+1)2(ϑ−θ)α[Jαθ+F(ϑ)+Jαϑ−F(θ)]≤F(θ)+F(ϑ)2. |
(iii) If we set φ(λ)=λαkkΓk(α), then we have the following KFIs Hermite-Hadamard inequality (see, [14]):
F(θ+ϑ2)≤Γk(α+k)2(ϑ−θ)αk[Jα,kθ+F(ϑ)+Jα,kϑ−F(θ)]≤F(θ)+F(ϑ)2. |
In this section, firstly we need to give a lemma for differentiable functions which will help us to prove our main theorems. Then, we present some midpoint type inequalities which are the generalization of those given in earlier works.
Throughout this study, for brevity, we define
Λ1(λ)=λ∫0φ(ϰ−θ2u)uduΛ2(λ)=λ∫0φ(ϑ−ϰ2u)udu. |
Lemma 3.1. Let F:[θ,ϑ]→R be differentiable function on (θ,ϑ) with θ<ϑ. If F′∈L[θ,ϑ], then we have the following identity for GFIs:
(ϑ−θ)F(ϰ)+(ϰ−θ)F(θ)+(ϑ−ϰ)F(ϑ)2−ϰ−θ2Λ1(1)[ϰ−IφF(ϰ+θ2)+θ+IφF(ϰ+θ2)]−ϑ−ϰ2Λ2(1)[ϰ+IφF(ϰ+ϑ2)+ϑ−IφF(ϰ+ϑ2)]=(ϰ−θ)24Λ1(1)∫10Λ1(λ)F′(1+λ2ϰ+1−λ2θ)dλ−(ϰ−θ)24Λ1(1)∫10Λ1(λ)F′(1−λ2ϰ+1+λ2θ)dλ−(ϑ−ϰ)24Λ2(1)∫10Λ2(λ)F′(1+λ2ϰ+1−λ2ϑ)dλ+(ϑ−ϰ)24Λ2(1)∫10Λ2(λ)F′(1−λ2ϰ+1+λ2ϑ)dλ. | (3.1) |
Proof. First, we consider
(ϰ−θ)24Λ1(1)∫10Λ1(λ)F′(1+λ2ϰ+1−λ2θ)dλ−(ϰ−θ)24Λ1(1)∫10Λ1(λ)F′(1−λ2ϰ+1+λ2θ)dλ−(ϑ−ϰ)24Λ2(1)∫10Λ2(λ)F′(1+λ2ϰ+1−λ2ϑ)dλ+(ϑ−ϰ)24Λ2(1)∫10Λ2(λ)F′(1−λ2ϰ+1+λ2ϑ)dλ=(ϰ−θ)24Λ1(1)I1−(ϰ−θ)24Λ1(1)I2−(ϑ−ϰ)24Λ2(1)I3+(ϑ−ϰ)24Λ2(1)I4. | (3.2) |
By integration by parts, we have
I1=∫10Λ1(λ)F′(1+λ2ϰ+1−λ2θ)dλ=2Λ1(λ)ϰ−θF(1+λ2ϰ+1−λ2θ)|10−2ϰ−θ∫10φ(ϰ−θ2λ)λF(1+λ2ϰ+1−λ2θ)dλ=2Λ1(1)ϰ−θF(ϰ)−2ϰ−θ∫ϰθ+ϰ2φ(y−ϰ+θ2)y−ϰ+θ2F(y)dy=2Λ1(1)ϰ−θF(ϰ)−2ϰ−θ ϰ−IφF(ϰ+θ2) | (3.3) |
and similarly
I2=∫10Λ1(λ)F′(1−λ2ϰ+1+λ2θ)dλ=−2Λ1(1)ϰ−θF(θ)+2ϰ−θ θ+IφF(ϰ+θ2) | (3.4) |
I3=∫10Λ2(λ)F′(1+λ2ϰ+1−λ2ϑ)dλ=−2Λ2(1)ϑ−ϰF(ϰ)+2ϑ−ϰ ϰ+IφF(ϰ+ϑ2) | (3.5) |
I4=∫10Λ2(λ)F′(1−λ2ϰ+1+λ2ϑ)dλ=2Λ2(1)ϑ−ϰF(ϰ)−2ϑ−ϰ ϑ−IφF(ϰ+ϑ2). | (3.6) |
By substituting the equalities (3.3)–(3.6) in (3.2), then we obtain the desired result.
Remark 3.2. If we choose φ(λ)=λ for all λ∈[θ,ϑ] in Lemma 3.1, then Lemma 3.1 reduces to [23,Lemma 1].
