In this study, some new Hermite-Hadamard type inequalities for co-ordinated convex functions were obtained with the help of conformable fractional integrals. We have presented some remarks to give the relation between our results and earlier obtained results. Moreover, an identity for partial differentiable functions has been established. By using this equality and concept of co-ordinated convexity, we have proven a trapezoid type inequality for conformable fractional integrals.
Citation: Mehmet Eyüp Kiriş, Miguel Vivas-Cortez, Gözde Bayrak, Tuğba Çınar, Hüseyin Budak. On Hermite-Hadamard type inequalities for co-ordinated convex function via conformable fractional integrals[J]. AIMS Mathematics, 2024, 9(4): 10267-10288. doi: 10.3934/math.2024502
[1] | Yousaf Khurshid, Muhammad Adil Khan, Yu-Ming Chu . Conformable integral version of Hermite-Hadamard-Fejér inequalities via η-convex functions. AIMS Mathematics, 2020, 5(5): 5106-5120. doi: 10.3934/math.2020328 |
[2] | Hu Ge-JiLe, Saima Rashid, Muhammad Aslam Noor, Arshiya Suhail, Yu-Ming Chu . Some unified bounds for exponentially $tgs$-convex functions governed by conformable fractional operators. AIMS Mathematics, 2020, 5(6): 6108-6123. doi: 10.3934/math.2020392 |
[3] | Sabila Ali, Shahid Mubeen, Rana Safdar Ali, Gauhar Rahman, Ahmed Morsy, Kottakkaran Sooppy Nisar, Sunil Dutt Purohit, M. Zakarya . Dynamical significance of generalized fractional integral inequalities via convexity. AIMS Mathematics, 2021, 6(9): 9705-9730. doi: 10.3934/math.2021565 |
[4] | Hasan Kara, Hüseyin Budak, Mehmet Eyüp Kiriş . On Fejer type inequalities for co-ordinated hyperbolic ρ-convex functions. AIMS Mathematics, 2020, 5(5): 4681-4701. doi: 10.3934/math.2020300 |
[5] | Ahmet Ocak Akdemir, Saad Ihsan Butt, Muhammad Nadeem, Maria Alessandra Ragusa . Some new integral inequalities for a general variant of polynomial convex functions. AIMS Mathematics, 2022, 7(12): 20461-20489. doi: 10.3934/math.20221121 |
[6] | Miguel Vivas-Cortez, Muhammad Aamir Ali, Artion Kashuri, Hüseyin Budak . Generalizations of fractional Hermite-Hadamard-Mercer like inequalities for convex functions. AIMS Mathematics, 2021, 6(9): 9397-9421. doi: 10.3934/math.2021546 |
[7] | Yousaf Khurshid, Muhammad Adil Khan, Yu-Ming Chu . Conformable fractional integral inequalities for GG- and GA-convex functions. AIMS Mathematics, 2020, 5(5): 5012-5030. doi: 10.3934/math.2020322 |
[8] | Thanin Sitthiwirattham, Muhammad Aamir Ali, Hüseyin Budak, Saowaluck Chasreechai . Quantum Hermite-Hadamard type integral inequalities for convex stochastic processes. AIMS Mathematics, 2021, 6(11): 11989-12010. doi: 10.3934/math.2021695 |
[9] | Shuang-Shuang Zhou, Saima Rashid, Muhammad Aslam Noor, Khalida Inayat Noor, Farhat Safdar, Yu-Ming Chu . New Hermite-Hadamard type inequalities for exponentially convex functions and applications. AIMS Mathematics, 2020, 5(6): 6874-6901. doi: 10.3934/math.2020441 |
[10] | Shuhong Yu, Tingsong Du . Certain inequalities in frame of the left-sided fractional integral operators having exponential kernels. AIMS Mathematics, 2022, 7(3): 4094-4114. doi: 10.3934/math.2022226 |
In this study, some new Hermite-Hadamard type inequalities for co-ordinated convex functions were obtained with the help of conformable fractional integrals. We have presented some remarks to give the relation between our results and earlier obtained results. Moreover, an identity for partial differentiable functions has been established. By using this equality and concept of co-ordinated convexity, we have proven a trapezoid type inequality for conformable fractional integrals.
