The theory of convex function has a lot of applications in the field of applied mathematics and engineering. The Caputo-Fabrizio non-singular operator is the most significant operator of fractional theory which permits to generalize the classical theory of differentiation. This study consider the well known Hermite-Hadamard type and associated inequalities to generalize further. To full fill this mileage, we use the exponential convexity and fractional-order differential operator and also apply some existing inequalities like Holder, power mean, and Holder-Iscan type inequalities for further extension. The generalized exponential type fractional integral Hermite-Hadamard type inequalities establish involving the global integral. The applications of the developed results are displayed to verify the applicability. The establish results of this paper can be considered an extension and generalization of the existing results of convex function and inequality in literature and we hope that will be more helpful for the researcher in future work.
Citation: Muhammad Imran Asjad, Waqas Ali Faridi, Mohammed M. Al-Shomrani, Abdullahi Yusuf. The generalization of Hermite-Hadamard type Inequality with exp-convexity involving non-singular fractional operator[J]. AIMS Mathematics, 2022, 7(4): 7040-7055. doi: 10.3934/math.2022392
[1] | Eze R. Nwaeze, Muhammad Adil Khan, Ali Ahmadian, Mohammad Nazir Ahmad, Ahmad Kamil Mahmood . Fractional inequalities of the Hermite–Hadamard type for $ m $-polynomial convex and harmonically convex functions. AIMS Mathematics, 2021, 6(2): 1889-1904. doi: 10.3934/math.2021115 |
[2] | Lanxin Chen, Junxian Zhang, Muhammad Shoaib Saleem, Imran Ahmed, Shumaila Waheed, Lishuang Pan . Fractional integral inequalities for $ h $-convex functions via Caputo-Fabrizio operator. AIMS Mathematics, 2021, 6(6): 6377-6389. doi: 10.3934/math.2021374 |
[3] | Muhammad Tariq, Asif Ali Shaikh, Sotiris K. Ntouyas, Jessada Tariboon . Some novel refinements of Hermite-Hadamard and Pachpatte type integral inequalities involving a generalized preinvex function pertaining to Caputo-Fabrizio fractional integral operator. AIMS Mathematics, 2023, 8(11): 25572-25610. doi: 10.3934/math.20231306 |
[4] | Jia-Bao Liu, Saad Ihsan Butt, Jamshed Nasir, Adnan Aslam, Asfand Fahad, Jarunee Soontharanon . Jensen-Mercer variant of Hermite-Hadamard type inequalities via Atangana-Baleanu fractional operator. AIMS Mathematics, 2022, 7(2): 2123-2141. doi: 10.3934/math.2022121 |
[5] | Hong Yang, Shahid Qaisar, Arslan Munir, Muhammad Naeem . New inequalities via Caputo-Fabrizio integral operator with applications. AIMS Mathematics, 2023, 8(8): 19391-19412. doi: 10.3934/math.2023989 |
[6] | Muhammad Tariq, Hijaz Ahmad, Abdul Ghafoor Shaikh, Soubhagya Kumar Sahoo, Khaled Mohamed Khedher, Tuan Nguyen Gia . New fractional integral inequalities for preinvex functions involving Caputo-Fabrizio operator. AIMS Mathematics, 2022, 7(3): 3440-3455. doi: 10.3934/math.2022191 |
[7] | Thabet Abdeljawad, Muhammad Aamir Ali, Pshtiwan Othman Mohammed, Artion Kashuri . On inequalities of Hermite-Hadamard-Mercer type involving Riemann-Liouville fractional integrals. AIMS Mathematics, 2021, 6(1): 712-725. doi: 10.3934/math.2021043 |
[8] | Miguel Vivas-Cortez, Muhammad Aamir Ali, Artion Kashuri, Hüseyin Budak . Generalizations of fractional Hermite-Hadamard-Mercer like inequalities for convex functions. AIMS Mathematics, 2021, 6(9): 9397-9421. doi: 10.3934/math.2021546 |
[9] | Thongchai Botmart, Soubhagya Kumar Sahoo, Bibhakar Kodamasingh, Muhammad Amer Latif, Fahd Jarad, Artion Kashuri . Certain midpoint-type Fejér and Hermite-Hadamard inclusions involving fractional integrals with an exponential function in kernel. AIMS Mathematics, 2023, 8(3): 5616-5638. doi: 10.3934/math.2023283 |
[10] | Sabila Ali, Shahid Mubeen, Rana Safdar Ali, Gauhar Rahman, Ahmed Morsy, Kottakkaran Sooppy Nisar, Sunil Dutt Purohit, M. Zakarya . Dynamical significance of generalized fractional integral inequalities via convexity. AIMS Mathematics, 2021, 6(9): 9705-9730. doi: 10.3934/math.2021565 |
The theory of convex function has a lot of applications in the field of applied mathematics and engineering. The Caputo-Fabrizio non-singular operator is the most significant operator of fractional theory which permits to generalize the classical theory of differentiation. This study consider the well known Hermite-Hadamard type and associated inequalities to generalize further. To full fill this mileage, we use the exponential convexity and fractional-order differential operator and also apply some existing inequalities like Holder, power mean, and Holder-Iscan type inequalities for further extension. The generalized exponential type fractional integral Hermite-Hadamard type inequalities establish involving the global integral. The applications of the developed results are displayed to verify the applicability. The establish results of this paper can be considered an extension and generalization of the existing results of convex function and inequality in literature and we hope that will be more helpful for the researcher in future work.
The fractional theory of calculus is one of the significant appealing subjects to researchers because of its intensive range of applications in diverse fields of sciences. Nowadays, fractional calculus has a lot of application in many scientific disciplines such as economy [1], geophysics [2], bio-engineering [3], biology [4], medicine [5], demography [6], and also in signal processing. From the last three decades, many scholars and researchers have focused their attention on fractional calculus and studied many real problems in sort of fractional theory [7,8,9,10,11]. Some scholars deduced that fractional theory is necessary to establish new fractional operators with different singular and non-singular kernels to provide an effective area to systematize the real problems in various area of engineering and science [12,13,14,15,16]. Because integer order operator is the local operator that can't measure the effect of neighbors where heavy tails occurs. The fractional-order operator is not local that's why it contrives to tackle sensitive situations where classical operators bear singularity.