Theorem 3.3. Let F:[θ,ϑ]→R be differentiable function on (θ,ϑ). If |F′| is convex function, then we have the following inequality for GFIs:
|(ϑ−θ)F(ϰ)+(ϰ−θ)F(θ)+(ϑ−ϰ)F(ϑ)2−ϰ−θ2Λ1(1)[ϰ−IφF(ϰ+θ2)+θ+IφF(ϰ+θ2)]−ϑ−ϰ2Λ2(1)[ϰ+IφF(ϰ+ϑ2)+ϑ−IφF(ϰ+ϑ2)]|≤(ϰ−θ)24Λ1(1)(∫10|Λ1(λ)|dλ)(|F′(ϰ)|+|F′(θ)|)+(ϑ−ϰ)24Λ2(1)(∫10|Λ2(λ)|dλ)(|F′(ϰ)|+|F′(ϑ)|). | (3.7) |
Proof. By taking modulus in Lemma 3.1, we have
|(ϑ−θ)F(ϰ)+(ϰ−θ)F(θ)+(ϑ−ϰ)F(ϑ)2−ϰ−θ2Λ1(1)[ϰ−IφF(ϰ+θ2)+ θ+IφF(ϰ+θ2)]−ϑ−ϰ2Λ2(1)[ϰ+IφF(ϰ+ϑ2)+ ϑ−IφF(ϰ+ϑ2)]|≤(ϰ−θ)24Λ1(1)∫10|Λ1(λ)||F′(1+λ2ϰ+1−λ2θ)|dλ+(ϰ−θ)24Λ1(1)∫10|Λ1(λ)||F′(1−λ2ϰ+1+λ2θ)|dλ+(ϑ−ϰ)24Λ2(1)∫10|Λ2(λ)||F′(1+λ2ϰ+1−λ2ϑ)|dλ+(ϑ−ϰ)24Λ2(1)∫10|Λ2(λ)||F′(1−λ2ϰ+1+λ2ϑ)|dλ. | (3.8) |
By using the convexity of |F′| we get
|(ϑ−θ)F(ϰ)+(ϰ−θ)F(θ)+(ϑ−ϰ)F(ϑ)2−(ϰ−θ)2Λ1(1)[ϰ−IφF(ϰ+θ2)+ θ+IφF(ϰ+θ2)]−(ϑ−ϰ)2Λ2(1)[ϰ+IφF(ϰ+ϑ2)+ ϑ−IφF(ϰ+ϑ2)]|≤(ϰ−θ)24Λ1(1)[|F′(ϰ)|21∫0|Λ1(λ)|(1+λ)dλ+|F′(θ)|21∫0|Λ1(λ)|(1−λ)dλ]+(ϰ−θ)24Λ1(1)[|F′(ϰ)|21∫0|Λ1(λ)|(1−λ)dλ+|F′(θ)|21∫0|Λ1(λ)|(1+λ)dλ]+(ϑ−ϰ)24Λ2(1)[|F′(ϰ)|21∫0|Λ2(λ)|(1+λ)dλ+|F′(ϑ)|21∫0|Λ2(λ)|(1−λ)dλ]+(ϑ−ϰ)24Λ2(1)[|F′(ϰ)|21∫0|Λ2(λ)|(1−λ)dλ+|F′(ϑ)|1∫0|Λ2(λ)|(1+λ)dλ]≤(ϰ−θ)24Λ1(1)[|F′(ϰ)|+|F′(θ)|](1∫0|Λ1(λ)|dλ)+(ϑ−ϰ)24Λ2(1)[|F′(ϰ)|+|F′(ϑ)|](1∫0|Λ2(λ)|dλ). |
This completes the proof.
Remark 3.4. If we choose φ(λ)=λ for all λ∈[θ,ϑ] in Theorem 3.7, then Theorem 3.7 reduces to [23,Theorem 1].
Remark 3.5. If we choose φ(λ)=λαΓ(α), α>1, for all λ∈[θ,ϑ] in Theorem 3.7, then Theorem 3.7 reduces to [25,Theorem 1].
Remark 3.6. If we take ϰ=θ (or ϰ=ϑ) in Theorem 3.7, then we have the following Trapezoid type inequality which is proved by Ertuğral et al. in [13];
|F(θ)+F(ϑ)2−12Λ2(1)[θ+IφF(θ+ϑ2)+ ϑ−IφF(θ+ϑ2)]|≤ϑ−θ4Δ(1)(∫10|Δ(λ)|dλ)(|F′(θ)|+|F′(ϑ)|), |
where
Δ(λ)=λ∫0φ(ϑ−θ2u)udu. |
Corollary 3.7. Under assumption of Theorem 3.7, if we take ϰ=θ+ϑ2 in Theorem 3.7 then we have the following Bullen type inequality
|12[F(θ)+F(ϑ)2+F(θ+ϑ2)]−14Ψ(1)[θ+ϑ2−IφF(3θ+ϑ4)+θ+IφF(3θ+ϑ4)]−14Ψ(1)[θ+ϑ2+IφF(θ+3ϑ4)+ϑ−IφF(θ+3ϑ4)]|≤ϑ−θ8Ψ(1)(∫10|Ψ(λ)|dλ)(|F′(θ+ϑ2)|+|F′(θ)|+|F′(ϑ)|2)≤ϑ−θ8Ψ(1)(∫10|Ψ(λ)|dλ)(|F′(θ)|+|F′(ϑ)|), |
where
Ψ(λ)=λ∫0φ(ϑ−θ4u)udu. |
Corollary 3.8. If we choose φ(λ)=λ for all λ∈[θ,ϑ] in Corollary 3.7, then Corollary 3.7 reduces to [23,Corollary 1].
