Processing math: 61%
Research article

Some novel refinements of Hermite-Hadamard and Pachpatte type integral inequalities involving a generalized preinvex function pertaining to Caputo-Fabrizio fractional integral operator

  • Received: 10 July 2023 Revised: 20 August 2023 Accepted: 27 August 2023 Published: 05 September 2023
  • MSC : 26A33, 26A51, 26D07, 26D10, 26D15

  • In this article, we aim to introduce and explore a new class of preinvex functions called n-polynomial m-preinvex functions, while also presenting algebraic properties to enhance their numerical significance. We investigate novel variations of Pachpatte and Hermite-Hadamard integral inequalities pertaining to the concept of preinvex functions within the framework of the Caputo-Fabrizio fractional integral operator. By utilizing this direction, we establish a novel fractional integral identity that relates to preinvex functions for differentiable mappings of first-order. Furthermore, we derive some novel refinements for Hermite-Hadamard type inequalities for functions whose first-order derivatives are polynomial preinvex in the Caputo-Fabrizio fractional sense. To demonstrate the practical utility of our findings, we present several inequalities using specific real number means. Overall, our investigation sheds light on convex analysis within the context of fractional calculus.

    Citation: Muhammad Tariq, Asif Ali Shaikh, Sotiris K. Ntouyas, Jessada Tariboon. Some novel refinements of Hermite-Hadamard and Pachpatte type integral inequalities involving a generalized preinvex function pertaining to Caputo-Fabrizio fractional integral operator[J]. AIMS Mathematics, 2023, 8(11): 25572-25610. doi: 10.3934/math.20231306

    Related Papers:

    [1] Muhammad Tariq, Hijaz Ahmad, Abdul Ghafoor Shaikh, Soubhagya Kumar Sahoo, Khaled Mohamed Khedher, Tuan Nguyen Gia . New fractional integral inequalities for preinvex functions involving Caputo-Fabrizio operator. AIMS Mathematics, 2022, 7(3): 3440-3455. doi: 10.3934/math.2022191
    [2] Muhammad Imran Asjad, Waqas Ali Faridi, Mohammed M. Al-Shomrani, Abdullahi Yusuf . The generalization of Hermite-Hadamard type Inequality with exp-convexity involving non-singular fractional operator. AIMS Mathematics, 2022, 7(4): 7040-7055. doi: 10.3934/math.2022392
    [3] Lanxin Chen, Junxian Zhang, Muhammad Shoaib Saleem, Imran Ahmed, Shumaila Waheed, Lishuang Pan . Fractional integral inequalities for h-convex functions via Caputo-Fabrizio operator. AIMS Mathematics, 2021, 6(6): 6377-6389. doi: 10.3934/math.2021374
    [4] Eze R. Nwaeze, Muhammad Adil Khan, Ali Ahmadian, Mohammad Nazir Ahmad, Ahmad Kamil Mahmood . Fractional inequalities of the Hermite–Hadamard type for m-polynomial convex and harmonically convex functions. AIMS Mathematics, 2021, 6(2): 1889-1904. doi: 10.3934/math.2021115
    [5] Hong Yang, Shahid Qaisar, Arslan Munir, Muhammad Naeem . New inequalities via Caputo-Fabrizio integral operator with applications. AIMS Mathematics, 2023, 8(8): 19391-19412. doi: 10.3934/math.2023989
    [6] Serap Özcan . Some integral inequalities of Hermite-Hadamard type for multiplicatively preinvex functions. AIMS Mathematics, 2020, 5(2): 1505-1518. doi: 10.3934/math.2020103
    [7] Hari Mohan Srivastava, Soubhagya Kumar Sahoo, Pshtiwan Othman Mohammed, Bibhakar Kodamasingh, Kamsing Nonlaopon, Khadijah M. Abualnaja . Interval valued Hadamard-Fejér and Pachpatte Type inequalities pertaining to a new fractional integral operator with exponential kernel. AIMS Mathematics, 2022, 7(8): 15041-15063. doi: 10.3934/math.2022824
    [8] Iqra Nayab, Shahid Mubeen, Rana Safdar Ali, Faisal Zahoor, Muath Awadalla, Abd Elmotaleb A. M. A. Elamin . Novel fractional inequalities measured by Prabhakar fuzzy fractional operators pertaining to fuzzy convexities and preinvexities. AIMS Mathematics, 2024, 9(7): 17696-17715. doi: 10.3934/math.2024860
    [9] Shahid Mubeen, Rana Safdar Ali, Iqra Nayab, Gauhar Rahman, Kottakkaran Sooppy Nisar, Dumitru Baleanu . Some generalized fractional integral inequalities with nonsingular function as a kernel. AIMS Mathematics, 2021, 6(4): 3352-3377. doi: 10.3934/math.2021201
    [10] Humaira Kalsoom, Muhammad Amer Latif, Muhammad Idrees, Muhammad Arif, Zabidin Salleh . Quantum Hermite-Hadamard type inequalities for generalized strongly preinvex functions. AIMS Mathematics, 2021, 6(12): 13291-13310. doi: 10.3934/math.2021769
  • In this article, we aim to introduce and explore a new class of preinvex functions called n-polynomial m-preinvex functions, while also presenting algebraic properties to enhance their numerical significance. We investigate novel variations of Pachpatte and Hermite-Hadamard integral inequalities pertaining to the concept of preinvex functions within the framework of the Caputo-Fabrizio fractional integral operator. By utilizing this direction, we establish a novel fractional integral identity that relates to preinvex functions for differentiable mappings of first-order. Furthermore, we derive some novel refinements for Hermite-Hadamard type inequalities for functions whose first-order derivatives are polynomial preinvex in the Caputo-Fabrizio fractional sense. To demonstrate the practical utility of our findings, we present several inequalities using specific real number means. Overall, our investigation sheds light on convex analysis within the context of fractional calculus.



    C-FFIO Caputo-Fibrizio fractional integral operator
    H—H Hermite-Hadamard
    R—L Riemann-Liouville
    w.r.t. with respect to
    GmPF Generalized m preinvex function means n-polynomial m-preinvex function

    The term convex functions have been propagated intensively in the renowned book, namely "Inequalities", which was written by John Edenser Littlewood, G. H. Hardy, and George Polya[1]. Over the last century, convexity and related premises have developed into an exciting domain of applied sciences. Numerous scholars have assisted and provided their skills and insights into this topic by providing updated versions of specific inequalities involving convex functions. It is obvious that the outstanding point of view on the notion of convexity always provides new ideas and important relevant uses in any discipline of applied sciences. Numerous paragons of mathematics continually make an effort to utilize and enjoy the new concepts for the beautification and improvement of convexity theory. The widespread use of the concept of convexity in applications, uses convex optimization is the primary one. The term inequality and the idea of generalized convexity are frequently employed in optimization [2]. The term convexity with the help of the concept of optimization has a magnificent impact on many field of applied sciences, including finance [3], estimation and signal processing [4], control systems [5], data analysis and computer science [6] and mathematical optimization for modeling [7,8]. In economics [9], this concept performs a fundamental influence in duality theory and equilibrium. There are some renowned books devoted to variant directions of the theory of convex and optimization. Among them, "Convex analysis'' by Rockafellar [10], "Convex optimization'' by Vandenberghe and Boyd [11], "Introductory lectures on convex optimization'' by Nesterov [12], "Convex analysis and minimization algorithms'' by Lemarechal and Hiriart-Urruty [13] and "Convex analysis and nonlinear optimization'' by Borwein and Lewis [14] are some books that kept the interest of researchers. This theory provides an excellent work plan for starting and creating numerical techniques for solving and researching challenging mathematical issues.

    The study of integral inequalities along with convex analysis offers a fascinating and stimulating area of study in the realm of mathematical perception. Because of their widespread perspectives and applications, the tactics and literature of convexity and inequalities have recently become the topic of substantial research in both contemporary and historical times. The Hermite-Hadamard-type inequalities are the most frequently employed among all the inequalities. These convex function-based inequalities are crucial and basic in practical math. Thus, convexity and inequalities have been recommended as an engrossing area for researchers due to their vital role and fruitful importance in numerous branches of science. Integral inequalities have remarkable uses in probability, optimization theory, information technology, stochastic processes, statistics, integral operator theory, and numerical integration. For the applications, see the references [15,16,17,18,19,20,21,22].

    Fractional calculus, focusing on fractional integration over complex domains, has recently gained attention due to its practical applications and has attracted mathematicians' interest. Sarikaya et al. [23] introduced a fractional Hermite-Hadamard inequality. Fractional operators play a crucial role in the development of fractional calculus, and the study of fractional integral inequality has been motivated by the exploration of well-known inequalities like Ostrowski, Simpson, and Hadamard. Fractional calculus finds application in various fields, such as transform theory, engineering, modeling, finance, mathematical biology, fluid flow, natural phenomena prediction, healthcare, and image processing. The references [24,25,26,27] provide further insights into this topic.

    In [28] a comprehensive and up-to-date review on Hermite-Hadamard-type inequalities for different kinds of convexities and different kinds of fractional integral operators is presented. In this manuscript, we aim to examine the fractional Hermite-Hadamard and fractional Pachpatte-type inequalities related to polynomial preinvexity pertaining to Caputo-Fabrizio fractional integral operator. The Caputo-Fabrizio fractional operator introduced by Caputo and Fabrizio in [29], features a nonsingular kernel in its fractional derivatives and does not rely on the Gamma function. Notably, this operator allows any real power to be transformed into an integer order using Laplace transformation, enabling solutions to various related problems. This operator has found applications in modeling COVID-19 [30,31], Hepatitis B epidemic model [32], financial [33], ground water flow [34], and more.

    In light of the preceding topic and as motivated by the significant research initiatives, the conceptualization of this work is organized in the following ways. First of all, in Section 2, we add some recognized definitions, theorems and remarks because all these are required in upcoming subsequent sections. In Section 3, we introduce the new definition namely n-polynomial m-preinvex function. Further, we add in this section its algebraic properties. In Section 4, we prove the Hermite-Hadamard inequalities via newly introduced concept via Caputo-Fabrizio fractional operator. In Section 5, we examine a new lemma and utilizing this newly introduced lemma with the help of Hölder and power mean inequality, we show some new variants of Hermite-Hadamard type inequality via newly introduced definition utilizing Caputo-Fabrizio fractional operator. In Section 6, employing the above equality with the help of improved version Hölder and power mean inequality, we attain some new variants of Hermite-Hadamard type inequality via newly introduced definition utilizing Caputo-Fabrizio fractional operator. In Section 7, we examine a new sort of Pachpatte type inequality via Caputo-Fabrizio fractional operator via newly introduced definition. Next, in Section 8, we offer some applications in the manner of constructed results. Finally, in Section 9, we give a conclusion.

    In this section, it would be appropriate to examine and concentrate on a few theorems, remarks and definitions, for the benefit of the readers' attention, clarity, relevance, and quality. This section's main objective is to research and discuss specific related ideas and concepts that are pertinent to our analysis in later sections of this paper. In the context of classical calculus, the subject convexity and the generalized form of the H-H inequality are initially studied and investigated. Additionally, we reviewed the m-preinvex function, Sobolev space, extended condition C and C-FFIO. We finish this part by reviewing the importance of the GmPF for our research.

    Jensen first time introduced the term convexity in the following manner:

    Definition 2.1. [35,36] A function D:[d1,d2]R is called convex, if

    D(sx+(1s)y)sD(x)+(1s)D(y),

    holds true for every x,y[d1,d2] and s[0,1].

    Theorem 2.1. (see [37]) Let D:IRR be a convex function with d1<d2 and d1,d2I. Then the following inequality holds true:

    D(d1+d22)1d2d1d2d1D(x)dxD(d1)+D(d2)2. (2.1)

    For some recent estimations, see [38,39,40].

    Definition 2.2. ([41]) Let IRn. Then I is m-invex w.r.t N:I×I×(0,1]R, if

    md1+sN(d2,d1,m)I,

    holds for every d1,d2I, m(0,1] and s[0,1].

    Example 2.1. ([41]) Suppose m=14, I=[π2,0)(0,12] and

    N(d2,d1,m)={mcos(d2d1)ifd1(0,π2],d2(0,π2];mcos(d2d1)ifd1[π2,0),d2[π2,0);mcos(d1)ifd1(0,π2],d2[π2,0);mcos(d1)ifd1[π2,0),d2(0,π2].

    The above example is valid only for m-invex set not for convex set.

    Recently, Deng [42] introduced generalized m-preinvex function, which is defined as:

    Definition 2.3. Let D:IR. Then D is generalized m-preinvex w.r.t. N:I×I ×(0,1]R for m(0,1], if

    D(md1+sN(d2,d1,m))m(1s)D(d1)+sD(d2), (2.2)

    holds for every d1,d2I, s[0,1].

    The following generalized Condition C first time introduced by Ting Song Du [43] in the aspect of m-preinvex.

    Extended Condition-C: Suppose ARn is an open m-invex subset w.r.t. N:A×A ×(0,1]R, for any d1,d2A, s[0,1]. We then have

    N(d1,md1+sN(d2,d1,m),m)=  sN(d2,d1,m),N(d2,md1+s N(d2,d1,m),m)=  (1s)N(d2,d1,m),N(d2,d1,m)=N(d1,d2,m).

    We provide a few essential definitions from fractional calculus theory that will be utilised in the results that follow.

    Definition 2.4. ([44]) Suppose p[1,) and (d1,d2)R, then the Sobolev space Hp(d1,d2) is defined by

    Hp(d1,d2)={DL2(d1,d2):ΔuDL2(d1,d2),|u|p}.

    Definition 2.5. ([45]) Let DH1(d1,d2), ω[0,1] and d1<d2. The C-FFIO in the left sense is defined as

    (CFd1IωD)(s)=(1ω)B(ω)D(s)+ωB(ω)sd1D(x)dx.

    Similarly, the right C-FFIO is stated as

    (CFIωd2D)(s)=(1ω)B(ω)D(s)+ωB(ω)d2sD(x)dx,

    where B(ω)>0 is a normalization function satisfying B(0)=B(1)=1.

    Recent extensions and estimations of fractional inequalities can exist in the literature (see for example [46,47,48,49,50]).

    In this manuscript, we extend the equality utilizing C-FFIO, which is introduced by Dragomir [51].

    Theorem 2.2. ([45]) Let D:IR be a convex function on I. If d1,d2Iwithd1<d2 and DL[d1,d2], then

    D(d1+d22)B(ω)ω(d2d1)[(CFIωd1D)(k)+(CFIωd2D)(k)2(1ω)B(ω)D(k)]D(d1)+D(d2)2, (2.3)

    where ω[0,1] and k[d1,d2].

    Definition 2.6. ([52]) Let D be a non-negative and real-valued function, Then D is n-polynomial preinvex, if

    D(d1+sN(d2,d1))1nnu=1[1su]D(d1)+1nnu=1[1(1s)u]D(d2), (2.4)

    for all d1,d2I, nN and s[0,1].

    Convexity has emerged as a captivating and practical field of study in both applied and pure sciences. The investigation of convex functions has led to innovative methods and calculations, providing a meaningful structure for addressing complex mathematical problems. The relationship between convexity and inequalities has garnered significant interest, leading to the exploration of various versions of classical inequalities.

    Here, we are going to address the GmPF, an intriguing idea for preinvex functions, and look at some of its algebraic features and examples.

    Definition 3.1. Let a non empty subset A of R be m-invex set w.r.t N:A×A×(0,1]R. Then, D:AR is GmPF if

    D(md1+sN(d2,d1,m))mnnu=1(1su)D(d1)+1nnu=1(1(1s)u)D(d2), (3.1)

    holds for every d1,d2A, m(0,1], s[0,1] and nN.

    Remark 3.1. (i) Choosing n=1, then

    D(md1+sN(d2,d1,m))m(1s)D(d1)+(1(1s))D(d2). (3.2)

    (ii) Choosing n=m=1, then Definition 3.1 is collapses to the concept of preinvex which was introduced by Weir [53].

    (iii) Choosing n=m=1 and N(d1,d2,m)=d1md2, then Definition 3.1 collapses to the concept of convex function which was discussed by Niculescu [54].

    Lemma 3.1. For all s[0,1], m(0,1] and nN, the following inequalities

    s1nnu=1(1(1s)u)andm(1s)mnnu=1(1su)

    are hold.

    Proof. The proof is obvious.

    Proposition 3.1. Every non-negative m-preinvex function is GmPF.

    Proof. Employing to the definition of m-preinvexity and Lemma 3.1, we have

    D(md1+sN(d2,d1,m))m(1s)D(d1)+sD(d2)mnnu=1(1su)D(d1)+1nnu=1(1(1s)u)D(d2).

    Proposition 3.2. Every GmPF is an (h,m)-preinvex function with h(s)=1nnu=1 (1(1s)u).

    Proof. Utilizing the property of GmPF and given condition, we have

    D(md1+sN(d2,d1,m))mnnu=1(1su)D(d1)+1nnu=1(1(1s)u)D(d2)mh(1s)D(d1)+h(s)D(d2).

    From the preceding proposition, it seems obvious that the newly developed preinvexity is very large in comparison to already published functions, such as convex and preinvex. This is the most appealing feature of the intended new Definition 3.1.

    Next, we show some examples in manner of the newly introduce idea.

    Example 3.1. D(d)=|d|d0 is a convex function, implies that the given function is a preinvex function (see [55]). Further, implies that, it is m-preinvex function if m=1. By utilizing Proposition 3.1, it is an GmPF.

    Example 3.2. D(d)=edd0 is a convex function, implies that the given function is preinvex function (see [55]). Further, implies that, it is m-preinvex function if m=1. By utilizing Proposition 3.1, it is an GmPF.

    Now we will investigate and expound on several examples of the newly introduced notion. We can see that D(x)=|x| is preinvex but not convex.

    Example 3.3. Suppose D:R+R+ is defined by\\ D(d)={d,0d1,1,d>1,

    and

    N(d2,d1,m)={d2md1d20,d10,d2md1,0d21,d11,2md1,d20,0d11,2md1,0d21,d10.

    The non-negative function D(d) is m-preinvex but not convex. Employing to Proposition 3.1, it is an GmPF w.r.t. N on X=R+×R+×(0,1) if m=1.

    Example 3.4. Let D:R+R+ be defined by

    D(d)={d+1,0d1,1,d>1,

    and

    N(d2,d1,m)={d2+md1,d2d1,2(d2+md1),d2>d1,

    d1,d2R+=[0,+). The above example is valid for m-preinvex but not convex. Employing to Proposition 3.1, it is an GmPF if m=1.

    Theorem 3.1. Let D1,D2:X=[d1,d2]R. If D1,D2 are two GmPF, then (D1+D2) is also an GmPF.

    Proof. Since given that D1 and D1 are two GmPF, then

    (D1+D2)(md1+sN(d2,d1,m))=D1(md1+sN(d2,d1,m))+D2(md1+sN(d2,d1,m))mnnu=1(1su)D1(d1)+1nnu=1(1(1s)u)D1(d2)+mnnu=1(1su)D2(d1)+1nnu=1(1(1s)u)D2(d2)=mnnu=1(1su)[D1(d1)+D2(d1)]+1nnu=1(1(1s)u)[D1(d2)+D2(d2)]= mnnu=1(1su)(D1+D2)(d1)+1nnu=1(1(1s)u)(D1+D2)(d2).

    This is the required proof.

    Theorem 3.2. Let D:X=[d1,d2]R. If D is GmPF, then (cD) is also an GmPF.

    Proof. Since given that D is GmPF and c is any constant number, then

    (cD)(md1+sN(d2,d1,m))c[mnnu=1(1su)D(d1)+1nnu=1(1(1s)u)D(d2)]=mnnu=1(1su)cD(d1)+1nnu=1(1(1s)u)cD(d2)= mnnu=1(1su)(cD)(d1)+1nnu=1(1(1s)u)(cD)(d2).

    This completes the proof.

    Theorem 3.3. Let D1:XY and D2:YR be GmPF and increasing functions respectively. Then, (D2D1) is also an GmPF w.r.t same N, where dot product represent the composition operation of D2 and D1.

    Proof.

    (D2D1)(md1+sN(d2,d1,m))=D2(D1(md1+sN(d2,d1,m)))D2[mnnu=1(1su)D1(d1)+1nnu=1(1(1s)u)D1(d2)]mnnu=1(1su)D2(D1(d1))+1nnu=1(1(1s)u)D2(D1(d2))= mnnu=1(1su)(D2D1)(d1)+1nnu=1(1(1s)u)(D2D1)(d2).

    Theorem 3.4. Let 0<d1<d2, Dj:X=[d1,d2][0,+) be a family of GmPF w.r.t. N and D(u)=supjDj(u). Then, D is an GmPF w.r.t. N for m(0,1], s[0,1], and U={d[d1, d2]:D(du)<} is an interval.

    Proof. Let d1,d2U, m(0,1] and s[0,1], then

    D(md1+sN(d2,d1,m))=supjDj(md1+sN(d2,d1,m))mnnu=1(1su)supjDj(d1)+1nnu=1(1(1s)u)supjDj(d2)= mnnu=1(1su)D(d1)+1nnu=1(1(1s)u)D(d2)<.

    Theorem 3.5. If Du:RnR is an GmPF w.r.t. N for m(0,1] and s[0,1], then M={dR:Du(d)0,u=1,2,3,,n} is an m-invex set.

    Proof. Given that Du(d), (u=1,2,3,,n) are GmPF w.r.t. N for m(0,1] and s[0,1], then for all d1,d2Rn,

    Du(md1+sN(d2,d1,m))mnnu=1(1su)D(d1)+1nnu=1(1(1s)u)D(d2)

    holds.

    When d1,d2M, we know Du(d1)0 and Du(d2)0, then above inequality implies that

    Du(md1+sN(d2,d1,m))0,u=1,2,3,,n.

    That is, md1+sN(d2,d1,m)M. M is an m-invex set.

    Theorem 3.6. If D:ARnR is an GmPF on m-invex set A w.r.t N for m(0,1] and s[0,1], then D is also generalized quasi m-preinvex function.

    Proof. Given that D is an GmPF w.r.t N for m(0,1] and s[0,1], and assuming that D(d1)D(d2), for all d1,d2X, we have

    D(md1+sN(d2,d1,m))mnnu=1(1su)D(d1)+1nnu=1(1(1s)u)D(d2)[mnnu=1(1su)+1nnu=1(1(1s)u)]D(d2)D(d2).

    In the same manner, if we let D(d2)D(d1) for all d1,d2X, we can also get

    D(md1+sN(d2,d1,m))D(d1).

    Consequently,

    D(md1+sN(d2,d1,m))max{D(d1),D(d2)}.

    That is, D:XRnR is generalized quasi m-preinvex function on m-invex set X with respect to N.

    Theorem 3.7. If Du:ARnR(u=1,2,,n) are GmPF on A w.r.t N:A×A×(0,1]R for m(0,1], then the function

    D=nu=1duDu,du0,(u=1,2,3,,n)

    is also an GmPF on A w.r.t N for m(0,1], where du is constant.

    Proof. The proof is obvious.

    Theorem 3.8. Let D:R0R0=[0,) be GmPF w.r.t N:R0×R0×(0,1]R0 for m(0,1] and s[0,1]. Assume that D is monotonic decreasing, N is monotonic increasing regarding m for fixed d1,d2R0 and m1m2(m1,m2(0,1]). If D is Gm1PF on R0 with respect to N, then D is Gm2PF on R0 with respect to N.

    Proof. Given that D is Gm1PF, for all d1,d2R0,

    D(m1d1+sN(d2,d1,m1))m1nnu=1(1su)D(d1)+1nnu=1(1(1s)u)D(d2).

    Combining the monotone decreasing of the function D with the monotone increasing of the mapping N regarding m for fixed d1,d2R0 and m1m2, it follows that

    D(m2d1+sN(d2,d1,m2))D(m1d1+sN(d2,d1,m1))D(m2d1+sN(d2,d1,m2))m1nnu=1(1su)D(d1)+1nnu=1(1(1s)u)D(d2)D(m2d1+sN(d2,d1,m2))m2nnu=1(1su)D(d1)+1nnu=1(1(1s)u)D(d2).

    This completes the proof.

    Theorem 3.9. Suppose D1,D2:X=[d1,d2]R. If both functions are GmPF and similarly ordered functions for m(0,1] and s[0,1], then the product of these functions is GmPF.

    Proof. For m(0,1] and s[0,1], then

    D1(md1+sN(d2,d1,m))D2(md1+sN(d2,d1,m))[mnnu=1(1su)D1(d1)+1nnu=1(1(1s)u)D1(d2)]×[mnnu=1(1su)D2(d1)+1nnu=1(1(1s)u)D2(d2)]m2n2nu=1(1su)2D1(d1)D2(d1)+1n2nu=1(1(1s)u)2D1(d2)D2(d2)+mn2nu=1(1(1s)u)(1su)[D1(d1)D2(d2)+D1(d2)D2(d1)]m2n2nu=1(1su)2D1(d1)D2(d1)+1n2nu=1(1(1s)u)2D1(d2)D2(d2)+mn2nu=1(1(1s)u)(1su)[D1(d1)D2(d1)+D1(d2)D2(d2)]=[mnnu=1(1su)D1(d1)D2(d1)+1nnu=1(1(1s)u)D1(d2)D2(d2)]×(1nnu=1(1(1s)u)+mnnu=1(1su))mnnu=1(1su)D1(d1)D2(d1)+1nnu=1(1(1s)u)D1(d2)D2(d2).

