Loading [MathJax]/jax/element/mml/optable/GeneralPunctuation.js
Research article Special Issues

New inequalities via Caputo-Fabrizio integral operator with applications

  • Fractional integral inequalities have become one of the most useful and expansive tools for the development of many fields of pure and applied mathematics over the past few years. Many authors have just recently introduced various generalized inequalities that involved the fractional integral operators. The main goal of the present study is to incorporate the concept of strongly (s,m)-convex functions and Hermite-Hadamard inequality with Caputo-Fabrizio integral operator. Also, we consider a new identity for twice differentiable mapping in the context of Caputo-Fabrizio fractional integral operator. Then, considering this identity as an auxiliary result, new mid-point version using well known inequalities like Hölder, power-mean, Young are presented. Moreover, some graphs of obtained inequalities are given for better understanding by the reader. Finally, we discussed some applications to matrix inequalities and spacial means.

    Citation: Hong Yang, Shahid Qaisar, Arslan Munir, Muhammad Naeem. New inequalities via Caputo-Fabrizio integral operator with applications[J]. AIMS Mathematics, 2023, 8(8): 19391-19412. doi: 10.3934/math.2023989

    Related Papers:

    [1] Lanxin Chen, Junxian Zhang, Muhammad Shoaib Saleem, Imran Ahmed, Shumaila Waheed, Lishuang Pan . Fractional integral inequalities for $ h $-convex functions via Caputo-Fabrizio operator. AIMS Mathematics, 2021, 6(6): 6377-6389. doi: 10.3934/math.2021374
    [2] Muhammad Tariq, Hijaz Ahmad, Abdul Ghafoor Shaikh, Soubhagya Kumar Sahoo, Khaled Mohamed Khedher, Tuan Nguyen Gia . New fractional integral inequalities for preinvex functions involving Caputo-Fabrizio operator. AIMS Mathematics, 2022, 7(3): 3440-3455. doi: 10.3934/math.2022191
    [3] Muhammad Tariq, Asif Ali Shaikh, Sotiris K. Ntouyas, Jessada Tariboon . Some novel refinements of Hermite-Hadamard and Pachpatte type integral inequalities involving a generalized preinvex function pertaining to Caputo-Fabrizio fractional integral operator. AIMS Mathematics, 2023, 8(11): 25572-25610. doi: 10.3934/math.20231306
    [4] Muhammad Imran Asjad, Waqas Ali Faridi, Mohammed M. Al-Shomrani, Abdullahi Yusuf . The generalization of Hermite-Hadamard type Inequality with exp-convexity involving non-singular fractional operator. AIMS Mathematics, 2022, 7(4): 7040-7055. doi: 10.3934/math.2022392
    [5] Eze R. Nwaeze, Muhammad Adil Khan, Ali Ahmadian, Mohammad Nazir Ahmad, Ahmad Kamil Mahmood . Fractional inequalities of the Hermite–Hadamard type for $ m $-polynomial convex and harmonically convex functions. AIMS Mathematics, 2021, 6(2): 1889-1904. doi: 10.3934/math.2021115
    [6] Anjum Mustafa Khan Abbasi, Matloob Anwar . Hermite-Hadamard inequality involving Caputo-Fabrizio fractional integrals and related inequalities via $ s $-convex functions in the second sense. AIMS Mathematics, 2022, 7(10): 18565-18575. doi: 10.3934/math.20221020
    [7] Saad Ihsan Butt, Erhan Set, Saba Yousaf, Thabet Abdeljawad, Wasfi Shatanawi . Generalized integral inequalities for ABK-fractional integral operators. AIMS Mathematics, 2021, 6(9): 10164-10191. doi: 10.3934/math.2021589
    [8] Soubhagya Kumar Sahoo, Fahd Jarad, Bibhakar Kodamasingh, Artion Kashuri . Hermite-Hadamard type inclusions via generalized Atangana-Baleanu fractional operator with application. AIMS Mathematics, 2022, 7(7): 12303-12321. doi: 10.3934/math.2022683
    [9] Sobia Rafeeq, Sabir Hussain, Jongsuk Ro . On fractional Bullen-type inequalities with applications. AIMS Mathematics, 2024, 9(9): 24590-24609. doi: 10.3934/math.20241198
    [10] Shuang-Shuang Zhou, Saima Rashid, Muhammad Aslam Noor, Khalida Inayat Noor, Farhat Safdar, Yu-Ming Chu . New Hermite-Hadamard type inequalities for exponentially convex functions and applications. AIMS Mathematics, 2020, 5(6): 6874-6901. doi: 10.3934/math.2020441
  • Fractional integral inequalities have become one of the most useful and expansive tools for the development of many fields of pure and applied mathematics over the past few years. Many authors have just recently introduced various generalized inequalities that involved the fractional integral operators. The main goal of the present study is to incorporate the concept of strongly (s,m)-convex functions and Hermite-Hadamard inequality with Caputo-Fabrizio integral operator. Also, we consider a new identity for twice differentiable mapping in the context of Caputo-Fabrizio fractional integral operator. Then, considering this identity as an auxiliary result, new mid-point version using well known inequalities like Hölder, power-mean, Young are presented. Moreover, some graphs of obtained inequalities are given for better understanding by the reader. Finally, we discussed some applications to matrix inequalities and spacial means.



    Fractional calculus rapidly developed because of its numerous applications, including mathematics and many other areas such as image processing, physics, machine learning and networking. Fractional calculus is a new field in applied mathematics that developed from the open problems of how to solve some differential equations with fractional order derivatives. The solution to these problems have led many scholars to search for new subjects that many mathematicians have been interested in recent years. The fractional derivative has received rapid attention among experts from different branches of science. Most of the applied problems cannot be modeled by classical derivations. Fractional integral and derivative operators propose solutions that are extremely appropriate for real world problems and establish the connections between mathematics and other fields in terms of application areas. We refer to the readers [1,2,3,4,5,6,7,8,9,10,11,12,13] and the references therein. Fractional calculus plays a very significant role in the development of inequality theory. To study convex functions, Hermite-Hadamard inequality is particularly important in many areas of mathematics and its applications and its orignal version is defined as follows [14]:

    f(ξ1+ξ22)1ξ2ξ1ξ2ξ1f(x)dxf(ξ1)+f(ξ2)2. (1.1)

    Many fractional operators are used to generalized Hermite-Hadamard inequality. Here, we will restrict ourselves to Caputo-Fabrizio fractional derivative. The features that make the operators different from each other comprise singularity and locality, while kernel expression of the operator is presented with functions such as the power law, the exponential function, or a Mittag-Leffler function. The unique feature of the Caputo-Fabrizio operator is that it has a nonsingular kernel. The main feature of the Caputo-Fabrizio operator can be described as a real power turned in to the integer by means of the Laplace transformation, and consequently, the exact solution can be easily found for several problems. In 1993, V. Mihesan et al. [15] established the class of (s,m)-convex functions. Hudzik et al. [16] considered the class of s-convex functions in the second sense. N. Eftekhari [17] discussed the class of (s,m)-convex function in the second sense by involving the concept of s-convexity in the second sense with m-convexity in 2014. Xiaobin wang et al. [18] discussed the Hermite-Hadmard type inequality for modified h-convex functions utilizing Caputo-Fabrizio integral operator. Butt et al. [19] obtained various inequalities for s and (s,m)-convex functions exponentially utilizing Caputo fractional integrals and derivatives. Moreover, Kemali et al. [20] obtained Hermite-Hadamard type inequality for s-convex functions in the second sense utilizing Caputo-Fabrizio integral operator. Abbasi et al. [21] proved new variants of Hermite-Hadamard type inequalities for s-convex functions using the Caputo-Fabrizio integral operator. Li et al. [22] gave analogous inequalities for strongly convex functions.

    Motivated by ongoing studies in past years on generalizations of Hermite-Hadamard type inequalities for different convexities involving certain fractional integral operators, we developed novel fractional version left-hand side of the Hermite-Hadamard type inequalities for functions whose absolute value of the second derivative is convex utilizing Caputo-Fabrizio integral operator. The organization of the paper is as follows: First, in Section 1, we have discussed some well known definitions and results regarding the Caputo-Fabrizio fractional integral, which are used in the consequent sections to present our main results. In Section 2, new Hermite-Hadamard type inequalities are presented regarding the fractional operator. In Section 3, some interesting applications related to matrix and spacial means are discussed. Furthermore, in Section 4 conclusion and some future extensions are presented.

    Definition 1.1. [16] A function f:IRR0=[0,) is said to be s-convex if

    f(ϱξ1+(1ϱ)ξ2)ϱsf(ξ1)+(1ϱ)sf(ξ2),

    for some s(0,1], where ξ1,ξ2I,ϱ[0,1].

    Definition 1.2. [23] A function f:[ξ1,ξ2]R is said to be strongly convex with modulus μ0, if

    f(ϱξ1+(1ϱ)ξ2)ϱf(ξ1)+(1ϱ)f(ξ2)μϱ(1ϱ)(ξ1ξ2)2,

    is valid for all ξ1,ξ2I,ϱ[0,1].