Corollary 3.9. If we choose φ(λ)=λαΓ(α), α>1, for all λ∈[θ,ϑ] in Corollary 3.7, then we have the following Bullen type inequality for RLFIs
|12[F(θ)+F(ϑ)2+F(θ+ϑ2)]−4α−1Γ(α+1)(ϑ−θ)α−1[Jαθ+ϑ2−F(3θ+ϑ4)+Jαθ+F(3θ+ϑ4)]−4α−1Γ(α+1)(ϑ−ϰ)α−1[Jαθ+ϑ2+F(θ+3ϑ4)+Jαϑ−F(θ+3ϑ4)]|≤ϑ−θ8(α+1)(|F′(θ+ϑ2)|+|F′(θ)|+|F′(ϑ)|2)≤ϑ−θ8(α+1)(|F′(θ)|+|F′(ϑ)|). |
Theorem 3.10. Let F:[θ,ϑ]→R be differentiable function on (θ,ϑ). If |F′|q, q>1, is convex function, then we have the following inequality for GFIs:
|(ϑ−θ)F(ϰ)+(ϰ−θ)F(θ)+(ϑ−ϰ)F(ϑ)2−ϰ−θ2Λ1(1)[ϰ−IφF(ϰ+θ2)+θ+IφF(ϰ+θ2)]−ϑ−ϰ2Λ2(1)[ϰ+IφF(ϰ+ϑ2)+ϑ−IφF(ϰ+ϑ2)]|≤(ϰ−θ)24Λ1(1)(1∫0|Λ1(λ)|pdλ)1p[(3|F′(ϰ)|q+|F′(θ)|q4)1q+(|F′(ϰ)|q+3|F′(θ)|q4)1q]+(ϑ−ϰ)24Λ2(1)(1∫0|Λ2(λ)|pdλ)1p[(3|F′(ϰ)|q+|F′(ϑ)|q4)1q+(|F′(ϰ)|q+3|F′(ϑ)|q4)1q]≤(ϰ−θ)222qΛ1(1)(1∫0|Λ1(λ)|pdλ)1p[|F′(ϰ)|+|F′(θ)|]+(ϑ−ϰ)222qΛ2(1)(1∫0|Λ2(λ)|pdλ)1p[|F′(ϰ)|+|F′(ϑ)|], | (3.9) |
where 1p+1q=1.
Proof. By using the well-known Hölder inequality in (3.8), we obtain
|(ϑ−θ)F(ϰ)+(ϰ−θ)F(θ)+(ϑ−ϰ)F(ϑ)2−ϰ−θ2Λ1(1)[ϰ−IφF(ϰ+θ2)+θ+IφF(ϰ+θ2)]−ϑ−ϰ2Λ2(1)[ϰ+IφF(ϰ+ϑ2)+ϑ−IφF(ϰ+ϑ2)]|≤(ϰ−θ)24Λ1(1)(∫10|Λ1(λ)|pdλ)1p(∫10|F′(1+λ2ϰ+1−λ2θ)|qdλ)1q+(ϰ−θ)24Λ1(1)(∫10|Λ1(λ)|p)(∫10|F′(1−λ2ϰ+1+λ2θ)|qdλ)1q+(ϑ−ϰ)24Λ2(1)(∫10|Λ2(λ)|p)1p(∫10|F′(1+λ2ϰ+1−λ2ϑ)|qdλ)1q+(ϑ−ϰ)24Λ2(1)(∫10|Λ2(λ)|p)1p(∫10|F′(1−λ2ϰ+1+λ2ϑ)|qdλ)1q. | (3.10) |
Since |F′|q is convex, we have
∫10|F′(1+λ2ϰ+1−λ2θ)|qdλ≤∫10[1+λ2|F′(ϰ)|q+1−λ2|F′(θ)|q]dλ=3|F′(ϰ)|q+|F′(θ)|q4 | (3.11) |
and smililarly
∫10|F′(1−λ2ϰ+1+λ2θ)|qdλ≤|F′(ϰ)|q+3|F′(θ)|q4∫10|F′(1+λ2ϰ+1−λ2ϑ)|qdλ≤3|F′(ϰ)|q+|F′(ϑ)|q4∫10|F′(1−λ2ϰ+1+λ2ϑ)|qdλ≤|F′(ϰ)|q+3|F′(ϑ)|q4. | (3.12) |
By substituting inequalities (3.11) and (3.12) into (3.10), we obtain the first inequalty in (3.9).