    Since the notion of convex function was first introduced more than a century ago, an enormous number of outstanding inequalities have been proven in the domian of the convex theory. The most widely recognized and frequently utilized inequality in the field of convex theory is the H-H inequality. Hermite and Hadamard were the ones who first suggested this inequality. Many mathematicians were motivated by the idea of this inequality to investigate and analyze the classical inequalities utilizing the many convexity senses. For instance, Xi [56], Mehreen [57], and Kirmaci [58] presented several kind of this inequality via convex functions. Hudzik [59], Dragomir [60] and Ozcan [61] addressed the notion of s-convex function and proved a novel variant of this inequality. Butt [62] and Rashid [63] proved this inequality in the polynomial version involving a new class of convexity.

    The principal goal of this section is to use the GmPF and the C-FFIO to derive and demonstrate the H-H inequality.

    Theorem 4.1. Let AR (A the interior of A) be an open m-invex subset w.r.t. N:A×A×(0,1]R for some fixed m(0,1]. Let d1,d2A, d1<d2 with md1md1+N(d2,d1,m). Suppose D:[md1,md1+N(d2,d1,m)]R is GmPF and satisfies extended condition-C. Then

    12(nn+2n1)D(d1+12N(d2,d1,m))1N(d2,d1,m)md1+N(d2,d1,m)md1D(x)dxmD(d1)+D(d2)nnu=1uu+1. (4.1)

    Proof. Employing the property of GmPF of D, we have that

    D(md1+sN(d2,d1,m))mnnu=1[1su]D(d1)+1nnu=1[1(1s)u]D(d2),
    10D(md1+sN(d2,d1,m))dsmD(d1)nnu=110[1su]ds+D(d2)nnu=110[1(1s)u]ds.

    But

    10D(md1+sN(d2,d1,m))ds=1N(d2,d1,m)md1+N(d2,d1,m)md1D(x)dx,

    so

    1N(d2,d1,m)md1+N(d2,d1,m)md1D(x)dxmD(d1)+D(d2)nnu=1uu+1.

    This completes the right side inequality.

    For left side, utilizing the definition of GmPF and extended condition C for N and integrating over [0,1] we get

    D(md1+12N(d2,d1,m))=D(md1+sN(d2,d1,m))+12N(md1+(1s)N(d2,d1,m),md1+sN(d2,d1,m))1nnu=1[1(12)u][10D(md1+sN(d2,d1,m))ds+10D(md1+(1s)N(d2,d1,m))ds]1nnu=1[1(12)u]2N(d2,d1,m)md1+N(d2,d1,m)md1D(x)dx[n+2n1n]2N(d2,d1,m)md1+N(d2,d1,m)md1D(x)dx.

    This completes the proof.

    Corollary 4.1. Choosing m=1, then

    12(nn+2n1)D(d1+12N(d2,d1))1N(d2,d1)d1+N(d2,d1)d1D(x)dxD(d1)+D(d2)nnu=1uu+1.

    Corollary 4.2. Choosing n=1, then

    D(d1+12N(d2,d1,m))1N(d2,d1,m)md1+N(d2,d1,m)md1D(x)dxmD(d1)+D(d2)2.

    Corollary 4.3. Choosing n=m=1, then

    D(d1+12N(d2,d1))1N(d2,d1)d1+N(d2,d1)d1D(x)dxD(d1)+D(d2)2.

    Corollary 4.4. Choosing N(d2,d1,m)=d2md1, then

    12(nn+2n1)D(md1+d22)1(d2md1)d2md1D(x)dxmD(d1)+D(d2)nnu=1uu+1.

    Corollary 4.5. Choosing n=1 and N(d2,d1,m)=d2md1, then

    D((md1+d2)2)1d2md1d2md1D(x)dxmD(d1)+D(d2)2.

    Remark 4.1. If we put m=1 and N(d2,d1,m)=d2md1 in Theorem 4.1, then we get (h,m)-preinvex (3.1) in [64].

    Remark 4.2. If we put n=m=1 and N(d2,d1,m)=d2md1 in Theorem 4.1, then we attain the H-H inequality in [37].

    Theorem 4.2. Let AR be an open m-invex subset w.r.t. N:A×A×(0,1]R for some fixed m(0,1]. Let d1,d2A, d1<d2 with md1md1+N(d2,d1,m). Suppose D:[md1,md1+N(d2,d1,m)]R is GmPF, then the following H-H type inequalities hold:

    21nn+2n1D(2md1+N(d2,d1,m)2)B(ω)ωN(d2,d1,m)[(CFmd1IωD)(k)+(CFIωmd1+N(d2,d1,m)D)(k)2(1ω)B(ω)D(k)]mD(d1)+D(d2)nnu=1uu+1,

    where ω[0,1] and k[md1,md1+N(d2,d1,m)].

    Proof. Employing the definition of GmPF, it follows from the Inequality (4.1) that

    21nn+2n1D(2md1+N(d2,d1,m)2)2N(d2,d1,m)md1+N(d2,d1,m)md1D(x)dx=2N(d2,d1,m)(kmd1D(x)dx+md1+N(d2,d1,m)kD(x)dx). (4.2)

    Multiplying both sides of (4.2) by ωN(d2,d1,m)2B(ω) gives

    ωN(d2,d1,m)2B(ω)21nn+2n1D(2md1+N(d2,d1,m)2)ωB(ω)(kmd1D(x)dx+md1+N(d2,d1,m)kD(x)dx). (4.3)

    Adding 2(1ω)B(ω)D(k) to both sides of (4.3)

    2(1ω)B(ω)D(k)+ωN(d2,d1,m)2B(ω)21nn+2n1D(2md1+N(d2,d1,m)2)2(1ω)B(ω)D(k)+ωB(ω)(kmd1D(x)dx+md1+N(d2,d1,m)kD(x)dx)=((1ω)B(ω)D(k)+ωB(ω)kmd1D(x)dx)+((1ω)B(ω)D(k)+ωB(ω)md1+N(d2,d1,m)kD(x)dx)=(CFmd1IωD)(k)+(CFIωmd1+N(d2,d1,m)D)(k). (4.4)

    On the other hand, from the Inequality (4.1), we have

    2N(d2,d1,m)md1+N(d2,d1,m)md1D(x)dxmD(d1)+D(d2)nnu=12uu+1. (4.5)

    If we multiply (4.5) by ωN(d2,d1,m)2B(ω) and add 2(1ω)B(ω)D(k) to the resulting inequality, we obtain

    (CFmd1IωD)(k)+(CFIωmd1+N(d2,d1,m)D)(k)ωN(d2,d1,m)B(ω)mD(d1)+D(d2)nnu=1uu+1+2(1ω)B(ω)D(k). (4.6)

    Combining the above Inequalities (4.4) and (4.6), we obtain the desired result.

    Corollary 4.6. Choosing n=1, Theorem 4.2 becomes,

    D(2md1+N(d2,d1,m)2)B(ω)ωN(d2,d1,m)[(CFmd1IωD)(k)+(CFIωmd1+N(d2,d1,m)D)(k)2(1ω)B(ω)D(k)]mD(d1)+D(d2)2.

    Corollary 4.7. Assuming that m=1, Theorem 4.2 becomes,

    21nn+2n1D(2d1+N(d2,d1)2)B(ω)ωN(d2,d1)[(CFd1IωD)(k)+(CFIωd1+N(d2,d1)D)(k)2(1ω)B(ω)D(k)]D(d1)+D(d2)nnu=1uu+1.

    Corollary 4.8. Assuming that n=m=1, Theorem 4.2 becomes,

    D(2d1+N(d2,d1)2)B(ω)ωN(d2,d1)[(CFd1IωD)(k)+(CFIωd1+N(d2,d1)D)(k)2(1ω)B(ω)D(k)]D(d1)+D(d2)2.

    Corollary 4.9. Assume that N(d2,d1,m)=d2md1. Then Theorem 4.2 becomes,

    21nn+2n1D(md1+d22)B(ω)ω(d2md1)[(CFmd1IωD)(k)+(CFIωd2D)(k)2(1ω)B(ω)D(k)]mD(d1)+D(d2)nnu=1uu+1.

    Corollary 4.10. Assume that n=1 and N(d2,d1,m)=d2md1. Then Theorem 4.2 becomes,

    D(md1+d22)B(ω)ω(d2md1)[(CFmd1IωD)(k)+(CFIωd2D)(k)2(1ω)B(ω)D(k)]mD(d1)+D(d2)2.

    Remark 4.3. If we put m=1 and N(d2,d1,m)=d2md1 in Theorem 4.2, it collapses to (Theorem 4, [46]).

    Remark 4.4. Choosing n=m=1 and N(d2,d1,m)=d2md1 in Theorem 4.2, it collapses to Theorem 2.2.

    In the topic of convex analysis, a number of researchers have lately contributed on unique approaches to this challenge from various viewpoints. Recent research on H-H inequalities for convex functions has led to a wide range of innovations and improvements. Noor [65] utilized the notion of preinvex function and demostrated a new sort of H-H inequality. After Noor's published idea, many mathematicains set up new estimations of this inequality in the aspect of numerous kind of preinvexity. For example, Barani et al. [66] first time derived some refinements and estimations of this inequality for functions whose derivative of absolute values are preinvex. Noor [67] proved this inequality and its refinements pertaining to h-preinvexity. For the identical and similar preinvexity notions, we discuss to Wu et al. [68], Park [69], Sarikaya et al. [70], and Wang and Liu [71].

    First, in this section, we look into the preinvex function lemma. We will include the results with the help of Hölder and power-mean inequality based on the recently investigated lemma. We add a few corollaries and observations in this section to increase the importance and caliber of this section.

    Lemma 5.1. Let D:I=[md1,md1+N(d2,d1,m)]R be a differentiable mapping on I,md1<md1+N(d2,d1,m). If DL[md1,md1+N(d2,d1,m)], then

    N(d2,d1,m)210(12s)D(md1+sN(d2,d1,m))ds+2(1ω)ωN(d2,d1,m)D(k)=D(md1)+D(md1+N(d2,d1,m))2+B(ω)ωN(d2,d1,m)[CFmd1IωD(k)+CFIωmd1+N(d2,d1,m)D(k)],

    where ω[0,1] and k[md1,md1+N(d2,d1,m)].

    Proof. It is easy to see that

    10(12s)D(md1+sN(d2,d1,m))ds=D(md1)+D(md1+N(d2,d1,m))N(d2,d1,m)+2(N(d2,d1,m))2×(kmd1D(x)dx+md1+N(d2,d1,m)kD(x)dx).

    Multiplying both sides with ω(N(d2,d1,m))22B(ω) and adding 2(1ω)B(ω)D(k), we have

    ω(N(d2,d1,m))22B(ω)10(12s)D(md1+sN(d2,d1,m))ds+2(1ω)B(ω)D(k)=ωN(d2,d1,m)B(ω)D(md1)+D(md1+N(d2,d1,m))2+((1ω)B(ω)D(k)+ωB(ω)kmd1D(x)dx)+((1ω)B(ω)D(k)+ωB(ω)md1+N(d2,d1,m)kD(x)dx)=D(md1)+D(md1+N(d2,d1,m))2+B(ω)ωN(d2,d1,m)[CFmd1IωD(k)+CFIωmd1+N(d2,d1,m)D(k)].

    This completes the proof.

    Theorem 5.1. Let D:I=[md1,md1+N(d2,d1,m)]R be a differentiable function on I,md1<md1+N(d2,d1,m) and |D| is GmPF on [md1,md1+N(d2,d1,m)]. If DL[md1,md1+N(d2,d1,m)], then

    |D(md1)+D(md1+N(d2,d1,m))22(1ω)ωN(d2,d1,m)D(k)+B(ω)ωN(d2,d1,m)[(CFmd1IωD)(k)+(CFIωmd1+N(d2,d1,m)D)(k)]|N(d2,d1,m)nnu=1[(u2+u+2)2uu2(u+1)(u+2)2u+1](m|D(d1)|+|D(d2)|2), (5.1)

    where ω[0,1], m(0,1] and k[md1,md1+N(d2,d1,m)].

    Proof. Employing the Lemma 5.1, we have

    |D(md1)+D(md1+N(d2,d1,m))22(1ω)ωN(d2,d1,m)D(k)+B(ω)ωN(d2,d1,m)[(CFmd1IωD)(k)+(CFIωmd1+N(d2,d1,m)D)(k)]|N(d2,d1,m)210|12s||D(md1+sN(d2,d1,m))|ds.

    Employing the property of GmPF, we have

    |D(md1)+D(md1+N(d2,d1,m))22(1ω)ωN(d2,d1,m)D(k)+B(ω)ωN(d2,d1,m)[(CFmd1IωD)(k)+(CFIωmd1+N(d2,d1,m)D)(k)]|N(d2,d1,m)210|12s|(mnnu=1(1su)|D(d1)|+1nnu=1(1(1s)u)|D(d2)|)dsN(d2,d1,m)2n[m|D(d1)|nu=110|12s|(1su)ds+|D(d2)|nu=110|12s|(1(1s)u)ds]=N(d2,d1,m)2n[m|D(d1)|nu=1[(u2+u+2)2u2(u+1)(u+2)2u+1]+|D(d2)|nu=1[(u2+u+2)2u2(u+1)(u+2)2u+1]]=N(d2,d1,m)nnu=1[(u2+u+2)2u2(u+1)(u+2)2u+1](m|D(d1)|+|D(d2)|2).

    This completes the proof.

    Corollary 5.1. Choosing \mathfrak{n} = 1 , then we have

    \begin{align*} &\bigg|-\frac{\mathfrak{D}(m\mathfrak{d}_{1})+\mathfrak{D}(m\mathfrak{d}_{1}+\mathcal{N}(\mathfrak{d}_{2}, \mathfrak{d}_{1}, m))}{2}-\frac{2(1-\omega)} {\omega\mathcal{N}(\mathfrak{d}_{2}, \mathfrak{d}_{1}, m)} \mathfrak{D}(k) \\& +\frac{\mathfrak{B}(\omega)}{\omega\mathcal{N}(\mathfrak{d}_{2}, \mathfrak{d}_{1}, m)}\left[ \left( ^{\mathfrak{CF}}_{m\mathfrak{d}_{1}}\mathrm{I}^\omega \mathfrak{D}\right)(k)+ \left( ^{\mathfrak{CF}}\mathrm{I}^\omega_{m\mathfrak{d}_{1}+\mathcal{N}(\mathfrak{d}_{2}, \mathfrak{d}_{1}, m)} \mathfrak{D}\right)(k)\right]\bigg| \\& \leq \frac{\mathcal{N}(\mathfrak{d}_{2}, \mathfrak{d}_{1}, m)\left(m|\mathfrak{D}'(\mathfrak{d}_{1})|+|\mathfrak{D}'(\mathfrak{d}_{2})| \right) }{8}. \end{align*}

    Corollary 5.2. Assume that m = 1. Then we have

    \begin{align*} &\bigg|-\frac{\mathfrak{D}(\mathfrak{d}_{1})+\mathfrak{D}(\mathfrak{d}_{1}+\mathcal{N}(\mathfrak{d}_{2}, \mathfrak{d}_{1}))}{2}-\frac{2(1-\omega)}{\omega\mathcal{N}(\mathfrak{d}_{2}, \mathfrak{d}_{1})}\mathfrak{D}(k)\nonumber \\& +\frac{\mathfrak{B}(\omega)}{\omega\mathcal{N}(\mathfrak{d}_{2}, \mathfrak{d}_{1})}\left[ \left( ^{\mathfrak{CF}}_{m\mathfrak{d}_{1}}\mathrm{I}^\omega \mathfrak{D}\right)(k)+ \left( ^{\mathfrak{CF}}\mathrm{I}^\omega_{m\mathfrak{d}_{1}+\mathcal{N}(\mathfrak{d}_{2}, \mathfrak{d}_{1})} \mathfrak{D}\right)(k)\right]\bigg| \nonumber\\& \leq \frac{\mathcal{N}(\mathfrak{d}_{2}, \mathfrak{d}_{1}) }{n}\sum\limits_{\mathfrak{u} = 1}^{\mathfrak{n}}\left[\frac{(\mathtt{\mathfrak{u}^2+\mathfrak{u}+2})2^\mathfrak{u}\mathtt{\mathfrak{u}}-2}{(\mathtt{\mathfrak{u}+1})(\mathtt{\mathfrak{u}+2})2^{\mathtt{\mathfrak{u}+1}}} \right] \left(\frac{|\mathfrak{D}^{\prime}(\mathfrak{d}_{1})|+|\mathfrak{D}^{\prime}(\mathfrak{d}_{2})| }{2}\right), \end{align*}

    Corollary 5.3. Choosing \mathfrak{n} = m = 1 , then we have

    \begin{align*} &\bigg|-\frac{\mathfrak{D}(\mathfrak{d}_{1})+\mathfrak{D}(\mathfrak{d}_{1}+\mathcal{N}(\mathfrak{d}_{2}, \mathfrak{d}_{1}))}{2}-\frac{2(1-\omega)} {\omega\mathcal{N}(\mathfrak{d}_{2}, \mathfrak{d}_{1})} \mathfrak{D}(k) \\& +\frac{\mathfrak{B}(\omega)}{\omega\mathcal{N}(\mathfrak{d}_{2}, \mathfrak{d}_{1})}\left[ \left( ^{\mathfrak{CF}}_{\mathfrak{d}_{1}}\mathrm{I}^\omega \mathfrak{D}\right)(k)+ \left( ^{\mathfrak{CF}}\mathrm{I}^\omega_{\mathfrak{d}_{1}+\mathcal{N}(\mathfrak{d}_{2}, \mathfrak{d}_{1})} \mathfrak{D}\right)(k)\right]\bigg| \\& \leq \frac{\mathcal{N}(\mathfrak{d}_{2}, \mathfrak{d}_{1})\left(|\mathfrak{D}'(\mathfrak{d}_{1})|+|\mathfrak{D}'(\mathfrak{d}_{2})| \right) }{8}. \end{align*}

    Corollary 5.4. If we put \mathcal{N}(\mathfrak{d}_{2}, \mathfrak{d}_{1}, m) = \mathfrak{d}_{2}-m\mathfrak{d}_{1} , then

    \begin{align*} &\bigg|-\frac{\mathfrak{D}(m\mathfrak{d}_{1})+\mathfrak{D}(\mathfrak{d}_{2})}{2}-\frac{2(1-\omega)}{\omega(\mathfrak{d}_{2}-m\mathfrak{d}_{1})}\mathfrak{D}(k) +\frac{\mathfrak{B}(\omega)}{\omega(\mathfrak{d}_{2}-m\mathfrak{d}_{1})}\left[ \left( ^{\mathfrak{CF}}_{m\mathfrak{d}_{1}}\mathrm{I}^\omega \mathfrak{D}\right)(k)+ \left( ^{\mathfrak{CF}}\mathrm{I}^\omega_{\mathfrak{d}_{2}} \mathfrak{D}\right)(k)\right]\bigg| \nonumber\\& \leq \frac{\mathfrak{d}_{2}-m\mathfrak{d}_{1} }{n}\sum\limits_{\mathfrak{u} = 1}^{\mathfrak{n}}\left[\frac{(\mathtt{\mathfrak{u}^2+\mathfrak{u}+2})2^\mathtt{\mathfrak{u}}-2}{(\mathtt{\mathfrak{u}+1})(\mathtt{\mathfrak{u}+2})2^{\mathtt{\mathfrak{u}+1}}} \right] \left(\frac{m|\mathfrak{D}^{\prime}(\mathfrak{d}_{1})|+|\mathfrak{D}^{\prime}(\mathfrak{d}_{2})| }{2}\right). \end{align*}

    Corollary 5.5. If we put m = 1 and \mathcal{N}(\mathfrak{d}_{2}, \mathfrak{d}_{1}, m) = \mathfrak{d}_{2}-m\mathfrak{d}_{1} , then

    \begin{align*} &\bigg|-\frac{\mathfrak{D}(\mathfrak{d}_{1})+\mathfrak{D}(\mathfrak{d}_{2})}{2}-\frac{2(1-\omega)}{\omega(\mathfrak{d}_{2}-\mathfrak{d}_{1})}\mathfrak{D}(k) +\frac{\mathfrak{B}(\omega)}{\omega(\mathfrak{d}_{2}-\mathfrak{d}_{1})}\left[ \left( ^{\mathfrak{CF}}_{\mathfrak{d}_{1}}\mathrm{I}^\omega \mathfrak{D}\right)(k)+ \left( ^{\mathfrak{CF}}\mathrm{I}^\omega_{\mathfrak{d}_{2}} \mathfrak{D}\right)(k)\right]\bigg| \nonumber\\& \leq \frac{\mathfrak{d}_{2}-\mathfrak{d}_{1} }{n}\sum\limits_{\mathfrak{u} = 1}^{\mathfrak{n}}\left[\frac{(\mathtt{\mathfrak{u}^2+\mathfrak{u}+2})2^\mathtt{\mathfrak{u}}-2}{(\mathtt{\mathfrak{u}+1})(\mathtt{\mathfrak{u}+2})2^{\mathtt{\mathfrak{u}+1}}} \right] \left(\frac{|\mathfrak{D}^{\prime}(\mathfrak{d}_{1})|+|\mathfrak{D}^{\prime}(\mathfrak{d}_{2})| }{2}\right). \end{align*}

    Corollary 5.6. Assume that \mathfrak{n} = 1 and \mathcal{N}(\mathfrak{d}_{2}, \mathfrak{d}_{1}, m) = \mathfrak{d}_{2}-m\mathfrak{d}_{1}. Then we have

    \begin{align*} &\bigg|-\frac{\mathfrak{D}(m\mathfrak{d}_{1})+\mathfrak{D}(\mathfrak{d}_{2})}{2}-\frac{2(1-\omega)} {\omega(\mathfrak{d}_{2}-m\mathfrak{d}_{1})} \mathfrak{D}(k) \\& +\frac{\mathfrak{B}(\omega)}{\omega(\mathfrak{d}_{2}-m\mathfrak{d}_{1})}\left[ \left( ^{\mathfrak{CF}}_{m\mathfrak{d}_{1}}\mathrm{I}^\omega \mathfrak{D}\right)(k)+ \left( ^{\mathfrak{CF}}\mathrm{I}^\omega_{\mathfrak{d}_{2})} \mathfrak{D}\right)(k)\right]\bigg| \\& \leq \frac{(\mathfrak{d}_{2}-m\mathfrak{d}_{1})\left(m|\mathfrak{D}'(\mathfrak{d}_{1})|+|\mathfrak{D}'(\mathfrak{d}_{2})| \right) }{8}. \end{align*}

    Remark 5.1. If we put \mathcal{N}(\mathfrak{d}_{2}, \mathfrak{d}_{1}, m) = \mathfrak{d}_{2}-m\mathfrak{d}_{1}\; \; \text{and}\; \; \mathfrak{n} = m = 1 , then we get the Theorem 5 in published article [45].

    Theorem 5.2. Assume that \mathfrak{D}:\mathbb{I} = [m\mathfrak{d}_{1}, m\mathfrak{d}_{1}+\mathcal{N}(\mathfrak{d}_{2}, \mathfrak{d}_{1}, m)]\to \mathbb{R} is a differentiable function on \mathbb{I}^\circ, \; \; m\mathfrak{d}_{1} < m\mathfrak{d}_{1}+\mathcal{N}(\mathfrak{d}_{2}, \mathfrak{d}_{1}, m) and |\mathfrak{D}^{\prime}|^q is G-_{m}PF on [m\mathfrak{d}_{1}, m\mathfrak{d}_{1}+\mathcal{N}(\mathfrak{d}_{2}, \mathfrak{d}_{1}, m)] . If \mathfrak{D}^{\prime}\in \mathcal{L}[m\mathfrak{d}_{1}, m\mathfrak{d}_{1}+\mathcal{N}(\mathfrak{d}_{2}, \mathfrak{d}_{1}, m)] , then

    \begin{align} &\bigg|-\frac{\mathfrak{D}(m\mathfrak{d}_{1})+\mathfrak{D}(m\mathfrak{d}_{1}+\mathcal{N}(\mathfrak{d}_{2}, \mathfrak{d}_{1}, m))}{2}-\frac{2(1-\omega)}{\omega\mathcal{N}(\mathfrak{d}_{2}, \mathfrak{d}_{1}, m)}\mathfrak{D}(k) \\& +\frac{\mathfrak{B}(\omega)}{\omega\mathcal{N}(\mathfrak{d}_{2}, \mathfrak{d}_{1}, m)}\left[ \left( ^{\mathfrak{CF}}_{m\mathfrak{d}_{1}}\mathrm{I}^\omega \mathfrak{D}\right)(k)+ \left( ^{\mathfrak{CF}}\mathrm{I}^\omega_{m\mathfrak{d}_{1}+\mathcal{N}(\mathfrak{d}_{2}, \mathfrak{d}_{1}, m)} \mathfrak{D}\right)(k)\right]\bigg| \\ &\leq \frac{\mathcal{N}(\mathfrak{d}_{2}, \mathfrak{d}_{1}, m) }{2}\left( \frac{1}{p+1}\right) ^{\frac{1}{p}}\left(\frac{2}{n}\sum\limits_{\mathfrak{u} = 1}^{\mathfrak{n}}\frac{\mathtt{\mathfrak{u}}}{\mathtt{\mathfrak{u}+1}} \right) ^{\frac{1}{q}} \left(\frac{m|\mathfrak{D}^{\prime}(\mathfrak{d}_{1})|^q+|\mathfrak{D}^{\prime}(\mathfrak{d}_{2})|^q }{2}\right)^{\frac{1}{q}}, \end{align} (5.2)

    where \omega\in[0, 1] , m\in (0, 1] and k\in [m\mathfrak{d}_{1}, m\mathfrak{d}_{1}+\mathcal{N}(\mathfrak{d}_{2}, \mathfrak{d}_{1}, m)].