    Definition 1.3. [24] A function f:IRR0 is said to be strongly s-convex with modulus μ0, and some s(0,1], if

    f(ϱξ1+(1ϱ)ξ2)ϱsf(ξ1)+(1ϱ)sf(ξ2)μϱ(1ϱ)(ξ1ξ2)2,

    is valid for all ξ1,ξ2I,ϱ[0,1].

    Definition 1.4. [25,26] Let H1(ξ1,ξ2) be the Sobolev space of order one defined a;

    H1(ξ1,ξ2)={gL2(ξ1,ξ2):gL2(ξ1,ξ2)},

    where

    L2(ξ1,ξ2)={g(z):(ξ2ξ1g2(z)dz)12<}.

    Let fH1(ξ1,ξ2), ξ1<ξ2,α[0,1], then the notion of left derivative in the sense of Caputo-Fabrizio is defined as:

    (CFDξ1Dαf)(x)=B(α)1αxξ1f(ϱ)eα(xϱ)α1αdϱ,x>α,

    and the associated integral operator is

    (CFξ1Iαf)(x)=1αB(α)f(x)+αB(α)xξ1f(ϱ)dϱ,

    where B(α)>0 is the normalization function satisfying B(0)=B(1)=1. For α=0 and α=1, the left derivative is defined as follows;

    (CFDξ1D0f)(x)=f(x)and(CFDξ1D1f)(x)=f(x)f(ξ1).

    For the right derivative operator, we have

    (CFDξ2Dαf)(x)=B(α)1αξ2xf(ϱ)eα(ϱx)α1αdϱ,x<ξ2,

    and the associated integral operator is

    (CFIαξ2f)(x)=1αB(α)f(x)+αB(α)ξ2xf(ϱ)dϱ,

    where B(α)>0 is a normalization function that satisfies B(0)=B(1)=1.

    Dragomir [27] demonstrated the following version of Hermite-Hadamard inequality.

    Theorem 1.1. Let I be a real interval such that ξ1,ξ2Io, the interior of I, with ξ1<ξ2. Let f:IRR be a differentiable mapping on Io, ξ1,ξ2I with ξ1<ξ2. If fL[ξ1,ξ2], then the following equality holds:

    f(ξ1)+f(ξ2)21ξ2ξ1ξ2ξ1f(x)dx=1ξ2ξ110(12ϱ)f(ϱξ1+(1ϱ)ξ2)dϱ.

    Sarikaya et al. [28] proved the following form of fractional Hermite-Hadamard inequality.

    Theorem 1.2. Let f:[ξ1,ξ2]R be a positive mapping with 0ξ1ξ2,fL[ξ1,ξ2] and Iαξ+1f and Iαξ2f be a fractional operator. Then, the following inequality for fractional integral holds if f is a convex function:

    f(ξ1+ξ22)Γ(α+1)2(ξ2ξ1)α[Iαξ+1f(ξ2)+Iαξ2f(ξ1)]f(ξ1)+f(ξ2)2. (1.2)

    Dragomir [29] demonstrated the following fractional form of Hermite-Hadamard inequality.

    Theorem 1.3. [29] Let f:[ξ1,ξ2]R be a positive function with ξ1<ξ2 and fL1[ξ1,ξ2]. If f is a convex function on [ξ1,ξ2], then the following inequality for fractional integral holds:

    f(ξ1+ξ22)2α1Γ(α+1)(ξ2ξ1)α[Jαξ+1f(ξ1+ξ22)+Jαξ2f(ξ1+ξ22)]f(ξ1)+f(ξ2)2.

    Abbasi established the fractional version of the Hermite-Hadamard inequality for differentiable s-convex functions as follows.

    Theorem 1.4. [21] Let I be a real interval such that ξ1,ξ2Io, the interior of I with ξ1<ξ2. Let f:I RR be a differentiable function on Io, ξ1,ξ2I with ξ1<ξ2. If fL[ξ1,ξ2] and 0ξ21, the following inequality holds:

    1ξ2ξ110(12ϱ)f(ϱξ1+(1ϱ)ξ2)dϱ2(1α)α(ξ2ξ1)f(k)=f(ξ1)+f(ξ2)2B(α)α(ξ2ξ1)((CFξ1Iαf(k))+(CFIαξ2f(k))),

    where k[ξ1,ξ2] and B(α)>0 is a normalization function.

    Theorem 1.5. [21] Let I be a real interval such that ξ1,ξ2Io, the interior of I, with ξ1<ξ2. Let f:IRR be s-convex on [ξ1,ξ2] for s(0,1) and fL[ξ1,ξ2]. If 0ξ21, then we have the following double inequality holds:

    2s1f(ξ1+ξ22)B(α)α(ξ2ξ1)((CFξ1Iαf)(k)+(CFIαξ2f)(k))f(ξ1)+f(ξ2)2.

    Sahoo obtained the generalized midpoint-type Hermite-Hadamard inequality associated with the Caputo-Fabrizio fractional operator:

    Theorem 1.6. [30] Let f:[ξ1,ξ2]R be a differentiable function on Io(the interior of I) such that (ξ1,ξ2)I, with ξ1<ξ2 and fL[ξ1,ξ2]. Then for α[0,1] the following fractional equality holds:

    B(α)α(ξ2ξ1)((CFξ1+ξ22Iαf(ξ1))+(CFIαξ1+ξ+22f(ξ2)))f(ξ1+ξ22)=(ξ2ξ1)4(10(ϱ)f(ϱ2ξ1+(2ϱ)2ξ2)dϱ+10(ϱ)f(ϱ2ξ2+(2ϱ)2ξ1)dϱ)+(1α)α(ξ2ξ1)(f(ξ1)+f(ξ2)).

    Theorem 1.7. [30] Let f:[ξ1,ξ2]R be a differentiable function on Io(the interior of I) such that (ξ1,ξ2)I with ξ1<ξ2 and fL[ξ1,ξ2]. If |f| is a convex function then for α[0,1], the following fractional inequality holds:

    |B(α)α(ξ2ξ1)((CFξ1+ξ22Iαf(ξ1))+(CFIαξ1+ξ+22f(ξ2)))f(ξ1+ξ22)|(ξ2ξ1)4(|f(ξ1)|+|f(ξ2)|2)+(1α)α(ξ2ξ1)(f(ξ1)+f(ξ2)).

    The following lemma is the main motivation behind the study, that establishes Hermite-Hadamard type inequalities for Caputo-Fabrizio integral operator.

    Lemma 2.1. Suppose a mapping f:IRR is differentiable on Io(the interior of I) such that ξ1,ξ2I with ξ1<ξ2. If fL[ξ1,ξ2] and α[0,1], then the following equality holds:

    f(ξ1+ξ22)+4(1α)α(ξ2ξ1)f(k)B(α)α(ξ2ξ1)[{CFξ1Iαf(k)+CFIαξ1+ξ22f(k)}+{CFξ1+ξ22Iαf(k)+CFIαξ2f(k)}]=(ξ2ξ1)16210(1ϱ)2[f(1+ϱ2ξ1+1ϱ2ξ2)+f(1ϱ2ξ1+1+ϱ2ξ2)]dϱ,

    where k[ξ1,ξ2], and B(α)>0, is a normalization function.

    Proof. Integration by parts

    I=10(1iiϱ)2[f(1i+iϱ2ξ1i+i1iiϱ2ξ2)i+if(1iiϱ2ξ1i+i1i+iϱ2ξ2)]dϱ=10(1iiϱ)2f(1i+iϱ2ξ1i+i1iiϱ2ξ2)dϱi+i10(1iiϱ)2f(1iiϱ2ξ1i+i1i+iϱ2ξ2)dϱ=I1+I2.
    I1=10(1ϱ)2f(1+ϱ2ξ1+1ϱ2ξ2)dϱ=2(1ϱ)2f(1i+iϱ2ξ1+1ϱ2ξ2)ξ1ξ2|10210f(1+ϱ2ξ1i+i1ϱ2ξ2)ξ1ξ22(1ϱ)(1)dϱ=2ξ2ξ1f(ξ1i+iξ22)4ξ2ξ110f(1i+iϱ2ξ1i+i1iiϱ2ξ2)(1ϱ)dϱ=2ξ2ξ1f(ξ1i+iξ22)+8(ξ2ξ1)2f(ξ1i+iξ22)+16(ξ2ξ1)3(kξ1f(u)dui+iξ1+ξ22kf(u)du). (2.1)

    Multiplying both sides of equality (2.1) with α(ξ2ξ1)316B(α) and subtracting 2(1α)B(α)f(k) we get,