For the proof of second inequality, let θ1=|F′(θ)|q, ϑ1=3|F′(ϰ)|q, θ2=3|F′(ϰ)|q and ϑ2=|F′(ϑ)|q. Using the fact that
n∑k=1(θk+ϑk)s≤n∑k=1θsk+n∑k=1ϑsk,0≤s<1 |
and 1+31q≤4 then the desired result can be obtained straightforwardly.
Remark 3.11. If we choose φ(λ)=λ for all λ∈[θ,ϑ] in Theorem 3.10, then Theorem 3.10 reduces to [23,Theorem 2].
Remark 3.12. If we choose φ(λ)=λαΓ(α), α>1, for all λ∈[θ,ϑ] in Theorem 3.10, then we have the following inequality for RLFIs
|(ϑ−θ)F(ϰ)+(ϰ−θ)F(θ)+(ϑ−ϰ)F(ϑ)2−2α−1Γ(α+1)(ϰ−θ)α−1[Jαϰ−F(ϰ+θ2)+Jαθ+F(ϰ+θ2)]−2α−1Γ(α+1)(ϑ−ϰ)α−1[Jαϰ+F(ϰ+ϑ2)+Jαϑ−F(ϰ+ϑ2)]|≤(ϰ−θ)24(1αp+1)1p[(3|F′(ϰ)|q+|F′(θ)|q4)1q+(|F′(ϰ)|q+3|F′(θ)|q4)1q]+(ϑ−ϰ)24(1αp+1)1p[(3|F′(ϰ)|q+|F′(ϑ)|q4)1q+(|F′(ϰ)|q+3|F′(ϑ)|q4)1q]≤(ϰ−θ)222q(1αp+1)1p[|F′(ϰ)|+|F′(θ)|]+(ϑ−ϰ)222q(1αp+1)1p[|F′(ϰ)|+|F′(ϑ)|], |
which is the same Theorem 2 of [25].
Remark 3.13. If we take ϰ=θ (or ϰ=ϑ) in Theorem 3.10, then we have the following Trapezoid type inequality
|F(θ)+F(ϑ)2−12Λ2(1)[θ+IφF(θ+ϑ2)+ϑ−IφF(θ+ϑ2)]|≤ϑ−θ4Δ(1)(1∫0|Δ(λ)|pdλ)1p[(3|F′(θ)|q+|F′(ϑ)|q4)1q+(|F′(θ)|q+3|F′(ϑ)|q4)1q]≤ϑ−θ22qΔ(1)(1∫0|Δ(λ)|pdλ)1p[|F′(θ)|+|F′(ϑ)|], |
which is proved by Ertuğral et al. [13].
Corollary 3.14. Under assumption of Theorem 3.10, if we take ϰ=θ+ϑ2 in Theorem 3.10 then we have the following Bullen type inequalities
|12[F(θ)+F(ϑ)2+F(θ+ϑ2)]−14Ψ(1)[θ+ϑ2−IφF(3θ+ϑ4)+θ+IφF(3θ+ϑ4)]−14Ψ(1)[θ+ϑ2+IφF(θ+3ϑ4)+ϑ−IφF(θ+3ϑ4)]|≤ϑ−θ16Ψ(1)(1∫0|Ψ(λ)|pdλ)1p{[(3|F′(θ+ϑ2)|q+|F′(θ)|q4)1q+(|F′(θ+ϑ2)|q+3|F′(θ)|q4)1q]+[(3|F′(θ+ϑ2)|q+|F′(ϑ)|q4)1q+(|F′(θ+ϑ2)|q+3|F′(ϑ)|q4)1q]}≤ϑ−θ22q+1Ψ(1)(1∫0|Ψ(λ)|pdλ)1p(|F′(θ+ϑ2)|+|F′(θ)|+|F′(ϑ)|2). |
Remark 3.15. If we choose φ(λ)=λ for all λ∈[θ,ϑ] in Corollary 3.14, then we have the following inequality
|12[F(θ)+F(ϑ)2+F(θ+ϑ2)]−1(ϑ−θ)∫ϑθF(ϰ)dϰ|≤ϑ−θ16(1p+1)1p[(3|F′(θ+ϑ2)|q+|F′(θ)|q4)1q+(|F′(θ+ϑ2)|q+3|F′(θ)|q4)1q]+ϑ−θ16(1p+1)1p[(3|F′(θ+ϑ2)|q+|F′(ϑ)|q4)1q+(|F′(θ+ϑ2)|q+3|F′(ϑ)|q4)1q]≤ϑ−θ16(4p+1)1p[|F′(θ)|+|F′(ϑ)|+2|F′(θ+ϑ2)|]. | (3.13) |
The first inequality of (3.13) is the same by [23,Corolalry 2].