Some recent applications of fractional operators are presenting in different scientific areas. Zhang et al. [17] have established numerous the sufficient criteria of the quasi-uniform synchronization for Caputo fractional neural networks by using Laplace transformation and Gronwall inequality. Wang et al. [18] developed the algebraic criterion for the globally projective synchronization of fractional Caputo quantum valued neural networks with the aid of inequality scheme and the Lyapunov direct technique. Zhang et al. [19] have applied Lyapunov function associated to fractional operators to prove the delay-independent asymptotic stability of Riemannâ€"Liouville fractional-order neutral-type delayed neural networks. Sun established a new integral identity by taking local fractional integral and generalized midpoint inequalities, trapezoidal inequalities and Simpson inequalities [20]. Sun has used harmonically convex to develop a general identity and impart the generalization of Hermite-Hadamard, Ostrowski and Simpson type inequalities [21]. Sun et al. [22] constructed a identity by harmonically convex function on Yang's fractal sets to generalize the two Hermite-Hadamard type inequalities with local fractional integral. Guessab et al. [23,24] analyzed the error between barycentric approximation and convex function and illustrated best possible point wise error estimates of function, also provided a scheme to examine the new differential quasi-interpolation operator. Guessab have presented the Jensen type inequalities on convex polytopes and examined the error in the approximation of a convex function [25,26]. Guessan et al. [27] developed a Korovkin-type theorems which illustrates that it is not necessary a sequence of operators have identity limit. Rajesh et al. [28] considered deformation Due to Thermal Source in elastic body and obtained stress components and temperature distribution with the fractional order. Hobiny et al. [29,30] investigated the estimate the variation of temperature, the components of stress by generalized thermoelastic theory with fractional operator and examined the influence of time relaxation and fractional order on fiber-reinforced medium. Saeed et al. [31,32] inspected the impact of fractional order on the two-dimension porous materials and acquired the solution of fractional bio-heat model.
In this study we used the Caputo-Fabrizio fractional integral operator to develop more generalized results. The reason behind this is that this fractional operator contains a non-singular kernel. The significant property of the Caputo-Fabrizio fractional operator is that it turns to an integer order employing Laplace transformation and can find the exact solutions of the real phenomenon.
The fractional theory of calculus has vital applications in the development of fractional inequalities. The Hermite-Hadamard inequality is one of the fundamental definitions in the study of convexity and its generalization. The generalization of Hermite-Hadamard has been presented by many scholars with various fractional derivatives [33,34,35].
One our best knowledge, Wang et al. [36] used modified h-convex function and find some new results. They established results for Hermite-Hadamard type and associated inequalities involving and h-convexity but the developed results does not contain any exponential characteristic. This study inspired and motivated to construct further generalized inequalities involving the exponential convexity via non-singular fractional-order Caputo-Fabrizio operator.
This article is organized as, some useful and important definitions, theorems, and other notations are discussed in Section 2, a generalization of Hermite-Hadamard type inequalities is depicted in Section 3, Section 4 is dedicated to some new results and at last concluding remarks of this paper are presented.
Here, we will discuss some important notations that will help us further.
Definition 1. (See [37]). Let Λ:j=[ψ,ϖ]⊆R→R is a function. Λ is said to be convex function, if the following inequality holds:
Λ(tψ+(1−t)ϖ)≤tΛ(ψ)+(1−t)Λ(ϖ), |
where t∈[0,1].
Definition 2. (See [39]). Let Λ:j=[ψ,ϖ]⊆R→R is a function. Λ is said to be exponential convex function, if the following inequality holds:
Λ(tψ+(1−t)ϖ)≤(et−1)Λ(ψ)+(e1−t−1)Λ(ϖ), |
where t∈[0,1].
Definition 3. (See [38]). Let ϝ∈H1(a,b),b>a, Then the left and right Caputo-Fabrizio fractional derivatives are, respectively:
(CFψDεϝ)(t)=CF(ε)1−ε∫tψϝ′(τ)e−ε(τ−t)ε1−εdτ, |
(CFDεϖϝ)(t)=CF(ε)1−ε∫ϖtϝ′(τ)e−ε(τ−t)ε1−εdτ, |
and the associated left and right integrals are, respectively,
(CFψIεϝ)(t)=1−εCF(ε)ϝ(t)+εCF(ε)∫tψϝ′(τ)dτ, |
(CFIεϖϝ)(t)=1−εCF(ε)ϝ(t)+εCF(ε)∫ϖtϝ′(τ)dτ, |
where, CF(ε)>0 and CF(0)=CF(1)=1.
Theorem 2.1. (See [39]). Let Λ:j=[ψ,ϖ]⊆R→R is a convex function. If ψ<ϖ and Λ∈L[ψ,ϖ] then the following Hermite-Hadamard double inequality holds:
12(√e−1)Λ(ψ+ϖ2)≤1ϖ−ψ∫ϖψΛ(x)dx≤Λ(ψ)+Λ(ϖ)2. |
Lemma 1. (See [40]). Let Λ:j=[ψ,ϖ]⊆R→R is a differentiable function. If ψ<ϖ and Λ∈L[ψ,ϖ] then the following equality holds:
Λ(ψ)+Λ(ϖ)2−1ϖ−ψ∫ϖψΛ(x)dx=ϖ−ψ2∫10(1−2t)Λ′(tψ−(1−t)ϖ)dt. |
Lemma 2. (See [41]). Let Λ:j=[ψ,ϖ]⊆R→R is a differentiable function. If ψ<ϖ,ε∈[0,1] and Λ∈L1[ψ,ϖ] then following equality holds:
Λ(ψ)+Λ(ϖ)2−B(ε)ε(ϖ−ψ)[(CFψIεΛ)(x)+(CFIεϖΛ)(x)]=ϖ−ψ2∫10(1−2t)Λ′(tψ−(1−t)ϖ)dt−2(1−ε)ε(ϖ−ψ)Λ(x), |
where x∈[ψ,ϖ] and B(ε)>0 is a normalization function.