    α(ξ2ξ1)316B(α)10(1ϱ)2f(1i+iϱ2ξ1+1iiϱ2ξ2)dϱ2(1α)B(α)f(k)=2(ξ2iiξ1)f(ξ1i+iξ22)α(ξ2ξ1)316B(α)+8(ξ2ξ1)2f(ξ1i+iξ22)α(ξ2ξ1)316B(α)+16(ξ2ξ1)3α(ξ2ξ1)316B(α){kξ1f(u)dui+iξ1+ξ22kf(u)du2(1iiα)B(α)f(k)}(ξ2iiξ1)1610(1ϱ)2f(1i+iϱ2ξ1+1iiϱ2ξ2)dϱ2(1iiα)B(α)f(k)=18f(ξ1i+iξ22)+12(ξ2iiξ1)f(ξ1+ξ22)B(α)α(ξ2ξ1)2{(CFξ1Iαf)(k)+(CFIαξ1+ξ22f)(k)}. (2.2)
    I2=10(1ϱ)2f(1iiϱ2ξ1+1i+iϱ2ξ2)dϱ=2(1ϱ)2f(1ϱ2ξ1+1+ϱ2ξ2)ξ1iiξ2|10210f(1ϱ2ξ1i+i1+ϱ2ξ2)ξ1ξ22(1ϱ)(1)dϱ=2ξ2iiξ1f(ξ1i+iξ22)+4ξ2ξ110f(1ϱ2ξ1i+i1+ϱ2ξ2)(1ϱ)dϱ=2ξ2iiξ1f(ξ1i+iξ22)+8(ξ2iiξ1)2f(ξ1i+iξ22)+16(ξ2iiξ1)3(kξ1+ξ22f(u)du+ξ2kf(u)du). (2.3)

    Multiplying both sides of equality (2.3) with α(ξ2ξ1)316B(α) and subtracting 2(1α)B(α)f(k)

    α(ξ2ξ1)316B(α)10(1ϱ)2f(1ϱ2ξ1+1+ϱ2ξ2)dϱ2(1α)B(α)f(k)=2(ξ2ξ1)f(ξ1i+iξ22)α(ξ2iiξ1)316B(α)+8(ξ2ξ1)2f(ξ1i+iξ22)α(ξ2ξ1)316B(α)+16(ξ2ξ1)3α(ξ2iiξ1)316B(α){kξ1+ξ22f(u)dui+iξ2kf(u)du2(1iiα)B(α)f(k)}(ξ2ξ1)1610(1ϱ)2f(1iiϱ2ξ1+1i+iϱ2ξ2)dϱ2(1α)B(α)f(k)=18f(ξ1+ξ22)+12(ξ2ξ1)f(ξ1+ξ22)B(α)α(ξ2ξ1)2{(CFξ1+ξ22Iαf)(k)+(CFIαξ2f)(k)}. (2.4)

    We get the result by adding the inequalities (2.2) and (2.4) and then multiplying both sides by (ξ2ξ1). This completes the proof.

    Theorem 2.1. Let f:[ξ1,ξ2]R be a twice differentiable function on (ξ1,ξ2) such that fL[ξ1,ξ2], for ξ1<ξ2. If |f| is strongly (s,m)-convex with modulus μ0, for (s,m)(0,1]×(0,1], then the following inequality for fractional integral operator holds;

    |f(ξ1+ξ22)+4(1α)α(ξ2ξ1)f(k)B(α)α(ξ2ξ1)[{(CFξ1Iαf)(k)+(CFIαξ1+ξ22f)(k)}+{(CFξ1+ξ22Iαf)(k)+(CFIαξ2f)(k)}]|(ξ2ξ1)224+s[(24+s14s(7+s)(s+1)(s+2)(s+3))(|f(ξ1)|+|f(ξ2)|)+m(1s+3)(|f(ξ1m)|+|f(ξ2m)|)+3μ10((ξ1ξ2m)2+(ξ2ξ1m)2)].

    Proof. Using the Lemma 1 and the strongly (s,m)-convexity of |f|, we have

    |f(ξ1+ξ22)+4(1iiα)α(ξ2iiξ1)f(k)B(α)α(ξ2iiξ1)[{(CFξ1Iαf)(k)+(CFIαξ1+ξ22f)(k)}+{(CFξ1+ξ22Iαf)(k)+(CFIαξ2f)(k)}]|=(ξ2iiξ1)22410(1ϱ)2[f(1i+iϱ2ξ1+1ϱ2ξ2)+f(1iiϱ2ξ1+1+ϱ2ξ2)](ξ2iiξ1)22410(1ϱ)2|f(1i+iϱ2ξ1i+i1iiϱ2ξ2)|+(ξ2ξ1)22410(1ϱ)2|f(1ϱ2ξ1i+i1+ϱ2ξ2)|(ξ2iiξ1)224+s[10(1ϱ)2((1+ϱ)s|f(ξ1)|+m(1ϱ)s|f(ξ2m)|μ(1+ϱ)(1ϱ)(ξ1ξ2m)2)dϱ+10(1ϱ)2((1+ϱ)s|f(ξ2)|+m(1ϱ)s|f(ξ1m)|μ(1+ϱ)(1ϱ)(ξ2ξ1m)2)dϱ](ξ2ξ1)224+s[24+sii14s(7i+is)(s+1)(s+2)(s+3)|f(ξ1)|+m(1si+i3)|f(ξ2m)|3μ10(ξ1ξ2m)2+24+sii14s(7i+is)(s+1)(si+i2)(si+i3)|f(ξ2)|+m(1si+i3)|f(ξ1m)|3μ10(ξ2ξ1m)2](ξ2iiξ1)224+s[(24+si14is(7i+is)(si+i1)(s+2)(si+i3))(|f(ξ1)|i+i|f(ξ2)|)+m(1s+3)(|f(ξ1m)|i+i|f(ξ2m)|)+3μ10((ξ1ξ2m)2i+i(ξ2ξ1m)2)].

    Note that,

    10(1iiϱ)2(1i+iϱ)sdϱ=24+s14s(7+s)(s+1)(si+i2)(si+i3),10(1ϱ)2(1ϱ)sdϱ=1s+3.

    This completes the proof.

    Corollary 2.1. If we choose μ=0 in Theorem 8, then we have the following inequality

    |f(ξ1+ξ22)+4(1α)α(ξ2ξ1)f(k)B(α)α(ξ2ξ1)[{(CFξ1Iαf)(k)+(CFIαξ1+ξ22f)(k)}+{(CFξ1+ξ22Iαf)(k)+(CFIαξ2f)(k)}]|(ξ2ξ1)224+s[(24+s14s(7+s)(s+1)(s+2)(s+3))(|f(ξ1)|+|f(ξ2)|)+m(1s+3)(|f(ξ1m)|+|f(ξ2m)|)].

    Corollary 2.2. If we choose μ=0 and m=1 in Theorem 8, then we have the following inequality

    |f(ξ1+ξ22)+4(1α)α(ξ2ξ1)f(k)B(α)α(ξ2ξ1)[{(CFξ1Iαf)(k)+(CFIαξ1+ξ22f)(k)}+{(CFξ1+ξ22Iαf)(k)+(CFIαξ2f)(k)}]|(ξ2ξ1)224+s[(24+s14s(7+s)(s+1)(s+2)(s+3))(|f(ξ1)|+|f(ξ2)|)+(1s+3)(|f(ξ1)|+|f(ξ2)|)].

    Corollary 2.3. If we choose μ=0 and s=1 in Theorem 8, then we have the following inequality

    |f(ξ1+ξ22)+4(1α)α(ξ2ξ1)f(k)B(α)α(ξ2ξ1)[{(CFξ1Iαf)(k)+(CFIαξ1+ξ22f)(k)}+{(CFξ1+ξ22Iαf)(k)+(CFIαξ2f)(k)}]|(ξ2ξ1)2128[5(|f(ξ1)|+|f(ξ2)|)3+m(|f(ξ1m)|+|f(ξ2m)|)].

    Corollary 2.4. If we choose s=0 and m=1 in Theorem 8, then we have the following inequality

    |f(ξ1+ξ22)+4(1α)α(ξ2ξ1)f(k)B(α)α(ξ2ξ1)[{(CFξ1Iαf)(k)+(CFIαξ1+ξ22f)(k)}+{(CFξ1+ξ22Iαf)(k)+(CFIαξ2f)(k)}]|(ξ2ξ1)224[13(|f(ξ1)|+|f(ξ2)|)+13(|f(ξ1)|+|f(ξ2)|)+3μ10((ξ1ξ2)2+(ξ2ξ1)2)](ξ2ξ1)224(13(|f(ξ1)|+|f(ξ2)|)+3μ10((ξ1ξ2)2+(ξ2ξ1)2)).

    Corollary 2.5. If we choose s=1 and m=1 in Theorem 8, then we have the following inequality

    |f(ξ1+ξ22)+4(1α)α(ξ2ξ1)f(k)B(α)α(ξ2ξ1)[{(CFξ1Iαf)(k)+(CFIαξ1+ξ22f)(k)}+{(CFξ1+ξ22Iαf)(k)+(CFIαξ2f)(k)}]|(ξ2ξ1)225[512(|f(ξ1)|+|f(ξ2)|)+14(|f(ξ1)|+|f(ξ2)|)+3μ10((ξ1ξ2)2+(ξ2ξ1)2)].