Theorem 3.16. Let F:[θ,ϑ]→R be differentiable function on (θ,ϑ). If |F′|q, q≥1, is convex function, then we have the following inequality for GFIs:
|(ϑ−θ)F(ϰ)+(ϰ−θ)F(θ)+(ϑ−ϰ)F(ϑ)2−ϰ−θ2Λ1(1)[ϰ−IφF(ϰ+θ2)+θ+IφF(ϰ+θ2)]−ϑ−ϰ2Λ2(1)[ϰ+IφF(ϰ+ϑ2)+ϑ−IφF(ϰ+ϑ2)]|≤(ϰ−θ)24Λ1(1)(1∫0|Λ1(λ)|dλ)1−1q{(β1|F′(ϰ)|q+β2|F′(θ)|q2)1q+(β2|F′(ϰ)|q+β1|F′(θ)|q2)1q}+(ϑ−ϰ)24Λ2(1)(1∫0|Λ2(λ)|dλ)1−1q{(β3|F′(ϰ)|q+β4|F′(ϑ)|q2)1q+(β4|F′(ϰ)|q+β3|F′(ϑ)|q2)1q}, |
where the numbers β1,β2,β3 and β4 are defined by
β1=∫10|Λ1(λ)|(1+λ)dλ,β2=∫10|Λ1(λ)|(1−λ)dλ,β3=∫10|Λ2(λ)|(1+λ)dλ,β4=∫10|Λ2(λ)|(1−λ)dλ. |
Proof. By using well-known power mean inequality in (3.8), we obtain
|(ϑ−θ)F(ϰ)(ϰ−θ)F(θ)+(ϑ−ϰ)F(ϑ)2−ϰ−θ2Λ1(1)[ϰ−IφF(ϰ+θ2)+θ+IφF(ϰ+θ2)]−ϑ−ϰ2Λ2(1)[ϰ+IφF(ϰ+ϑ2)+ϑ−IφF(ϰ+ϑ2)]|≤(ϰ−θ)24Λ1(1)(1∫0|Λ1(λ)|dλ)1−1q{(1∫0|Λ1(λ)||F′(1+λ2ϰ+1−λ2θ)|qdλ)1q+(1∫0|Λ1(λ)||F′(1−λ2ϰ+1+λ2θ)|qdλ)1q}+(ϑ−ϰ)24Λ2(1)(1∫0|Λ2(λ)|dλ)1−1q{(1∫0|Λ2(λ)||F′(1+λ2ϰ+1−λ2ϑ)|qdλ)1q+(1∫0|Λ2(λ)||F′(1−λ2ϰ+1+λ2ϑ)|qdλ)1q}. | (3.14) |
Since |F′|q is convex, we have
1∫0|Λ1(λ)||F′(1+λ2ϰ+1−λ2θ)|qdλ≤1∫0|Λ1(λ)|[1+λ2|F′(ϰ)|q+1−λ2|F′(θ)|q]dλ≤1∫0|Λ1(λ)|(1+λ)|F′(ϰ)|q2dλ+1∫0|Λ1(λ)|(1−λ)|F′(θ)|q2dλ≤[β1|F′(ϰ)|q+β2|F′(θ)|q]2 | (3.15) |
and similarly
1∫0|Λ1(λ)||F′(1−λ2ϰ+1+λ2θ)|qdλ≤β2|F′(ϰ)|q+β1|F′(θ)|q2 | (3.16) |
1∫0|Λ2(λ)||F′(1+λ2ϰ+1−λ2ϑ)|qdλ≤β3|F′(ϰ)|q+β4|F′(ϑ)|q2 | (3.17) |
1∫0|Λ2(λ)||F′(1−λ2ϰ+1+λ2ϑ)|qdλ≤β4|F′(ϰ)|q+β3|F′(ϑ)|q2. | (3.18) |
By considering the inequalities (3.15)–(3.18) in (3.14), then we obtain the required result.
Remark 3.17. If we choose φ(λ)=λ for all λ∈[θ,ϑ] in Theorem 3.16, then Theorem 3.16 reduces to [23,Theorem 3].
Remark 3.18. If we choose φ(λ)=λαΓ(α), α>1, for all λ∈[θ,ϑ] in Theorem 3.16, then Theorem 3.16 reduces to [25,Theorem 3].