Theorem 2.2. (Hölder-Iscan integral inequality see [42]). Let Λ,ℸ:j=[ψ,ϖ]⊆R→R are real mappings. Consider p>0, p−1+q−1=1 and |Λ|q|ℸ|q are integrable functions so:
∫ϖψ|Λ(x)ℸ(x)|dx≤1ϖ−ψ(∫ϖψ(ϖ−x)|Λ(x)|pdx)1p(∫ϖψ(ϖ−x)|ℸ(x)|qdx)1q+1ϖ−ψ(∫ϖψ(ψ−x)|Λ(x)|pdx)1p(∫ϖψ(ψ−x)|ℸ(x)|qdx)1q. |
Theorem 2.3. (Improved power-mean integral inequality see [43]). Let Λ,ℸ:j=[ψ,ϖ]⊆R→R are real mappings. Consider q>0, and |Λ|q|ℸ|q are integrable functions so:
∫ϖψ|Λ(x)ℸ(x)|dx≤1ϖ−ψ(∫ϖψ(ϖ−x)|Λ(x)|dx)1−1q(∫ϖψ(ϖ−x)|Λ(x)||ℸ(x)|qdx)1q+1ϖ−ψ(∫ϖψ(ψ−x)|Λ(x)|dx)1−1q(∫ϖψ(ψ−x)|Λ(x)||ℸ(x)|qdx)1q. |
Here, we will discuss some novel results that will be further useful.
Theorem 3.1. Consider that Λ:j=[ψ,ϖ]⊆R→R is an exponential convex function and Λ∈L1[ψ,ϖ]. If ε∈[0,1] then we have:
12(√e−1)Λ(ψ+ϖ2)≤B(ε)ε(ϖ−ψ)[(CFψIεΛ)(t)+(CFIεϖΛ)(t)−2(1−ε)B(ε)Λ(t)]≤(e−2)(Λ(ψ)+Λ(ϖ)). | (3.1) |
Where B(ε)>0 is normalization function and t∈[ψ,ϖ].
Proof. Since Λ is exp-convex function then (see [39]):
12(√e−1)Λ(ψ+ϖ2)≤1ϖ−ψ∫ϖψΛ(x)dx=1ϖ−ψ[∫tψΛ(x)dx+∫ϖtΛ(x)dx]. | (3.2) |
Multiplying both sides by ε(ϖ−ψ)B(ε) and adding 2(1−ε)B(ε)Λ(t) in (3.2):
ε(ϖ−ψ)B(ε)12(√e−1)Λ(ψ+ϖ2)+2(1−ε)B(ε)Λ(t)≤(1−ε)B(ε)Λ(t)+εB(ε)∫tψΛ(x)dx+(1−ε)B(ε)Λ(t)+εB(ε)∫ϖtΛ(x)dx. | (3.3) |
ε(ϖ−ψ)B(ε)12(√e−1)Λ(ψ+ϖ2)+2(1−ε)B(ε)Λ(t)≤[(CFψIεΛ)(t)+(CFIεϖΛ)(t)]. | (3.4) |
On the suitable rearrangements of (3.4), we will get our required result.
For right hand side, we substitute x=tψ+(1−t)ϖ :
1ϖ−ψ∫ϖψΛ(x)dx=∫10Λ(tψ+(1−t)ϖ)dt. | (3.5) |
Since Λ is an exp-function so:
1ϖ−ψ[∫tψΛ(x)dx+∫ϖtΛ(x)dx]=∫10[(et−1)Λ(ψ)+(e1−t−1)Λ(ϖ)]dt. | (3.6) |
Multiplying both sides by ε(ϖ−ψ)B(ε) and adding 2(1−ε)B(ε)Λ(t) in (3.6), we will get:
[(CFψIεΛ)(t)+(CFIεϖΛ)(t)]≤ε(ϖ−ψ)B(ε)(e−2)[Λ(ψ)+Λ(ϖ)]+2(1−ε)B(ε)Λ(t). | (3.7) |
On the suitable rearrangements of (3.7), we will get our required result.
Remark 1. If we put et−1=h(t) and e1−t−1=1−h(t) then we get a result of [36].
Theorem 3.2. Consider that Λ,ℸ:j=[ψ,ϖ]⊆R→R be an exponential convex functions and Λℸ∈L1[ψ,ϖ]. If ε∈[0,1] then we have:
B(ε)ε(ϖ−ψ)[(CFψIεΛℸ)(t)+(CFIεϖΛℸ)(t)−2(1−ε)B(ε)Λ(t)ℸ(t)]≤5−4e+e22M(ψ,ϖ)+(3−e)N(ψ,ϖ), | (3.8) |
where
M(ψ,ϖ)=Λ(ψ)ℸ(ψ)+Λ(ϖ)ℸ(ϖ),N(ψ,ϖ)=Λ(ψ)ℸ(ϖ)+Λ(ϖ)ℸ(ψ), |
B(ε)>0 is normalization function and t∈[ψ,ϖ].
Proof. Since Λ,ℸ are exp-convex function so:
Λ(tψ+(1−t)ϖ)≤(et−1)Λ(ψ)+(e1−t−1)Λ(ϖ). | (3.9) |
ℸ(tψ+(1−t)ϖ)≤(et−1)ℸ(ψ)+(e1−t−1)ℸ(ϖ). | (3.10) |
Multiplying (3.9) and (3.10):
Λ(tψ+(1−t)ϖ)×ℸ(tψ+(1−t)ϖ)≤(et−1)2Λ(ψ)ℸ(ψ)+(e1−t−1)2Λ(ϖ)ℸ(ϖ)+(e−et−e1−t+1)N(ψ,ϖ). | (3.11) |
Integrating over [0,1] and by make change of variable:
1ϖ−ψ∫ϖψΛ(x)ℸ(x)dx≤(5−4e−e22)M(ψ,ϖ)+(3−e)N(ψ,ϖ). | (3.12) |
1ϖ−ψ[∫tψΛ(x)ℸ(x)dx+∫ϖtΛ(x)ℸ(x)dx]≤(5−4e−e22)M(ψ,ϖ)+(3−e)N(ψ,ϖ). | (3.13) |
Multiplying both sides by ε(ϖ−ψ)B(ε) and adding 2(1−ε)B(ε)Λ(t)ℸ(t) in (3.13), we will get:
(1−ε)B(ε)Λ(t)ℸ(t)+εB(ε)∫tψΛ(x)ℸ(x)dx+(1−ε)B(ε)Λ(t)ℸ(t)+εB(ε)∫ϖtΛ(x)ℸ(x)dx≤ε(ϖ−ψ)B(ε)[(5−4e−e22)M(ψ,ϖ)+(3−e)N(ψ,ϖ)]+2(1−ε)B(ε)Λ(t)ℸ(t). | (3.14) |
[(CFψIεΛℸ)(t)+(CFIεϖΛℸ)(t)]≤ε(ϖ−ψ)B(ε)[(5−4e−e22)M(ψ,ϖ)+(3−e)N(ψ,ϖ)]+2(1−ε)B(ε)Λ(t)ℸ(t). | (3.15) |
On the suitable rearrangements of (3.15), we will get our required result.