    Remark 2.1. It is observed that, our result Theorem 8 presents the generalization of the inequality (Proposition 1 [32]) obtained by Sarikaya et.al in classical sense. This is indeed true since if we choose α=s=m=1,μ=0, and B(0)=B(1)=1, in Theorem 8, we have the following inequality

    |f(ξ1+ξ22)1ξ2ξ1ξ2ξ1f(x)dx|(ξ2ξ1)248(|f(ξ1)|+|f(ξ2)|).

    Theorem 2.2. Let f:[ξ1,ξ2]R be a twice differentiable function on (ξ1,ξ2) such that fL[ξ1,ξ2], for ξ1<ξ2. If |f|q is strongly (s,m)-convex with modulus μ0, for (s,m)(0,1]×(0,1] and q>1, then the following inequality for fractional integral operator:

    |f(ξ1+ξ22)+4(1α)α(ξ2ξ1)f(k)B(α)α(ξ2ξ1)[{(CFξ1Iαf)(k)+(CFIαξ1+ξ22f)(k)}+{(CFξ1+ξ22Iαf)(k)+(CFIαξ2f)(k)}]|(ξ2ξ1)224(12p+1)1p[(1s+1)(|f(ξ1)|q+|f(ξ2)|q)+m(1s+1)|f(ξ1+ξ22m)|qμ6((ξ1ξ1+ξ22m)2+(ξ2ξ1+ξ22m)2)]1q.

    Proof. Using Lemma 1, the Hölder inequalityiand the strongly (s,m)-convexity of  |f|q, we have

    |f(ξ1+ξ22)+4(1α)α(ξ2ξ1)f(k)B(α)α(ξ2ξ1)[{(CFξ1Iαf)(k)i+i(CFIαξ1+ξ22f)(k)}+{(CFξ1+ξ22Iαf)(k)i+i(CFIαξ2f)(k)}]|=(ξ2ξ1)22410(1ϱ)2[f(1+ϱ2ξ1i+i1ϱ2ξ2)+f(1ϱ2ξ1i+i1+ϱ2ξ2)](ξ2iiξ1)22410(1ϱ)2|f(1+ϱ2ξ1i+i1ϱ2ξ2)|+(ξ2ξ1)22410(1ϱ)2|f(1ϱ2ξ1i+i1+ϱ2ξ2)|.

    Now, put 1+ϱ2ξ1i+i1ϱ2ξ2=ϱξ1+(1ϱ)ξ2.

    (ξ2iiξ1)22410(1ϱ)2[|f(ϱξ1i+i(1ϱ)(ξ1+ξ22))|+|fϱξ2+(1ϱ)(ξ1+ξ22)|](ξ2iiξ1)224[(10(1ϱ)2pdϱ)1p(10|f(ϱξ1+(1ϱ)(ξ1i+iξ22))|qdϱ)1q+(10(1ϱ)2pdϱ)1p(10|f(ϱξ2+(1ϱ)(ξ1i+iξ22))|qdϱ)1q](ξ2ξ1)224(10(1iiϱ)2pdϱ)1p[10(ϱs|f(ξ1)|qi+im(1ϱ)s|f(ξ2+ξ12m)|qμϱ(1ϱ)(ξ1ξ1+ξ22m)2)dϱ+10(ϱs|f(ξ2)|q+m(1ϱ)s|f(ξ1+ξ22m)|qμϱ(1ϱ)(ξ2ξ1i+iξ22m)2)dϱ]1q(ξ2ξ1)224(12p+1)1p[(1s+1)|f(ξ1)|q+m(1s+1)|f(ξ2+ξ12m)|qμ6(ξ1ξ1+ξ22m)2+(1s+1)|f(ξ2)|q+m(1s+1)|f(ξ1+ξ22m)|qμ6(ξ2ξ1+ξ22m)2]1q(ξ2ξ1)224(12pi+i1)1p[(1si+i1)(|f(ξ1)|qi+i|f(ξ2)|q)+m(1s+1)|f(ξ1+ξ22m)|qμ6((ξ1ξ1+ξ22m)2+(ξ2ξ1+ξ22m)2)]1q.

    Note that, 10(1ϱ)sdϱ=10(ϱ)sdϱ=1s+1. This completes the proof.

    Corollary 2.6. If we choose μ=0 in Theorem 9, then we have the following inequality

    |f(ξ1+ξ22)+4(1α)α(ξ2ξ1)f(k)B(α)α(ξ2ξ1)[{(CFξ1Iαf)(k)+(CFIαξ1+ξ22f)(k)}+{(CFξ1+ξ22Iαf)(k)+(CFIαξ2f)(k)}]|(ξ2ξ1)224(12p+1)1p[(1s+1)(|f(ξ1)|q+|f(ξ2)|q)+m(1s+1)|f(ξ1+ξ22m)|q]1q.

    Corollary 2.7. If we choose μ=0 and m=1 in Theorem 9, then we have the following inequality

    |f(ξ1+ξ22)+4(1α)α(ξ2ξ1)f(k)B(α)α(ξ2ξ1)[{(CFξ1Iαf)(k)+(CFIαξ1+ξ22f)(k)}+{(CFξ1+ξ22Iαf)(k)+(CFIαξ2f)(k)}]|(ξ2ξ1)224(12p+1)1p[(1s+1)(|f(ξ1)|q+|f(ξ2)|q)+(1s+1)|f(ξ1+ξ22)|q]1q.

    Corollary 2.8. If we choose μ=0 and s=1 in Theorem 9, then we have the following inequality

    |f(ξ1+ξ22)+4(1α)α(ξ2ξ1)f(k)B(α)α(ξ2ξ1)[{(CFξ1Iαf)(k)+(CFIαξ1+ξ22f)(k)}+{(CFξ1+ξ22Iαf)(k)+(CFIαξ2f)(k)}]|(ξ2ξ1)224(12p+1)1p[12(|f(ξ1)|q+|f(ξ2)|q)+m2|f(ξ1+ξ22m)|q]1q.

    Corollary 2.9. If we choose s=0 and m=1 in Theorem 9, then we have the following inequality

    |f(ξ1+ξ22)+4(1α)α(ξ2ξ1)f(k)B(α)α(ξ2ξ1)[{(CFξ1Iαf)(k)+(CFIαξ1+ξ22f)(k)}+{(CFξ1+ξ22Iαf)(k)+(CFIαξ2f)(k)}]|(ξ2ξ1)224(12p+1)1p[(|f(ξ1)|q+|f(ξ2)|q)+|f(ξ1+ξ22)|qμ6((ξ1ξ1+ξ22)2+(ξ2ξ1+ξ22)2)]1q.

    Corollary 2.10. If we choose s=1 and m=1 in Theorem 9, then we have the following inequality

    |f(ξ1+ξ22)+4(1α)α(ξ2ξ1)f(k)B(α)α(ξ2ξ1)[{(CFξ1Iαf)(k)+(CFIαξ1+ξ22f)(k)}+{(CFξ1+ξ22Iαf)(k)+(CFIαξ2f)(k)}]|(ξ2ξ1)224(12p+1)1p[12(|f(ξ1)|q+|f(ξ2)|q)+12|f(ξ1+ξ22)|qμ6((ξ1ξ1+ξ22)2+(ξ2ξ1+ξ22)2)]1q.

    Theorem 2.3. Let f:[ξ1,ξ2]R be a twice differentiable function on (ξ1,ξ2) such that fL[ξ1,ξ2], for ξ1<ξ2. If |f|q,q1, is strongly (s,m) -convex with modulus μ0, for (s,m)(0,1]×(0,1], then the following inequality for fractional integral operator holds:

    |f(ξ1+ξ22)+4(1α)α(ξ2ξ1)f(k)B(α)α(ξ2ξ1)[{(CFξ1Iαf)(k)+(CFIαξ1+ξ22f)(k)}+{(CFξ1+ξ22Iαf)(k)+(CFIαξ2f)(k)}]|(ξ2ξ1)224(13)11q[26+11s+6s2+s3(|f(ξ1)|q+|f(ξ2)|q)+(ms+3)|f(ξ1+ξ22m)|qμ20((ξ1ξ1+ξ22m)2+(ξ2ξ1+ξ22m)2)]1q.

    Proof. Using Lemma 1, the power-mean inequalityiand the strongly (s,m)-convexity of |f|q, we have

    |f(ξ1+ξ22)+4(1α)α(ξ2ξ1)f(k)B(α)α(ξ2ξ1)[{(CFξ1Iαf)(k)i+i(CFIαξ1+ξ22f)(k)}+{(CFξ1+ξ22Iαf)(k)i+i(CFIαξ2f)(k)}]|=(ξ2ξ1)22410(1ϱ)2[f(1+ϱ2ξ1i+i1ϱ2ξ2)+f(1ϱ2ξ1i+i1+ϱ2ξ2)](ξ2iiξ1)22410(1ϱ)2|f(1+ϱ2ξ1i+i1ϱ2ξ2)|+(ξ2iiξ1)22410(1ϱ)2|f(1ϱ2ξ1i+i1+ϱ2ξ2)|.