The Hermite-Hadamard inequality stands as a cornerstone in the realm of convex functions, boasting a geometric interpretation and having broad applicability. Countless mathematicians have dedicated their endeavors to extending, refining, and providing counterparts for this inequality across various classes of functions, often involving convex mappings. The inequalities originally formulated by C. Hermite and J. Hadamard for convex functions hold significant importance in the existing literature. (see, e.g., [1], [2, p. 137]). The Hermite-Hadamard inequality is stated as follows:
If F :I→R is a convex function on the interval I of real numbers and η1,η2∈I with η1<η2 then,
F(η1+η22)≤1η2−η1η2∫η1F(δ)dδ≤F(η1)+F(η2)2. | (1.1) |
The Hermite-Hadamard inequality has attracted the attention of many mathematicians since the day it was proved. Especially in recent years, many generalizations and extensions of this inequality have been created. The definition of convexity is used a lot when creating new versions of the Hermite-Hadamard inequality. To define convexity on coordinates let us first consider a bidimensional interval Δ:=[η1,η2]×[υ1,υ2] in R2.
Definition 1.1. [3] A function F:Δ→R is called a co-ordinated convex on Δ, if it satifies the inequality
F(μt+(1−t)τ,sρ+(1−s)σ)≤tsF(μ,ρ)+t(1−s)F(μ,σ)+s(1−t)F(τ,ρ)+(1−t)(1−s)F(τ,σ) | (1.2) |
for all (μ,ρ),(τ,σ)∈Δ and t,s∈[0,1].
In [3], Dragomir proved the Hermite-Hadamard inequality for co-ordinated convex functions on the rectangle from the plane R2. For several results concerning the Hermite-Hadamard type inequality for co-ordinated convex functions. Some papers devoted Hermite-Hadamard inequalities for co-ordinated convex functions [4,5,6]. Alomari and Darus presented some inequalities for s-convex function on co-ordinates.[7]. Vivas et al. proved some Hermite-Hadamard inequalities for co-ordinated convex interval valued functions [8].
Fractional analysis is a current field of study with various uses in fields such as physics, engineering and biology. Fractional integral operators are also very important for mathematics because the generalization of many integral inequalities has been introduced to the literature thanks to the fractional integral operators For more information please refeer to the books [9,10,11]. Multiple fractional operators have been defined so far, i.e. Caputo, Riemann-Liouville, Hadamard, and Katugampola to name a few. The concept of conformable fractional integrals was given by Khalil et al. in 2014 [12]. The conformable fractional integral operator was used throughout this study. For all this, please see [13,14,15,16,17,18].
Definition 1.2. [9] Let F∈L1[η1,η2]. The Riemann-Liouville fractional integrals Iβη+1F and Iβη−2F of order β>0 are given by
Iαη+1F(x)=1Γ(β)∫xη1(x−δ)β−1F(δ)dδ, x>η1, | (1.3) |
Iαη−2F(x)=1Γ(β)∫η2x(δ−x)β−1F(δ)dδ, x<η2. | (1.4) |
The Riemann-Liouville fractional integrals will be provided for order β>0. The Riemann Liouville integrals will be equal to the classical Riemann integral for the condition β=1.
Definition 1.3. [9] Let F∈L1(Δ). Riemann-Liouville fractional integrals Iα,βη+1,υ+1,F, Iα,βη+1,υ−2,F, Iα,βη−2,υ+1F and Iα,βη−2,υ−2F of orders α,β>0 with η1,υ1≥0 are defined by
Iα,βη+1,υ+1,F(δ,ξ)=1Γ(α)Γ(β)∫δη1∫ξυ1(δ−t)α−1(ξ−s)β−1F(t,s)dsdt, δ>η1,ξ>υ1, |
Iα,βη+1,υ−2,F(δ,ξ)=1Γ(α)Γ(β)∫δη1∫υ2ξ(δ−t)α−1(s−ξ)β−1F(t,s)dsdt, δ>η1,ξ<υ2, |
Iα,βη−2,υ+1F(δ,ξ)=1Γ(α)Γ(β)∫η2δ∫ξυ1(t−δ)α−1(ξ−s)β−1F(t,s)dsdt, δ<η2,ξ>υ1, |
and
Iα,βη2−,υ−2F(δ,ξ)=1Γ(α)Γ(β)∫η2δ∫υ2ξ(t−δ)α−1(s−ξ)β−1F(t,s)dsdt, δ<η2,ξ<υ2, |
respectively. Here, Γ is the gamma function.
Definition 1.4. [19] For F∈L1[η1,η2], the conformable fractional integral operators βIαη+1F and βIαη−2F of orders β>0 and α∈(0,1] are given by
βJαη+1F(x)=1Γ(β)∫xη1((x−η1)α−(t−η1)αα)β−1F(t)(t−η1)1−αdt, x>η1, | (1.5) |
and
βJαη−2F(x)=1Γ(β)∫η2x((η2−x)α−(η2−t)αα)β−1F(t)(η2−t)1−αdt, x<η2, | (1.6) |
respectively.
Remark 1.1. If we consider that α=1 in Definition 1.4, then the fractional integrals (1.5) and (1.6) reduce to the Riemann-Liouville fractional integrals (1.3) and (1.4), respectively.