    Proof. Employing Lemma 5.1, we have

    \begin{align*} &\bigg|-\frac{\mathfrak{D}(m\mathfrak{d}_{1})+\mathfrak{D}(m\mathfrak{d}_{1}+\mathcal{N}(\mathfrak{d}_{2}, \mathfrak{d}_{1}, m))}{2}-\frac{2(1-\omega)}{\omega\mathcal{N}(\mathfrak{d}_{2}, \mathfrak{d}_{1}, m)}\mathfrak{D}(k) \\& +\frac{\mathfrak{B}(\omega)}{\omega\mathcal{N}(\mathfrak{d}_{2}, \mathfrak{d}_{1}, m)}\left[ \left( ^{\mathfrak{CF}}_{m\mathfrak{d}_{1}}\mathrm{I}^\omega \mathfrak{D}\right)(k)+ \left( ^{\mathfrak{CF}}\mathrm{I}^\omega_{m\mathfrak{d}_{1}+\mathcal{N}(\mathfrak{d}_{2}, \mathfrak{d}_{1}, m)} \mathfrak{D}\right)(k)\right]\bigg|\\ &\leq \frac{\mathcal{N}(\mathfrak{d}_{2}, \mathfrak{d}_{1}, m)}{2}\int_{0}^{1}|1-2\mathfrak{s}||\mathfrak{D}^{\prime}(m\mathfrak{d}_{1}+\mathfrak{s}\mathcal{N}(\mathfrak{d}_{2}, \mathfrak{d}_{1}, m))|d\mathfrak{s}. \end{align*}

    Employing Hölder inequality, we have

    \begin{align*} &\bigg|-\frac{\mathfrak{D}(m\mathfrak{d}_{1})+\mathfrak{D}(m\mathfrak{d}_{1}+\mathcal{N}(\mathfrak{d}_{2}, \mathfrak{d}_{1}, m))}{2}-\frac{2(1-\omega)}{\omega\mathcal{N}(\mathfrak{d}_{2}, \mathfrak{d}_{1}, m)}\mathfrak{D}(k) \\& +\frac{\mathfrak{B}(\omega)}{\omega\mathcal{N}(\mathfrak{d}_{2}, \mathfrak{d}_{1}, m)}\left[ \left( ^{\mathfrak{CF}}_{m\mathfrak{d}_{1}}\mathrm{I}^\omega \mathfrak{D}\right)(k)+ \left( ^{\mathfrak{CF}}\mathrm{I}^\omega_{m\mathfrak{d}_{1}+\mathcal{N}(\mathfrak{d}_{2}, \mathfrak{d}_{1}, m)} \mathfrak{D}\right)(k)\right]\bigg|\\ &\leq \frac{\mathcal{N}(\mathfrak{d}_{2}, \mathfrak{d}_{1}, m)}{2}\left( \int_{0}^{1}|1-2\mathfrak{s}|^p d\mathfrak{s}\right) ^{\frac{1}{p}}\left( \int_{0}^{1}|\mathfrak{D}'(m\mathfrak{d}_{1}+\mathfrak{s}\mathcal{N}(\mathfrak{d}_{2}, \mathfrak{d}_{1}, m))|^qd\mathfrak{s}\right) ^{\frac{1}{q}}. \end{align*}

    Employing the property of G-_{m}PF of |\mathfrak{D}'|^{q} , we have

    \begin{align*} &\bigg|-\frac{\mathfrak{D}(m\mathfrak{d}_{1})+\mathfrak{D}(m\mathfrak{d}_{1}+\mathcal{N}(\mathfrak{d}_{2}, \mathfrak{d}_{1}, m))}{2}-\frac{2(1-\omega)}{\omega\mathcal{N}(\mathfrak{d}_{2}, \mathfrak{d}_{1}, m)}\mathfrak{D}(k) \\& +\frac{\mathfrak{B}(\omega)}{\omega\mathcal{N}(\mathfrak{d}_{2}, \mathfrak{d}_{1}, m)}\left[ \left( ^{\mathfrak{CF}}_{m\mathfrak{d}_{1}}\mathrm{I}^\omega \mathfrak{D}\right)(k)+ \left( ^{\mathfrak{CF}}\mathrm{I}^\omega_{m\mathfrak{d}_{1}+\mathcal{N}(\mathfrak{d}_{2}, \mathfrak{d}_{1}, m)} \mathfrak{D}\right)(k)\right]\bigg| \\ &\leq \frac{\mathcal{N}(\mathfrak{d}_{2}, \mathfrak{d}_{1}, m) }{2}\left( \frac{1}{p+1}\right) ^{\frac{1}{p}}\left[\frac{m|\mathfrak{D}^{\prime}(\mathfrak{d}_{1})|^q}{n}\int_{0}^{1}(1-\mathfrak{s}^\mathtt{\mathfrak{u}})d\mathfrak{s}+ \frac{|\mathfrak{D}'(\mathfrak{d}_{2})|^q}{n}\int_{0}^{1}(1-(1-\mathfrak{s})^\mathtt{\mathfrak{u}})d\mathfrak{s} \right]^{\frac{1}{q}} \\ & = \frac{\mathcal{N}(\mathfrak{d}_{2}, \mathfrak{d}_{1}, m) }{2}\left( \frac{1}{p+1}\right) ^{\frac{1}{p}}\left[\frac{m|\mathfrak{D}'(\mathfrak{d}_{1})|^q}{n}\sum\limits_{\mathfrak{u} = 1}^{\mathfrak{n}}\frac{\mathtt{\mathfrak{u}}}{\mathtt{\mathfrak{u}+1}}+\frac{|\mathfrak{D}'(\mathfrak{d}_{2})|^q}{n} \sum\limits_{\mathfrak{u} = 1}^{\mathfrak{n}}\frac{\mathtt{\mathfrak{u}}}{\mathtt{\mathfrak{u}+1}}\right]^{\frac{1}{q}} \\ & = \frac{\mathcal{N}(\mathfrak{d}_{2}, \mathfrak{d}_{1}, m) }{2}\left( \frac{1}{p+1}\right) ^{\frac{1}{p}}\left(\frac{2}{n}\sum\limits_{\mathfrak{u} = 1}^{\mathfrak{n}}\frac{\mathtt{\mathfrak{u}}}{\mathtt{\mathfrak{u}+1}} \right) ^{\frac{1}{q}} \left(\frac{m|\mathfrak{D}'(\mathfrak{d}_{1})|^q+|\mathfrak{D}'(\mathfrak{d}_{2})|^q }{2}\right)^{\frac{1}{q}}. \end{align*}

    This is the required proof.

    Corollary 5.7. Choosing \mathfrak{n} = 1 , then we obtain

    \begin{align*} &\bigg|-\frac{\omega(m\mathfrak{d}_{1})+\mathfrak{D}(m\mathfrak{d}_{1}+\mathcal{N}(\mathfrak{d}_{2}, \mathfrak{d}_{1}, m))}{2}-\frac{2(1-\omega)} {\omega\mathcal{N}(\mathfrak{d}_{2}, \mathfrak{d}_{1}, m)} \mathfrak{D}(k) \\& +\frac{\mathfrak{B}(\omega)}{\omega\mathcal{N}(\mathfrak{d}_{2}, \mathfrak{d}_{1}, m)}\left[ \left( ^{\mathfrak{CF}}_{m\mathfrak{d}_{1}}\mathrm{I}^\omega \mathfrak{D}\right)(k)+ \left( ^{\mathfrak{CF}}\mathrm{I}^\omega_{m\mathfrak{d}_{1}+\mathcal{N}(\mathfrak{d}_{2}, \mathfrak{d}_{1}, m)} \mathfrak{D}\right)(k)\right]\bigg| \\ &\leq \frac{\mathcal{N}(\mathfrak{d}_{2}, \mathfrak{d}_{1}, m)}{2}\left( \frac{1}{p+1}\right)^{\frac{1}{q}}\left(\frac{m|\mathfrak{D}'(\mathfrak{d}_{1})|^q+|\mathfrak{D}'(\mathfrak{d}_{2})|^q}{2} \right)^{\frac{1}{q}}. \end{align*}

    Corollary 5.8. Assume that m = 1. Then we obtain

    \begin{align*} &\bigg|-\frac{\mathfrak{D}(\mathfrak{d}_{1})+\mathfrak{D}(\mathfrak{d}_{1}+\mathcal{N}(\mathfrak{d}_{2}, \mathfrak{d}_{1}))}{2}-\frac{2(1-\omega)}{\omega\mathcal{N}(\mathfrak{d}_{2}, \mathfrak{d}_{1})}\mathfrak{D}(k)\nonumber \\& +\frac{\mathfrak{B}(\omega)}{\omega\mathcal{N}(\mathfrak{d}_{2}, \mathfrak{d}_{1})}\left[ \left( ^{\mathfrak{CF}}_{\mathfrak{d}_{1}}\mathrm{I}^\omega \mathfrak{D}\right)(k)+ \left( ^{\mathfrak{CF}}\mathrm{I}^\omega_{\mathfrak{d}_{1}+\mathcal{N}(\mathfrak{d}_{2}, \mathfrak{d}_{1})} \mathfrak{D}\right)(k)\right]\bigg| \nonumber\\ &\leq \frac{\mathcal{N}(\mathfrak{d}_{2}, \mathfrak{d}_{1}) }{2}\left( \frac{1}{p+1}\right) ^{\frac{1}{p}}\left(\frac{2}{n}\sum\limits_{\mathfrak{u} = 1}^{\mathfrak{n}}\frac{\mathtt{\mathfrak{u}}}{\mathtt{\mathfrak{u}+1}} \right) ^{\frac{1}{q}} \left(\frac{|\mathfrak{D}^{\prime}(\mathfrak{d}_{1})|^q+|\mathfrak{D}^{\prime}(\mathfrak{d}_{2})|^q }{2}\right)^{\frac{1}{q}}. \end{align*}

    Corollary 5.9. Assume that \mathfrak{n} = m = 1. Then we obtain

    \begin{align*} &\bigg|-\frac{\omega(\mathfrak{d}_{1})+\mathfrak{D}(\mathfrak{d}_{1}+\mathcal{N}(\mathfrak{d}_{2}, \mathfrak{d}_{1}))}{2}-\frac{2(1-\omega)} {\omega\mathcal{N}(\mathfrak{d}_{2}, \mathfrak{d}_{1})} \mathfrak{D}(k) \\& +\frac{\mathfrak{B}(\omega)}{\omega\mathcal{N}(\mathfrak{d}_{2}, \mathfrak{d}_{1})}\left[ \left( ^{\mathfrak{CF}}_{\mathfrak{d}_{1}}\mathrm{I}^\omega \mathfrak{D}\right)(k)+ \left( ^{\mathfrak{CF}}\mathrm{I}^\omega_{\mathfrak{d}_{1}+\mathcal{N}(\mathfrak{d}_{2}, \mathfrak{d}_{1})} \mathfrak{D}\right)(k)\right]\bigg| \\ &\leq \frac{\mathcal{N}(\mathfrak{d}_{2}, \mathfrak{d}_{1})}{2}\left( \frac{1}{p+1}\right)^{\frac{1}{q}}\left(\frac{|\mathfrak{D}'(\mathfrak{d}_{1})|^q+|\mathfrak{D}'(\mathfrak{d}_{2})|^q}{2} \right)^{\frac{1}{q}}. \end{align*}

    Corollary 5.10. Choosing \mathcal{N}(\mathfrak{d}_{2}, \mathfrak{d}_{1}, m) = \mathfrak{d}_{2}-m\mathfrak{d}_{1} , then

    \begin{align*} &\bigg|-\frac{\mathfrak{D}(m\mathfrak{d}_{1})+\mathfrak{D}(\mathfrak{d}_{2})}{2}-\frac{2(1-\omega)}{\omega(\mathfrak{d}_{2}-m\mathfrak{d}_{1})}\mathfrak{D}(k)+\frac{\mathfrak{B}(\omega)}{\omega(\mathfrak{d}_{2}-m\mathfrak{d}_{1})}\left[ \left( ^{\mathfrak{CF}}_{m\mathfrak{d}_{1}}\mathrm{I}^\omega \mathfrak{D}\right)(k)+ \left( ^{\mathfrak{CF}}\mathrm{I}^\omega_{\mathfrak{d}_{2}} \mathfrak{D}\right)(k)\right]\bigg| \nonumber\\& \leq \frac{\mathfrak{d}_{2}-m\mathfrak{d}_{1}}{2}\left( \frac{1}{p+1}\right) ^{\frac{1}{p}}\left(\frac{2}{n}\sum\limits_{\mathfrak{u} = 1}^{\mathfrak{n}}\frac{\mathtt{\mathfrak{u}}}{\mathtt{\mathfrak{u}+1}} \right) ^{\frac{1}{q}} \left(\frac{m|\mathfrak{D}'(\mathfrak{d}_{1})|^q+|\mathfrak{D}'(\mathfrak{d}_{2})|^q }{2}\right)^{\frac{1}{q}}. \end{align*}

    Corollary 5.11. Choosing \mathcal{N}(\mathfrak{d}_{2}, \mathfrak{d}_{1}, m) = \mathfrak{d}_{2}-m\mathfrak{d}_{1} and m = 1 , then

    \begin{align*} &\bigg|-\frac{\mathfrak{D}(\mathfrak{d}_{1})+\mathfrak{D}(\mathfrak{d}_{2})}{2}-\frac{2(1-\omega)}{\omega(\mathfrak{d}_{2}-\mathfrak{d}_{1})}\mathfrak{D}(k)+\frac{\mathfrak{B}(\omega)}{\omega(\mathfrak{d}_{2}-\mathfrak{d}_{1})}\left[ \left( ^{\mathfrak{CF}}_{\mathfrak{d}_{1}}\mathrm{I}^\omega \mathfrak{D}\right)(k)+ \left( ^{\mathfrak{CF}}\mathrm{I}^\omega_{\mathfrak{d}_{2}} \mathfrak{D}\right)(k)\right]\bigg| \nonumber\\& \leq \frac{\mathfrak{d}_{2}-\mathfrak{d}_{1}}{2}\left( \frac{1}{p+1}\right) ^{\frac{1}{p}}\left(\frac{2}{n}\sum\limits_{\mathfrak{u} = 1}^{\mathfrak{n}}\frac{\mathtt{\mathfrak{u}}}{\mathtt{\mathfrak{u}+1}} \right) ^{\frac{1}{q}} \left(\frac{|\mathfrak{D}'(\mathfrak{d}_{1})|^q+|\mathfrak{D}'(\mathfrak{d}_{2})|^q }{2}\right)^{\frac{1}{q}}. \end{align*}

    Corollary 5.12. Choosing \mathcal{N}(\mathfrak{d}_{2}, \mathfrak{d}_{1}, m) = \mathfrak{d}_{2}-m\mathfrak{d}_{1} and \mathfrak{n} = 1 , then

    \begin{align*} &\bigg|-\frac{\mathfrak{D}(m\mathfrak{d}_{1})+\mathfrak{D}(\mathfrak{d}_{2})}{2}-\frac{2(1-\omega)}{\omega(\mathfrak{d}_{2}-m\mathfrak{d}_{1})}\mathfrak{D}(k)+\frac{\mathfrak{B}(\omega)}{\omega(\mathfrak{d}_{2}-m\mathfrak{d}_{1})}\left[ \left( ^{\mathfrak{CF}}_{m\mathfrak{d}_{1}}\mathrm{I}^\omega \mathfrak{D}\right)(k)+ \left( ^{\mathfrak{CF}}\mathrm{I}^\omega_{\mathfrak{d}_{2}} \mathfrak{D}\right)(k)\right]\bigg| \nonumber\\& \leq \frac{\mathfrak{d}_{2}-m\mathfrak{d}_{1}}{2}\left( \frac{1}{p+1}\right) ^{\frac{1}{p}} \left(\frac{m|\mathfrak{D}'(\mathfrak{d}_{1})|^q+|\mathfrak{D}'(\mathfrak{d}_{2})|^q }{2}\right)^{\frac{1}{q}}. \end{align*}

    Remark 5.2. Choosing \mathcal{N}(\mathfrak{d}_{2}, \mathfrak{d}_{1}) = \mathfrak{d}_{2}-\mathfrak{d}_{1}\; \; \text{and}\; \; \mathfrak{n} = m = 1 , then we get the Theorem 6 in [45].

    Theorem 5.3. Let \mathfrak{D}: \mathbb{I} = [m\mathfrak{d}_{1}, m\mathfrak{d}_{1}+\mathcal{N}(\mathfrak{d}_{2}, \mathfrak{d}_{1}, m)]\rightarrow \mathbb{R} be a differentiable function on \mathbb{I}^{\circ} and \mathfrak{d}_{1}, \mathfrak{d}_{2} \in \mathbb{I} with m\mathfrak{d}_{1} < m\mathfrak{d}_{1} +\mathcal{N}(\mathfrak{d}_{2}, \mathfrak{d}_{1}, m) and assume that \mathfrak{D}'\in \mathcal{L}[m\mathfrak{d}_{1}, m\mathfrak{d}_{1}+\mathcal{N}(\mathfrak{d}_{2}, \mathfrak{d}_{1}, m)] . If |\mathfrak{D}'|^{q} is G-_{m}PF on [m\mathfrak{d}_{1}, m\mathfrak{d}_{1}+\mathcal{N}(\mathfrak{d}_{2}, \mathfrak{d}_{1}, m)], then we obtain

    \begin{align} &\bigg|-\frac{\mathfrak{D}(m\mathfrak{d}_{1})+\mathfrak{D}(m\mathfrak{d}_{1}+\mathcal{N}(\mathfrak{d}_{2}, \mathfrak{d}_{1}, m))}{2}-\frac{2(1-\omega)}{\omega\mathcal{N}(\mathfrak{d}_{2}, \mathfrak{d}_{1}, m)}\mathfrak{D}(k) \\& +\frac{\mathfrak{B}(\omega)}{\omega\mathcal{N}(\mathfrak{d}_{2}, \mathfrak{d}_{1}, m)}\left[ \left( ^{\mathfrak{CF}}_{m\mathfrak{d}_{1}}\mathrm{I}^\omega \mathfrak{D}\right)(k)+ \left( ^{\mathfrak{CF}}\mathrm{I}^\omega_{m\mathfrak{d}_{1}+\mathcal{N}(\mathfrak{d}_{2}, \mathfrak{d}_{1}, m)} \mathfrak{D}\right)(k)\right]\bigg|\\& \leq \frac{\mathcal{N}(\mathfrak{d}_{2}, \mathfrak{d}_{1}, m)}{2}\left(\frac{1}{2}\right)^{1-\frac{1}{q}}\left(\frac{1}{n}\sum\limits_{\mathfrak{u} = 1}^{\mathfrak{n}} \frac{(\mathtt{\mathfrak{u}^2+\mathfrak{u}+2})2^{\mathtt{\mathfrak{u}}}-2}{(\mathtt{\mathfrak{u}+1})(\mathtt{\mathfrak{u}+2})2^{\mathtt{\mathfrak{u}+1}}}\right)^{\frac{1}{q}} \left(\frac{m|\mathfrak{D}'(\mathfrak{d}_{1})|^{q}+|\mathfrak{D}'(\mathfrak{d}_{2})|^{q}}{2}\right)^{\frac{1}{q}}, \end{align} (5.3)

    where \omega\in[0, 1] , m\in (0, 1] and k\in [m\mathfrak{d}_{1}, m\mathfrak{d}_{1}+\mathcal{N}(\mathfrak{d}_{2}, \mathfrak{d}_{1}, m)].

    Proof. Employing Lemma 5.1, we have

    \begin{align*} &\bigg|\frac{-\mathfrak{D}(m\mathfrak{d}_{1})+\mathfrak{D}(m\mathfrak{d}_{1}+\mathcal{N}(\mathfrak{d}_{2}, \mathfrak{d}_{1}, m))}{2}-\frac{2(1-\omega)} {\omega\mathcal{N}(\mathfrak{d}_{2}, \mathfrak{d}_{1}, m)}\mathfrak{D}(k) \\& +\frac{\mathfrak{B}(\omega)}{\omega\mathcal{N}(\mathfrak{d}_{2}, \mathfrak{d}_{1}, m)}\left[^{\mathfrak{CF}}_{m\mathfrak{d}_{1}}\mathrm{I}^{\omega} \mathfrak{D}(k)+^{\mathfrak{CF}}\mathrm{I}_{m\mathfrak{d}_{1}+\mathcal{N}(\mathfrak{d}_{2}, \mathfrak{d}_{1}, m)}^{\omega} \mathfrak{D}(k)\right]\bigg| \\& \leq \frac{\mathcal{N}(\mathfrak{d}_{2}, \mathfrak{d}_{1}, m)}{2}\int_{0}^{1}|1-2\mathfrak{s}|\left| \mathfrak{D}'(m\mathfrak{d}_{1}+\mathfrak{s}\mathcal{N}(\mathfrak{d}_{2}, \mathfrak{d}_{1}, m))\right|d\mathfrak{s}. \end{align*}

    Employing power mean inequality, we have

    \begin{align*} &\bigg|\frac{-\mathfrak{D}(m\mathfrak{d}_{1})+\mathfrak{D}(m\mathfrak{d}_{1}+\mathcal{N}(\mathfrak{d}_{2}, \mathfrak{d}_{1}, m))}{2}-\frac{2(1-\omega)} {\omega\mathcal{N}(\mathfrak{d}_{2}, \mathfrak{d}_{1}, m)}\mathfrak{D}(k) \\& +\frac{\mathfrak{B}(\omega)}{\omega\mathcal{N}(\mathfrak{d}_{2}, \mathfrak{d}_{1}, m)}\left[^{\mathfrak{CF}}_{m\mathfrak{d}_{1}}\mathrm{I}^{\omega} \mathfrak{D}(k)+^{\mathfrak{CF}}\mathrm{I}_{m\mathfrak{d}_{1}+\mathcal{N}(\mathfrak{d}_{2}, \mathfrak{d}_{1}, m)}^{\omega} \mathfrak{D}(k)\right]\bigg| \\& \leq \frac{\mathcal{N}(\mathfrak{d}_{2}, \mathfrak{d}_{1}, m)}{2}\left(\int_{0}^{1}|1-2\mathfrak{s}|d\mathfrak{s}\right)^{1-\frac{1}{q}}\left(|1-2\mathfrak{s}|\left| \mathfrak{D}'(m\mathfrak{d}_{1}+\mathfrak{s}\mathcal{N}(\mathfrak{d}_{2}, \mathfrak{d}_{1}, m))\right|^{q}d\mathfrak{s}\right)^{\frac{1}{q}}. \end{align*}

    Employing the property of G-_{m}PF of |\mathfrak{D}'|^q , we have

    \begin{align*} &\bigg|\frac{-\mathfrak{D}(m\mathfrak{d}_{1})+\mathfrak{D}(m\mathfrak{d}_{1}+\mathcal{N}(\mathfrak{d}_{2}, \mathfrak{d}_{1}, m))}{2}-\frac{2(1-\omega)} {\omega\mathcal{N}(\mathfrak{d}_{2}, \mathfrak{d}_{1}, m)}\mathfrak{D}(k) \\& +\frac{\mathfrak{B}(\omega)}{\omega\mathcal{N}(\mathfrak{d}_{2}, \mathfrak{d}_{1}, m)}\left[^{\mathfrak{CF}}_{m\mathfrak{d}_{1}}\mathrm{I}^{\omega} \mathfrak{D}(k)+^{\mathfrak{CF}}\mathrm{I}_{m\mathfrak{d}_{1}+\mathcal{N}(\mathfrak{d}_{2}, \mathfrak{d}_{1}, m)}^{\omega} \mathfrak{D}(k)\right]\bigg| \\& \leq \frac{\mathcal{N}(\mathfrak{d}_{2}, \mathfrak{d}_{1}, m)}{2}\left(\frac{1}{2}\right)^{1-\frac{1}{q}} \\&\times\left(\int_{0}^{1}|1-2\mathfrak{s}|\left[\frac{m}{n}\sum\limits_{\mathfrak{u} = 1}^{\mathfrak{n}}[1-\mathfrak{s}^{\mathtt{\mathfrak{u}}}]|\mathfrak{D}'(\mathfrak{d}_{1})|^{q} +\frac{1}{n}\sum\limits_{\mathfrak{u} = 1}^{\mathfrak{n}}[1-(1-\mathfrak{s})^{\mathtt{\mathfrak{u}}}]|\mathfrak{D}'(\mathfrak{d}_{2})|^{q}\right]d\mathfrak{s}\right)^{\frac{1}{q}} \\& \leq \frac{\mathcal{N}(\mathfrak{d}_{2}, \mathfrak{d}_{1}, m)}{2}\left(\frac{1}{2}\right)^{1-\frac{1}{q}} \\&\times\left(\frac{m|\mathfrak{D}'(\mathfrak{d}_{1})|^{q}}{n}\sum\limits_{\mathfrak{u} = 1}^{\mathfrak{n}}\int_{0}^{1}|1-2\mathfrak{s}|[1-\mathfrak{s}^{\mathtt{\mathfrak{u}}}]d\mathfrak{s}+ \frac{|\mathfrak{D}'(\mathfrak{d}_{2})|^{q}}{n}\sum\limits_{\mathfrak{u} = 1}^{\mathfrak{n}}\int_{0}^{1}|1-2\mathfrak{s}|[1-(1-\mathfrak{s})^{\mathtt{\mathfrak{u}}}] d\mathfrak{s}\right)^{\frac{1}{q}} \\& \leq \frac{\mathcal{N}(\mathfrak{d}_{2}, \mathfrak{d}_{1}, m)}{2}\left(\frac{1}{2}\right)^{1-\frac{1}{q}} \\&\times\left(\frac{m|\mathfrak{D}'(\mathfrak{d}_{1})|^{q}}{n}\sum\limits_{\mathfrak{u} = 1}^{\mathfrak{n}}\frac{(\mathtt{\mathfrak{u}^2+\mathfrak{u}+2})2^{\mathtt{\mathfrak{u}}}-2} {(\mathtt{\mathfrak{u}+1})(\mathtt{\mathfrak{u}+2})2^{\mathtt{\mathfrak{u}+1}}}+ \frac{|\mathfrak{D}'(\mathfrak{d}_{2})|^{q}}{n}\sum\limits_{\mathfrak{u} = 1}^{\mathfrak{n}}\frac{(\mathtt{\mathfrak{u}^2+\mathfrak{u}+2})2^{\mathtt{\mathfrak{u}}}-2} {(\mathtt{\mathfrak{u}+1})(\mathtt{\mathfrak{u}+2})2^{\mathtt{\mathfrak{u}+1}}}\right)^{\frac{1}{q}}. \end{align*}

    By simplifying we obtain the desired result.