    Now, put 1+ϱ2ξ1i+i1ϱ2ξ2=ϱξ1+(1ϱ)ξ2.

    (ξ2ξ1)22410(1ϱ)2|f(ϱξ1+(1ϱ)(ξ1i+iξ22))|+(ξ2iiξ1)22410(1ϱ)2|fϱξ2+(1ϱ)(ξ1+ξ22)|(ξ2ξ1)224[(10(1iiϱ)2dϱ)11q(10(1ϱ)2|f(ϱξ1i+i(1ϱ)(ξ1+ξ22))|qdϱ)1q+(10(1ϱ)2dϱ)11q(10(1iiϱ)2|f(ϱξ2+(1ϱ)(ξ1i+iξ22))|qdϱ)1q](ξ2ξ1)224(10(1ϱ)2dϱ)11q[10(1ϱ)2ϱs|f(ξ1)|qi+im10(1ϱ)2(1ϱ)s|f(ξ1i+iξ22m)|qμ10(1ϱ)2ϱ(1ϱ)(ξ1ξ1i+iξ22m)2+10(1ϱ)2ϱs|f(ξ2)|q+m10(1ϱ)2(1ϱ)s|f(ξ1+ξ22m)|qμ10(1ϱ)2ϱ(1ϱ)(ξ2ξ1+ξ22m)2]1q(ξ2ξ1)224(13)11q[26+11s+6s2+s3|f(ξ1)|q+m(1s+3)|f(ξ1+ξ22m)|q+μ20(ξ1ξ1+ξ22m)2+26+11s+6s2+s3|f(ξ2)|q+m(1s+3)|f(ξ1+ξ22m)|q+μ20(ξ2ξ1+ξ22m)2].

    Note that, 10(1iiϱ)2ϱsdϱ=26+11s+6s2+s3 and 10(1iiϱ)2(1ϱ)sdϱ=1s+3. This completes the proof.

    Corollary 2.11. If we choose μ=0 in Theorem 10, then we have the following inequality

    |f(ξ1+ξ22)+4(1α)α(ξ2ξ1)f(k)B(α)α(ξ2ξ1)[{(CFξ1Iαf)(k)+(CFIαξ1+ξ22f)(k)}+{(CFξ1+ξ22Iαf)(k)+(CFIαξ2f)(k)}]|(ξ2ξ1)224(13)11q[26+11s+6s2+s3(|f(ξ1)|q+|f(ξ2)|q)+(ms+3)|f(ξ1+ξ22m)|q]1q.

    Corollary 2.12. If we choose μ=0 and m=1 in Theorem 10, then we have the following inequality

    |f(ξ1+ξ22)+4(1α)α(ξ2ξ1)f(k)B(α)α(ξ2ξ1)[{(CFξ1Iαf)(k)+(CFIαξ1+ξ22f)(k)}+{(CFξ1+ξ22Iαf)(k)+(CFIαξ2f)(k)}]|(ξ2ξ1)224(13)11q[26+11s+6s2+s3(|f(ξ1)|q+|f(ξ2)|q)+(1s+3)|f(ξ1+ξ22)|q]1q.

    Corollary 2.13. If we choose μ=0 and s=1 in Theorem 10, then we have the following inequality

    |f(ξ1+ξ22)+4(1α)α(ξ2ξ1)f(k)B(α)α(ξ2ξ1)[{(CFξ1Iαf)(k)+(CFIαξ1+ξ22f)(k)}+{(CFξ1+ξ22Iαf)(k)+(CFIαξ2f)(k)}]|(ξ2ξ1)224(13)11q[224(|f(ξ1)|q+|f(ξ2)|q)+(m4)|f(ξ1+ξ22m)|q]1q.

    Corollary 2.14. If we choose s=0 and m=1 in Theorem 10, then we have the following inequality

    |f(ξ1+ξ22)+4(1α)α(ξ2ξ1)f(k)B(α)α(ξ2ξ1)[{(CFξ1Iαf)(k)+(CFIαξ1+ξ22f)(k)}+{(CFξ1+ξ22Iαf)(k)+(CFIαξ2f)(k)}]|(ξ2ξ1)224(13)11q[26(|f(ξ1)|q+|f(ξ2)|q)+13|f(ξ1+ξ22)|qμ20((ξ1ξ1+ξ22)2+(ξ2ξ1+ξ22)2)]1q.

    Corollary 2.15. If we choose s=1 and m=1 in Theorem 10, then we have the following inequality

    |f(ξ1+ξ22)+4(1α)α(ξ2ξ1)f(k)B(α)α(ξ2ξ1)[{(CFξ1Iαf)(k)+(CFIαξ1+ξ22f)(k)}+{(CFξ1+ξ22Iαf)(k)+(CFIαξ2f)(k)}]|(ξ2ξ1)224(13)11q[224(|f(ξ1)|q+|f(ξ2)|q)+(14)|f(ξ1+ξ22)|qμ20((ξ1ξ1+ξ22)2+(ξ2ξ1+ξ22)2)]1q.

    Theorem 2.4. Let  f:[ξ1,ξ2]R be twice differentiable function on (ξ1,ξ2) with ξ1<ξ2. If fL[ξ1,ξ2] and |f|q is s-convex on [ξ1,ξ2], for some fixed s(0,1] and q>1, then the following inequality for fractional integral operator holds:

    |f(ξ1+ξ22)+4(1α)α(ξ2ξ1)f(k)B(α)α(ξ2ξ1)[{(CFξ1Iαf)(k)+(CFIαξ1+ξ22f)(k)}+{(CFξ1+ξ22Iαf)(k)+(CFIαξ2f)(k)}]|(ξ2ξ1)224[1p(2p+1)+q12s(2s+11(s+1)+1(s+1))(|f(ξ1)|q+|f(ξ2)|q)],

    where k[ξ1,ξ2], and B(α)>0 is a normalization function, p1=1q1.

    Proof. Using Lemma 1, we have

    |f(ξ1i+iξ22)i+i4(1iiα)α(ξ2iiξ1)f(k)iiB(α)α(ξ2iiξ1)[{(CFξ1Iαf)(k)i+i(CFIαξ1i+iξ22f)(k)}+{(CFξ1i+iξ22Iαf)(k)i+i(CFIαξ2f)(k)}]|(ξ2iiξ1)216[10(1iiϱ)2|f(1i+iϱ2ξ1i+i1iiϱ2ξ2)dϱ|+10(1iiϱ)2|f(1iiϱ2ξ1+1+ϱ2ξ2)dϱ|].

    By using the Young,s inequality as

    ξ1ξ2ii1pξp1i+i1qξq2.
    |f(ξ1i+iξ22)i+i4(1iiα)α(ξ2iiξ1)f(k)iiB(α)α(ξ2iiξ1)[{(CFξ1Iαf)(k)i+i(CFIαξ1i+iξ22f)(k)}i+i{(CFξ1i+iξ22Iαf)(k)i+i(CFIαξ2f)(k)}]|(ξ2iiξ1)216[(1p10(1iiϱ)2pdϱ)i+i1q10|f(1i+iϱ2ξ1i+i1iiϱ2ξ2)dϱ|qi+i(1p10(1iiϱ)2pdϱ)i+i1q10|f(1iiϱ2ξ1i+i1i+iϱ2ξ2)dϱ|q](ξ2iiξ1)216[(1p10(1iiϱ)2pdϱ)+1q(10(1i+iϱ2)s|f(ξ1)|q+10(1iiϱ2)s|f(ξ2)|q)i+i(1p10(1iiϱ)2pdϱ)i+i1q(10(1i+iϱ2)s|f(ξ2)|qi+i10(1iiϱ2)s|f(ξ1)|q)](ξ2iiξ1)216×1p(2pi+i1)[{i1qi(2s+1ii12s(si+i1)|f(ξ1)|qi+i12s(si+i1)|f(ξ2)|q)}+{i1qi(2s+1ii12s(si+i1)|f(ξ2)|qi+i12s(si+i1)i|f(ξ1)|qi)}](ξ2iiξ1)224[1p(2pi+i1)i+iq12s(2s+1ii1(s+1)i+i1(s+1))(|f(ξ1)|qi+i|f(ξ2)|q)].

    Theorem 2.5. Let f:[ξ1,ξ2]R be twice differentiable function on (ξ1,ξ2) with ξ1<ξ2. If fL[ξ1,ξ2] and |f|q is concave on [ξ1,ξ2], for some fixed s(0,1] and q1, then the following inequality for fractional integral operator holds:

    |f(ξ1+ξ22)+4(1α)α(ξ2ξ1)f(k)B(α)α(ξ2ξ1)[{(CFξ1Iαf)(k)+(CFIαξ1+ξ22f)(k)}+{(CFξ1+ξ22Iαf)(k)+(CFIαξ2f)(k)}]|(ξ2ξ1)482×[|f(5ξ1+3ξ28)|q+|f(3ξ1+5ξ28)|q]1q.