Definition 1.5. [20] Let F∈L1([η1,η2]×[υ1,υ2]), γ1, γ2∈(0,1], α>0 and β>0. The conformable fractional integrals of orders α, β of F(δ,ξ) are defined by
(γ1γ2Jα,βη+1,υ+1F)(δ,ξ)=[1Γ(α)Γ(β)∫δη1∫ξυ1((δ−η1)γ1−(t−η1)γ1γ1)α−1×((ξ−υ1)γ2−(s−υ1)γ2γ2)β−1F(t,s)(t−η1)1−γ1(s−υ1)1−γ2dsdt], | (1.7) |
(γ1γ2Jα,βη2−,υ+1F)(δ,ξ)=[1Γ(α)Γ(β)∫η2δ∫ξυ1((η2−δ)γ1−(η2−t)γ1γ1)α−1×((ξ−υ1)γ2−(s−υ1)γ2γ2)β−1F(t,s)(η2−t)1−γ1(s−υ1)1−γ2dsdt], | (1.8) |
(γ1γ2Jα,βη+1,υ−2F)(δ,ξ)=[1Γ(α)Γ(β)∫δη1∫υ2ξ((δ−η1)γ1−(t−η1)γ1γ1)α−1×((υ2−ξ)γ2−(υ2−s)γ2γ2)β−1F(t,s)(t−η1)1−γ1(υ2−s)1−γ2dsdt], | (1.9) |
and
(γ1γ2Jα,βη−2,υ−2F)(δ,ξ)=[1Γ(α)Γ(β)∫η2δ∫υ2ξ((η2−δ)γ1−(η2−t)γ1γ1)α−1×((υ2−ξ)γ2−(υ2−s)γ2γ2)β−1F(t,s)(η2−t)1−γ1(υ2−s)1−γ2dsdt]. | (1.10) |
Remark 1.2. If we consider that γ1=γ2=1 in Definition 1.5, then Definition 1. reduces to Definition 1.3.
By Definition 1.5, we can write the following conformable fractional integrals:
Definition 1.6. Let F∈L1([η1,η2]×[υ1,υ2]), γ1, γ2∈(0,1], α>0 and β>0. In this case, the following equations can be written:
(γ1Jαη+1F)(δ,υ1+υ22)=1Γ(α)∫δη1((δ−η1)γ1−(t−η1)γ1γ1)α−1F(t,υ1+υ22)(t−η1)1−γ1dt, δ>η1, | (1.11) |
(γ1Jαη−2F)(δ,υ1+υ22)=1Γ(α)∫η2δ((η2−δ)γ1−(η2−t)γ1γ1)α−1F(t,υ1+υ22)(η2−t)1−γ1dt, δ<η2, | (1.12) |
(γ2Jβυ+1F)(η1+η22,ξ)=1Γ(β)∫ξυ1((ξ−υ1)γ2−(s−υ1)γ2γ2)β−1F(η1+η22,s)(s−υ1)1−γ2ds, ξ>υ1, | (1.13) |
and
(γ2Jβυ−2F)(η1+η22,ξ)=1Γ(β)∫υ2ξ((υ2−ξ)γ2−(υ2−s)γ2γ2)β−1F(η1+η22,s)(υ2−s)1−γ2ds, ξ<υ2. | (1.14) |
Theorem 1.1. [21] Assume that F:[η1,η2]→R is a convex function. Then, for β>0 and α∈(0,1], the following inequalities for the fractional conformable integrals hold:
F(η1+η22)≤Γ(β+1)αβ2(η2−η1)αβ[βJαη+1F(η2)+βJαη−2F(η1)]≤F(η1)+F(η2)2. | (1.15) |
For some results connected with fractional integral inequalities, see [22,23,24,25].
The purpose of this article is to establish the Hermite-Hadamard-type inequality for co-ordinated convex mappings by using the conformable fractional integral operators.
In this part, we obtain new versions of the Hermite-Hadamard inequality for co-ordinated convex functions involving conformable fractional integrals.