    Corollary 5.13. Choosing \mathfrak{n} = 1 , then

    \begin{align*} &\bigg|\frac{-\mathfrak{D}(m\mathfrak{d}_{1})+\mathfrak{D}(m\mathfrak{d}_{1}+\mathcal{N}(\mathfrak{d}_{2}, \mathfrak{d}_{1}, m))}{2}-\frac{2(1-\omega)} {\omega\mathcal{N}(\mathfrak{d}_{2}, \mathfrak{d}_{1}, m)}\mathfrak{D}(k) \\& +\frac{\mathfrak{B}(\omega)}{\omega\mathcal{N}(\mathfrak{d}_{2}, \mathfrak{d}_{1}, m)} \left[^{\mathfrak{CF}}_{m\mathfrak{d}_{1}}\mathrm{I}^{\omega} \mathfrak{D}(k)+^{\mathfrak{CF}}\mathrm{I}_{m\mathfrak{d}_{1}+\mathcal{N}(\mathfrak{d}_{2}, \mathfrak{d}_{1}, m)}^{\omega} \mathfrak{D}(k)\right]\bigg| \\& \leq \frac{\mathcal{N}(\mathfrak{d}_{2}, \mathfrak{d}_{1}, m)}{2} \left(\frac{m|\mathfrak{D}'(\mathfrak{d}_{1})|^{q}+|\mathfrak{D}'(\mathfrak{d}_{2})|^{q}}{2}\right)^{\frac{1}{q}}. \end{align*}

    Corollary 5.14. Choosing m = 1 , then

    \begin{align*} &\bigg|-\frac{\mathfrak{D}(\mathfrak{d}_{1})+\mathfrak{D}(\mathfrak{d}_{1}+\mathcal{N}(\mathfrak{d}_{2}, \mathfrak{d}_{1}))}{2}-\frac{2(1-\omega)}{\omega\mathcal{N}(\mathfrak{d}_{2}, \mathfrak{d}_{1})}\mathfrak{D}(k)\nonumber \\& +\frac{\mathfrak{B}(\omega)}{\omega\mathcal{N}(\mathfrak{d}_{2}, \mathfrak{d}_{1})}\left[ \left( ^{\mathfrak{CF}}_{\mathfrak{d}_{1}}\mathrm{I}^\omega \mathfrak{D}\right)(k)+ \left( ^{\mathfrak{CF}}\mathrm{I}^\omega_{\mathfrak{d}_{1}+\mathcal{N}(\mathfrak{d}_{2}, \mathfrak{d}_{1})} \mathfrak{D}\right)(k)\right]\bigg|\nonumber\\& \leq \frac{\mathcal{N}(\mathfrak{d}_{2}, \mathfrak{d}_{1})}{2}\left(\frac{1}{2}\right)^{1-\frac{1}{q}}\left(\frac{1}{n}\sum\limits_{\mathfrak{u} = 1}^{\mathfrak{n}} \frac{(\mathtt{\mathfrak{u}^2+\mathfrak{u}+2})2^{\mathtt{\mathfrak{u}}}-2}{(\mathtt{\mathfrak{u}+1})(\mathtt{\mathfrak{u}+2})2^{\mathtt{\mathfrak{u}+1}}}\right)^{\frac{1}{q}} \left(\frac{|\mathfrak{D}'(\mathfrak{d}_{1})|^{q}+|\mathfrak{D}'(\mathfrak{d}_{2})|^{q}}{2}\right)^{\frac{1}{q}}. \end{align*}

    Corollary 5.15. Choosing \mathfrak{n} = m = 1 , then

    \begin{align*} &\bigg|\frac{-\mathfrak{D}(\mathfrak{d}_{1})+\mathfrak{D}(\mathfrak{d}_{1}+\mathcal{N}(\mathfrak{d}_{2}, \mathfrak{d}_{1}))}{2}-\frac{2(1-\omega)} {\omega\mathcal{N}(\mathfrak{d}_{2}, \mathfrak{d}_{1})}\mathfrak{D}(k) \\& +\frac{\mathfrak{B}(\omega)}{\omega\mathcal{N}(\mathfrak{d}_{2}, \mathfrak{d}_{1})} \left[^{\mathfrak{CF}}_{\mathfrak{d}_{1}}\mathrm{I}^{\omega} \mathfrak{D}(k)+^{\mathfrak{CF}}\mathrm{I}_{\mathfrak{d}_{1}+\mathcal{N}(\mathfrak{d}_{2}, \mathfrak{d}_{1})}^{\omega} \mathfrak{D}(k)\right]\bigg| \\& \leq \frac{\mathcal{N}(\mathfrak{d}_{2}, \mathfrak{d}_{1})}{2} \left(\frac{|\mathfrak{D}'(\mathfrak{d}_{1})|^{q}+|\mathfrak{D}'(\mathfrak{d}_{2})|^{q}}{2}\right)^{\frac{1}{q}}. \end{align*}

    Corollary 5.16. Choosing \mathcal{N}(\mathfrak{d}_{2}, \mathfrak{d}_{1}, m) = \mathfrak{d}_{2}-m\mathfrak{d}_{1} , then

    \begin{align*} &\left|\frac{\mathfrak{D}(m\mathfrak{d}_{1})+\mathfrak{D}(\mathfrak{d}_{2})}{2}-\frac{2(1-\omega)} {\omega(\mathfrak{d}_{2}-m\mathfrak{d}_{1})}\mathfrak{D}(k)+\frac{\mathfrak{B}(\omega)}{\omega(\mathfrak{d}_{2}-m\mathfrak{d}_{1})} \left[^{\mathfrak{CF}}_{m\mathfrak{d}_{1}}\mathrm{I}^{\omega} \mathfrak{D}(k)+^{\mathfrak{CF}}\mathrm{I}_{\mathfrak{d}_{2}}^{\omega} \mathfrak{D}(k)\right]\right| \\& \leq \frac{\mathfrak{d}_{2}-m\mathfrak{d}_{1}}{2}(\frac{1}{2})^{1-\frac{1}{q}}\left(\frac{1}{n}\sum\limits_{\mathfrak{u} = 1}^{\mathfrak{n}} \frac{(\mathtt{\mathfrak{u}^2+\mathfrak{u}+2})2^{\mathtt{\mathfrak{u}}}-2} {(\mathtt{\mathfrak{u}+1})(\mathtt{\mathfrak{u}+2})2^{\mathtt{\mathfrak{u}+1}}}\right)^{\frac{1}{q}} \left(\frac{m|\mathfrak{D}'(\mathfrak{d}_{1})|^{q}+|\mathfrak{D}'(\mathfrak{d}_{2})|^{q}}{2}\right)^{\frac{1}{q}}. \end{align*}

    Corollary 5.17. Choosing \mathcal{N}(\mathfrak{d}_{2}, \mathfrak{d}_{1}, m) = \mathfrak{d}_{2}-m\mathfrak{d}_{1} and m = 1 , then

    \begin{align*} &\left|\frac{\mathfrak{D}(\mathfrak{d}_{1})+\mathfrak{D}(\mathfrak{d}_{2})}{2}-\frac{2(1-\omega)} {\omega(\mathfrak{d}_{2}-\mathfrak{d}_{1})}\mathfrak{D}(k)+\frac{\mathfrak{B}(\omega)}{\omega(\mathfrak{d}_{2}-\mathfrak{d}_{1})} \left[^{\mathfrak{CF}}_{\mathfrak{d}_{1}}\mathrm{I}^{\omega} \mathfrak{D}(k)+^{\mathfrak{CF}}\mathrm{I}_{\mathfrak{d}_{2}}^{\omega} \mathfrak{D}(k)\right]\right| \\& \leq \frac{\mathfrak{d}_{2}-\mathfrak{d}_{1}}{2}(\frac{1}{2})^{1-\frac{1}{q}}\left(\frac{1}{n}\sum\limits_{\mathfrak{u} = 1}^{\mathfrak{n}} \frac{(\mathtt{\mathfrak{u}^2+\mathfrak{u}+2})2^{\mathtt{\mathfrak{u}}}-2} {(\mathtt{\mathfrak{u}+1})(\mathtt{\mathfrak{u}+2})2^{\mathtt{\mathfrak{u}+1}}}\right)^{\frac{1}{q}} \left(\frac{|\mathfrak{D}'(\mathfrak{d}_{1})|^{q}+|\mathfrak{D}'(\mathfrak{d}_{2})|^{q}}{2}\right)^{\frac{1}{q}}. \end{align*}

    Corollary 5.18. Choosing \mathfrak{n} = 1 and \mathcal{N}(\mathfrak{d}_{2}, \mathfrak{d}_{1}, m) = \mathfrak{d}_{2}-m\mathfrak{d}_{1} , then

    \begin{align*} &\left|\frac{\mathfrak{D}(m\mathfrak{d}_{1})+\mathfrak{D}(\mathfrak{d}_{2})}{2}-\frac{2(1-\omega)} {\omega(\mathfrak{d}_{2}-m\mathfrak{d}_{1})}\mathfrak{D}(k)+\frac{\mathfrak{B}(\omega)}{\omega(\mathfrak{d}_{2}-m\mathfrak{d}_{1})}\left[^{\mathfrak{CF}}_{m\mathfrak{d}_{1}}\mathrm{I}^{\omega} \mathfrak{D}(k)+^{\mathfrak{CF}}\mathrm{I}_{\mathfrak{d}_{2}}^{\omega} \mathfrak{D}(k)\right]\right| \\& \leq \frac{\mathfrak{d}_{2}-m\mathfrak{d}_{1}}{4}\left(\frac{1}{2}\right)^{1-\frac{1}{q}} \left(\frac{m|\mathfrak{D}'(\mathfrak{d}_{1})|^{q}+|\mathfrak{D}'(\mathfrak{d}_{2})|^{q}}{2}\right)^{\frac{1}{q}}. \end{align*}

    Corollary 5.19. Choosing \mathcal{N}(\mathfrak{d}_{2}, \mathfrak{d}_{1}, m) = \mathfrak{d}_{2}-m\mathfrak{d}_{1} and \mathfrak{n} = m = 1 , then

    \begin{align*} &\left|\frac{\mathfrak{D}(\mathfrak{d}_{1})+\mathfrak{D}(\mathfrak{d}_{2})}{2}-\frac{2(1-\omega)} {\omega(\mathfrak{d}_{2}-\mathfrak{d}_{1})}\mathfrak{D}(k)+\frac{\mathfrak{B}(\omega)}{\omega(\mathfrak{d}_{2}-\mathfrak{d}_{1})} \left[^{\mathfrak{CF}}_{\mathfrak{d}_{1}}\mathrm{I}^{\omega} \mathfrak{D}(k)+^{\mathfrak{CF}}\mathrm{I}_{\mathfrak{d}_{2}}^{\omega} \mathfrak{D}(k)\right]\right| \\& \leq \frac{\mathfrak{d}_{2}-\mathfrak{d}_{1}}{2}(\frac{1}{2})^{1-\frac{1}{q}} \left(\frac{|\mathfrak{D}'(\mathfrak{d}_{1})|^{q}+|\mathfrak{D}'(\mathfrak{d}_{2})|^{q}}{2}\right)^{\frac{1}{q}}. \end{align*}

    In the area of integral inequalities, several mathematicians have lately collaborated on novel strategies to this subject from numerous viewpoints and multiple views. In 2019, the Hölder Iscan integral inequality was studied by İşcan [72] for the first time as estimations of Hölder inequality. The refined version of power mean inequality is called the improved power mean integral inequality. This inequality was first time explored by Kadakal [73] in 2019.

    The major goal of this aspect is to achieve fresh findings using Hölder-Iscan inequality and improved power mean inequality. Here, we add some remarks and corollaries for value and worth.

    Theorem 6.1. Let \mathfrak{D}:\mathbb{I} = [m\mathfrak{d}_{1}, m\mathfrak{d}_{1}+\mathcal{N}(\mathfrak{d}_{2}, \mathfrak{d}_{1}, m)]\to \mathbb{R} be a differentiable function on \mathbb{I}^\circ, with\; \; m\mathfrak{d}_{1} < m\mathfrak{d}_{1}+\mathcal{N}(\mathfrak{d}_{2}, \mathfrak{d}_{1}, m) , q > 1, \quad p^{-1}+q^{-1} = 1 and assume that \mathfrak{D}'\in \mathcal{L}[m\mathfrak{d}_{1}, m\mathfrak{d}_{1} +\mathcal{N}(\mathfrak{d}_{2}, \mathfrak{d}_{1}, m)] . If |\mathfrak{D}'|^q is G-_{m}PF on [m\mathfrak{d}_{1}, m\mathfrak{d}_{1}+\mathcal{N}(\mathfrak{d}_{2}, \mathfrak{d}_{1}, m)] , then

    \begin{align*} &\bigg|-\frac{\mathfrak{D}(m\mathfrak{d}_{1})+\mathfrak{D}(m\mathfrak{d}_{1}+\mathcal{N}(\mathfrak{d}_{2}, \mathfrak{d}_{1}, m))}{2}-\frac{2(1-\omega)}{\omega\mathcal{N}(\mathfrak{d}_{2}, \mathfrak{d}_{1}, m)}\mathfrak{D}(k) \\& +\frac{\mathfrak{B}(\omega)}{\omega\mathcal{N}(\mathfrak{d}_{2}, \mathfrak{d}_{1}, m)}\left[ \left(^{\mathfrak{CF}}_{m\mathfrak{d}_{1}}\mathrm{I}^\omega \mathfrak{D}\right)(k)+ \left( ^{\mathfrak{CF}}\mathrm {I}^\omega_{\mathfrak{d}_{1}+\mathcal{N}(\mathfrak{d}_{2}, \mathfrak{d}_{1}, m)} \mathfrak{D}\right)(k)\right]\bigg| \\& \leq \frac{\mathcal{N}(\mathfrak{d}_{2}, \mathfrak{d}_{1}, m) }{2}\left( \frac{1}{2(p+1)}\right) ^{\frac{1}{p}}\left(\frac{m|\mathfrak{D}'(\mathfrak{d}_{1})|^q}{n}\sum\limits_{\mathfrak{u} = 1}^{\mathfrak{n}}\frac{\mathtt{\mathfrak{u}}(\mathtt{\mathfrak{u}+3})}{2(\mathtt{\mathfrak{u}+1})(\mathtt{\mathfrak{u}+2})} + \frac{|\mathfrak{D}'(\mathfrak{d}_{2})|^q}{n}\sum\limits_{\mathfrak{u} = 1}^{\mathfrak{n}}\frac{\mathtt{\mathfrak{u}}}{2(\mathtt{\mathfrak{u}+2})}\right) ^{\frac{1}{q}} \\& +\frac{\mathcal{N}(\mathfrak{d}_{2}, \mathfrak{d}_{1}, m) }{2}\left( \frac{1}{2(p+1)}\right) ^{\frac{1}{p}}\left(\frac{|\mathfrak{D}'(\mathfrak{d}_{2})|^q}{n}\sum\limits_{\mathfrak{u} = 1}^{\mathfrak{n}}\frac{\mathtt{\mathfrak{u}}(\mathtt{\mathfrak{u}+3})}{2(\mathtt{\mathfrak{u}+1}) (\mathtt{\mathfrak{u}+2})} + \frac{|\mathfrak{D}'(\mathfrak{d}_{1})|^q}{n}\sum\limits_{\mathfrak{u} = 1}^{\mathfrak{n}}\frac{\mathtt{\mathfrak{u}}}{2(\mathtt{\mathfrak{u}+2})}\right) ^{\frac{1}{q}}, \end{align*}

    where \omega\in[0, 1] , m\in(0, 1] and k\in [m\mathfrak{d}_{1}, m\mathfrak{d}_{1}+\mathcal{N}(\mathfrak{d}_{2}, \mathfrak{d}_{1}, m)].

    Proof. Employing Lemma 5.1, we have

    \begin{align*} &\bigg|-\frac{\mathfrak{D}(m\mathfrak{d}_{1})+\mathfrak{D}(m\mathfrak{d}_{1}+\mathcal{N}(\mathfrak{d}_{2}, \mathfrak{d}_{1}, m))}{2}-\frac{2(1-\omega)}{\omega\mathcal{N}(\mathfrak{d}_{2}, \mathfrak{d}_{1}, m)}\mathfrak{D}(k) \\& +\frac{\mathfrak{B}(\omega)}{\omega\mathcal{N}(\mathfrak{d}_{2}, \mathfrak{d}_{1}, m)}\left[ \left( ^{\mathfrak{CF}}_{m\mathfrak{d}_{1}}\mathrm{I}^\omega \mathfrak{D}\right)(k)+ \left( ^{\mathfrak{CF}}\mathrm{I}^\omega_{m\mathfrak{d}_{1}+\mathcal{N}(\mathfrak{d}_{2}, \mathfrak{d}_{1}, m)} \mathfrak{D}\right)(k)\right]\bigg|\\ &\leq \frac{\mathcal{N}(\mathfrak{d}_{2}, \mathfrak{d}_{1}, m)}{2}\int_{0}^{1}|1-2\mathfrak{s}||\mathfrak{D}'(m\mathfrak{d}_{1}+\mathfrak{s}\mathcal{N}(\mathfrak{d}_{2}, \mathfrak{d}_{1}, m))|d\mathfrak{s}. \end{align*}

    Employing Hölder-İşcan inequality, we have

    \begin{align*} &\bigg|-\frac{\mathfrak{D}(m\mathfrak{d}_{1})+\mathfrak{D}(m\mathfrak{d}_{1}+\mathcal{N}(\mathfrak{d}_{2}, \mathfrak{d}_{1}, m))}{2}-\frac{2(1-\omega)}{\omega\mathcal{N}(\mathfrak{d}_{2}, \mathfrak{d}_{1}, m)}\mathfrak{D}(k) \\& +\frac{\mathfrak{B}(\omega)}{\omega\mathcal{N}(\mathfrak{d}_{2}, \mathfrak{d}_{1}, m)}\left[ \left( ^{\mathfrak{CF}}_{m\mathfrak{d}_{1}}\mathrm{I}^\omega \mathfrak{D}\right)(k)+ \left( ^{\mathfrak{CF}}\mathrm{I}^\omega_{m\mathfrak{d}_{1}+\mathcal{N}(\mathfrak{d}_{2}, \mathfrak{d}_{1}, m)} \mathfrak{D}\right)(k)\right]\bigg| \\ &\leq\frac{\mathcal{N}(\mathfrak{d}_{2}, \mathfrak{d}_{1}, m)}{2}\left(\int_{0}^{1}(1-\mathfrak{s})|1-2\mathfrak{s}|^{p}d\mathfrak{s}\right)^{\frac{1}{p}} \left(\int_{0}^{1}(1-\mathfrak{s})|\mathfrak{D}^{\prime}(m\mathfrak{d}_{1}+\mathfrak{s}\mathcal{N}(\mathfrak{d}_{1}, \mathfrak{d}_{2}, m))|^{q}d\mathfrak{s}\right)^{\frac{1}{q}}\\ &+\frac{\mathcal{N}(\mathfrak{d}_{2}, \mathfrak{d}_{1}, m)}{2}\left(\int_{0}^{1}\mathfrak{s}|1-2\mathfrak{s}|^{p}d\mathfrak{s}\right)^{\frac{1}{p}} \left(\int_{0}^{1}\mathfrak{s}|\mathfrak{D}^{\prime}(m\mathfrak{d}_{1}+\mathfrak{s}\mathcal{N}(\mathfrak{d}_{1}, \mathfrak{d}_{2}, m))|^{q}d\mathfrak{s}\right)^{\frac{1}{q}}. \end{align*}

    Employing G-_{m}PF of |\mathfrak{D}'|^q , we have

    \begin{align*} &\bigg|-\frac{\mathfrak{D}(m\mathfrak{d}_{1})+\mathfrak{D}(m\mathfrak{d}_{1}+\mathcal{N}(\mathfrak{d}_{2}, \mathfrak{d}_{1}, m))}{2}-\frac{2(1-\omega)}{\omega\mathcal{N}(\mathfrak{d}_{2}, \mathfrak{d}_{1}, m)}\mathfrak{D}(k) \\& +\frac{\mathfrak{B}(\omega)}{\omega\mathcal{N}(\mathfrak{d}_{2}, \mathfrak{d}_{1}, m)}\left[ \left( ^{\mathfrak{CF}}_{m\mathfrak{d}_{1}}\mathrm{I}^\omega \mathfrak{D}\right)(k)+ \left( ^{\mathfrak{CF}}\mathrm{I}^\omega_{m\mathfrak{d}_{1}+\mathcal{N}(\mathfrak{d}_{2}, \mathfrak{d}_{1}, m)} \mathfrak{D}\right)(k)\right]\bigg| \\ &\leq \frac{\mathcal{N}(\mathfrak{d}_{2}, \mathfrak{d}_{1}, m) }{2}\left( \frac{1}{2(p+1)}\right) ^{\frac{1}{p}} \\&\times\bigg(\frac{m|\mathfrak{D}'(\mathfrak{d}_{1})|^q}{n}\sum\limits_{\mathfrak{u} = 1}^{\mathfrak{n}}\int_{0}^{1}(1-\mathfrak{s})(1-\mathfrak{s}^{\mathtt{\mathfrak{u}}})d\mathfrak{s} + \frac{|\mathfrak{D}'(\mathfrak{d}_{2})|^q}{n}\sum\limits_{\mathfrak{u} = 1}^{\mathfrak{n}}\int_{0}^{1}(1-\mathfrak{s})(1-(1-\mathfrak{s})^{\mathtt{\mathfrak{u}}})d\mathfrak{s}\bigg) ^{\frac{1}{q}} \\ &+\frac{\mathcal{N}(\mathfrak{d}_{2}, \mathfrak{d}_{1}, m) }{2}\left( \frac{1}{2(p+1)}\right) ^{\frac{1}{p}}\\&\times\left(\frac{m|\mathfrak{D}'(\mathfrak{d}_{1})|^q}{n}\sum\limits_{\mathfrak{u} = 1}^{\mathfrak{n}}\int_{0}^{1}\mathfrak{s}(1-\mathfrak{s}^{\mathtt{\mathfrak{u}}})d\mathfrak{s}+ \frac{|\mathfrak{D}'(\mathfrak{d}_{2})|^q}{n}\sum\limits_{\mathfrak{u} = 1}^{\mathfrak{n}}\int_{0}^{1}\mathfrak{s}(1-(1-\mathfrak{s})^{\mathtt{\mathfrak{u}}})d\mathfrak{s}\right) ^{\frac{1}{q}}\\ & = \frac{\mathcal{N}(\mathfrak{d}_{2}, \mathfrak{d}_{1}, m) }{2}\left( \frac{1}{2(p+1)}\right) ^{\frac{1}{p}}\left(\frac{m|\mathfrak{D}'(\mathfrak{d}_{1})|^q}{n}\sum\limits_{\mathfrak{u} = 1}^{\mathfrak{n}}\frac{\mathtt{\mathfrak{u}}(\mathtt{\mathfrak{u}+3})}{2(\mathtt{\mathfrak{u}+1})(\mathtt{\mathfrak{u}+2})} + \frac{|\mathfrak{D}'(\mathfrak{d}_{2})|^q}{n}\sum\limits_{\mathfrak{u} = 1}^{\mathfrak{n}}\frac{\mathtt{\mathfrak{u}}}{2(\mathtt{\mathfrak{u}+2})}\right) ^{\frac{1}{q}} \\ &+\frac{\mathcal{N}(\mathfrak{d}_{2}, \mathfrak{d}_{1}, m) }{2}\left( \frac{1}{2(p+1)}\right) ^{\frac{1}{p}}\left(\frac{|\mathfrak{D}'(\mathfrak{d}_{2})|^q}{n}\sum\limits_{\mathfrak{u} = 1}^{\mathfrak{n}}\frac{\mathtt{\mathfrak{u}}(\mathtt{\mathfrak{u}+3})}{2(\mathtt{\mathfrak{u}+1})(\mathtt{\mathfrak{u}+2})} + \frac{m|\mathfrak{D}'(\mathfrak{d}_{1})|^q}{n}\sum\limits_{\mathfrak{u} = 1}^{\mathfrak{n}}\frac{\mathtt{\mathfrak{u}}}{2(\mathtt{\mathfrak{u}+2})}\right) ^{\frac{1}{q}}. \end{align*}

    This is the required proof.