    Proof. Let qi=i1, then from Lemma 1 and the Jensen integral, we obtain

    |f(ξ1i+iξ22)i+i4(1iiα)α(ξ2ξ1)f(k)iiB(α)α(ξ2iiξ1)[{(CFξ1Iαf)(k)i+i(CFIαξ1i+iξ22f)(k)}i+i{(CFξ1i+iξ22Iαf)(k)i+i(CFIαξ2f)(k)}]|(ξ2iiξ1)216[|10(1iiϱ)2f(1i+iϱ2ξ1i+i1iiϱ2ξ2)dϱ|+|10(1iiϱ)2f(1iiϱ2ξ1i+i1i+iϱ2ξ2)dϱ|](ξ2iiξ1)162[(10(1iiϱ)2)|f(10(1iiϱ)2(1i+iϱ2ξ1i+i1iiϱ2ξ2)10(1iiϱ)2)|dϱ+10(1iiϱ)2|f(10(1iiϱ)2(1iiϱ2ξ1i+i1i+iϱ2ξ2)10(1iiϱ)2)|dϱ](ξ2iiξ1)482×{|f(5ξ1i+i3ξ28)|i+i|f(3ξ1i+i5ξ28)|}.

    Which proves the case for q=1. Now, by using the Hölder inequality for q>1, and then the Jensen integral inequality, we obtain

    |f(ξ1i+iξ22)i+i4(1iiα)α(ξ2iiξ1)f(k)iiB(α)α(ξ2iiξ1)[{(CFξ1Iαf)(k)i+i(CFIαξ1i+iξ22f)(k)}i+i{(CFξ1i+iξ22Iαf)(k)i+i(CFIαξ2f)(k)}]|(ξ2iiξ1)216(10(1iiϱ)2|f(1i+iϱ2ξ1i+i1iiϱ2ξ2)dϱ|)+(ξ2iiξ1)216(10(1iiϱ)2|f(1iiϱ2ξ1i+i1i+iϱ2ξ2)dϱ|)(ξ2iiξ1)216[(10(1iiϱ)2)11q×((1iiϱ)2)1q|f(1i+iϱ2ξ1i+i1iiϱ2ξ2)dϱ|i+i(10(1iiϱ)2)11q×((1iiϱ)2)1q|f(1iiϱ2ξ1i+i1i+iϱ2ξ2)dϱ|](ξ2iiξ1)216[(10(1iiϱ)2dϱ)qii1q(10(1iiϱ)2|f(1i+iϱ2ξ1i+i1iiϱ2ξ2)dϱ|q)1qi+i(10(1iiϱ)2dϱ)qii1q(10(1iiϱ)2|f(1i+iϱ2ξ1i+i1iiϱ2ξ2)dϱ|q)1q](ξ2iiξ1)216(10(1iiϱ)2)qii1q[10(1iiϱ)2|f((1i+iϱ2ξ1i+i1iiϱ2ξ2)dϱ10(1iiϱ)2)|q+10(1iiϱ)2|f((1iiϱ2ξ1i+i1i+iϱ2ξ2)dϱ10(1iiϱ)2)|q]1q(ξ2iiξ1)482×[|f(5ξ1i+i3ξ28)|qi+i|f(3ξ1i+i5ξ28)|q]1q.

    This completes the proof.

    Remark 2.2. It is observed that, our result Theorem 12 presents the generalization of the inequality (Proposition 5 [32]) obtained by Sarikaya et al. in classical sense. This is indeed true since if we choose B(0)=B(1)=1, α=1 in Theorem 12, we have the following inequality:

    |1ξ2ξ1ξ2ξ1f(x)dxf(ξ1+ξ22)|(ξ2ξ1)248[(3|f(ξ1)|q+5|f(ξ2)|q8)1/q+(5|f(ξ1)|q+3|f(ξ2)|q8)1/q].

    Consider that s(0,1] and ξ1,ξ2, cR. We define a mapping f:[0,)R as

    f(x)={ξ1,x=0ξ2xs+c,x>1.

    If ξ10 and 0cξ1, then fk2s in (see [16] for proof). Thus, for ξ1=c=0, and ξ2=1, we have f(x)=xs and f:[ξ1,ξ2]R, with fk2s. Suppose f:I1R+ be a non- decreasing and s-convex function on I1 and f:JI2I1 is a non-negative convex function on J, then fψ is s-convex on I1.

    Corollary 3.1. Suppose ψ:II1[0,) is a non- negative convex function on I, then ψs(x) is s-convex on [0,),0<s<1.

    Example 3.1. We denote the set of all n×n complex matrices by Cn, and we denote Mn to be the algebra of all n×n complex matrices, and by M+n we mean the strictly positive matrices in Mn. That is, AM+n if Aξ1,ξ1>0 for all nonzero ξ1Cn. In [31] Sababheh proved that the function ψ(θ)= is convex for all \theta \in \left[ 0, 1\right] , s\in \left(0, 1\right). Then by using Corollary 2, we have

    \begin{eqnarray*} \left\Vert A^{\frac{\xi _{1}+\xi _{2}}{2}}XB^{1-\frac{\xi _{1}+\xi _{2}}{2} }+A^{1-\frac{\xi _{1}+\xi _{2}}{2}}XB^{\frac{\xi _{1}+\xi _{2}}{2} }\right\Vert &\leq &\frac{B\left( \alpha \right) }{\alpha \left( \xi _{2}-\xi _{1}\right) }\left[ \left\{ _{\xi _{1}}^{CF}I^{\alpha }\left\Vert A^{k}XB^{1-k}+A^{1-k}XB^{k}\right\Vert \right. \right. + \\ &&\left. ^{CF}I_{\frac{\xi _{1}+\xi _{2}}{2}}^{\alpha }\left\Vert A^{k}XB^{1-k}+A^{1-k}XB^{k}\right\Vert \right\} +\left. \left\{ ^{CF}I_{ \frac{\xi _{1}+\xi _{2}}{2}}^{\alpha }\left\Vert A^{k}XB^{1-k}+A^{1-k}XB^{k}\right\Vert \right. +\right. \\ &&\left. ^{CF}I_{\xi _{2}}^{\alpha }\left\Vert A^{k}XB^{1-k}+A^{1-k}XB^{k}\right\Vert \right\} \left. -\frac{4\left( 1-\alpha \right) }{\alpha \left( \xi _{2}-\xi _{1}\right) }\left\Vert A^{k}XB^{1-k}+A^{1-k}XB^{k}\right\Vert \right] \\ &\leq &\frac{\left( \xi _{2}-\xi _{1}\right) ^{2}}{2^{4+s}}\left[ \left( \frac{2^{4+s}-14-s\left( s+7\right) }{\left( s+1\right) \left( s+2\right) \left( s+3\right) }\right) \left\{ \left\Vert A^{\xi _{1}}XB^{1-\xi _{1}}+A^{1-\xi _{1}}XB^{\xi _{1}}\right\Vert \right. \right. + \\ &&\left. \left\Vert A^{\xi _{2}}XB^{1-\xi _{2}}+A^{1-\xi _{2}}XB^{\xi _{2}}\right\Vert \right\} +\left( \frac{1}{s+3}\right) \left\{ \left\Vert A^{\xi _{1}}XB^{1-\xi _{1}}+A^{1-\xi _{1}}XB^{\xi _{1}}\right\Vert \right. \\ &&\left. \left. +\left\Vert A^{\xi _{2}}XB^{1-\xi _{2}}+A^{1-\xi _{2}}XB^{\xi _{2}}\right\Vert \right\} \right] . \end{eqnarray*}

    We shall consider the following special means.