Remark 2. If we put et−1=h(t) and e1−t−1=1−h(t) then we get a result of [36].
Theorem 3.3. Consider that Λ,ℸ:j=[ψ,ϖ]⊆R→R be an exponential convex functions and Λℸ∈L1[ψ,ϖ], the set of integrable functions. If ε∈[0,1] then we have:
12(e12−1)2Λ(ψ+ϖ2)ℸ(ψ+ϖ2)−B(ε)ε(ϖ−ψ)[(CFψIεΛℸ)(t)+(CFIεϖΛℸ)(t)]−2(1−ε)B(ε)Λ(t)ℸ(t)≤5−4e+e22N(ψ,ϖ)+(3−e)M(ψ,ϖ), | (3.16) |
where
M(ψ,ϖ)=Λ(ψ)ℸ(ψ)+Λ(ϖ)ℸ(ϖ),N(ψ,ϖ)=Λ(ψ)ℸ(ϖ)+Λ(ϖ)ℸ(ψ), |
B(ε)>0 is normalization function and t∈[ψ,ϖ].
Proof. Firstly, utilizing the property of the exponential type convex functions Λ,ℸ are exp-convex functions (see [39]) and for t=12, so:
Λ(ψ+ϖ2)=Λ((tψ+(1−t)ϖ)+((1−t)ψ+tϖ)2)≤(e12−1)Λ(tψ+(1−t)ϖ)+(e1−12−1)Λ(1−t)ψ+tϖ), | (3.17) |
and
ℸ(ψ+ϖ2)=ℸ((tψ+(1−t)ϖ)+((1−t)ψ+tϖ)2).≤(e12−1)ℸ(tψ+(1−t)ϖ)+(e1−12−1)ℸ(1−t)ψ+tϖ). | (3.18) |
Multiplying (3.17) and (3.18),
Λ(ψ+ϖ2)ℸ(ψ+ϖ2)≤(e12−1)2[Λ(tψ+(1−t)ϖ)ℸ(tψ+(1−t)ϖ)+Λ((1−t)ψ+tϖ)ℸ((1−t)ψ+tϖ)]+(e12−1)2[(e1−t−1)2N(ψ,ϖ)+(et−1)2N(ψ,ϖ)+2(e−et−e1−t+1)M(ψ,ϖ)]. | (3.19) |
Integrating (3.19) over [0,1] and making the change of variables,
12(e12−1)2Λ(ψ+ϖ2)ℸ(ψ+ϖ2)≤1ϖ−ψ∫ϖψΛ(x)ℸ(x)dx+5−4e+e22N(ψ,ϖ)+(3−e)M(ψ,ϖ). | (3.20) |
Multiplying both sides by ε(ϖ−ψ)B(ε) and adding 2(1−ε)B(ε)Λ(t)ℸ(t) in (3.20), we will get:
12(e12−1)2ε(ϖ−ψ)B(ε)Λ(ψ+ϖ2)ℸ(ψ+ϖ2)−[(1−ε)B(ε)Λ(t)ℸ(t)+εB(ε)∫tψΛ(x)ℸ(x)dx+(1−ε)B(ε)Λ(t)ℸ(t)+εB(ε)∫ϖtΛ(x)ℸ(x)dx]≤ε(ϖ−ψ)B(ε)[(5−4e−e22)N(ψ,ϖ)+(3−e)M(ψ,ϖ)]+2(1−ε)B(ε)Λ(t)ℸ(t). | (3.21) |
12(e12−1)2ε(ϖ−ψ)B(ε)Λ(ψ+ϖ2)ℸ(ψ+ϖ2)−[(CFψIεΛℸ)(t)+(CFIεϖΛℸ)(t)]≤ε(ϖ−ψ)B(ε)[(5−4e−e22)N(ψ,ϖ)+(3−e)M(ψ,ϖ)]+2(1−ε)B(ε)Λ(t)ℸ(t). | (3.22) |
On the suitable rearrangements of (3.22), we will get our required result.
Remark 3. If we put et−1=h(t) and e1−t−1=1−h(t) then we get a result of [36].
Theorem 4.1. Consider that Λ:j=[ψ,ϖ]⊆R→R be a differentiable function. |Λ′| is an exponential convex function on interval j with ψ<ϖ and Λ∈L1[ψ,ϖ]. If ε∈[0,1] then we have:
|Λ(ψ)+Λ(ϖ)2−B(ε)ε(ϖ−ψ)[(CFψIεΛ)(t)+(CFIεϖΛ)(t)]+2(1−ε)ε(ϖ−ψ)Λ(t)|≤(8√e−2e−7)(ϖ−ψ)4[Λ′(ψ)−Λ′(ϖ))], | (4.1) |
where B(ε)>0 is normalization function and t∈[ψ,ϖ].
Proof. By using the Lemma 2,
|Λ(ψ)+Λ(ϖ)2−B(ε)ε(ϖ−ψ)[(CFψIεΛ)(t)+(CFIεϖΛ)(t)]+2(1−ε)ε(ϖ−ψ)Λ(t)|=ϖ−ψ2∫10|1−2t||Λ′(tψ+(1−t)ϖ)|dt. | (4.2) |
Since Λ′ is exp-convex function so:
|Λ(ψ)+Λ(ϖ)2−B(ε)ε(ϖ−ψ)[(CFψIεΛ)(t)+(CFIεϖΛ)(t)]+2(1−ε)ε(ϖ−ψ)Λ(t)|≤ϖ−ψ2∫10|1−2t|[(et−1)|Λ′(ψ)|+(e1−t−1)|Λ′(ϖ)|]dt. | (4.3) |
So,
|Λ(ψ)+Λ(ϖ)2−B(ε)ε(ϖ−ψ)[(CFψIεΛ)(t)+(CFIεϖΛ)(t)]+2(1−ε)ε(ϖ−ψ)Λ(t)|≤(8√e−2e−7)(ϖ−ψ)4[Λ′(ψ)−Λ′(ϖ))]. | (4.4) |
Hence, this is complete proof.