    Corollary 6.1. Choosing \mathfrak{n} = 1 we obtain

    \begin{align*} &\bigg|-\frac{\mathfrak{D}(m\mathfrak{d}_{1})+\mathfrak{D}(m\mathfrak{d}_{1}+\mathcal{N}(\mathfrak{d}_{2}, \mathfrak{d}_{1}, m))}{2}-\frac{2(1-\omega)} {\omega\mathcal{N}(\mathfrak{d}_{2}, \mathfrak{d}_{1}, m)} \mathfrak{D}(k) \\& +\frac{\mathfrak{B}(\omega)}{\omega\mathcal{N}(\mathfrak{d}_{2}, \mathfrak{d}_{1}, m)}\left[ \left( ^{\mathfrak{CF}}_{m\mathfrak{d}_{1}}\mathrm{I}^\omega \mathfrak{D}\right)(k)+ \left( ^{\mathfrak{CF}}\mathrm{I}^\omega_{m\mathfrak{d}_{1}+\mathcal{N}(\mathfrak{d}_{2}, \mathfrak{d}_{1}, m)} \mathfrak{D}\right)(k)\right]\bigg| \\ &\leq \frac{\mathcal{N}(\mathfrak{d}_{2}, \mathfrak{d}_{1}, m) }{2}\left( \frac{1}{2(p+1)}\right) ^{\frac{1}{p}} \left\{\left(\frac{2m|\mathfrak{D}'(\mathfrak{d}_{1})|^q+ |\mathfrak{D}'(\mathfrak{d}_{2})|^q}{6}\right) ^{\frac{1}{q}} +\left(\frac{m|\mathfrak{D}'(\mathfrak{d}_{1})|^q+ 2|\mathfrak{D}'(\mathfrak{d}_{2})|^q}{6}\right) ^{\frac{1}{q}}\right\}. \end{align*}

    Corollary 6.2. Assume that m = 1. Then we obtain

    \begin{align*} &\bigg|-\frac{\mathfrak{D}(\mathfrak{d}_{1})+\mathfrak{D}(\mathfrak{d}_{1}+\mathcal{N}(\mathfrak{d}_{2}, \mathfrak{d}_{1}))}{2}-\frac{2(1-\omega)}{\omega\mathcal{N}(\mathfrak{d}_{2}, \mathfrak{d}_{1})}\mathfrak{D}(k) \\& +\frac{\mathfrak{B}(\omega)}{\omega\mathcal{N}(\mathfrak{d}_{2}, \mathfrak{d}_{1})}\left[ \left(^{\mathfrak{CF}}_{\mathfrak{d}_{1}}\mathrm{I}^\omega \mathfrak{D}\right)(k)+ \left( ^{\mathfrak{CF}}\mathrm {I}^\omega_{\mathfrak{d}_{1}+\mathcal{N}(\mathfrak{d}_{2}, \mathfrak{d}_{1})} \mathfrak{D}\right)(k)\right]\bigg| \\& \leq \frac{\mathcal{N}(\mathfrak{d}_{2}, \mathfrak{d}_{1}) }{2}\left( \frac{1}{2(p+1)}\right) ^{\frac{1}{p}}\left(\frac{|\mathfrak{D}'(\mathfrak{d}_{1})|^q}{n}\sum\limits_{\mathfrak{u} = 1}^{\mathfrak{n}}\frac{\mathtt{\mathfrak{u}}(\mathtt{\mathfrak{u}+3})}{2(\mathtt{\mathfrak{u}+1})(\mathtt{\mathfrak{u}+2})} + \frac{|\mathfrak{D}'(\mathfrak{d}_{2})|^q}{n}\sum\limits_{\mathfrak{u} = 1}^{\mathfrak{n}}\frac{\mathtt{\mathfrak{u}}}{2(\mathtt{\mathfrak{u}+2})}\right) ^{\frac{1}{q}} \\& +\frac{\mathcal{N}(\mathfrak{d}_{2}, \mathfrak{d}_{1}) }{2}\left( \frac{1}{2(p+1)}\right) ^{\frac{1}{p}}\left(\frac{|\mathfrak{D}'(\mathfrak{d}_{2})|^q}{n}\sum\limits_{\mathfrak{u} = 1}^{\mathfrak{n}}\frac{\mathtt{\mathfrak{u}}(\mathtt{\mathfrak{u}+3})}{2(\mathtt{\mathfrak{u}+1}) (\mathtt{\mathfrak{u}+2})} + \frac{|\mathfrak{D}'(\mathfrak{d}_{1})|^q}{n}\sum\limits_{\mathfrak{u} = 1}^{\mathfrak{n}}\frac{\mathtt{\mathfrak{u}}}{2(\mathtt{\mathfrak{u}+2})}\right) ^{\frac{1}{q}}. \end{align*}

    Corollary 6.3. Assume that \mathfrak{n} = m = 1. Then we obtain

    \begin{align*} &\bigg|-\frac{\omega(\mathfrak{d}_{1})+\mathfrak{D}(\mathfrak{d}_{1}+\mathcal{N}(\mathfrak{d}_{2}, \mathfrak{d}_{1}))}{2}-\frac{2(1-\omega)} {\omega\mathcal{N}(\mathfrak{d}_{2}, \mathfrak{d}_{1})} \mathfrak{D}(k) \\& +\frac{\mathfrak{B}(\omega)}{\omega\mathcal{N}(\mathfrak{d}_{2}, \mathfrak{d}_{1})}\left[ \left( ^{\mathfrak{CF}}_{\mathfrak{d}_{1}}\mathrm{I}^\omega \mathfrak{D}\right)(k)+ \left( ^{\mathfrak{CF}}\mathrm{I}^\omega_{\mathfrak{d}_{1}+\mathcal{N}(\mathfrak{d}_{2}, \mathfrak{d}_{1})} \mathfrak{D}\right)(k)\right]\bigg| \\ &\leq \frac{\mathcal{N}(\mathfrak{d}_{2}, \mathfrak{d}_{1}) }{2}\left( \frac{1}{2(p+1)}\right) ^{\frac{1}{p}} \left\{\left(\frac{2|\mathfrak{D}'(\mathfrak{d}_{1})|^q+ |\mathfrak{D}'(\mathfrak{d}_{2})|^q}{6}\right) ^{\frac{1}{q}} +\left(\frac{|\mathfrak{D}'(\mathfrak{d}_{1})|^q+ 2|\mathfrak{D}'(\mathfrak{d}_{2})|^q}{6}\right) ^{\frac{1}{q}}\right\}. \end{align*}

    Corollary 6.4. If we put \mathcal{N}(\mathfrak{d}_{2}, \mathfrak{d}_{1}, m) = \mathfrak{d}_{2}-m\mathfrak{d}_{1} , then

    \begin{align*} &\bigg|-\frac{\mathfrak{D}(m\mathfrak{d}_{1})+\mathfrak{D}(\mathfrak{d}_{2})}{2}-\frac{2(1-\omega)}{\omega(\mathfrak{d}_{2}-m\mathfrak{d}_{1})}\mathfrak{D}(k)+\frac{\mathfrak{B}(\omega)}{\omega(\mathfrak{d}_{2}-m\mathfrak{d}_{1})}\left[ \left( ^{\mathfrak{CF}}_{m\mathfrak{d}_{1}}\mathrm{I}^\omega \mathfrak{D}\right)(k)+ \left( ^{\mathfrak{CF}}\mathrm{I}^\omega_{\mathfrak{d}_{2}} \mathfrak{D}\right)(k)\right]\bigg| \nonumber\\& \leq \frac{\mathfrak{d}_{2}-m\mathfrak{d}_{1}}{2}\left( \frac{1}{2(p+1)}\right) ^{\frac{1}{p}}\left(\frac{m|\mathfrak{D}'(\mathfrak{d}_{1})|^q}{n}\sum\limits_{\mathfrak{u} = 1}^{\mathfrak{n}}\frac{\mathtt{\mathfrak{u}}(\mathtt{\mathfrak{u}+3})}{2(\mathtt{\mathfrak{u}+1})(\mathtt{\mathfrak{u}+2})} + \frac{|\mathfrak{D}'(\mathfrak{d}_{2})|^q}{n}\sum\limits_{\mathfrak{u} = 1}^{\mathfrak{n}}\frac{\mathtt{\mathfrak{u}}}{2(\mathtt{\mathfrak{u}+2})}\right) ^{\frac{1}{q}} \\& +\frac{\mathfrak{d}_{2}-m\mathfrak{d}_{1} }{2}\left( \frac{1}{2(p+1)}\right) ^{\frac{1}{p}}\left(\frac{|\mathfrak{D}'(\mathfrak{d}_{2})|^q}{n}\sum\limits_{\mathfrak{u} = 1}^{\mathfrak{n}}\frac{\mathtt{\mathfrak{u}}(\mathtt{\mathfrak{u}+3})}{2(\mathtt{\mathfrak{u}+1}) (\mathtt{\mathfrak{u}+2})} + \frac{m|\mathfrak{D}'(\mathfrak{d}_{1})|^q}{n}\sum\limits_{\mathfrak{u} = 1}^{\mathfrak{n}}\frac{\mathtt{\mathfrak{u}}}{2(\mathtt{\mathfrak{u}+2})}\right) ^{\frac{1}{q}}. \end{align*}

    Corollary 6.5. If we put \mathcal{N}(\mathfrak{d}_{2}, \mathfrak{d}_{1}, m) = \mathfrak{d}_{2}-m\mathfrak{d}_{1} and m = 1 , then

    \begin{align*} &\bigg|-\frac{\mathfrak{D}(\mathfrak{d}_{1})+\mathfrak{D}(\mathfrak{d}_{2})}{2}-\frac{2(1-\omega)}{\omega(\mathfrak{d}_{2}-\mathfrak{d}_{1})}\mathfrak{D}(k)+\frac{\mathfrak{B}(\omega)}{\omega(\mathfrak{d}_{2}-\mathfrak{d}_{1})}\left[ \left( ^{\mathfrak{CF}}_{\mathfrak{d}_{1}}\mathrm{I}^\omega \mathfrak{D}\right)(k)+ \left( ^{\mathfrak{CF}}\mathrm{I}^\omega_{\mathfrak{d}_{2}} \mathfrak{D}\right)(k)\right]\bigg| \nonumber\\& \leq \frac{\mathfrak{d}_{2}-\mathfrak{d}_{1}}{2}\left( \frac{1}{2(p+1)}\right) ^{\frac{1}{p}}\left(\frac{|\mathfrak{D}'(\mathfrak{d}_{1})|^q}{n}\sum\limits_{\mathfrak{u} = 1}^{\mathfrak{n}}\frac{\mathtt{\mathfrak{u}}(\mathtt{\mathfrak{u}+3})}{2(\mathtt{\mathfrak{u}+1})(\mathtt{\mathfrak{u}+2})} + \frac{|\mathfrak{D}'(\mathfrak{d}_{2})|^q}{n}\sum\limits_{\mathfrak{u} = 1}^{\mathfrak{n}}\frac{\mathtt{\mathfrak{u}}}{2(\mathtt{\mathfrak{u}+2})}\right) ^{\frac{1}{q}} \\& +\frac{\mathfrak{d}_{2}-\mathfrak{d}_{1} }{2}\left( \frac{1}{2(p+1)}\right) ^{\frac{1}{p}}\left(\frac{|\mathfrak{D}'(\mathfrak{d}_{2})|^q}{n}\sum\limits_{\mathfrak{u} = 1}^{\mathfrak{n}}\frac{\mathtt{\mathfrak{u}}(\mathtt{\mathfrak{u}+3})}{2(\mathtt{\mathfrak{u}+1}) (\mathtt{\mathfrak{u}+2})} + \frac{|\mathfrak{D}'(\mathfrak{d}_{1})|^q}{n}\sum\limits_{\mathfrak{u} = 1}^{\mathfrak{n}}\frac{\mathtt{\mathfrak{u}}}{2(\mathtt{\mathfrak{u}+2})}\right) ^{\frac{1}{q}}. \end{align*}

    Corollary 6.6. If we put \mathfrak{n} = 1 and \mathcal{N}(\mathfrak{d}_{2}, \mathfrak{d}_{1}, m) = \mathfrak{d}_{2}-m\mathfrak{d}_{1} , then

    \begin{align*} &\left|\frac{\mathfrak{D}(m\mathfrak{d}_{1})+\mathfrak{D}(\mathfrak{d}_{2})}{2}-\frac{2(1-\omega)} {\omega(\mathfrak{d}_{2}-m\mathfrak{d}_{1})}\mathfrak{D}(k)+\frac{\mathfrak{B}(\omega)}{\omega(\mathfrak{d}_{2}-m\mathfrak{d}_{1})}\left[^{CF}_{m\mathfrak{d}_{1}}\mathrm{I}^{\omega} \mathfrak{D}(k)+^{\mathfrak{CF}}\mathrm{I}_{\mathfrak{d}_{2}}^{\omega} \mathfrak{D}(k)\right]\right| \\& \leq \frac{\mathfrak{d}_{2}-m\mathfrak{d}_{1} }{2}\left( \frac{1}{2(p+1)}\right) ^{\frac{1}{p}} \left\{\left(\frac{2m|\mathfrak{D}'(\mathfrak{d}_{1})|^q+ |\mathfrak{D}'(\mathfrak{d}_{2})|^q}{6}\right) ^{\frac{1}{q}} +\left(\frac{m|\mathfrak{D}'(\mathfrak{d}_{1})|^q+ 2|\mathfrak{D}'(\mathfrak{d}_{2})|^q}{6}\right) ^{\frac{1}{q}}\right\}. \end{align*}

    Corollary 6.7. If we put \mathcal{N}(\mathfrak{d}_{2}, \mathfrak{d}_{1}, m) = \mathfrak{d}_{2}-m\mathfrak{d}_{1} and \mathfrak{n} = m = 1 , then

    \begin{align*} &\left|\frac{\mathfrak{D}(\mathfrak{d}_{1})+\mathfrak{D}(\mathfrak{d}_{2})}{2}-\frac{2(1-\omega)} {\omega(\mathfrak{d}_{2}-\mathfrak{d}_{1})}\mathfrak{D}(k)+\frac{\mathfrak{B}(\omega)}{\omega(\mathfrak{d}_{2}-\mathfrak{d}_{1})}\left[^{CF}_{\mathfrak{d}_{1}}\mathrm{I}^{\omega} \mathfrak{D}(k)+^{\mathfrak{CF}}\mathrm{I}_{\mathfrak{d}_{2}}^{\omega} \mathfrak{D}(k)\right]\right| \\& \leq \frac{\mathfrak{d}_{2}-\mathfrak{d}_{1} }{2}\left( \frac{1}{2(p+1)}\right) ^{\frac{1}{p}} \left\{\left(\frac{2|\mathfrak{D}'(\mathfrak{d}_{1})|^q+ |\mathfrak{D}'(\mathfrak{d}_{2})|^q}{6}\right) ^{\frac{1}{q}} +\left(\frac{|\mathfrak{D}'(\mathfrak{d}_{1})|^q+ 2|\mathfrak{D}'(\mathfrak{d}_{2})|^q}{6}\right) ^{\frac{1}{q}}\right\}. \end{align*}

    Theorem 6.2. Let \mathfrak{D}:\mathbb{I} = [m\mathfrak{d}_{1}, m\mathfrak{d}_{1}+\mathcal{N}(\mathfrak{d}_{2}, \mathfrak{d}_{1}, m)]\to \mathbb{R} be a differentiable function on \mathbb{I}^\circ, with\; \; m\mathfrak{d}_{1} < m\mathfrak{d}_{1}+\mathcal{N}(\mathfrak{d}_{2}, \mathfrak{d}_{1}, m) , q\geq1 and assume that \mathfrak{D}'\in \mathcal{L}[m\mathfrak{d}_{1}, m\mathfrak{d}_{1}+\mathcal{N}(\mathfrak{d}_{2}, \mathfrak{d}_{1}, m)] . If |\mathfrak{D}'|^q is G-_{m}PF on [m\mathfrak{d}_{1}, m\mathfrak{d}_{1}+\mathcal{N}(\mathfrak{d}_{2}, \mathfrak{d}_{1}, m)] , then

    \begin{align*} \label{3.4} &\bigg|-\frac{\mathfrak{D}(m\mathfrak{d}_{1})+\mathfrak{D}(m\mathfrak{d}_{1}+\mathcal{N}(\mathfrak{d}_{2}, \mathfrak{d}_{1}, m))}{2}-\frac{2(1-\omega)}{\omega\mathcal{N}(\mathfrak{d}_{2}, \mathfrak{d}_{1}, m)}\mathfrak{D}(k) \\& +\frac{\mathfrak{B}(\omega)}{\omega\mathcal{N}(\mathfrak{d}_{2}, \mathfrak{d}_{1}, m)}\left[ \left(^{\mathfrak{CF}}_{m\mathfrak{d}_{1}}\mathrm{I}^\omega \mathfrak{D}\right)(k)+ \left( ^{\mathfrak{CF}}\mathrm{I}^\omega_{m\mathfrak{d}_{1}+\mathcal{N}(\mathfrak{d}_{2}, \mathfrak{d}_{1}, m)} \mathfrak{D}\right)(k)\right]\bigg| \\& \leq \frac{\mathcal{N}(\mathfrak{d}_{2}, \mathfrak{d}_{1}, m) }{2}\left( \frac{1}{2}\right) ^{2-\frac{2}{q}} \\&\times \left(\frac{m|\mathfrak{D}'(\mathfrak{d}_{1})|^q}{n}\sum\limits_{\mathfrak{u} = 1}^{\mathfrak{n}}\frac{(\mathtt{\mathfrak{u}+5})[(\mathtt{\mathfrak{u}}^{2}+ \mathtt{\mathfrak{u}+2})2^{\mathtt{\mathfrak{u}}}-2]} {2^{\mathtt{\mathfrak{u}+2}}(\mathtt{\mathfrak{u}+1})(\mathtt{\mathfrak{u}+2})(\mathtt{\mathfrak{u}+3})} + \frac{|\mathfrak{D}'(\mathfrak{d}_{2})|^q}{n}\sum\limits_{\mathfrak{u} = 1}^{\mathfrak{n}}\frac{(\mathtt{\mathfrak{u}}^{2}+\mathtt{\mathfrak{u}+2})2^{\mathfrak{u}}-2}{2^{\mathtt{\mathfrak{u}+2}} (\mathtt{\mathfrak{u}+2})(\mathtt{\mathfrak{u}+3})}\right) ^{\frac{1}{q}} \\& +\frac{\mathcal{N}(\mathfrak{d}_{2}, \mathfrak{d}_{1}, m) }{2}\left( \frac{1}{2}\right) ^{2-\frac{2}{q}} \\&\times \left(\frac{m|\mathfrak{D}'(\mathfrak{d}_{1})|^q}{n}\sum\limits_{\mathfrak{u} = 1}^{\mathfrak{n}}\frac{(\mathtt{\mathfrak{u}}^{2}+\mathtt{\mathfrak{u}+2})2^{\mathtt{\mathfrak{u}}}-2} {2^{\mathtt{\mathfrak{u}+2}}(\mathtt{\mathfrak{u}+2})(\mathtt{\mathfrak{u}+3})} + \frac{|\mathfrak{D}'(\mathfrak{d}_{2})|^q}{n}\sum\limits_{\mathfrak{u} = 1}^{\mathfrak{n}}\frac{(\mathtt{\mathfrak{u}+5})[(\mathtt{\mathfrak{u}}^{2}+\mathtt{\mathfrak{u}+2})2^{\mathtt{\mathfrak{u}}}-2]} {2^{\mathtt{\mathfrak{u}+2}}(\mathtt{\mathfrak{u}+1})(\mathtt{\mathfrak{u}+2})(\mathtt{\mathfrak{u}+3})}\right)^{\frac{1}{q}}, \end{align*}

    where \omega\in[0, 1] , m\in (0, 1] and k\in [m\mathfrak{d}_{1}, m\mathfrak{d}_{1}+\mathcal{N}(\mathfrak{d}_{2}, \mathfrak{d}_{1}, m)].