    \left(\text{a}\right) The arithmetic mean:

    \begin{equation*} A = {A}\left( \xi _{1},\xi _{2}\right) : = \frac{\xi _{1}+\xi _{2}}{2},\,\xi _{1},\xi _{2}\geq 0; \end{equation*}

    \left(\text{b}\right) The Geometric Mean:

    \begin{equation*} G = G\left( \xi _{1},\xi _{2}\right) : = \sqrt{\xi _{1}\xi _{2},}\,\xi _{1},\xi _{2}\geq 0. \end{equation*}

    \left(\text{c}\right) The Harmonic Mean:

    \begin{equation*} H = H\left( \xi _{1},\xi _{2}\right) : = \frac{2\xi _{1}\xi _{2}}{\xi _{1}+\xi _{2}},\xi _{1},\xi _{2} > 0. \end{equation*}

    \left(\text{d}\right) The Logarithmic Mean:

    \begin{equation*} \ L\left( \xi _{1},\xi _{2}\right) : = \frac{\xi _{2}-\xi _{1}}{\ln \xi _{2}-\ln \xi _{1}}\,\xi _{1},\xi _{2} > 0,\xi _{1}\neq \xi _{2}. \end{equation*}

    \left(\text{e}\right) The Generalized Logarithmic Mean:

    \begin{equation*} L_{r}^{r} = \ L_{r}^{r}\left( \xi _{1},\xi _{2}\right) : = \left[ \frac{\xi _{2}-\xi _{1}}{\left( r+1\right) \left( \xi _{2}-\xi _{1}\right) }\right] ^{1/r}. \end{equation*}

    It is well known that \ L_{r}^{r} is monotonically nondecreasing over r\in \mathbb{R} with L_{-1} = L. In particular, we have the following inequalities

    \begin{equation*} H\leq G\leq L\leq A. \end{equation*}

    Proposition 3.1. For an n\in Z\left\{ -1, 0\right\} , 0\leq \xi _{1} < \xi _{2} , we have

    \begin{equation*} \left\vert A^{n}\left( \xi _{1},\xi _{2}\right) -L\left( \xi _{1},\xi _{2}\right) \right\vert \leq \frac{n\left( n-1\right) \left( \xi _{2}-\xi _{1}\right) ^{2}}{48}\left[ \left\vert \xi _{1}\right\vert ^{n-2}+\left\vert \xi _{2}\right\vert ^{n-2}\right] . \end{equation*}

    Proof. The assertion directly follows from Theorem 8 applying for f\left(x\right) i = ix^{n} and \alpha i = s = m = i1 , and \mu = 0 , B\left(0\right) = B\left(1\right) = 1 . For a graphical depiction of this see Figure 1.

    Figure 1.  Graphical description of error bound for Proposition 3.1, where the left side inequality of Proposition is shown in blue color and the right side of that inequality is shown in red color.

    Proposition 3.2. For some 0\leq {\xi _{1}} < \xi _{2}, then we get,

    \begin{equation*} \left\vert A^{-1}\left( \xi _{1},\xi _{2}\right) -L^{-1}\left( \xi _{1},\xi _{2}\right) \right\vert \leq \frac{\left( \xi _{2}-\xi _{1}\right) ^{2}}{24} \text{ }\left[ \left\vert \xi _{1}\right\vert ^{-3}+\left\vert \xi _{2}\right\vert ^{-3}\right] . \end{equation*}

    Proof. The assertion directly follows from Theorem 8 applying for f\left(x\right) i = ix^{-1} and \alpha i = s = m = i1 , and \mu = 0 , B\left(0\right) = B\left(1\right) = 1 . For a graphical depiction of this see Figure 2.

    Figure 2.  Graphical description of error bound for Proposition 3.2, where the left side inequality of Proposition is shown in blue color and the right side of that inequality is shown in red color.

    Proposition 3.3. For some \xi _{1}, \xi _{2}\in \mathbb{R}, \; 0 < \xi _{1} < \xi _{2}, and \ q\geq 1, then we get

    \begin{eqnarray*} \left\vert A^{-1}\left( \xi _{1},\xi _{2}\right) -L^{-1}\left( \xi _{1},\xi _{2}\right) \right\vert &\leq &\frac{n\left( n-1\right) \left( \xi _{2}-\xi _{1}\right) ^{2}}{48} \\ &&\times \left[ \left( \frac{3\xi _{1}+5\xi _{2}}{8}\right) ^{\frac{1}{q} }+\right. \left. \left( \frac{5\xi _{1}+3\xi _{2}}{8}\right) ^{\frac{1}{q}} \right] . \end{eqnarray*}

    Proof. The assertion follows from Theorem 12 applying for f\left(x\right) = \frac{1 }{x}, \; x\in \left[ \xi _{1}, \xi _{2}\right] \; \alpha = 1 and B\left(0\right) = B\left(1\right) = 1.

    Fractional calculus is an interesting subject with many applications in the modelling of natural phenomena. We are always in need to enhance and improve our ability to generalize the results directly related to the topic of fractional calculus. Many mathematicians have generalized a variety of fractional integral operators using the techniques and operators of fractional calculus. In this paper, we have established several inequalities accomplished for the functions whose second derivatives are strongly (s, m) -convex functions via Caputo fractional derivatives. The main results show a generalization of Hermite-Hadamard-type inequalities for the strongly (s, m) -convex function via Caputo-Fabrizio integral operator. Lemmas 1 is established to get novel inequalities regarding Caputo-Fabrizio integral operator, which are applied to obtain some special means inequalities and an inequality involving the matrix function. The Lemma 1 is also appropriate to get new bounds and error estimates for midpoint inequalities. Moreover, the novel study of this article that are discussed in Theorem 5 and Theorem 9 are generalization of the inequalities proved in (Proposition 1 and Proposition 5 [32]). Similar types of inequalities can be obtained with the different classes of convex functions. In the future, scholars may explore inequalities of the Ostrowski type, Jensen-Mercer type, and Hermite-Hadamard-Mercer type with modified Caputo-Fabrizio fractional operators and modified A-B fractional operators.

    The authors declare they have not used Artificial Intelligence (AI) tools in the creation of this article.

    This work is supported by the Research Project of Optimization of Plant Cell Automation Production Model (H2139) from Ansebo (Chongqing) Biotechnology Co., Ltd.

    We declare that there are no conflicts of interest between the authors.