Remark 3.19. If we take ϰ=θ (or ϰ=ϑ) in Theorem 3.16, then we have the following Trapezoid type inequality which proved by Ertuğral et al. in [13]:
|F(θ)+F(ϑ)2−12Λ2(1)[θ+IφF(θ+ϑ2)+ϑ−IφF(θ+ϑ2)]|≤(ϑ−θ)24Δ(1)(1∫0|Δ(λ)|dλ)1−1q[(β5|F′(ϰ)|q+β6|F′(ϑ)|q2)1q+(β5|F′(ϰ)|q+β6|F′(ϑ)|q2)1q], |
where β5 and β6 are defined by
β5=∫10|Δ(λ)|(1+λ)dλ, β6=∫10|Δ1(λ)|(1−λ)dλ. |
Corollary 3.20. Under assumption of Theorem 3.16, if we take ϰ=θ+ϑ2 then Theorem 3.16 reduces to following inequalities
|12[F(θ)+F(ϑ)2+F(θ+ϑ2)]−ϑ−θ4Λ1(1)[θ+ϑ2−IφF(3θ+ϑ4)+θ+IφF(3θ+ϑ4)]−ϑ−θ4Λ2(1)[θ+ϑ2+IφF(θ+3ϑ4)+ϑ−IφF(θ+3ϑ4)]|≤ϑ−θ16Λ1(1)(1∫0|Λ1(λ)|dλ)1−1q{[β1|F′(θ+ϑ2)|q+β2|F′(θ)|q]1q+[β2|F′(θ+ϑ2)|q+β1|F′(θ)|q]1q}+ϑ−θ24+1qΛ2(1)(1∫0|Λ2(λ)|dλ)1−1q{[β3|F′(θ+ϑ2)|q+β4|F′(ϑ)|q]1q+[β4|F′(θ+ϑ2)|q+β3|F′(ϑ)|q]1q}. |
Corollary 3.21. If we choose φ(λ)=λ Corollary 3.20, then we have the following inequality
|12[F(θ)+F(ϑ)2+F(θ+ϑ2)]−1(ϑ−θ)∫ϑθF(ϰ)dϰ|≤ϑ−θ16(12)1−1q{(5|F′(θ+ϑ2)|q+|F′(θ)|q6)1q+(|F′(θ+ϑ2)|q+5|F′(θ)|q6)1q+(5|F′(θ+ϑ2)|q+|F′(ϑ)|q6)1q+(|F′(θ+ϑ2)|q+5|F′(ϑ)|q6)1q}. |
In this work, we established some new integral inequalities for differentiable convex functions via the GFIs. We also discussed many special cases of newly established inequalities and obtained several new midpoint and trapezoidal type inequalities for differentiable convex functions through different integral operators. It is an interesting and new problem that researchers can obtain similar inequalities for different kinds of convexity in their future work.
This work was partially supported by National Natural Science Foundation of China (No. 11971241).
The authors declare no conflict of interest.
[1] | M. Alomari, M. Darus, S. S. Dragomir, New inequalities of Simpson's type for s-convex functions with applications, Res. Rep. Collect., 12 (2009). |
[2] |
M. U. Awan, S. Talib, Y. M. Chu, M. A. Noor, K. I. Noor, Some new refinements of Hermite-Hadamard-type inequalities involving-Riemann-Liouville fractional integrals and applications, Math. Probl. Eng., 2020 (2020), 3051920. https://doi.org/10.1155/2020/3051920 doi: 10.1155/2020/3051920
![]() |
[3] |
H. Budak, F. Hezenci, H. Kara, On parameterized inequalities of Ostrowski and Simpson type for convex functions via generalized fractional integral, Math. Method. Appl. Sci., 44 (2021), 12522–12536. https://doi.org/10.1002/mma.7558 doi: 10.1002/mma.7558
![]() |
[4] |
H. Budak, P. Agarwal, New generalized midpoint type inequalities for fractional integral, Miskolc Math. Notes, 20 (2019), 781–793. https://doi.org/10.18514/MMN.2019.2525 doi: 10.18514/MMN.2019.2525
![]() |
[5] |
H. Budak, R. Kapucu, New generalization of midpoint type inequalities for fractional integral, An. Ştiint. Univ Al. I. Cuza Iaşi. Mat. (N.S), 67 (2021). https://doi.org/10.47743/anstim.2021.00009 doi: 10.47743/anstim.2021.00009
![]() |
[6] | P. S. Bullen, Error estimates for some elementary quadrature rules, Publ. Elektrotehn. Fak. Ser. Mat. Fiz., 602/633 (1978), 97–103. |
[7] | M. Çakmak, Some Bullen-type inequalities for conformable fractional integrals, Gen. Math., 28 (2020), 3–17. |
[8] |
S. S. Dragomir, R. P. Agarwal, Two inequalities for differentiable mappings and applications to special means of real numbers and to trapezoidal formula, Appl. Math. Lett., 11 (1998), 91–95. https://doi.org/10.1016/S0893-9659(98)00086-X doi: 10.1016/S0893-9659(98)00086-X
![]() |
[9] |
T. Du, Y. Li, Z. Yang, A generalization of Simpson's inequality via differentiable mapping using extended (s,m)-convex functions, Appl. Math. Comput., 293 (2017), 358–369. https://doi.org/10.1016/j.amc.2016.08.045 doi: 10.1016/j.amc.2016.08.045