    Proof. First, assume that q > 1 . According to the Lemma 5.1, we have

    \begin{align*} &\bigg|-\frac{\mathfrak{D}(m\mathfrak{d}_{1})+\mathfrak{D}(m\mathfrak{d}_{1}+\mathcal{N}(\mathfrak{d}_{2}, \mathfrak{d}_{1}, m))}{2}-\frac{2(1-\omega)} {\omega\mathcal{N}(\mathfrak{d}_{2}, \mathfrak{d}_{1}, m)}\mathfrak{D}(k) \\& +\frac{\mathfrak{B}(\omega)}{\omega\mathcal{N}(\mathfrak{d}_{2}, \mathfrak{d}_{1}, m)}\left[ \left( ^{\mathfrak{CF}}_{m\mathfrak{d}_{1}}\mathrm{I}^\omega \mathfrak{D}\right)(k)+ \left( ^{\mathfrak{CF}}\mathrm{I}^\omega_{m\mathfrak{d}_{1}+\mathcal{N}(\mathfrak{d}_{2}, \mathfrak{d}_{1}, m)} \mathfrak{D}\right)(k)\right]\bigg|\\ &\leq \frac{\mathcal{N}(\mathfrak{d}_{2}, \mathfrak{d}_{1}, m)}{2}\int_{0}^{1}|1-2\mathfrak{s}||\mathfrak{D}'(m\mathfrak{d}_{1}+\mathfrak{s}\mathcal{N}(\mathfrak{d}_{2}, \mathfrak{d}_{1}, m))|d\mathfrak{s}. \end{align*}

    Utilizing the statement of the improved power mean inequality, we have

    \begin{align*} &\bigg|-\frac{\mathfrak{D}(m\mathfrak{d}_{1})+\mathfrak{D}(m\mathfrak{d}_{1}+\mathcal{N}(\mathfrak{d}_{2}, \mathfrak{d}_{1}, m))}{2}-\frac{2(1-\omega)} {\omega\mathcal{N}(\mathfrak{d}_{2}, \mathfrak{d}_{1}, m)}\mathfrak{D}(k) \\& +\frac{\mathfrak{B}(\omega)}{\omega\mathcal{N}(\mathfrak{d}_{2}, \mathfrak{d}_{1}, m)}\left[ \left( ^{\mathfrak{CF}}_{m\mathfrak{d}_{1}}\mathrm{I}^\omega \mathfrak{D}\right)(k)+ \left( ^{\mathfrak{CF}}\mathrm{I}^\omega_{m\mathfrak{d}_{1}+\mathcal{N}(\mathfrak{d}_{2}, \mathfrak{d}_{1}, m)} \mathfrak{D}\right)(k)\right]\bigg| \\ &\leq\frac{\mathcal{N}(\mathfrak{d}_{2}, \mathfrak{d}_{1}, m)}{2}\left(\int_{0}^{1}(1-\mathfrak{s})|1-2\mathfrak{s}|d\mathfrak{s}\right)^{1-\frac{1}{q}} \left(\int_{0}^{1}(1-\mathfrak{s})|1-2\mathfrak{s}||\mathfrak{D}^{\prime}(m\mathfrak{d}_{1}+\mathfrak{s}\mathcal{N}(\mathfrak{d}_{1}, \mathfrak{d}_{2}, m))|^{q}d\mathfrak{s}\right)^{\frac{1}{q}}\\ &+\frac{\mathcal{N}(\mathfrak{d}_{2}, \mathfrak{d}_{1}, m)}{2}\left(\int_{0}^{1}\mathfrak{s}|1-2\mathfrak{s}|d\mathfrak{s}\right)^{1-\frac{1}{q}} \left(\int_{0}^{1}\mathfrak{s}|1-2\mathfrak{s}||\mathfrak{D}^{\prime}(m\mathfrak{d}_{1}+\mathfrak{s}\mathcal{N}(\mathfrak{d}_{1}, \mathfrak{d}_{2}, m))|^{q}d\mathfrak{s}\right)^{\frac{1}{q}}. \end{align*}

    Employing G-_{m}PF of |\mathfrak{D}'|^q , we have

    \begin{align*} &\bigg|-\frac{\mathfrak{D}(m\mathfrak{d}_{1})+\mathfrak{D}(m\mathfrak{d}_{1}+\mathcal{N}(\mathfrak{d}_{2}, \mathfrak{d}_{1}, m))}{2}-\frac{2(1-\omega)} {\omega\mathcal{N}(\mathfrak{d}_{2}, \mathfrak{d}_{1}, m)}\mathfrak{D}(k) \\& +\frac{\mathfrak{B}(\omega)}{\omega\mathcal{N}(\mathfrak{d}_{2}, \mathfrak{d}_{1}, m)}\left[ \left( ^{\mathfrak{CF}}_{m\mathfrak{d}_{1}}\mathrm{I}^\omega \mathfrak{D}\right)(k)+ \left( ^{\mathfrak{CF}}\mathrm{I}^\omega_{m\mathfrak{d}_{1}+\mathcal{N}(\mathfrak{d}_{2}, \mathfrak{d}_{1}, m)} \mathfrak{D}\right)(k)\right]\bigg| \\ &\leq \frac{\mathcal{N}(\mathfrak{d}_{2}, \mathfrak{d}_{1}, m) }{2}\left(\frac{1}{4}\right)^{1-\frac{1}{q}} \bigg(\frac{m|\mathfrak{D}'(\mathfrak{d}_{1})|^q}{n}\sum\limits_{\mathfrak{u} = 1}^{\mathfrak{n}}\int_{0}^{1} (1-\mathfrak{s})|1-2\mathfrak{s}|(1-\mathfrak{s}^{\mathtt{\mathfrak{u}}})d\mathfrak{s} \\& + \frac{|\mathfrak{D}'(\mathfrak{d}_{2})|^q}{n}\sum\limits_{\mathfrak{u} = 1}^{\mathfrak{n}}\int_{0}^{1}(1-\mathfrak{s})|1-2\mathfrak{s}|(1-(1-\mathfrak{s})^{\mathtt{\mathfrak{u}}})d\mathfrak{s}\bigg) ^{\frac{1}{q}} \\ &+\frac{\mathcal{N}(\mathfrak{d}_{2}, \mathfrak{d}_{1}, m) }{2}\left(\frac{1}{4}\right)^{1-\frac{1}{q}} \\&\times\left(\frac{m|\mathfrak{D}'(\mathfrak{d}_{1})|^q}{n}\sum\limits_{\mathfrak{u} = 1}^{\mathfrak{n}}\int_{0}^{1}\mathfrak{s}|1-2\mathfrak{s}| (1-\mathfrak{s}^{\mathtt{\mathfrak{u}}})d\mathfrak{s}+ \frac{|\mathfrak{D}'(\mathfrak{d}_{2})|^q}{n}\sum\limits_{\mathfrak{u} = 1}^{\mathfrak{n}}\int_{0}^{1}\mathfrak{s}|1-2\mathfrak{s}|(1-(1-\mathfrak{s})^{\mathtt{\mathfrak{u}}}) d\mathfrak{s}\right)^{\frac{1}{q}}\\ &\leq \frac{\mathcal{N}(\mathfrak{d}_{2}, \mathfrak{d}_{1}, m) }{2}\left( \frac{1}{2}\right) ^{2-\frac{2}{q}} \\&\times\left(\frac{m|\mathfrak{D}'(\mathfrak{d}_{1})|^q}{n}\sum\limits_{\mathfrak{u} = 1}^{\mathfrak{n}}\frac{(\mathtt{\mathfrak{u}+5})[(\mathtt{\mathfrak{u}}^{2} +\mathtt{\mathfrak{u}+2})2^{\mathtt{\mathfrak{u}}}-2]}{2^{\mathtt{\mathfrak{u}+2}}(\mathtt{\mathfrak{u}+1})(\mathtt{\mathfrak{u}+2})(\mathtt{\mathfrak{u}+3})} + \frac{|\mathfrak{D}'(\mathfrak{d}_{2})|^q}{n}\sum\limits_{\mathfrak{u} = 1}^{\mathfrak{n}}\frac{(\mathtt{\mathfrak{u}}^{2}+\mathtt{\mathfrak{u}+2})2^{\mathtt{\mathfrak{u}}}-2} {2^{\mathtt{\mathfrak{u}+2}}(\mathtt{\mathfrak{u}+2})(\mathtt{\mathfrak{u}+3})}\right) ^{\frac{1}{q}} \\ &+\frac{\mathcal{N}(\mathfrak{d}_{2}, \mathfrak{d}_{1}, m) }{2}\left( \frac{1}{2}\right) ^{2-\frac{2}{q}} \\&\times\left(\frac{m|\mathfrak{D}'(\mathfrak{d}_{1})|^q}{n}\sum\limits_{\mathfrak{u} = 1}^{\mathfrak{n}}\frac{(\mathtt{\mathfrak{u}}^{2}+ \mathtt{\mathfrak{u}+2})2^{\mathfrak{u}}-2}{2^{\mathtt{\mathfrak{u}+2}}(\mathtt{\mathfrak{u}+2})(\mathtt{\mathfrak{u}+3})} + \frac{|\mathfrak{D}'(\mathfrak{d}_{2})|^q}{n}\sum\limits_{\mathfrak{u} = 1}^{\mathfrak{n}}\frac{(\mathtt{\mathfrak{u}+5})[(\mathtt{\mathfrak{u}^2+\mathfrak{u}+2})2^{\mathtt{\mathfrak{u}}}-2]} {2^{\mathtt{\mathfrak{u}+2}}(\mathtt{\mathfrak{u}+1})(\mathtt{\mathfrak{u}+2})(\mathtt{\mathfrak{u}+3})}\right)^{\frac{1}{q}}. \end{align*}

    This is the required proof.

    Corollary 6.8. Choosing \mathfrak{n} = 1 in the Inequality (5.2), we attain

    \begin{align*} &\bigg|-\frac{\mathfrak{D}(m\mathfrak{d}_{1})+\mathfrak{D}(m\mathfrak{d}_{1}+\mathcal{N}(\mathfrak{d}_{2}, \mathfrak{d}_{1}, m))}{2}-\frac{2(1-\omega)} {\omega\mathcal{N}(\mathfrak{d}_{2}, \mathfrak{d}_{1}, m)} \mathfrak{D}(k) \\& +\frac{\mathfrak{B}(\omega)}{\omega\mathcal{N}(\mathfrak{d}_{2}, \mathfrak{d}_{1}, m)}\left[ \left( ^{\mathfrak{CF}}_{m\mathfrak{d}_{1}}\mathrm{I}^\omega \mathfrak{D}\right)(k)+ \left( ^{\mathfrak{CF}}\mathrm{I}^\omega_{m\mathfrak{d}_{1}+\mathcal{N}(\mathfrak{d}_{2}, \mathfrak{d}_{1}, m)} \mathfrak{D}\right)(k)\right]\bigg| \\ &\leq \frac{\mathcal{N}(\mathfrak{d}_{2}, \mathfrak{d}_{1}, m) }{2}\left( \frac{1}{2}\right) ^{2-\frac{2}{q}}\left\{\left(\frac{3m|\mathfrak{D}'(\mathfrak{d}_{1})|^q+ |\mathfrak{D}'(\mathfrak{d}_{2})|^q}{16}\right) ^{\frac{1}{q}}+\left(\frac{m|\mathfrak{D}'(\mathfrak{d}_{1})|^q+ 3|\mathfrak{D}'(\mathfrak{d}_{2})|^q}{16}\right) ^{\frac{1}{q}}\right\}. \end{align*}

    Corollary 6.9. Choosing m = 1 in the Inequality (5.2), we attain

    \begin{align*} &\bigg|-\frac{\mathfrak{D}(\mathfrak{d}_{1})+\mathfrak{D}(\mathfrak{d}_{1}+\mathcal{N}(\mathfrak{d}_{2}, \mathfrak{d}_{1}))}{2}-\frac{2(1-\omega)}{\omega\mathcal{N}(\mathfrak{d}_{2}, \mathfrak{d}_{1})}\mathfrak{D}(k) \\& +\frac{\mathfrak{B}(\omega)}{\omega\mathcal{N}(\mathfrak{d}_{2}, \mathfrak{d}_{1})}\left[ \left(^{\mathfrak{CF}}_{\mathfrak{d}_{1}}\mathrm{I}^\omega \mathfrak{D}\right)(k)+ \left( ^{\mathfrak{CF}}\mathrm{I}^\omega_{\mathfrak{d}_{1}+\mathcal{N}(\mathfrak{d}_{2}, \mathfrak{d}_{1})} \mathfrak{D}\right)(k)\right]\bigg| \\& \leq \frac{\mathcal{N}(\mathfrak{d}_{2}, \mathfrak{d}_{1}) }{2}\left( \frac{1}{2}\right) ^{2-\frac{2}{q}} \\&\times \left(\frac{|\mathfrak{D}'(\mathfrak{d}_{1})|^q}{n}\sum\limits_{\mathfrak{u} = 1}^{\mathfrak{n}}\frac{(\mathtt{\mathfrak{u}+5})[(\mathtt{\mathfrak{u}}^{2}+ \mathtt{\mathfrak{u}+2})2^{\mathtt{\mathfrak{u}}}-2]} {2^{\mathtt{\mathfrak{u}+2}}(\mathtt{\mathfrak{u}+1})(\mathtt{\mathfrak{u}+2})(\mathtt{\mathfrak{u}+3})} + \frac{|\mathfrak{D}'(\mathfrak{d}_{2})|^q}{n}\sum\limits_{\mathfrak{u} = 1}^{\mathfrak{n}}\frac{(\mathtt{\mathfrak{u}}^{2}+\mathtt{\mathfrak{u}+2})2^{\mathfrak{u}}-2}{2^{\mathtt{\mathfrak{u}+2}} (\mathtt{\mathfrak{u}+2})(\mathtt{\mathfrak{u}+3})}\right) ^{\frac{1}{q}} \\& +\frac{\mathcal{N}(\mathfrak{d}_{2}, \mathfrak{d}_{1}) }{2}\left( \frac{1}{2}\right) ^{2-\frac{2}{q}} \\&\times \left(\frac{|\mathfrak{D}'(\mathfrak{d}_{1})|^q}{n}\sum\limits_{\mathfrak{u} = 1}^{\mathfrak{n}}\frac{(\mathtt{\mathfrak{u}}^{2}+\mathtt{\mathfrak{u}+2})2^{\mathtt{\mathfrak{u}}}-2} {2^{\mathtt{\mathfrak{u}+2}}(\mathtt{\mathfrak{u}+2})(\mathtt{\mathfrak{u}+3})} + \frac{|\mathfrak{D}'(\mathfrak{d}_{2})|^q}{n}\sum\limits_{\mathfrak{u} = 1}^{\mathfrak{n}}\frac{(\mathtt{\mathfrak{u}+5})[(\mathtt{\mathfrak{u}}^{2}+\mathtt{\mathfrak{u}+2})2^{\mathtt{\mathfrak{u}}}-2]} {2^{\mathtt{\mathfrak{u}+2}}(\mathtt{\mathfrak{u}+1})(\mathtt{\mathfrak{u}+2})(\mathtt{\mathfrak{u}+3})}\right)^{\frac{1}{q}}. \end{align*}

    Corollary 6.10. Choosing \mathfrak{n} = m = 1 in the Inequality (5.2), we attain

    \begin{align*} &\bigg|-\frac{\omega(\mathfrak{d}_{1})+\mathfrak{D}(\mathfrak{d}_{1}+\mathcal{N}(\mathfrak{d}_{2}, \mathfrak{d}_{1}))}{2}-\frac{2(1-\omega)} {\omega\mathcal{N}(\mathfrak{d}_{2}, \mathfrak{d}_{1})} \mathfrak{D}(k) \\& +\frac{\mathfrak{B}(\omega)}{\omega\mathcal{N}(\mathfrak{d}_{2}, \mathfrak{d}_{1})}\left[ \left( ^{CF}_{\mathfrak{d}_{1}}\mathrm{I}^\omega \mathfrak{D}\right)(k)+ \left( ^{CF}\mathrm{I}^\omega_{\mathfrak{d}_{1}+\mathcal{N}(\mathfrak{d}_{2}, \mathfrak{d}_{1})} \mathfrak{D}\right)(k)\right]\bigg| \\ &\leq \frac{\mathcal{N}(\mathfrak{d}_{2}, \mathfrak{d}_{1}) }{2}\left( \frac{1}{2}\right) ^{2-\frac{2}{q}}\left\{\left(\frac{3|\mathfrak{D}'(\mathfrak{d}_{1})|^q+ |\mathfrak{D}'(\mathfrak{d}_{2})|^q}{16}\right) ^{\frac{1}{q}}+\left(\frac{|\mathfrak{D}'(\mathfrak{d}_{1})|^q+ 3|\mathfrak{D}'(\mathfrak{d}_{2})|^q}{16}\right) ^{\frac{1}{q}}\right\}. \end{align*}

    Corollary 6.11. If we put \mathcal{N}(\mathfrak{d}_{2}, \mathfrak{d}_{1}, m) = \mathfrak{d}_{2}-m\mathfrak{d}_{1} in the Inequality (5.2), then

    \begin{align*} &\bigg|-\frac{\mathfrak{D}(m\mathfrak{d}_{1})+\mathfrak{D}(\mathfrak{d}_{2})}{2}-\frac{2(1-\omega)}{\omega(\mathfrak{d}_{2}-m\mathfrak{d}_{1})}\mathfrak{D}(k)+\frac{\mathfrak{B}(\omega)}{\omega(\mathfrak{d}_{2}-m\mathfrak{d}_{1})}\left[ \left( ^{\mathfrak{CF}}_{m\mathfrak{d}_{1}}\mathrm{I}^\omega \mathfrak{D}\right)(k)+ \left( ^{\mathfrak{CF}}\mathrm{I}^\omega_{\mathfrak{d}_{2}} \mathfrak{D}\right)(k)\right]\bigg| \nonumber\\& \leq \frac{\mathfrak{d}_{2}-m\mathfrak{d}_{1} }{2}\left( \frac{1}{2}\right) ^{2-\frac{2}{q}} \\&\times \left(\frac{m|\mathfrak{D}'(\mathfrak{d}_{1})|^q}{n}\sum\limits_{\mathfrak{u} = 1}^{\mathfrak{n}}\frac{(\mathtt{\mathfrak{u}+5})[(\mathtt{\mathfrak{u}}^{2}+ \mathtt{\mathfrak{u}+2})2^{\mathtt{\mathfrak{u}}}-2]} {2^{\mathtt{\mathfrak{u}+2}}(\mathtt{\mathfrak{u}+1})(\mathtt{\mathfrak{u}+2})(\mathtt{\mathfrak{u}+3})} + \frac{|\mathfrak{D}'(\mathfrak{d}_{2})|^q}{n}\sum\limits_{\mathfrak{u} = 1}^{\mathfrak{n}}\frac{(\mathtt{\mathfrak{u}}^{2}+\mathtt{\mathfrak{u}+2})2^{\mathfrak{u}}-2}{2^{\mathtt{\mathfrak{u}+2}} (\mathtt{\mathfrak{u}+2})(\mathtt{\mathfrak{u}+3})}\right) ^{\frac{1}{q}} \\ &+\frac{\mathfrak{d}_{2}-m\mathfrak{d}_{1} }{2}\left( \frac{1}{2}\right) ^{2-\frac{2}{q}} \\&\times \left(\frac{m|\mathfrak{D}'(\mathfrak{d}_{1})|^q}{n}\sum\limits_{\mathfrak{u} = 1}^{\mathfrak{n}}\frac{(\mathtt{\mathfrak{u}}^{2}+\mathtt{\mathfrak{u}+2})2^{\mathtt{\mathfrak{u}}}-2} {2^{\mathtt{\mathfrak{u}+2}}(\mathtt{\mathfrak{u}+2})(\mathtt{\mathfrak{u}+3})} + \frac{|\mathfrak{D}'(\mathfrak{d}_{2})|^q}{n}\sum\limits_{\mathfrak{u} = 1}^{\mathfrak{n}}\frac{(\mathtt{\mathfrak{u}+5})[(\mathtt{\mathfrak{u}}^{2}+\mathtt{\mathfrak{u}+2})2^{\mathtt{\mathfrak{u}}}-2]} {2^{\mathtt{\mathfrak{u}+2}}(\mathtt{\mathfrak{u}+1})(\mathtt{\mathfrak{u}+2})(\mathtt{\mathfrak{u}+3})}\right)^{\frac{1}{q}}. \end{align*}

    Corollary 6.12. If we put \mathcal{N}(\mathfrak{d}_{2}, \mathfrak{d}_{1}, m) = \mathfrak{d}_{2}-m\mathfrak{d}_{1} and m = 1 in the Inequality (5.2), then

    \begin{align*} &\bigg|-\frac{\mathfrak{D}(\mathfrak{d}_{1})+\mathfrak{D}(\mathfrak{d}_{2})}{2}-\frac{2(1-\omega)}{\omega(\mathfrak{d}_{2}-\mathfrak{d}_{1})}\mathfrak{D}(k)+\frac{\mathfrak{B}(\omega)}{\omega(\mathfrak{d}_{2}-\mathfrak{d}_{1})}\left[ \left( ^{\mathfrak{CF}}_{\mathfrak{d}_{1}}\mathrm{I}^\omega \mathfrak{D}\right)(k)+ \left( ^{\mathfrak{CF}}\mathrm{I}^\omega_{\mathfrak{d}_{2}} \mathfrak{D}\right)(k)\right]\bigg| \nonumber\\& \leq \frac{\mathfrak{d}_{2}-\mathfrak{d}_{1} }{2}\left( \frac{1}{2}\right) ^{2-\frac{2}{q}} \\&\times \left(\frac{|\mathfrak{D}'(\mathfrak{d}_{1})|^q}{n}\sum\limits_{\mathfrak{u} = 1}^{\mathfrak{n}}\frac{(\mathtt{\mathfrak{u}+5})[(\mathtt{\mathfrak{u}}^{2}+ \mathtt{\mathfrak{u}+2})2^{\mathtt{\mathfrak{u}}}-2]} {2^{\mathtt{\mathfrak{u}+2}}(\mathtt{\mathfrak{u}+1})(\mathtt{\mathfrak{u}+2})(\mathtt{\mathfrak{u}+3})} + \frac{|\mathfrak{D}'(\mathfrak{d}_{2})|^q}{n}\sum\limits_{\mathfrak{u} = 1}^{\mathfrak{n}}\frac{(\mathtt{\mathfrak{u}}^{2}+\mathtt{\mathfrak{u}+2})2^{\mathfrak{u}}-2}{2^{\mathtt{\mathfrak{u}+2}} (\mathtt{\mathfrak{u}+2})(\mathtt{\mathfrak{u}+3})}\right) ^{\frac{1}{q}} \\ &+\frac{\mathfrak{d}_{2}-\mathfrak{d}_{1} }{2}\left( \frac{1}{2}\right) ^{2-\frac{2}{q}} \\&\times\left(\frac{|\mathfrak{D}'(\mathfrak{d}_{1})|^q}{n}\sum\limits_{\mathfrak{u} = 1}^{\mathfrak{n}}\frac{(\mathtt{\mathfrak{u}}^{2}+\mathtt{\mathfrak{u}+2})2^{\mathtt{\mathfrak{u}}}-2} {2^{\mathtt{\mathfrak{u}+2}}(\mathtt{\mathfrak{u}+2})(\mathtt{\mathfrak{u}+3})} + \frac{|\mathfrak{D}'(\mathfrak{d}_{2})|^q}{n}\sum\limits_{\mathfrak{u} = 1}^{\mathfrak{n}}\frac{(\mathtt{\mathfrak{u}+5})[(\mathtt{\mathfrak{u}}^{2}+\mathtt{\mathfrak{u}+2})2^{\mathtt{\mathfrak{u}}}-2]} {2^{\mathtt{\mathfrak{u}+2}}(\mathtt{\mathfrak{u}+1})(\mathtt{\mathfrak{u}+2})(\mathtt{\mathfrak{u}+3})}\right)^{\frac{1}{q}}. \end{align*}

    Corollary 6.13. Assume that \mathfrak{n} = 1 and \mathcal{N}(\mathfrak{d}_{2}, \mathfrak{d}_{1}, m) = \mathfrak{d}_{2}-m\mathfrak{d}_{1} in above Theorem. Then

    \begin{align*} &\left|\frac{\mathfrak{D}(m\mathfrak{d}_{1})+\mathfrak{D}(\mathfrak{d}_{2})}{2}-\frac{2(1-\omega)} {\omega(\mathfrak{d}_{2}-m\mathfrak{d}_{1})}\mathfrak{D}(k)+\frac{\mathfrak{B}(\omega)}{\omega(\mathfrak{d}_{2}-m\mathfrak{d}_{1})}\left[^{\mathfrak{CF}}_{m\mathfrak{d}_{1}}\mathrm{I}^{\omega} \mathfrak{D}(k)+^{\mathfrak{CF}}\mathrm{I}_{\mathfrak{d}_{2}}^{\omega} \mathfrak{D}(k)\right]\right| \\& \leq \frac{\mathfrak{d}_{2}-m\mathfrak{d}_{1} }{2}\left( \frac{1}{2}\right) ^{2-\frac{2}{q}}\left\{\left(\frac{3m|\mathfrak{D}'(\mathfrak{d}_{1})|^q+ |\mathfrak{D}'(\mathfrak{d}_{2})|^q}{16}\right) ^{\frac{1}{q}}+\left(\frac{m|\mathfrak{D}'(\mathfrak{d}_{1})|^q+ 3|\mathfrak{D}'(\mathfrak{d}_{2})|^q}{16}\right) ^{\frac{1}{q}}\right\}. \end{align*}

    Corollary 6.14. Assume that \mathfrak{n} = m = 1 and \mathcal{N}(\mathfrak{d}_{2}, \mathfrak{d}_{1}, m) = \mathfrak{d}_{2}-m\mathfrak{d}_{1} in above Theorem. Then

    \begin{align*} &\left|\frac{\mathfrak{D}(\mathfrak{d}_{1})+\mathfrak{D}(\mathfrak{d}_{2})}{2}-\frac{2(1-\omega)} {\omega(\mathfrak{d}_{2}-\mathfrak{d}_{1})}\mathfrak{D}(k)+\frac{\mathfrak{B}(\omega)}{\omega(\mathfrak{d}_{2}-\mathfrak{d}_{1})}\left[^{\mathfrak{CF}}_{\mathfrak{d}_{1}}\mathrm{I}^{\omega} \mathfrak{D}(k)+^{\mathfrak{CF}}\mathrm{I}_{\mathfrak{d}_{2}}^{\omega} \mathfrak{D}(k)\right]\right| \\& \leq \frac{\mathfrak{d}_{2}-\mathfrak{d}_{1} }{2}\left( \frac{1}{2}\right) ^{2-\frac{2}{q}}\left\{\left(\frac{3|\mathfrak{D}'(\mathfrak{d}_{1})|^q+ |\mathfrak{D}'(\mathfrak{d}_{2})|^q}{16}\right) ^{\frac{1}{q}}+\left(\frac{|\mathfrak{D}'(\mathfrak{d}_{1})|^q+ 3|\mathfrak{D}'(\mathfrak{d}_{2})|^q}{16}\right) ^{\frac{1}{q}}\right\}. \end{align*}

    The term "convexity" has drawn substantial interest in the past couple of decades due to its relevance and recognition of the concept of inequality. Due to developments of the convexity in applied sciences, many inequalities have been proposed and identified in the realm of convex analysis. Preinvexity has also been discussed by a large number of mathematicians, and numerous books have been written that provide new estimates and generalizations. With the help of these studies and research, the amazing Pachpatte-type inequality in the aspect of preinvexity is greatly enhanced. Preinvexity is an essential notion in the formation of extended convex programming. Nian Li [74] utilized the concept of time scales in 2009 and attained the novel variants of Pachpatte-type integral inequalities. In 2021, Butt [75] first time addressed fractional Pachpatte-Mercer-type inequalities in the sense of harmonic convexity. In 2022, Sahoo [76] utilized the idea of interval analysis and attain the novel sorts of Pachpatte-type integral inequalities in the aspect of center-radius order via preinvexity. This inequality in the mode of fractional operator associated with concept of exponential kernel is addressed by Sahoo [77] in 2022. Tariq et. al. [78] employed the non-conformable operator and attained a new kind of Pachpatte-type inequality via generalized preinvexity.