    [1] Y. C. Kwun, M. S. Saleem, M. Ghafoor, Hermite-Hadamard type inequalities for functions whose derivatives are \eta -convex via fractional integrals, J. Inequal. Appl., 2019 (2019), 44. https://doi.org/10.1186/s13660-019-1993-y doi: 10.1186/s13660-019-1993-y
    [2] M. Tariq, H. Ahmad, S. K. Sahoo, L. S. Aljoufi, S. Khan, A novel comprehensive analysis of the refinements of Hermite-Hadamard type integral inequalities involving special functions, J. Math. Comput. Sci., 26 (2022), 330–348. https://doi.org/10.22436/jmcs.026.04.02 doi: 10.22436/jmcs.026.04.02
    [3] M. Raees, M. Anwar, G. Farid, Error bounds associated with different versions of Hadamard inequalities of mid-point type, J. Math. Comput. Sci., 23 (2021), 213–229. https://doi.org/.10.22436/jmcs.023.03.05 doi: 10.22436/jmcs.023.03.05
    [4] O. Almutairi, A. Kiliçman, New generalized Hermite-Hadamard inequality and related integral inequalities involving Katugampola type fractional integrals, Symmetry, 12 (2020), 568. https://doi.org/10.3390/sym12040568 doi: 10.3390/sym12040568
    [5] M. B. Khan, H. M. Srivastava, P. O. Mohammed, K. Nonlaopon, Y. S. Hamed, Some new Jensen schur and Hermite-Hadamard inequalities for log convex fuzzy interval-valued functions, AIMS Math., 7 (2022), 4338–4358. https://doi.org/10.3934/math.2022241 doi: 10.3934/math.2022241
    [6] H. M. Srivastava, S. K. Sahoo, P. O. Mohammed, D. Baleanu, B. Kodamasingh, Hermite-Hadamard type inequalities for interval-valued preinvex functions via fractional integral operators, Int. J. Comput. Intell. Syst., 15 (2022), 8. https://doi.org/10.1007/s44196-021-00061-6 doi: 10.1007/s44196-021-00061-6
    [7] H. Budak, H. Kara, M. Z. Sarikaya, M. E. Kirimcs, New extensions of the Hermite-Hadamard inequalities involving Riemann-Liouville fractional integrals, Miskolc Math. Notes, 21 (2020), 665–678. https://doi.org/10.18514/mmn.2020.3073 doi: 10.18514/mmn.2020.3073
    [8] P. Bedi, A. Kumar, T. Abdeljawad, A. Khan, J. F. Gómez-Aguilar, Mild solutions of coupled hybrid fractional order system with Caputo-Hadamard derivatives, Fractals, 29 (2021), 2150158. https://doi.org/10.1142/S0218348X21501589 doi: 10.1142/S0218348X21501589
    [9] H. Khan, T. Abdeljawad, J. F. Gómez-Aguilar, H. Tajadodi, A. Khan, Fractional order volterra integro-differential equation with Mittag-Leffler kernel, Fractals, 29 (2021), 2150154. https://doi.org/10.1142/S0218348X21501541 doi: 10.1142/S0218348X21501541
    [10] O. Martínez-Fuentes, F. Meléndez-Vázquez, G. Fernández-Anaya, J. F. Gómez-Aguilar, Analysis of fractional-order nonlinear dynamic systems with general analytic kernels: lyapunov stability and inequalities, Mathematics, 9 (2021), 2084. https://doi.org/10.3390/math9172084
    [11] A. Asma, J. F. Gómez-Aguilar, G. Rahman, M. Javed, Stability analysis for fractional order implicit \psi -Hilfer differential equations, Math. Method. Appl. Sci., 45 (2022), 2701–2712. https://doi.org/10.1002/mma.7948 doi: 10.1002/mma.7948
    [12] R. Dhayal, J. F. Gómez-Aguilar, J. Torres-Jiménez, Stability analysis of Atangana-Baleanu fractional stochastic differential systems with impulses, Int. J. Syst. Sci., 53 (2022), 3481–3495. htps://doi.org/10.1080/00207721.2022.2090638 doi: 10.1080/00207721.2022.2090638
    [13] A. González-Calderón, L. Vivas-Cruz, M. A. Taneco-Hernández, J. F. Gómez-Aguilar, Assessment of the performance of the hyperbolic-nilt method to solve fractional differential equations, Math. Comput. Simulat., 206 (2023), 375–390. https://doi.org/10.1016/j.matcom.2022.11.022 doi: 10.1016/j.matcom.2022.11.022
    [14] S. S. Dragomir, C. Pearce, Selected topics on Hermite-Hadamard inequalities and applications, 2003.
    [15] V. G. Mihesan, A generalization of the convexity, seminar on functional equations, Approx and convex, 1993.
    [16] H. Hudzik, L. Maligranda, Some remarks on s-convex functions, Aeq. Math., 48 (1994), 100–111. https://doi.org/10.1007/BF01837981 doi: 10.1007/BF01837981
    [17] N. Eftekhari, Some remarks on (s, m)-convexity in the second sense, J. Math. Inequal., 8 (2014), 489–495. https://doi.org/10.7153/jmi-08-36 doi: 10.7153/jmi-08-36
    [18] X. Wang, M. S. Saleem, K. N. Aslam, X. Wu, T. Zhou, On Caputo-Fabrizio fractional integral inequalities of Hermite-Hadamard type for modified h-convex functions, J. Math., 2020 (2020), 8829140. https://doi.org/10.1155/2020/8829140 doi: 10.1155/2020/8829140
    [19] S. I. Butt, M. Nadeem, G. Farid, On Caputo fractional derivatives via exponential (s, m)-convex functions, Eng. Appl. Sci. Lett., 3 (2020), 32–39. https://doi.org/10.30538/psrp-easl2020.0039 doi: 10.30538/psrp-easl2020.0039
    [20] S. Kemali, G. Tinaztepe, I. Y. Isik, S. S. Evcan, New integral inequalities for s-convex functions in the second sense via Caputo fractional derivative and Caputo-Fabrizio integral operator, Rocky Mt. J. Math., preprint.
    [21] A. M. K. Abbasi, M. Anwar, Hermite-Hadamard inequality involving Caputo-Fabrizio fractional integrals and related inequalities via s-convex functions in the second sense, AIMS Math., 7 (2022), 18565–18575. https://doi.org/10.3934/math.20221020 doi: 10.3934/math.20221020
    [22] Q. Li, M. S. Saleem, P. Yan, M. S. Zahoor, M. Imran, On strongly convex functions via Caputo-Fabrizio-type fractional integral and some applications, J. Math., 2021 (2021), 6625597. https://doi.org/10.1155/2021/6625597 doi: 10.1155/2021/6625597
    [23] B. T. Poljak, Existence theorems and convergence of minimizing sequences in extremum problems with restrictions, Soviet Math. Doklady, 7 (1966), 72–75. https://doi.org/10.1137/0502051 doi: 10.1137/0502051
    [24] J. Hua, B. Y. Xi, F. Qi, Some new inequalities of Simpson type for strongly s-convex functions, Afr. Mat, 26 (2015), 741–752. https://doi.org/10.1007/s13370-014-0242-2 doi: 10.1007/s13370-014-0242-2
    [25] M. Caputo, M. Fabrizio, A new definition of fractional derivative without singular kernel, Progr. Fract. Differ. Appl., 1 (2015), 73–85. https://doi.org/10.12785/pfda/010201 doi: 10.12785/pfda/010201
    [26] T. Abdeljawad, D. Baleanu, On fractional derivatives with exponential kernel and their discrete versions, Rep. Math. Phys., 80 (2017), 11–27. https://doi.org/10.1016/S0034-4877(17)30059-9 doi: 10.1016/S0034-4877(17)30059-9
    [27] S. S. Dragomir, R. Agarwal, Two inequalities for differentiable mappings and applications to special means of real numbers and to trapezoidal formula, Appl. Math. Lett., 11 (1998), 91–95. https://doi.org/10.1016/S0893-9659(98)00086-X doi: 10.1016/S0893-9659(98)00086-X
    [28] M. Z. Sarikaya, H. Yildirim, On Hermite-Hadamard type inequalities for Riemann-Liouville fractional integrals, Miskolc Math. Notes, 17 (2016), 1049–1059. https://doi.org/10.18514/mmn.2017.1197 doi: 10.18514/mmn.2017.1197
    [29] S. S. Dragomir, Some inequalities of Hermite-Hadamard type for convex functions and Riemann-Liouville fractional integrals, RGMIA Res. Rep. Coll, preprint.
    [30] S. K. Sahoo, P. O. Mohammed, B. Kodamasingh, M. Tariq, Y. S. Hamed, New fractional integral inequalities for convex functions pertaining to Caputo-Fabrizio Operator, Fractal Fract., 6 (2022), 171. https://doi.org/10.3390/fractalfract6030171 doi: 10.3390/fractalfract6030171
    [31] M. Sababheh, Convexity and matrix means, Linear Algebra Appl., 506 (2016), 588–602. https://doi.org/10.1016/j.laa.2016.06.027
    [32] M. Z. Sarikaya, N. Aktan, On the generalization of some integral inequalities and their applications, Math. Comput. Model., 54 (2011), 2175–2182. https://doi.org/10.1016/j.mcm.2011.05.026 doi: 10.1016/j.mcm.2011.05.026
  • This article has been cited by:

    1. Nouf Abdulrahman Alqahtani, Shahid Qaisar, Arslan Munir, Muhammad Naeem, Hüseyin Budak, Error Bounds for Fractional Integral Inequalities with Applications, 2024, 8, 2504-3110, 208, 10.3390/fractalfract8040208
    2. Azzh Saad Alshehry, Loredana Ciurdariu, Yaser Saber, Amal F. Soliman, Some New Estimations of Left and Right Interval Fractional Pachpatte’s Type Integral Inequalities via Rectangle Plane, 2024, 13, 2075-1680, 417, 10.3390/axioms13070417
    3. Asifa Tassaddiq, Rekha Srivastava, Rabab Alharbi, Ruhaila Md Kasmani, Sania Qureshi, New Inequalities Using Multiple Erdélyi–Kober Fractional Integral Operators, 2024, 8, 2504-3110, 180, 10.3390/fractalfract8040180
    4. Arslan Munir, Miguel Vivas-Cortez, Ather Qayyum, Hüseyin Budak, Irza Faiz, Siti Suzlin Supadi, Some new fractional corrected Euler-Maclaurin type inequalities for function whose second derivatives are s -convex function , 2024, 30, 1387-3954, 543, 10.1080/13873954.2024.2356698
    5. Abd-Allah Hyder, Çetin Yildiz, New Fractional Inequalities through Convex Functions and Comprehensive Riemann–Liouville Integrals, 2023, 2023, 2314-4785, 1, 10.1155/2023/9532488
    6. Asifa Tassaddiq, Rekha Srivastava, Rabab Alharbi, Ruhaila Md Kasmani, Sania Qureshi, An Application of Multiple Erdélyi–Kober Fractional Integral Operators to Establish New Inequalities Involving a General Class of Functions, 2024, 8, 2504-3110, 438, 10.3390/fractalfract8080438
    7. Arslan Munir, Li Shumin, Hüseyin Budak, Fatih Hezenci, Hasan Kara, A Study on Fractional Integral Inequalities for Trigonometric and Exponential Trigonometric-convex Functions, 2025, 21, 1927-5129, 66, 10.29169/1927-5129.2025.21.08
    8. Artion Kashuri, Arslan Munir, Hüseyin Budak, Fatih Hezenci, Novel generalized tempered fractional integral inequalities for convexity property and applications, 2025, 75, 0139-9918, 113, 10.1515/ms-2025-0009
    9. Arslan Munir, Hüseyin Budak, Irza Faiz, Shahid Qaisar, Generalizations of Simpson type inequality for (α,m)-convex functions, 2024, 38, 0354-5180, 3295, 10.2298/FIL2410295M
    10. Arslan Munir, Ather Qayyum, Siti Supadi, Hüseyin Budak, Irza Faiz, A study of improved error bounds for Simpson type inequality via fractional integral operator, 2024, 38, 0354-5180, 3415, 10.2298/FIL2410415M
    11. Shahid Qaisar, Arslan Munir, Muhammad Naeem, Budak Hüseyin, Some Caputo-Fabrizio fractional integral inequalities with applications, 2024, 38, 0354-5180, 5905, 10.2298/FIL2416905Q
  • Reader Comments
  • © 2023 the Author(s), licensee AIMS Press. This is an open access article distributed under the terms of the Creative Commons Attribution License (http://creativecommons.org/licenses/by/4.0)
通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索

Metrics

Article views(1872) PDF downloads(122) Cited by(11)

Figures and Tables

Figures(2)

Other Articles By Authors

/

DownLoad:  Full-Size Img  PowerPoint
Return
Return

Catalog