Remark 4. If we put et−1=h(t) and e1−t−1=1−h(t) then we get a result of [36].
Theorem 4.2. Consider that Λ:j=[ψ,ϖ]⊆R→R be a differentiable positive function. |Λ′|q is an exponential convex function on interval j with ψ<ϖ, where p>1,p−1+q−1=1 and Λ∈L1[ψ,ϖ]. If ε∈[0,1] then we have:
|Λ(ψ)+Λ(ϖ)2−B(ε)ε(ϖ−ψ)[(CFψIεΛ)(t)+(CFIεϖΛ)(t)]+2(1−ε)ε(ϖ−ψ)Λ(t)|≤(e−2)1q(ϖ−ψ)2(1p+1)1p(|Λ′(ψ)|q+|Λ′(ϖ)|q)1q, | (4.5) |
where B(ε)>0 is normalization function and t∈[ψ,ϖ].
Proof. We will use similar arguments as in previous theorem, by using the Lemma 2,
|Λ(ψ)+Λ(ϖ)2−B(ε)ε(ϖ−ψ)[(CFψIεΛ)(t)+(CFIεϖΛ)(t)]+2(1−ε)ε(ϖ−ψ)Λ(t)|=ϖ−ψ2∫10|1−2t||Λ′(tψ+(1−t)ϖ)|dt. | (4.6) |
Applying the Holder's inequality:
|Λ(ψ)+Λ(ϖ)2−B(ε)ε(ϖ−ψ)[(CFψIεΛ)(t)+(CFIεϖΛ)(t)]+2(1−ε)ε(ϖ−ψ)Λ(t)|≤ϖ−ψ2(1p+1)1p[∫10((|Λ′(tψ+(1−t)ϖ)|)qdt)]1q. | (4.7) |
Applying the exp-convexity:
|Λ(ψ)+Λ(ϖ)2−B(ε)ε(ϖ−ψ)[(CFψIεΛ)(t)+(CFIεϖΛ)(t)]+2(1−ε)ε(ϖ−ψ)Λ(t)|≤(ϖ−ψ)(e−2)1q2(1p+1)1p(|Λ′(ψ)|q+|Λ′(ϖ)|q)1q. | (4.8) |
Hence, this is complete proof.
Remark 5. If we put et−1=h(t) and e1−t−1=1−h(t) then we get a result of [36].
Theorem 4.3. Consider that Λ:j=[ψ,ϖ]⊆R→R be a differentiable positive function. |Λ′|q is an exponential convex function on interval j with ψ<ϖ, where q>1, and Λ∈L1[ψ,ϖ]. If ε∈[0,1] then we have:
|Λ(ψ)+Λ(ϖ)2−B(ε)ε(ϖ−ψ)[(CFψIεΛ)(t)+(CFIεϖΛ)(t)]+2(1−ε)ε(ϖ−ψ)Λ(t)|≤(ϖ−ψ)2(12)1−1q[8√e−2e−72(|Λ′(ψ)|q+|Λ′(ϖ)|q)]1q, | (4.9) |
where B(ε)>0 is normalization function and t∈[ψ,ϖ].
Proof. Now, we will also use similar arguments as in previous theorem, by using the Lemma 2,
|Λ(ψ)+Λ(ϖ)2−B(ε)ε(ϖ−ψ)[(CFψIεΛ)(t)+(CFIεϖΛ)(t)]+2(1−ε)ε(ϖ−ψ)Λ(t)|=ϖ−ψ2∫10|1−2t||Λ′(tψ+(1−t)ϖ)|dt. | (4.10) |
Since q>1, applying the power mean inequality:
|Λ(ψ)+Λ(ϖ)2−B(ε)ε(ϖ−ψ)[(CFψIεΛ)(t)+(CFIεϖΛ)(t)]+2(1−ε)ε(ϖ−ψ)Λ(t)|≤ϖ−ψ2[(∫10|1−2t|dt)1−1q(∫10|1−2t||Λ′(tψ+(1−t)ϖ)|qdt)1q]. | (4.11) |
Applying the exp-convexity:
|Λ(ψ)+Λ(ϖ)2−B(ε)ε(ϖ−ψ)[(CFψIεΛ)(t)+(CFIεϖΛ)(t)]+2(1−ε)ε(ϖ−ψ)Λ(t)|≤ϖ−ψ2(12)1−1q[|Λ′(ψ)|q∫10|1−2t|(et−1)dt+|Λ′(ϖ)|q∫10|1−2t|(e1−t−1)dt]1q. | (4.12) |
|Λ(ψ)+Λ(ϖ)2−B(ε)ε(ϖ−ψ)[(CFψIεΛ)(t)+(CFIεϖΛ)(t)]+2(1−ε)ε(ϖ−ψ)Λ(t)|≤ϖ−ψ2(12)1−1q[(8√e−2e−72)(|Λ′(ψ)|q+|Λ′(ϖ)|q)]1q. | (4.13) |
Hence, this is complete proof.
Remark 6. If we put et−1=h(t) and e1−t−1=1−h(t) then we get a result of [36].
Theorem 4.4. Suppose that Λ:j=[ψ,ϖ]⊆R→R be a differentiable positive function. |Λ′|q is an exponential convex function on interval j with ψ<ϖ, where p>1,p−1+q−1=1 and Λ∈L1[ψ,ϖ]. If ε∈[0,1] then we have:
|Λ(ψ)+Λ(ϖ)2−B(ε)ε(ϖ−ψ)[(CFψIεΛ)(t)+(CFIεϖΛ)(t)]+2(1−ε)ε(ϖ−ψ)Λ(t)|≤(ϖ−ψ)2(12(p+1))1p×[(e|Λ′(ψ)|q+12(|Λ′(ϖ)|q−|Λ′(ψ)|q))1q+(e|Λ′(ϖ)|q+12(|Λ′(ψ)|q−|Λ′(ϖ)|q))1q], | (4.14) |
where B(ε)>0 is normalization function and t∈[ψ,ϖ].