    In light of the foregoing literature, we will investigate and research the Pachpatte-type inequality for the C-FFIO. A corollary and many remarks are added to heighten the relevance and worth of this section.

    Theorem 7.1. Assume that \omega\in[0, 1] and k\in [m\mathfrak{d}_{1}, m\mathfrak{d}_{1}+\mathcal{N}(\mathfrak{d}_{2}, \mathfrak{d}_{1}, m)]. Let \mathfrak{D}, \mathcal{G}:\mathbb{I} = [m\mathfrak{d}_{1}, m\mathfrak{d}_{1}+\mathcal{N}(\mathfrak{d}_{2}, \mathfrak{d}_{1}, m)]\to \mathbb{R} be two functions such that m\mathfrak{d}_{1}, m\mathfrak{d}_{1}+\mathcal{N}(\mathfrak{d}_{2}, \mathfrak{d}_{1}, m)\in\mathbb{I} \; \; with\; \; \mathcal{N}(\mathfrak{d}_{2}, \mathfrak{d}_{1}, m) > 0\; \; \mathit{\text{and}}\; \; \mathfrak{D}\in \mathcal{L}[m\mathfrak{d}_{1}, m\mathfrak{d}_{1}+\mathcal{N}(\mathfrak{d}_{2}, \mathfrak{d}_{1}, m)] . If \mathfrak{D} and \mathcal{G} are G-_{m}PF , then

    \begin{align*} &\frac{\mathfrak{B}(\omega)}{\omega\mathcal{N}(\mathfrak{d}_{2}, \mathfrak{d}_{1}, m)}\left[\left( ^{\mathfrak{CF}}_{m\mathfrak{d}_{1}}\mathrm{I}^\omega \mathfrak{D} \mathcal{G}\right)(k)+ \left( ^{\mathfrak{CF}}\mathrm{I}^\omega_{m\mathfrak{d}_{1}+\mathcal{N}(\mathfrak{d}_{2}, \mathfrak{d}_{1}, m)} \mathfrak{D} \mathcal{G}\right)(k)-\frac{2(1-\omega)}{\mathfrak{B}(\omega)}\mathfrak{D}(k)\mathcal{G}(k) \right] \nonumber\\ &\leq \mathbb{M}(\mathfrak{d}_{1}, \mathfrak{d}_{2})+\mathbb{N}(\mathfrak{d}_{1}, \mathfrak{d}_{2}), \end{align*}

    where

    \begin{equation*} \mathbb{M}(\mathfrak{d}_{1}, \mathfrak{d}_{2}) = m^{2}\Delta_1(\mathfrak{s})\mathfrak{D}(\mathfrak{d}_{1})\mathcal{G}(\mathfrak{d}_{1})+\Delta_4(\mathfrak{s})\mathfrak{D}(\mathfrak{d}_{2})\mathcal{G}(\mathfrak{d}_{2}), \end{equation*}
    \begin{equation*} \mathbb{N}(\mathfrak{d}_{1}, \mathfrak{d}_{2}) = m\Delta_2(\mathfrak{s})\mathfrak{D}(\mathfrak{d}_{2})\mathcal{G}(\mathfrak{d}_{1})+m\Delta_3(\mathfrak{s})\mathfrak{D}(\mathfrak{d}_{1})\mathcal{G}(\mathfrak{d}_{2}), \end{equation*}

    and

    \begin{align*} \Delta_1& = \frac{1}{n_1n_2}\sum\limits_{\mathtt{\mathfrak{u}} = 1}^{n_1}\left[ 1-\mathfrak{s}^\mathtt{\mathfrak{u}}\right] \sum\limits_{\mathtt{\mathfrak{u}} = 1}^{n_2}\left[ 1-\mathfrak{s}^\mathtt{\mathfrak{u}}\right], \; \; \; \; \Delta_2 = \frac{1}{n_1n_2}\sum\limits_{\mathtt{\mathfrak{u}} = 1}^{n_1}\left[ 1-\mathfrak{s}^\mathtt{\mathfrak{u}}\right] \sum\limits_{\mathtt{\mathfrak{u}} = 1}^{n_2}\left[ 1-(1-\mathfrak{s})^\mathtt{\mathfrak{u}}\right], \\ \Delta_3& = \frac{1}{n_1n_2}\sum\limits_{\mathtt{\mathfrak{u}} = 1}^{n_1}\left[ 1-(1-\mathfrak{s})^\mathtt{\mathfrak{u}}\right] \sum\limits_{\mathtt{\mathfrak{u}} = 1}^{n_2}\left[ 1-\mathfrak{s}^\mathtt{\mathfrak{u}}\right], \; \; \; \; \Delta_4 = \frac{1}{n_1n_2}\sum\limits_{\mathtt{\mathfrak{u}} = 1}^{n_1}\left[ 1-(1-\mathfrak{s})^\mathtt{\mathfrak{u}}\right] \sum\limits_{\mathtt{\mathfrak{u}} = 1}^{n_2}\left[ 1-(1-\mathfrak{s})^\mathtt{\mathfrak{u}}\right]. \end{align*}

    Proof. Let \mathfrak{D} and \mathcal{G} be the G-_{m}PF , then for \mathfrak{s}\in [0, 1],

    \begin{align} &\mathfrak{D}(m\mathfrak{d}_{1}+\mathfrak{s}\mathcal{N}(\mathfrak{d}_{2}, \mathfrak{d}_{1}, m)) \leq \frac{m}{n_1}\sum\limits_{\mathtt{\mathfrak{u}} = 1}^{n_1}\left[ 1-\mathfrak{s}^\mathtt{\mathfrak{u}}\right]\mathfrak{D}(\mathfrak{d}_{1})+\frac{1}{n_1}\sum\limits_{\mathtt{\mathfrak{u}} = 1}^{n_1}\left[ 1-(1-\mathfrak{s})^\mathtt{\mathfrak{u}}\right]\mathfrak{D}(\mathfrak{d}_{2}). \end{align} (7.1)
    \begin{align} &\mathcal{G}(m\mathfrak{d}_{1}+\mathfrak{s}\mathcal{N}(\mathfrak{d}_{2}, \mathfrak{d}_{1}, m))\leq\frac{m}{n_2}\sum\limits_{\mathtt{\mathfrak{u}} = 1}^{n_2}\left[ 1-\mathfrak{s}^\mathtt{\mathfrak{u}}\right]\mathcal{G}(\mathfrak{d}_{1})+\frac{1}{n_2}\sum\limits_{\mathtt{\mathfrak{u}} = 1}^{n_2}\left[ 1-(1-\mathfrak{s})^\mathtt{\mathfrak{u}}\right]\mathcal{G}(\mathfrak{d}_{2}). \end{align} (7.2)

    Multiplying the above Inequalities (7.1) and (7.2), gives

    \begin{align} &\mathfrak{D}(m\mathfrak{d}_{1}+\mathfrak{s}\mathcal{N}(\mathfrak{d}_{2}, \mathfrak{d}_{1}, m)) \mathcal{G}(m\mathfrak{d}_{1}+\mathfrak{s}\mathcal{N}(\mathfrak{d}_{2}, \mathfrak{d}_{1}, m)) \\&\leq \frac{m^{2}}{n_1n_2}\sum\limits_{\mathtt{\mathfrak{u}} = 1}^{n_1}\left[ 1-\mathfrak{s}^\mathtt{\mathfrak{u}}\right] \sum\limits_{\mathtt{\mathfrak{u}} = 1}^{n_2}\left[ 1-\mathfrak{s}^\mathtt{\mathfrak{u}}\right] \mathfrak{D}(\mathfrak{d}_{1})\mathcal{G}(\mathfrak{d}_{1}) \\ &+\frac{m}{n_1n_2}\sum\limits_{\mathtt{\mathfrak{u}} = 1}^{n_1}\left[ 1-\mathfrak{s}^\mathtt{\mathfrak{u}}\right] \sum\limits_{\mathtt{\mathfrak{u}} = 1}^{n_2}\left[ 1-(1-\mathfrak{s})^\mathtt{\mathfrak{u}}\right]\mathfrak{D}(\mathfrak{d}_{1})\mathcal{G}(\mathfrak{d}_{2}) \\ &+\frac{m}{n_1n_2}\sum\limits_{\mathtt{\mathfrak{u}} = 1}^{n_1}\left[ 1-(1-\mathfrak{s})^\mathtt{\mathfrak{u}}\right] \sum\limits_{\mathtt{\mathfrak{u}} = 1}^{n_2}\left[ 1-\mathfrak{s}^\mathtt{\mathfrak{u}}\right]\mathfrak{D}(\mathfrak{d}_{2})\mathcal{G}(\mathfrak{d}_{1}) \\ &+\frac{1}{n_1n_2}\sum\limits_{\mathtt{\mathfrak{u}} = 1}^{n_1}\left[ 1-(1-\mathfrak{s})^\mathtt{\mathfrak{u}}\right] \sum\limits_{\mathtt{\mathfrak{u}} = 1}^{n_2}\left[ 1-(1-\mathfrak{s})^\mathtt{\mathfrak{u}}\right] \mathfrak{D}(\mathfrak{d}_{2})\mathcal{G}(\mathfrak{d}_{2}) \\ & = m^{2}\Delta_1(\mathfrak{s})\mathfrak{D}(\mathfrak{d}_{1})\mathcal{G}(\mathfrak{d}_{1})+ m\Delta_2(\mathfrak{s})\mathfrak{D}(\mathfrak{d}_{2})\mathcal{G}(\mathfrak{d}_{1})\\ &\qquad+m\Delta_3(\mathfrak{s})\mathfrak{D}(\mathfrak{d}_{1})\mathcal{G}(\mathfrak{d}_{2})+\Delta_4(\mathfrak{s})\mathfrak{D}(\mathfrak{d}_{2})\mathcal{G}(\mathfrak{d}_{2}). \end{align} (7.3)

    Taking integration both sides of the above Inequality (7.3) over [0, 1] , we have

    \begin{align*} &\frac{1}{\mathcal{N} (\mathfrak{d}_{2}, \mathfrak{d}_{1}, m)}\int_{m\mathfrak{d}_{1}}^{m\mathfrak{d}_{1}+\mathcal{N}(\mathfrak{d}_{2}, \mathfrak{d}_{1}, m)}\mathfrak{D}(x)\mathcal{G}(x){dx}\\ &\leq \int_{0}^{1}\left[ m^{2}\Delta_1(\mathfrak{s})\mathfrak{D}(\mathfrak{d}_{1})\mathcal{G}(\mathfrak{d}_{1})+ m\Delta_2(\mathfrak{s})\mathfrak{D}(\mathfrak{d}_{2})\mathcal{G}(\mathfrak{d}_{1})+m\Delta_3(\mathfrak{s})\mathfrak{D}(\mathfrak{d}_{1})\mathcal{G}(\mathfrak{d}_{2})+\Delta_4(\mathfrak{s})\mathfrak{D}(\mathfrak{d}_{2})\mathcal{G}(\mathfrak{d}_{2})\right] d\mathfrak{s} \\ & = \mathbb{M}(\mathfrak{d}_{1}, \mathfrak{d}_{2})+\mathbb{N}(\mathfrak{d}_{1}, \mathfrak{d}_{2}). \end{align*}

    That is,

    \begin{align} \frac{1}{\mathcal{N} (\mathfrak{d}_{2}, \mathfrak{d}_{1}, m)}\left[ \int_{m\mathfrak{d}_{1}}^{k}\mathfrak{D}(x)\mathcal{G}(x){dx}+\int_{k}^{m\mathfrak{d}_{1}+\mathcal{N}(\mathfrak{d}_{2}, \mathfrak{d}_{1}, m)}\mathfrak{D}(x)\mathcal{G}(x){dx}\right] \leq \mathbb{M}(\mathfrak{d}_{1}, \mathfrak{d}_{2})+\mathbb{N}(\mathfrak{d}_{1}, \mathfrak{d}_{2}). \end{align} (7.4)

    Now multiplying (7.4) by \frac{\omega\mathcal{N}(\mathfrak{d}_{2}, \mathfrak{d}_{1}, m)}{\mathfrak{B}(\omega)} and add \frac{2(1-\omega)}{\mathfrak{B}(\omega)}\mathfrak{D}(k)\mathcal{G}(k) to the resulting inequality, we obtain

    \begin{eqnarray} \frac{\omega}{\mathfrak{B}(\omega)}\left[ \int_{m\mathfrak{d}_{1}}^{k}\mathfrak{D}(x)\mathcal{G}(x)\mathrm{dx}+\int_{k}^{m\mathfrak{d}_{1}+\mathcal{N}(\mathfrak{d}_{2}, \mathfrak{d}_{1}, m)}\mathfrak{D}(x)\mathcal{G}(x) \mathrm{dx}\right]+\frac{2(1-\omega)}{\mathfrak{B}(\omega)}\mathfrak{D}(k)\mathcal{G}(k) \\ \leq \frac{\omega\mathcal{N}(\mathfrak{d}_{2}, \mathfrak{d}_{1}, m)}{\mathfrak{B}(\omega)}\left[\mathbb{M}(\mathfrak{d}_{1}, \mathfrak{d}_{2})+N(\mathfrak{d}_{1}, \mathfrak{d}_{2})\right]+\frac{2(1-\omega)}{\mathfrak{B} (\omega)}\mathfrak{D}(k)\mathcal{G}(k). \end{eqnarray}

    Hence,

    \begin{align*} & ^{\mathfrak{CF}}_{m\mathfrak{d}_{1}}\mathrm{I}^\omega \mathfrak{D}(k)\mathcal{G}(k)+ ^{\mathfrak{CF}}\mathrm{I}^\omega_{m\mathfrak{d}_{1}+\mathcal{N}(\mathfrak{d}_{2}, \mathfrak{d}_{1}, m)} \mathfrak{D}(k)\mathcal{G}(k) \\& \leq\frac{\omega\mathcal{N}(\mathfrak{d}_{2}, \mathfrak{d}_{1}, m)}{\mathfrak{B}(\omega)}\left[\mathbb{M}(\mathfrak{d}_{1}, \mathfrak{d}_{2})+N(\mathfrak{d}_{1}, \mathfrak{d}_{2})\right] +\frac{2(1-\omega)}{\mathfrak{B}(\omega)}\mathfrak{D}(k)\mathcal{G}(k). \end{align*}

    This is the required.

    Corollary 7.1. Assume that n_1 = n_2 = 1 in Theorem 7.1. Then

    \begin{align*} &\frac{2\mathfrak{B}(\omega)}{\omega\mathcal{N}(\mathfrak{d}_{2}, \mathfrak{d}_{1}, m)}\left[\left( ^{\mathfrak{CF}}_{m\mathfrak{d}_{1}}\mathrm{I}^\omega \mathfrak{D}\mathcal{G} \right)(k)+ \left( ^{\mathfrak{CF}}\mathrm{I}^\omega_{m\mathfrak{d}_{1}+\mathcal{N}(\mathfrak{d}_{2}, \mathfrak{d}_{1}, m) }\mathfrak{D}\mathcal{G} \right)(k)-\frac{2(1-\omega)}{\mathfrak{B}(\omega)}\mathfrak{D}(k)\mathcal{G}(k) \right] \\&\leq\frac{2}{3}M(\mathfrak{d}_{1}, \mathfrak{d}_{2}) +\frac{1}{3}N(\mathfrak{d}_{1}, \mathfrak{d}_{2}). \end{align*}

    Corollary 7.2. Assume that m = 1 in Theorem 7.1. Then

    \begin{align*} &\frac{\mathfrak{B}(\omega)}{\omega\mathcal{N}(\mathfrak{d}_{2}, \mathfrak{d}_{1})}\left[\left( ^{\mathfrak{CF}}_{\mathfrak{d}_{1}}\mathrm{I}^\omega \mathfrak{D} \mathcal{G}\right)(k)+ \left( ^{\mathfrak{CF}}\mathrm{I}^\omega_{\mathfrak{d}_{1}+\mathcal{N}(\mathfrak{d}_{2}, \mathfrak{d}_{1})} \mathfrak{D} \mathcal{G}\right)(k)-\frac{2(1-\omega)}{\mathfrak{B}(\omega)}\mathfrak{D}(k)\mathcal{G}(k) \right] \nonumber\\ &\leq \mathbb{M}(\mathfrak{d}_{1}, \mathfrak{d}_{2})+\mathbb{N}(\mathfrak{d}_{1}, \mathfrak{d}_{2}). \end{align*}

    where

    \begin{equation*} \mathbb{M}(\mathfrak{d}_{1}, \mathfrak{d}_{2}) = \Delta_1(\mathfrak{s})\mathfrak{D}(\mathfrak{d}_{1})\mathcal{G}(\mathfrak{d}_{1})+\Delta_4(\mathfrak{s})\mathfrak{D}(\mathfrak{d}_{2})\mathcal{G}(\mathfrak{d}_{2}), \end{equation*}
    \begin{equation*} \mathbb{N}(\mathfrak{d}_{1}, \mathfrak{d}_{2}) = \Delta_2(\mathfrak{s})\mathfrak{D}(\mathfrak{d}_{2})\mathcal{G}(\mathfrak{d}_{1})+\Delta_3(\mathfrak{s})\mathfrak{D}(\mathfrak{d}_{1})\mathcal{G}(\mathfrak{d}_{2}). \end{equation*}

    Corollary 7.3. Assume that n_1 = n_2 = m = 1 in Theorem 7.1. Then

    \begin{align*} &\frac{2\mathfrak{B}(\omega)}{\omega\mathcal{N}(\mathfrak{d}_{2}, \mathfrak{d}_{1})}\left[\left( ^{\mathfrak{CF}}_{\mathfrak{d}_{1}}\mathrm{I}^\omega \mathfrak{D}\mathcal{G} \right)(k)+ \left( ^{\mathfrak{CF}}\mathrm{I}^\omega_{\mathfrak{d}_{1}+\mathcal{N}(\mathfrak{d}_{2}, \mathfrak{d}_{1}) }\mathfrak{D}\mathcal{G} \right)(k)-\frac{2(1-\omega)}{\mathfrak{B}(\omega)}\mathfrak{D}(k)\mathcal{G}(k) \right] \\&\leq\frac{2}{3}\mathbb{M}(\mathfrak{d}_{1}, \mathfrak{d}_{2}) +\frac{1}{3}\mathbb{N}(\mathfrak{d}_{1}, \mathfrak{d}_{2}). \end{align*}

    Corollary 7.4. If we put \mathcal{N}(\mathfrak{d}_{2}, \mathfrak{d}_{1}, m) = \mathfrak{d}_{2}-m\mathfrak{d}_{1} in Theorem 7.1, then

    \begin{align*} &\frac{\mathfrak{B}(\omega)}{\omega(\mathfrak{d}_{2}-m\mathfrak{d}_{1})}\left[\left( ^{\mathfrak{CF}}_{m\mathfrak{d}_{1}}\mathrm{I}^\omega \mathfrak{D} \mathcal{G}\right)(k)+ \left( ^{\mathfrak{CF}}\mathrm{I}^\omega_{\mathfrak{d}_{2}} \mathfrak{D} \mathcal{G}\right)(k)-\frac{2(1-\omega)}{\mathfrak{B}(\omega)}\mathfrak{D}(k)\mathcal{G}(k) \right] \nonumber\\ &\leq \mathbb{M}(\mathfrak{d}_{1}, \mathfrak{d}_{2})+\mathbb{N}(\mathfrak{d}_{1}, \mathfrak{d}_{2}). \end{align*}

    Remark 7.1. If we put \mathcal{N}(\mathfrak{d}_{2}, \mathfrak{d}_{1}, m) = \mathfrak{d}_{2}-m\mathfrak{d}_{1} and m = 1 in Theorem 7.1, it reduces to the Theorem 5 in [46].

    Remark 7.2. If we put \mathcal{N}(\mathfrak{d}_{2}, \mathfrak{d}_{1}, m) = \mathfrak{d}_{2}-m\mathfrak{d}_{1}\; \; \text{and}\; \; n_1 = n_2 = m = 1 in Theorem 7.1, it collapses to the Theorem 3 in [45].

    The subject convex analysis and fractional mathematics are both utilized in applied sciences. The literature makes it clear that these ideas have a broad spectrum of potential uses in multiple fields of research, from fluid dynamics to optimization. In order to be more precise, we are going to apply certain mean-type inequalities, such as arithmetic, geometric, and harmonic means inequalities, to the H-H inequality associated with the C-FFIO via G-_{m}PF . The following mean-type inequalities have remarkable utilization in the domains of probabilities, statistics, circuit theory, stochastic processes, engineering, numerical approximations, and machine learning. In this section, we investigate the means as applications for two positive number \mathfrak{d}_{1}, \mathfrak{d}_{2} with \mathfrak{d}_{1} < \mathfrak{d}_{2} , which are given as:

    (1) The arithmetic mean

    \mathcal{A} = \mathcal{A}(\mathfrak{d}_{1}, \mathfrak{d}_{2}) = \frac{\mathfrak{d}_{1}+\mathfrak{d}_{2}}{2}, \;\; \mathfrak{d}_{1}, \mathfrak{d}_{2}\in \mathbb{R}.

    (2) The generalized logarithmic mean

    \mathcal{L} = \mathcal{L}_{r}^{r}(\mathfrak{d}_{1}, \mathfrak{d}_{2}) = \frac{\mathfrak{d}_{2}^{r+1}-\mathfrak{d}_{1}^{r+1}}{(r+1)(\mathfrak{d}_{2}-\mathfrak{d}_{1})}.

    Now employing the results in part 5, we investigate several inequalities involving special means. So here, we take \; \mathfrak{B}(\omega) = \mathfrak{B}(1) = 1.

    Proposition 8.1. Assume that m\mathfrak{d}_{1}, m\mathfrak{d}_{1}+\mathcal{N}(\mathfrak{d}_{2}, \mathfrak{d}_{1}, m)\in \mathbb{R}^+ and \; \; m\mathfrak{d}_{1} < m\mathfrak{d}_{1}+\mathcal{N}(\mathfrak{d}_{2}, \mathfrak{d}_{1}, m) , then

    \begin{align} &\bigg|-\mathcal{A}(m\mathfrak{d}_{1}^2, (m\mathfrak{d}_{1}+\mathcal{N}(\mathfrak{d}_{2}, \mathfrak{d}_{1}, m))^2)+\mathcal{L}^2_2(m\mathfrak{d}_{1}, m\mathfrak{d}_{1} +\mathcal{N}(\mathfrak{d}_{2}, \mathfrak{d}_{1}, m))\bigg| \\&\leq\frac{\mathcal{N}(\mathfrak{d}_{2}, \mathfrak{d}_{1}, m)}{n}\sum\limits_{\mathfrak{u} = 1}^{\mathfrak{n}}\left[\frac{(\mathtt{\mathfrak{u}^2+\mathfrak{u}+2})2^\mathtt{\mathfrak{u}}-2} {(\mathtt{\mathfrak{u}+1})(\mathtt{\mathfrak{u}+2})2^{\mathtt{\mathfrak{u}+1}}}\right]\left[ |\mathfrak{d}_{1}|+|\mathfrak{d}_{2}|\right] . \end{align} (8.1)

    Proof. If \mathfrak{D}(z) = z^2\; \text{with} \; \omega = 1\; \text{and}\; \mathfrak{B}(\omega) = \mathfrak{B}(1) = 1 in Theorem 5.1, then we attain the above proposition 8.1.

    Proposition 8.2. Assume that m\mathfrak{d}_{1}, m\mathfrak{d}_{1}+\mathcal{N}(\mathfrak{d}_{2}, \mathfrak{d}_{1}, m)\in \mathbb{R}^+ and \; \; m\mathfrak{d}_{1} < m\mathfrak{d}_{1}+\mathcal{N}(\mathfrak{d}_{2}, \mathfrak{d}_{1}, m) , then

    \begin{align} &\bigg|-\mathcal{A}(e^ {m\mathfrak{d}_{1}}, e^{(m\mathfrak{d}_{1}+\mathcal{N}(\mathfrak{d}_{2}, \mathfrak{d}_{1}, m))}) +\mathcal{L}(e^ {m\mathfrak{d}_{1}}, e^{(m\mathfrak{d}_{1}+\mathcal{N}(\mathfrak{d}_{2}, \mathfrak{d}_{1}, m))})\bigg| \\&\leq\frac{\mathcal{N}(\mathfrak{d}_{2}, \mathfrak{d}_{1}, m)}{n} \sum\limits_{\mathfrak{u} = 1}^{\mathfrak{n}}\left[\frac{(\mathtt{\mathfrak{u}^2+\mathfrak{u}+2})2^\mathtt{\mathfrak{u}}-2}{(\mathtt{\mathfrak{u}+1})(\mathtt{\mathfrak{u}+2})2^{\mathtt{\mathfrak{u}+1}}}\right] \left[ \frac{e^\mathfrak{d}_{1}+e^\mathfrak{d}_{2}}{2}\right] . \end{align} (8.2)

    Proof. If \mathfrak{D}(z) = e^z\; \text{with} \; \omega = 1\; \text{and}\; \mathfrak{B}(\omega) = \mathfrak{B}(1) = 1 in Theorem 5.1, then we attain the above proposition 8.2.