![]() |
[10] |
T. Du, C. Luo, Z. Cao, On the Bullen-type inequalities via generalized fractional integrals and their applications, Fractals, 29 (2021). https://doi.org/10.1142/S0218348X21501887 doi: 10.1142/S0218348X21501887
![]() |
[11] | S. Erden, M. Z. Sarikaya, Generalized Bullen-type inequalities for local fractional integrals and its applications, Palestine J. Math., 9 (2020), 945–956. |
[12] |
F. Ertuğral, M. Z. Sarikaya, Simpson type integral inequalities for generalized fractional integral, RACSAM Rev. R. Acad. A, 113 (2019), 3115–3124. https://doi.org/10.1007/s13398-019-00680-x doi: 10.1007/s13398-019-00680-x
![]() |
[13] | F. Ertuğral, M. Z. Sarikaya, H. Budak, On Hermite-Hadamard type inequalities associated with the generalized fractional integrals, Filomat, 2022, In press. |
[14] | G. Farid, A. U. Rehman, M. Zahra, On Hadamard inequalities for k-fractional integrals, Nonlinear Funct. Anal. Appl., 21 (2016), 463–478. |
[15] | R. Gorenflo, F. Mainardi, Fractional calculus: Integral and differential equations of fractional order, Springer Verlag, Wien, 1997. |
[16] |
İ. İşcan, Hermite-Hadamard and Simpson-like type inequalities for differentiable harmonically convex functions, J. Math., 2014 (2014). https://doi.org/10.1155/2014/346305 doi: 10.1155/2014/346305
![]() |
[17] | M. Iqbal, S. Qaisar, M. Muddassar, A short note on integral inequality of type Hermite-Hadamard through convexity, J. Comput. Anal. Appl., 21 (2016), 946–953. |
[18] |
A. Kashuri, R. Liko, Generalized trapezoidal type integral inequalities and their applications, J. Anal., 28 (2020), 1023–1043. https://doi.org/10.1007/s41478-020-00232-2 doi: 10.1007/s41478-020-00232-2
![]() |
[19] |
M. A. Khan, A. Iqbal, M. Suleman, Y. M. Chu, Hermite-Hadamard type inequalities for fractional integrals via Green's function, J. Inequal. Appl., 2018 (2018), 1–15. https://doi.org/10.1186/s13660-018-1751-6 doi: 10.1186/s13660-018-1751-6
![]() |
[20] |
M. A. Khan, T. Ali, S. S. Dragomir, M. Z. Sarikaya, Hermite-Hadamard type inequalities for conformable fractional integrals, RACSAM Rev. R. Acad. A, 112 (2018), 1033–1048. https://doi.org/10.1007/s13398-017-0408-5 doi: 10.1007/s13398-017-0408-5
![]() |
[21] | A. A. Kilbas, H. M. Srivastava, J. J. Trujillo, Theory and applications of fractional differential equations, Elsevier, Amsterdam, 2006. |
[22] |
U. S. Kirmaci, Inequalities for differentiable mappings and applications to special means of real numbers to midpoint formula, Appl. Math. Comput., 147 (2004), 137–146. https://doi.org/10.1016/S0096-3003(02)00657-4 doi: 10.1016/S0096-3003(02)00657-4
![]() |
[23] |
M. A. Latif, Inequalities of Hermite-Hadamard type for functions whose derivatives in absolute value are convex with applications, Arab J. Math. Sci., 21 (2015), 84–97. https://doi.org/10.1016/j.ajmsc.2014.01.002 doi: 10.1016/j.ajmsc.2014.01.002
![]() |
[24] |
M. Matloka, Some inequalities of Simpson type for h-convex functions via fractional integrals, Abstr. Appl. Anal., 2015 (2015). https://doi.org/10.1155/2015/956850 doi: 10.1155/2015/956850
![]() |
[25] | F. C. Mitroi, M. V. Mihai, Hermite-Hadamard type inequalities obtained via Riemann-Liouville fractional calculus, Acta Math. Univ. Comen., 83 (2014), 209–215. |
[26] | S. Mubeen, G. M. Habibullah, k-fractional integrals and application, Int. J. Contemp. Math. Sci., 7 (2012), 89–94. |
[27] | M. E. Ozdemir, A. O. Akdemir, H. Kavurmacı, On the Simpson's inequality for convex functions on the coordinates, Turk. J. Anal. Number Theor., 2 (2014), 165–169. |
[28] |