Proof. Now, we will use similar arguments as in previous theorem, by using the Lemma 2,
|Λ(ψ)+Λ(ϖ)2−B(ε)ε(ϖ−ψ)[(CFψIεΛ)(t)+(CFIεϖΛ)(t)]+2(1−ε)ε(ϖ−ψ)Λ(t)|=ϖ−ψ2∫10|1−2t||Λ′(tψ+(1−t)ϖ)|dt. | (4.15) |
Applying the Hölder-Iscan inequality:
|Λ(ψ)+Λ(ϖ)2−B(ε)ε(ϖ−ψ)[(CFψIεΛ)(t)+(CFIεϖΛ)(t)]+2(1−ε)ε(ϖ−ψ)Λ(t)|≤ϖ−ψ2(∫10(1−t)|1−2t|pdt)1p(∫10(1−t)|Λ′(tψ+(1−t)ϖ)|qdt)1q+ϖ−ψ2(∫10t|1−2t|pdt)1p(∫10t|Λ′(tψ+(1−t)ϖ)|qdt)1q. | (4.16) |
Applying the exp-convexity:
|Λ(ψ)+Λ(ϖ)2−B(ε)ε(ϖ−ψ)[(CFψIεΛ)(t)+(CFIεϖΛ)(t)]+2(1−ε)ε(ϖ−ψ)Λ(t)|≤ϖ−ψ2(12(p+1))1p(|Λ′(ψ)|q∫10(1−t)(et−1)dt+|Λ′(ϖ)|q∫10(1−t)(e1−t−1)dt)1q+ϖ−ψ2(12(p+1))1p(|Λ′(ψ)|q∫10t(et−1)dt+|Λ′(ϖ)|q∫10t(e1−t−1)dt)1q. | (4.17) |
|Λ(ψ)+Λ(ϖ)2−B(ε)ε(ϖ−ψ)[(CFψIεΛ)(t)+(CFIεϖΛ)(t)]+2(1−ε)ε(ϖ−ψ)Λ(t)|≤(ϖ−ψ)2(12(p+1))1p[(e|Λ′(ψ)|q+12(|Λ′(ϖ)|q−|Λ′(ψ)|q))1q+(e|Λ′(ϖ)|q+12(|Λ′(ψ)|q−|Λ′(ϖ)|q))1q]. | (4.18) |
Hence, this is complete proof.
Remark 7. If we put et−1=h(t) and e1−t−1=1−h(t) then we get a result of [36].
This part is presenting the applications to the secured results.
(1) The arithmetic mean is:
A=A(ψ,ϖ)=ψ+ϖ2,ψ,ϖ≥0. |
(2) The geometric mean is:
G=G(ψ,ϖ)=√ψϖ,ψ,ϖ≥0. |
(3) The harmonic mean is:
H=H(ψ,ϖ)=2ψϖψ+ϖ,ψ,ϖ>0. |
(4) The logarithmic mean is:
L=L(ψ,ϖ)={ϖ−ψlnϖ−lnψ,ψ≠ϖ,ϖ,ψ=ϖ. |
(5) The p-logarithmic mean is:
Lp=Lp(ψ,ϖ)={(ϖp+1−ψp+1(p+1)(ϖ−ψ))1p,ψ≠ϖ,p∈R [−1,0],ψ,ψ=ϖ,ψ,ϖ>0. |
(6) The Identric mean is:
I=I(ψ,ϖ)=1e(ϖϖψψ)1ϖ−ψ,ψ,ϖ>0. |
It is obvious that Lp is monotonically increasing over p∈R, L0=I,L−1=L.
Proposition 1. Let ψ,ϖ∈R+ with ψ<ϖ and n∈(−∞,0)∪[1,∞)−[−1]. Then, the following inequality holds:
An(ψ,ϖ)2(√e−1)≤Lnn(ψ,ϖ)≤2(e−2)A(ψn,ϖn). | (5.1) |
Proof. We can easily prove the above defined inequality by putting the Λ(x)=xn,x∈(0,∞),ε=1,B(ε)=1, in (3.1).
Proposition 2. Let ψ,ϖ∈R+ with ψ<ϖ and n∈(−∞,0)∪[1,∞)−[−1]. Then, the following inequality holds:
A−1(ψ,ϖ)2(√e−1)≤L−1(ψ,ϖ)≤2(e−2)H−1(ψ,ϖ). | (5.2) |
Proof. We can easily prove the above defined inequality by putting the Λ(x)=x−1,x∈(0,∞),ε=1,B(ε)=1, in (3.1).
Proposition 3. Let ψ,ϖ∈R+ with ψ<ϖ and n∈(−∞,0)∪[1,∞)−[−1]. Then, the following inequality holds:
2(e−2)lnG(ψ,ϖ)≤lnI(ψ,ϖ)≤lnA(ψ,ϖ)2(√e)−1. | (5.3) |
Proof. We can easily prove the above defined inequality by putting the Λ(x)=−lnx,x∈(0,1],ε=1,B(ε)=1, in (3.1).
The Caputo-Fabrizio integral operator is utilized to establish some new Hermite-Hadmard type inequalities with the setting of exponential convexity. Some fascinating consequences are acquired involving Caputo-Fabrizio fractional integral operator for the exponential convex function. The acquired results are novel and hope that this research work will be useful and helpful for scholars to develop new ideas in different scientific disciplines.
The authors acknowledge with thanks the support of the Deanship of Scientific Research (DSR), King Abdulaziz University, Jeddah, Saudi Arabia.
The authors declare that they have no competing interests.