    Proposition 8.3. Assume that m\mathfrak{d}_{1}, m\mathfrak{d}_{1}+\mathcal{N}(\mathfrak{d}_{2}, \mathfrak{d}_{1}, m)\in \mathbb{R}^+, m\mathfrak{d}_{1} < m\mathfrak{d}_{1}+\mathcal{N}(\mathfrak{d}_{2}, \mathfrak{d}_{1}, m) , then

    \begin{align} &\bigg|-\mathcal{A}((m\mathfrak{d}_{1})^n, (m\mathfrak{d}_{1}+\mathcal{N}(\mathfrak{d}_{2}, \mathfrak{d}_{1}, m))^n)-\mathcal{L}^n_n(m\mathfrak{d}_{1}, m\mathfrak{d}_{1} +\mathcal{N}(\mathfrak{d}_{2}, \mathfrak{d}_{1}, m))\bigg| \\& \leq\frac{\mathcal{N}(\mathfrak{d}_{2}, \mathfrak{d}_{1}, m)}{n}\sum\limits_{\mathfrak{u} = 1}^{\mathfrak{n}} \left[\frac{(\mathtt{\mathfrak{u}^2+\mathfrak{u}+2})2^\mathtt{\mathfrak{u}}-2} {(\mathtt{\mathfrak{u}+1})(\mathtt{\mathfrak{u}+2})2^{\mathtt{\mathfrak{u}+1}}}\right] \left[ n \frac{|\mathfrak{d}_{1}^{n-1}|+|\mathfrak{d}_{2}^{n-1}|}{2}\right] . \end{align} (8.3)

    Proof. If \mathfrak{D}(z) = z^n\; \text{with} \; \omega = 1\; \text{and}\; \mathfrak{B}(\omega) = \mathfrak{B}(1) = 1 in Theorem 5.1, then we attain the above Proposition 8.3.

    Fractional calculus has a greater influence and provides more precise results when examining computer models. Fractional calculus is widely utilized in applied mathematics, mathematical biology, engineering, simulation, and inequality theory. Numerous researchers across multiple scientific domains have expressed a keen interest in fractional calculus. In this paper:

    1) First, we explored a novel type of preinvex function namely G-_{m}PF . Further, we added some algebraic properties regarding this newly introduced definition.

    2) We proved some refinements of the H-H and Pachpatte type inequalities via G-_{m}PF in the aspect of the C-FFIO.

    3) In addition, a novel integral identity is presented and several results in the sense of C-FFIO are attained via a newly introduced concept.

    4) To improve the reader's interest and overall quality, we showed the refinements of H-H inequality regarding the newly introduced lemma with the help of improved power mean and Hölder Iscan inequality.

    5) Some corollaries and remarks are added.

    6) Finally, some meaningful applications regarding newly introduced ideas are explored.

    This paper's new notion can be extended to numerous inequalities employing the fractional H-H. Further generalizations can be made using some fresh ideas, such as interval-valued R-L convexities, center-radius order convexities and fuzzy interval convexities. To observe the behavior of this inequality, excited and inspired mathematicians can also use interval-valued functions and quantum calculus, etc. The investigation of fractional versions of inequalities using various new convex function types will be very intriguing to watch.

    The authors declare they have not used Artificial Intelligence (AI) tools in the creation of this article.

    This research was funded by National Science, Research and Innovation Fund (NSRF) and King Mongkut's University of Technology North Bangkok with Contract No. KMUTNB-FF-66-11.

    The authors declare that they do not have conflict of interest regarding this manuscript.



    [1] G. H. Hardy, J. E. Little, G. Polya, Inequalities, Cambridge University Press, 1952.
    [2] T. Pennanen, Convex duality in stochastic optimization and mathematical finance, Math. Oper. Res., 36 (2011), 340–362. https://doi.org/10.1287/moor.1110.0485 doi: 10.1287/moor.1110.0485
    [3] A. Föllmer, A. Schied, Convex measures of risk and trading constraints, Financ. Stoch., 6 (2002), 429–447. https://doi.org/10.1007/s007800200072 doi: 10.1007/s007800200072
    [4] Z. Q. Luo, W. Yu, An introduction to convex optimization for communications and signal processing, IEEE J. Sel. Areas Comm., 24 (2006), 1426–1438. https://doi.org/10.1109/JSAC.2006.879347 doi: 10.1109/JSAC.2006.879347
    [5] S. Boyd, C. Crusius, A. Hansson, New advances in convex optimization and control applications, IFAC Proc., 30 (1997), 365–393. https://doi.org/10.1016/S1474-6670(17)43183-1 doi: 10.1016/S1474-6670(17)43183-1
    [6] V. Chandrasekarana, M. I. Jordan, Computational and statistical tradeoffs via convex relaxation, P. Natl. A. Sci., 110 (2013), E1181–E1190. https://doi.org/10.1073/pnas.1302293110 doi: 10.1073/pnas.1302293110
    [7] B. S. Mordukhovich, N. M. Nam, An easy path to convex analysis and applications, 2013.
    [8] W. Zhang, X. Lu, X. Li, Similarity constrained convex nonnegative matrix factorization for hyperspectral anomaly detection, IEEE T. Geosci Remote, 57 (2019), 4810–4822. https://doi.org/10.1109/TGRS.2019.2893116 doi: 10.1109/TGRS.2019.2893116
    [9] J. Green, P. H. Walter, Chapter 1 Mathematical analysis and convexity with applications to economics, Handbook Math. Econ., 1 (1981), 15–52. https://doi.org/10.1016/S1573-4382(81)01005-9 doi: 10.1016/S1573-4382(81)01005-9
    [10] R. T. Rockafellar, Convex analysis, Princeton: Princeton University Press, 1970. https://doi.org/10.1515/9781400873173
    [11] S. Boyd, L. Vandenberghe, Convex optimization, Cambridge University Press, 2004. https://doi.org/10.1017/CBO9780511804441
    [12] Y. Nesterov, Introductory lectures on convex optimization: A basic course, New York: Springer, 2004. https://doi.org/10.1007/978-1-4419-8853-9
    [13] J. B. Hiriart-Urruty, C. Lemarechal, Convex analysis and minimization algorithms II: Advanced theory and bundle methods, Berlin: Springer, 1993. https://doi.org/10.1007/978-3-662-06409-2
    [14] J. M. Borwein, A. S. Lewis, Convex analysis and nonlinear optimization: Theory and examples, New York: Springer, 2000. https://doi.org/10.1007/978-1-4757-9859-3
    [15] F. Cingano, Trends in income inequality and its impact on economic growth, OECD Publishing, 2014. https://doi.org/10.1787/5jxrjncwxv6j-en
    [16] M. J. Cloud, B. C. Drachman, L. P. Lebedev, Inequalities with applications to engineering, Springer, 2014.
    [17] R. P. Bapat, Applications of inequality in information theory to matrices, Linear Algebra Appl., 78 (1986), 107–117. https://doi.org/10.1016/0024-3795(86)90018-2 doi: 10.1016/0024-3795(86)90018-2
    [18] C. J. Thompson, Inequality with applications in statistical mechanics, J. Math. Phys., 6 (1965), 1812–1813. https://doi.org/10.1063/1.1704727 doi: 10.1063/1.1704727
    [19] S. I. Butt, L. Horváth, D. Pečarić, J. Pečarić, Cyclic improvements of Jensen's inequalities (Cyclic inequalities in information theory), Monogr. Inequal., 18 (2020).
    [20] T. Rasheed, S. I. Butt, D. Pečarić, J. Pečarić, Generalized cyclic Jensen and information inequalities, Chaos Soliton. Fract., 163 (2022), 112602. https://doi.org/10.1016/j.chaos.2022.112602 doi: 10.1016/j.chaos.2022.112602
    [21] S. I. Butt, D. Pečarić, J. Pečarić, Several Jensen-Gruss inequalities with applications in information theory, Ukrain. Mate. Zhurnal, 74 (2023), 1654–1672. https://doi.org/10.37863/umzh.v74i12.6554 doi: 10.37863/umzh.v74i12.6554
    [22] N. Mehmood, S. I. Butt, D. Pečarić, J. Pečarić, Generalizations of cyclic refinements of Jensen's inequality by Lidstone's polynomial with applications in information theory, J. Math. Inequal., 14 (2020), 249–271. https://doi.org/10.7153/jmi-2020-14-17 doi: 10.7153/jmi-2020-14-17
    [23] M. Z. Sarikaya, E. Set, H. Yaldiz, N. Aşak, Hermite-Hadamard inequalities for fractional integrals and related fractional inequalities, Math. Comput. Model., 57 (2013), 2403–2407. https://doi.org/10.1016/j.mcm.2011.12.048 doi: 10.1016/j.mcm.2011.12.048
    [24] P. Agarwal, Some inequalities involving Hadamard-type k-fractional integral operators, Math. Method. Appl. Sci., 40 (2017), 3882–3891. https://doi.org/10.1002/mma.4270 doi: 10.1002/mma.4270
    [25] S. I. Butt, M. Umar, S. Rashid, A. O. Akdemir, Y. M. Chu, New Hermite-Mercer type inequalities via k-fractional integrals, Adv. Differ. Equ., 2020 (2020), 635. https://doi.org/10.1186/s13662-020-03093-y doi: 10.1186/s13662-020-03093-y
    [26] Q. Kang, S. I. Butt, W. Nazeer, M. Nadeem, J. Nasir, H. Yang, New variants of Hermite-Jensen-Mercer inequalities Via Riemann-Liouville fractional integral operators, J. Math., 2020 (2020), 4303727. https://doi.org/10.1155/2020/4303727 doi: 10.1155/2020/4303727
    [27] S. I. Butt, M. Umar, K. A. Khan, A. Kashuri, H. Emadifar, Fractional Hermite-Jensen-Mercer integral inequalities with respect to another function and application, Complexiy, 2021 (2021), 9260828. https://doi.org/10.1155/2021/9260828 doi: 10.1155/2021/9260828
    [28] M. Tariq, S. K. Ntouyas, A. A. Shaikh, A comprehensive review of the Hermite-Hadamard inequality pertaining to fractional integral operators, Mathematics, 11 (2023), 1953. https://doi.org/10.3390/math11081953 doi: 10.3390/math11081953
    [29] M. Caputo, M. Fabrizio, A new definition of fractional derivative without singular kernel, Progr. Fract. Differ. Appl., 1 (2015), 73–85. https://doi.org/10.12785/pfda/010201 doi: 10.12785/pfda/010201
    [30] M. U. Rahman, S. Ahmad, R. T. Matoog, N. A. Alshehri, T. Khan, Study on the mathematical modelling of COVID-19 with Caputo-Fabrizio operator, Chaos Soliton. Frac., 150 (2021), 111121. https://doi.org/10.1016/j.chaos.2021.111121 doi: 10.1016/j.chaos.2021.111121
    [31] S. Ahmad, D. Qiu, M. U. Rehman, Dynamics of a fractional-order COVID-19 model under the nonsingular kernel of Caputo-Fabrizio operator, Math. Model. Numer. Simul. Appl., 4 (2022), 228–243. https://doi.org/10.53391/mmnsa.2022.019 doi: 10.53391/mmnsa.2022.019
    [32] S. Ahmad, M. U. Rehman, M. Arfan, On the analysis of semi-analytical solutions of Hepatitis B epidemic model under the Caputo-Fabrizio operator, Chaos Soliton. Fract., 146 (2021), 110892. https://doi.org/10.1016/j.chaos.2021.110892 doi: 10.1016/j.chaos.2021.110892
    [33] B. Li, T. Zhang, C. Zhang, Investigation of financial bubble mathematical model under fractal-fractional Caputo derivative, Fractals, 31 (2023), 2350050. https://doi.org/10.1142/S0218348X23500500 doi: 10.1142/S0218348X23500500
    [34] A. Atangana, D. Baleanu, Caputo-Fabrizio derivative applied to groundwater flow within confined aquifer, J. Eng. Mech., 143 (2017), D4016005. https://doi.org/10.1061/(ASCE)EM.1943-7889.0001091 doi: 10.1061/(ASCE)EM.1943-7889.0001091
    [35] J. L. W. V. Jensen, Sur les fonctions convexes et les inegalites entre les valeurs moyennes, Acta Math., 30 (1906), 175–193. https://doi.org/10.1007/BF02418571 doi: 10.1007/BF02418571
    [36] C. P. Niculescu, L. E. Persson, Convex functions and their applications, New York: Springer, 2006.
    [37] J. Hadamard, Étude sur les propriétés des fonctions entiéres en particulier d'une fonction considéréé par Riemann, J. Math. Pure. Appl., 9 (1893), 171–215.
    [38] H. Ahmad, M. Tariq, S. K. Sahoo, J. Baili, C. Cesarano, New estimations of Hermite-Hadamard type integral inequalities for special functions, Fractal Fract., 5 (2021), 144. https://doi.org/10.3390/fractalfract5040144 doi: 10.3390/fractalfract5040144
    [39] M. Tariq, S. K. Sahoo, H. Ahmad, T. Sitthiwirattham, J. Soontharanon, Several integral inequalities of Hermite-Hadamard type related to k-fractional conformable integral operators, Symmetry, 13 (2021), 1880. https://doi.org/10.3390/sym13101880 doi: 10.3390/sym13101880
    [40] M. Tariq, H. Ahmad, S. K. Sahoo, L. S. Aljoufi, S. K. Awan, A novel comprehensive analysis of the refinements of Hermite-Hadamard type integral inequalities involving special functions, J. Math. Comput. Sci., 26 (2022), 330–348. http://dx.doi.org/10.22436/jmcs.026.04.02 doi: 10.22436/jmcs.026.04.02
    [41] T. S. Du, J. G. Liao, Y. J. Li, Properties and integral inequalities of Hadamard-Simpson type for the generalized (s, m)-preinvex functions, J. Nonlinear Sci. Appl., 9 (2016), 3112–3126.
    [42] Y. Deng, H. Kalsoom, S. Wu, Some new Quantum Hermite-Hadamard-type estimates within a class of generalized (s, m)-preinvex functions, Symmetry, 11 (2019), 1283. https://doi.org/10.3390/sym11101283 doi: 10.3390/sym11101283
    [43] T. S. Du, J. G. Liao, L. G. Chen, M. U. Awan, Properties and Riemann-Liouville fractional Hermite-Hadamard inequalities for the generalized (\alpha, m)-preinvex functions, J. Inequal. Appl., 2016 (2016), 306. https://doi.org/10.1186/s13660-016-1251-5 doi: 10.1186/s13660-016-1251-5
    [44] M. Tariq, H. Ahmad, S. K. Sahoo, A. Kashuri, T. A. Nofal, C. H. Hsu, Inequalities of Simpson-Mercer-type including Atangana-Baleanu fractional operators and their applications, AIMS Math., 7 (2021), 15159–15181. https://doi.org/10.3934/math.2022831 doi: 10.3934/math.2022831
    [45] M. Gürbüz, A. O. Akdemir, S. Rashid, E. Set, Hermite-Hadamard inequality for fractional integrals of Caputo-Fabrizio type and related inequalities, J. Inequl. Appl., 2020 (2020), 172. https://doi.org/10.1186/s13660-020-02438-1 doi: 10.1186/s13660-020-02438-1
    [46] E. R. Nwaeze, M. A. Khan, A. Ahmadian, M. N. Ahmad, A. K. Mahmood, Fractional inequalities of the Hermite-Hadamard type for m-polynomial convex and harmonically convex functions, AIMS Math., 6 (2021), 1889–1904. https://doi.org/10.3934/math.2021115 doi: 10.3934/math.2021115
    [47] M. Z. Sarikaya, H. Yildirim, On Hermite-Hadamard type inequalities for Riemann-Liouville fractional integrals, Miskolc Math. Notes, 17 (2016), 1049–1059. https://doi.org/10.18514/MMN.2017.1197 doi: 10.18514/MMN.2017.1197
    [48] S. K. Sahoo, M. Tariq, H. Ahmad, J. Nasir, H. Aydi, A. Mukheimer, New Ostrowski-type fractional integral inequalities via generalized exponential-type convex functions and applications, Symmetry, 13 (2021), 8. https://doi.org/10.3390/sym13081429 doi: 10.3390/sym13081429
    [49] S. K. Sahoo, H. Ahmad, M. Tariq, B. Kodamasingh, H. Aydi, M. De la Sen, Hermite-Hadamard type inequalities involving k-fractional operator for (\overline{h}, m)-convex functions, Symmetry, 13 (2021), 1686. https://doi.org/10.3390/sym13091686 doi: 10.3390/sym13091686
    [50] T. Abdeljawad, S. Rashid, Z. Hammouch, Y. M. Chu, Some new local fractional inequalities associated with generalized (s, m)-convex functions and applications, Adv. Differ. Equ., 2020 (2020), 406. https://doi.org/10.1186/s13662-020-02865-w doi: 10.1186/s13662-020-02865-w
    [51] S. S. Dragomir, R. P. Agarwal, Two inequalities for differentiable mappings and applications to special means for real numbers and to trapezoidal formula, Appl. Math. Lett., 11 (1998), 91–95. https://doi.org/10.1016/S0893-9659(98)00086-X doi: 10.1016/S0893-9659(98)00086-X
    [52] H. Kalsoom, M. Idrees, D. Baleanu, Y. M. Chu, New estimates of q_{1}q_{2}-Ostrowski-type inequalities within a class of \mathfrak{n}-polynomial prevexity of function, J. Funct. Space., 2020 (2020), 3720798. https://doi.org/10.1155/2020/3720798 doi: 10.1155/2020/3720798
    [53] T. Weir, B. Mond, Pre-inven functions in multiple objective optimization, J. Math. Anal. Appl., 136 (1988), 29–38. https://doi.org/10.1016/0022-247X(88)90113-8 doi: 10.1016/0022-247X(88)90113-8
    [54] C. P. Niculescu, L. E. Persson, Convex functions and their applications, New York: Springer, 2006.
    [55] S. K. Mishra, G. Giorgi, Invexity and Optimization, Springer Science & Business Media, 2008.
    [56] B. Y. Xi, F. Qi, Some integral inequalities of Hermite-Hadamard type for convex functions with applications to means, J. Funct. Space. Appl., 2012 (2012), 980438. https://doi.org/10.1155/2012/980438 doi: 10.1155/2012/980438
    [57] K. Mehren, P. Agarwal, New Hermite-Hadamard type integral inequalities for the convex functions and theirs applications, J. Comput. Appl. Math., 350 (2019), 274–285. https://doi.org/10.1016/j.cam.2018.10.022 doi: 10.1016/j.cam.2018.10.022
    [58] U. S. Kirmaci, On some inequalities for differentiable mappings and applications to special means of real numbers and to midpoint formula, Appl. Math. Comput., 147 (2004), 137–146. https://doi.org/10.1016/S0096-3003(02)00657-4 doi: 10.1016/S0096-3003(02)00657-4
    [59] H. Hudzik, L. Maligranda, Some remarks on s-convex functions, Aeq. Math., 48 (1994), 100–111. https://doi.org/10.1007/BF01837981 doi: 10.1007/BF01837981
    [60] S. S. Dragomir, S. Fitzpatrik, The Hadamard inequality for s-convex functions in the second sense, Demonstr. Math., 32 (1999), 687–696. https://doi.org/10.1515/dema-1999-0403 doi: 10.1515/dema-1999-0403
    [61] S. Özcan, İ. İşcan, Some new Hermite-Hadamard type integral inequalities for the s-convex functions and theirs applications, J. Inequal. Appl., 2019 (2019), 201. https://doi.org/10.1186/s13660-019-2151-2 doi: 10.1186/s13660-019-2151-2
    [62] S. I. Butt, A. Kashuri, M. Tariq, J. Nasir, A. Aslam, W. Geo, Hermite-Hadamard-type inequalities via \mathfrak{n}-polynomial exponential-type convexity and their applications, Adv. Differ. Equ., 2020 (2020), 508. https://doi.org/10.1186/s13662-020-02967-5 doi: 10.1186/s13662-020-02967-5
    [63] S. Rashid, İ. İşcan, D. Baleanu, Y. M. Chu, Generation of new fractional inequalities via \mathfrak{n}-polynomials s-type convexity with applications, Adv. Differ. Equ., 2020 (2020), 264. https://doi.org/10.1186/s13662-020-02720-y doi: 10.1186/s13662-020-02720-y
    [64] T. Toplu, M. Kadakal, İ. İşcan, On n-polynomial convexity and some related inequalities, AIMS Math., 5 (2020), 1304–1318. https://doi.org/10.3934/math.2020089 doi: 10.3934/math.2020089
    [65] M. A. Noor, Hermite-Hadamard integral inequalities for \log-preinvex functions, J. Math. Anal. Approx. Theory, 2 (2007), 126–131.
    [66] A. Barani, G. Ghazanfari, S. S. Dragomir, Hermite-Hadamard inequality for functions whose derivatives absolute values are preinvex, J. Inequal. Appl., 2012 (2012), 247. https://doi.org/10.1186/1029-242X-2012-247 doi: 10.1186/1029-242X-2012-247
    [67] M. A. Noor, K. I. Noor, M. Awan, J. Li, On Hermite-Hadamard inequalities for h-preinvex functions, Filomat, 28 (2014), 1463–1474. https://doi.org/10.2298/FIL1407463N doi: 10.2298/FIL1407463N
    [68] S. Wu, I. A. Baloch, İ. İşcan, On harmonically (p, h, m)-preinvex functions, J. Funct. Space., 2017 (2017), 2148529. https://doi.org/10.1155/2017/2148529
    [69] J. Park, Simpson-like and Hermite-Hadamard-like type integral inequalities for twice differentiable preinvex functions, Int. J. Pure. Appl. Math., 79 (2012), 623–640.
    [70] M. Z. Sarikaya, N. Alp, H. Bozkurt, On Hermite-Hadamard type integral inequalities for preinvex and log-preinvex functions, 2012. https://doi.org/10.48550/arXiv.1203.4759
    [71] S. H. Wang, X. M. Liu, Hermite-Hadamard type inequalities for operator s-preinvex functions, J. Nonlinear Sci. Appl., 8 (2015), 1070–1081. http://dx.doi.org/10.22436/jnsa.008.06.17 doi: 10.22436/jnsa.008.06.17
    [72] İ. İşcan, New refinements for integral and sum forms of Holder inequality, J. Inequal. Appl., 2019 (2019), 304. https://doi.org/10.1186/s13660-019-2258-5 doi: 10.1186/s13660-019-2258-5
    [73] M. Kadakal, İ. Íscan, H. Kadakal, On improvements of some integral inequalities, J. Honam Math., 43 (2021), 441–452.
    [74] W. N. Li, Some Pachpatte-type inequalities on time scales, Comput. Math. Appl., 57 (2009), 275–282. https://doi.org/10.1016/j.camwa.2008.09.040 doi: 10.1016/j.camwa.2008.09.040
    [75] S. I. Butt, S. Yousaf, K. A. Khan, R. M. Mabela, A. M. Alsharif, Fejér-Pachpatte-Mercer-type inequalities for harmonically convex functions involving exponential function in kernel, Math. Probl. Eng., 2022 (2022), 7269033. https://doi.org/10.1155/2022/7269033 doi: 10.1155/2022/7269033
    [76] S. K. Sahoo, M. A. Latif, O. M. Alsalami, S. Treanta, W. Sudsutad, J. Kongson, Hermite-Hadamard, Fejér and Pachpatte-type integral inequalities for center-radius order interval-valued preinvex functions, Fractal Fract., 6 (2022), 506. https://doi.org/10.3390/fractalfract6090506 doi: 10.3390/fractalfract6090506
    [77] H. M. Srivastava, S. K. Sahoo, P. O. Mohammed, B. Kodamasingh, K. Nonlaopon, M. Abualnaja, Interval valued Hadamard-Fejér and Pachpatte type inequalities pertaining to a new fractional integral operator with exponential kernel, AIMS Math., 7 (2022), 15041–15063. https://doi.org/10.3934/math.2022824 doi: 10.3934/math.2022824
    [78] M. Tariq, S. K. Sahoo, S. K. Ntouyas, O. M. Alsalami, A. A. AShaikh, K. Nonlaopon, Some Hermite-Hadamard and Hermite-Hadamard-Fejér type fractional inclusions pertaining to different kinds of generalized preinvexities, Symmetry, 14 (2022), 1957. https://doi.org/10.3390/sym14101957 doi: 10.3390/sym14101957
  • Reader Comments
  • © 2023 the Author(s), licensee AIMS Press. This is an open access article distributed under the terms of the Creative Commons Attribution License (http://creativecommons.org/licenses/by/4.0)
通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索

Metrics

Article views(1708) PDF downloads(80) Cited by(0)

Figures and Tables

Tables(1)

/

DownLoad:  Full-Size Img  PowerPoint
Return
Return

Catalog