S. Qaisar, S. Hussain, On Hermite-Hadamard type inequalities for functions whose first derivative absolute values are convex and concave, Fasciculi Math., 58 (2017), 155–166. https://doi.org/10.1515/fascmath-2017-0011 doi: 10.1515/fascmath-2017-0011
![]() |
[29] |
J. Park, On Simpson-like type integral inequalities for differentiable preinvex functions, Appl. Math. Sci., 7 (2013), 6009–6021. https://doi.org/10.12988/ams.2013.39498 doi: 10.12988/ams.2013.39498
![]() |
[30] |
J. Park, On some integral inequalities for twice differentiable quasi-convex and convex functions via fractional integrals, Appl. Math. Sci., 9 (2015), 3057–3069. https://doi.org/10.12988/ams.2015.53248 doi: 10.12988/ams.2015.53248
![]() |
[31] | J. E. Pečarić, F. Proschan, Y. L. Tong, Convex functions, partial orderings and statistical applications, Academic Press, Boston, 1992. |
[32] |
M. Z. Sarikaya, E. Set, H. Yaldiz, N. Başak, Hermite-Hadamard's inequalities for fractional integrals and relatedfractional inequalities, Math. Comput. Model., 57 (2013), 2403–2407. https://doi.org/10.1016/j.mcm.2011.12.048 doi: 10.1016/j.mcm.2011.12.048
![]() |
[33] |
M. Z. Sarikaya, E. Set, M. E. Özdemir, On new inequalities of Simpson's type for convex functions, RGMIA Res. Rep. Collect., 13 (2010). https://doi.org/10.1016/j.camwa.2010.07.033 doi: 10.1016/j.camwa.2010.07.033
![]() |
[34] |
M. Z. Sarikaya, E. Set, M. E. Özdemir, On new inequalities of Simpson's type for s-convex functions, Comput. Math. Appl., 60 (2020), 2191–2199. https://doi.org/10.1016/j.camwa.2010.07.033 doi: 10.1016/j.camwa.2010.07.033
![]() |
[35] |
M. Z. Sarikaya, H. Budak, Some integral inequalities for local fractional integrals, Int. J. Anal. Appl., 14 (2017), 9–19. https://doi.org/10.1016/j.amc.2015.11.096 doi: 10.1016/j.amc.2015.11.096
![]() |
[36] |
M. Z. Sarikaya, F. Ertugral, On the generalized Hermite-Hadamard inequalities, Ann. Univ. Craiova-Mat., 47 (2020), 193–213. https://doi.org/10.52846/ami.v47i1.1139 doi: 10.52846/ami.v47i1.1139
![]() |
[37] |
E. Set, J. Choi, A. Gözpinar, Hermite-Hadamard type inequalities for the generalized k-fractional integral operators, J. Inequal. Appl., 2017 (2017), 1–17. https://doi.org/10.1186/s13660-017-1476-y doi: 10.1186/s13660-017-1476-y
![]() |
[38] |
M. Vivas-Cortez, M. A. Ali, A. Kashuri, H. Budak, Generalizations of fractional Hermite-Hadamard-Mercer like inequalities for convex functions, AIMS Math., 6 (2021), 9397–9421. https://doi.org/10.3934/math.2021546 doi: 10.3934/math.2021546
![]() |
[39] |
D. Zhao, M. A. Ali, A. Kashuri, H. Budak, Generalized fractional integral inequalities of Hermite-Hadamard type for harmonically convex functions, Adv. Differ. Equ., 2020 (2020), 1–14. https://doi.org/10.1186/s13662-020-02589-x doi: 10.1186/s13662-020-02589-x
![]() |
[40] |
D. Zhao, M. A. Ali, A. Kashuri, H. Budak, M. Z. Sarikaya, Hermite-Hadamard-type inequalities for the interval-valued approximately h-convex functions via generalized fractional integrals, J. Inequal. Appl., 2020 (2020), 1–38. https://doi.org/10.1186/s13660-020-02488-5 doi: 10.1186/s13660-020-02488-5
![]() |
1. | Ziyi Zhou, Tingsong Du, Analytical properties and related inequalities derived from multiplicative Hadamard k-fractional integrals, 2024, 189, 09600779, 115715, 10.1016/j.chaos.2024.115715 | |
2. | Xiaohua Zhang, Yu Peng, Tingsong Du, (k,s)-fractional integral operators in multiplicative calculus, 2025, 195, 09600779, 116303, 10.1016/j.chaos.2025.116303 | |
3. | Arslan Munir, Hüseyin Budak, Irza Faiz, Shahid Qaisar, Generalizations of Simpson type inequality for (α,m)-convex functions, 2024, 38, 0354-5180, 3295, 10.2298/FIL2410295M |