[1] | M. Caputo, Modeling social and economic cycles, Altern. Public Econ., 2014. |
[2] |
G. Iaffaldano, M. Caputo, S. Martino, Experimental and theoretical memory diffusion of water in the sand, Hydrol. Earth Syst. Sc., 10 (2006), 93–100. https://doi.org/10.5194/hess-10-93-2006 doi: 10.5194/hess-10-93-2006
![]() |
[3] | R. L. Magin, Fractional calculus in bioengineering, Begell House Publishers, 2006. |
[4] | F. Cesarone, M. Caputo, C. Cametti, Memory formalism in the passive diffusion across a biological membrane, J. Membr. Sci., 250 (2004), 79–84. |
[5] | M. El-Shaed, Fractional calculus model of the semilunar heart valve vibrations, Proceedings of DETC'03 ASME 2003 Design Engineering Technical Conferences and Computers and Information in Engineering Conference, Chicago, Illinois, USA, 2003. https://doi.org/10.1115/DETC2003/VIB-48384 |
[6] |
G. Jumarie, New stochastic fractional models for Malthusian growth, the Poissonian birth process and optimal management of populations, Math. Comput. Model., 44 (2006), 231–254. https://doi.org/10.1016/j.mcm.2005.10.003 doi: 10.1016/j.mcm.2005.10.003
![]() |
[7] | Z. Temur, Kalanov vector calculus and Maxwells equations: Logic errors in mathematics and electrodynamics, Open J. Math. Sci., 4 (2020), 343–355. |
[8] |
E. K. Ghiasi, S. Noeiaghdam, Truncating the series expansion for unsteady velocity-dependent Eyring-Powell fluid, Eng. Appl. Sci. Lett., 3 (2020), 28–34. https://doi.org/10.30538/psrp-easl2020.0049 doi: 10.30538/psrp-easl2020.0049
![]() |
[9] |
S. M. Kang, G. Farid, W. Nazeer, B. Tariq, Hadamard and Fejé-Hadamard inequalities for extended generalized fractional integrals involving special functions, J. Inequal. Appl., 2018 (2018), 119. https://doi.org/10.1186/s13660-018-1701-3 doi: 10.1186/s13660-018-1701-3
![]() |
[10] |
Y. C. Kwun, G. Farid, S. Ullah, W. Nazeer, K. Mahreen, S. M. Kang, Inequalities for a unified integral operator and associated results in fractional calculus, IEEE Access, 7 (2019), 126283–126292. https://doi.org/10.1109/ACCESS.2019.2939166 doi: 10.1109/ACCESS.2019.2939166
![]() |
[11] |
Y. C. Kwun, M. S. Saleem, M. Ghafoor, W. Nazeer, S. M. Kang, Hermite-Hadamard-type inequalities for functions whose derivatives are convex via fractional integrals, J. Inequal. Appl., 2019 (2019), 44. https://doi.org/10.1186/s13660-019-1993-y doi: 10.1186/s13660-019-1993-y
![]() |
[12] |
N. Saba, A. Boussayoud, Complete homogeneous symmetric functions of Gauss Fibonacci polynomials and bivariate Pell polynomials, Open J. Math. Sci., 4 (2020), 179–185. https://doi.org/10.30538/oms2020.0108 doi: 10.30538/oms2020.0108
![]() |
[13] |
K. M. Lélén, T. Alowou-Egnim, G. N'gniamessan, T. Kokou, Second mixed problem for an Euler-Poisson- Darboux equation with Dirac potential, Open J. Math. Sci., 4 (2020), 174–178. https://doi.org/10.30538/oms2020.0107 doi: 10.30538/oms2020.0107
![]() |
[14] |
M. G. Sobamowo, Transient free convection heat and mass transfer of Casson nanofluid over a vertical porous plate subjected to magnetic field and thermal radiation, Eng. Appl. Sci. Lett., 3 (2020), 35–54. https://doi.org/10.30538/psrp-easl2020.0050 doi: 10.30538/psrp-easl2020.0050
![]() |
[15] |
R. Hassan, M. El-Agamy, M. S. A. Latif, H. Nour, On Backlund transformation of Riccati equation method and its application to nonlinear partial differential equations and differential-difference equations, Open J. Math. Sci., 4 (2020), 56–62. https://doi.org/10.30538/oms2020.0094 doi: 10.30538/oms2020.0094
![]() |
[16] |
S. A. Salawu, M. G. Sobamowo, O. M. Sadiq, Dynamic analysis of non-homogenous varying thickness rectangular plates resting on Pasternak and Winkler foundations, Eng. Appl. Sci. Lett., 3 (2020), 1–20. https://doi.org/10.30538/psrp-easl2020.0031 doi: 10.30538/psrp-easl2020.0031
![]() |
[17] |
H. Zhang, J. S. Cheng, H. M. Zhang, W. W. Zhang, J. D. Cao, Quasi-uniform synchronization of Caputo type fractional neural networks with leakage and discrete delays, Chaos Solitons Fractals, 152 (2021), 111432. https://doi.org/10.1016/j.chaos.2021.111432 doi: 10.1016/j.chaos.2021.111432
![]() |
[18] |
C. Wang, H. Zhang, H. M. Zhang, W. W. Zhang, Globally projective synchronization for Caputo fractional quaternion-valued neural networks with discrete and distributed delays, AIMS Math., 6 (2020), 14000–14012. http://dx.doi.org/10.3934/math.2021809 doi: 10.3934/math.2021809
![]() |
[19] |
H. Zhang, R. Y. Ye, J. D. Cao, A. Alsaedi, Delay-independent stability of Riemann-Liouville fractional neutral-type delayed neural networks, Neural Process. Lett., 47 (2018), 427–442. https://doi.org/10.1007/s11063-017-9658-7 doi: 10.1007/s11063-017-9658-7
![]() |
[20] |
W. Sun, Some local fractional integral inequalities for generalized preinvex functions and applications to numerical quadrature, Fractals, 27 (2019), 1950071. https://doi.org/10.1142/S0218348X19500713 doi: 10.1142/S0218348X19500713
![]() |
[21] |
W. Sun, On generalization of some inequalities for generalized harmonically convex functions via local fractional integrals, Quaest. Math., 42 (2019), 1159–1183. https://doi.org/10.2989/16073606.2018.1509242 doi: 10.2989/16073606.2018.1509242
![]() |
[22] |
W. Sun, Q. Liu, Hadamard type local fractional integral inequalities for generalized harmonically convex functions and applications, Math. Methods Appl. Sci., 43 (2020), 5776–5787. https://doi.org/10.1002/mma.6319 doi: 10.1002/mma.6319
![]() |
[23] |
D. Barrera, A. Guessab, M. J. Ibáñez, O. Nouisser, Increasing the approximation order of spline quasi-interpolants, J. Comput. Appl. Math., 252 (2013), 27–39. https://doi.org/10.1016/j.cam.2013.01.015 doi: 10.1016/j.cam.2013.01.015
![]() |
[24] |
A. Guessab, Approximations of differentiable convex functions on arbitrary convex polytopes, J. Comput. Appl. Math., 240 (2014), 326–338. https://doi.org/10.1016/j.amc.2014.04.075 doi: 10.1016/j.amc.2014.04.075
![]() |
[25] | A. Guessab, Generalized barycentric coordinates and Jensen type inequalities on convex polytopes, J. Nonlinear Convex Anal. Yokohama, 17 (2016), 1–20. |
[26] |
A. Guessab, Generalized barycentric coordinates and approximations of convex functions on arbitrary convex polytopes, Comput. Math. Appl., 66 (2013), 1120–1136. https://doi.org/10.1016/j.camwa.2013.07.014 doi: 10.1016/j.camwa.2013.07.014
![]() |
[27] |
A. Guessab, G. Schmeisser, Two Krovkin type theorems in multivariate approximation, Banach J. Math. Anal., 2 (2008), 121–128. https://doi.org/10.15352/bjma/1240336298 doi: 10.15352/bjma/1240336298
![]() |
[28] |
R. Kumar, V. Gupta, I. A. Abbas, Plane deformation due to thermal source in fractional order thermoelastic media, J. Comput. Theor. Nanos., 10 (2013), 2520–2525. https://doi.org/10.1166/jctn.2013.3241 doi: 10.1166/jctn.2013.3241
![]() |
[29] |
A. Hobiny, I. A. Abbas, Fractional order thermoelastic wave assessment in a two-dimension medium with voids, Geomech. Eng., 21 (2020), 85–93. https://doi.org/10.12989/gae.2020.21.1.085 doi: 10.12989/gae.2020.21.1.085
![]() |
[30] |
S. Horrigue, I. A. Abbas, Fractional-order thermoelastic wave assessment in a two-dimensional fiber-reinforced anisotropic material, Mathematics, 8 (2020), 1609. https://doi.org/10.3390/math8091609 doi: 10.3390/math8091609
![]() |
[31] |
A. Hobiny, I. A. Abbas, Analytical solutions of fractional bio-heat model in a spherical tissue, Mech. Based Des. Struc. Mach., 49 (2021), 430–439. https://doi.org/10.1080/15397734.2019.1702055 doi: 10.1080/15397734.2019.1702055
![]() |
[32] |
T. Saeed, I. A. Abbas, The effect of fractional time derivative on two-dimension porous materials due to pulse heat flux, Mathematics, 9 (2021), 207. https://doi.org/10.3390/math9030207 doi: 10.3390/math9030207
![]() |
[33] |
G. Farid, W. Nazeer, M. S. Saleem, S. Mehmood, S. Kang, Bounds of Riemann-Liouville fractional integrals in general form via convex functions and their applications, Mathematics, 6 (2018), 248. https://doi.org/10.3390/math6110248 doi: 10.3390/math6110248
![]() |
[34] |
Y. C. Kwun, G. Farid, W. Nazeer, S. Ullah, S. M. Kang, Generalized Riemann-liouville k-fractional integrals associated with ostrowski type inequalities and error bounds of hadamard inequalities, IEEE Access, 6 (2018), 64946–64953. https://doi.org/10.1109/ACCESS.2018.2878266 doi: 10.1109/ACCESS.2018.2878266
![]() |
[35] |
X. Yang, G. Farid, W. Nazeer, M. Yussouf, Y. M. Chu, C. Dong, Fractional generalized Hadamard and Fejér-Hadamard inequalities for m-convex functions, AIMS Math., 5 (2020), 6325–6340. https://doi.org/10.3934/math.2020407 doi: 10.3934/math.2020407
![]() |
[36] |
X. Wang, M. S. Saleem, K. N. Aslam, X. Wu, T. Zhou, On Caputo-Fabrizio fractional integral inequalities of Hermite-Hadamard type for modifiedh-convex functions, J. Math., 2020 (2020), 8829140. https://doi.org/10.1155/2020/8829140 doi: 10.1155/2020/8829140
![]() |
[37] |
T. Abdeljawad, M. A. Ali, P. O. Mohammed, A. Kashuri, On inequalities of Hermite-Hadamard-Mercer type involving Riemann-Liouville fractional integrals, AIMS Math., 6 (2021), 712–725. https://doi.org/10.3934/math.2021043 doi: 10.3934/math.2021043
![]() |
[38] |
T. Abdeljawad, Fractional operators with exponential kernelsand a Lyapunov type inequality, Adv. Differ. Equ., 2017 (2017), 313. https://doi.org/10.1186/s13662-017-1285-0 doi: 10.1186/s13662-017-1285-0
![]() |
[39] |
M. Kadakal, İ. İşcan, Exponential type convexity and some related inequalities, J. Inequal. Appl., 2020 (2020), 82. https://doi.org/10.1186/s13660-020-02349-1 doi: 10.1186/s13660-020-02349-1
![]() |
[40] | S. S. Dragomir, R. P. Agarwal, Two inequalities for differentiable mappings and applications to special means of real numbers and to trapezoidal formula, Appl. Math. Lett., 11 1998, 91–95. https://doi.org/10.1016/S0893-9659(98)00086-X |
[41] |
M. Gürbüz, A. O. Akdemir, S. Rashid, E. Set, Hermite-Hadamard inequality for fractional integrals of Caputo-Fabrizio type and related inequalities, J. Inequal. Appl., 2020 (2020), 172. https://doi.org/10.1186/s13660-020-02438-1 doi: 10.1186/s13660-020-02438-1
![]() |
[42] |
İ. İşcan, New refinements for integral and sum forms of Holder inequality, J. Inequal. Appl., 2019 (2019), 304. https://doi.org/10.1186/s13660-019-2258-5 doi: 10.1186/s13660-019-2258-5
![]() |
[43] |
M. Kadakal, İ. İşcan, H. Kadakal, K. Bekar, On improvements of some integral inequalities, Honam Math. Soc., 43 (2021), 441–452. https://doi.org/10.5831/HMJ.2021.43.3.441 doi: 10.5831/HMJ.2021.43.3.441
![]() |
1. | Muhammad Farhan, Umar Ishtiaq, Muhammad Saeed, Aftab Hussain, Hamed Al Sulami, Reich-Type and (α, F)-Contractions in Partially Ordered Double-Controlled Metric-Type Spaces with Applications to Non-Linear Fractional Differential Equations and Monotonic Iterative Method, 2022, 11, 2075-1680, 573, 10.3390/axioms11100573 | |
2. | Wenbing Sun, Haiyang Wan, New local fractional Hermite-Hadamard-type and Ostrowski-type inequalities with generalized Mittag-Leffler kernel for generalized h-preinvex functions, 2024, 57, 2391-4661, 10.1515/dema-2023-0128 |