Theorem 2.1. Let F:Δ→R be co-ordinated convex on Δ and F∈L1(Δ). Then, we have the following Hermite-Hadamard inequality for conformable fractional integrals
F(η1+η22,υ1+υ22)≤Γ(α+1)Γ(β+1)γα1γβ24(η2−η1)γ1α(υ2−υ1)γ2β[γ1γ2Jα,βη+1,υ+1F(η2,υ2)+γ1γ2Jα,βη+1,υ−2F(η1,υ1)+γ1γ2Jα,βη+2,υ+1F(η1,υ2)+γ1γ2Jα,βη−2,υ−2F(η2,υ1)]≤F(η1,υ1)+F(η1,υ2)+F(η2,υ1)+F(η2,υ2)4. | (2.1) |
Proof. For t, s∈[0,1], we can write
F(η1+η22,υ1+υ22)=F(14(tη1+(1−t)η2,sυ1+(1−s)υ2)+14(tη1+(1−t)η2+(1−s)υ1+sυ2)+14(1−t)η1+tη2,sυ1+(1−s)υ2)+14(1−t)η1+tη2+(1−s)υ1+sυ2). |
With the help of the co-ordinated convexity of F, we have
F(η1+η22,υ1+υ22)≤14(F(tη1+(1−t)η2,sυ1+(1−s)υ2)+F(tη1+(1−t)η2+(1−s)υ1+sυ2)+F(1−t)η1+tη2,sυ1+(1−s)υ2)+F(1−t)η1+tη2+(1−s)υ1+sυ2)≤F(η1,υ1)+F(η1,υ2)+F(η2,υ1)+F(η2,υ2)4. | (2.2) |
If we multiply the inequality (2.2) by (1−(1−t)γ1γ1)α−1(1−t)γ1−1(1−(1−s)γ2γ2)β−1(1−s)γ2−1 and integrate the resulting inequality on [0,1]×[0,1],we have
F(η1+η22,υ1+υ22)×1∫01∫0(1−(1−t)γ1γ1)α−1(1−t)γ1−1(1−(1−s)γ2γ2)β−1(1−s)γ2−1dsdt≤14[1∫01∫0(1−(1−t)γ1γ1)α−1(1−t)γ1−1(1−(1−s)γ2γ2)β−1(1−s)γ2−1×(F(tη1+(1−t)η2,sυ1+(1−s)υ2)+F(tη1+(1−t)η2,(1−s)υ1+sυ2))dsdt+1∫01∫0(1−(1−t)γ1γ1)α−1(1−t)γ1−1(1−(1−s)γ2γ2)β−1(1−s)γ2−1×(F((1−t)η1+tη2,sυ1+(1−s)υ2)+F((1−t)η1+tη2,(1−s)υ1+sυ2))dsdt]≤F(η1,υ1)+F(η1,υ2)+F(η2,υ1)+F(η2,υ2)4×1∫01∫0(1−(1−t)γ1γ1)α−1(1−t)γ1−1(1−(1−s)γ2γ2)β−1(1−s)γ2−1dsdt. | (2.3) |
By applying the change of variables technique, we get
1∫01∫0(1−(1−t)γ1γ1)α−1(1−t)γ1−1(1−(1−s)γ2γ2)β−1(1−s)γ2−1×F(tη1+(1−t)η2,sυ1+(1−s)υ2)dsdt=1(η2−η1)(υ2−υ1)η2∫η1υ2∫υ1(1−(δ−η1η2−η1)γ1γ1)α−1(δ−η1η2−η1)γ1−1×(1−(ξ−υ1υ2−υ1)γ2γ2)β−1(ξ−υ1υ2−υ1)γ2−1dξdδ=(1η2−η1)γ1α(1υ2−υ1)γ2βη2∫η1υ2∫υ1((η2−η1)γ1−(δ−η1)γ1γ1)α−1×((υ2−υ1)γ2−(ξ−υ1)γ2γ2)β−1dξ(ξ−υ1)1−γ2dδ(δ−η1)1−γ1=Γ(α)Γ(β)(η2−η1)γ1α(υ2−υ1)γ2β(γ1γ2Iα,βη+1,υ+1F)(η2,υ2). | (2.4) |
Similarly we have
1∫01∫0(1−(1−t)γ1γ1)α−1(1−t)γ1−1(1−(1−s)γ2γ2)β−1(1−s)γ2−1×F(tη1+(1−t)η2,(1−s)υ1+sυ2)dsdt=Γ(α)Γ(β)(η2−η1)γ1α(υ2−υ1)γ2β(γ1γ2Iα,βη+1,υ−2F)(η2,υ1), | (2.5) |
1∫01∫0(1−(1−t)γ1γ1)α−1(1−t)γ1−1(1−(1−s)γ2γ2)β−1(1−s)γ2−1×F((1−t)η1+tη2,sυ1+(1−s)υ2)dsdt=Γ(α)Γ(β)(η2−η1)γ1α(υ2−υ1)γ2β(γ1γ2Iα,βη−2,υ+1F)(η1,υ2), | (2.6) |
and
1∫01∫0(1−(1−t)γ1γ1)α−1(1−t)γ1−1(1−(1−s)γ2γ2)β−1(1−s)γ2−1×F((1−t)η1+tη2,(1−s)υ1+sυ2)dsdt=Γ(α)Γ(β)(η2−η1)γ1α(υ2−υ1)γ2β(γ1γ2Iα,βη−2υ−2F)(η1,υ1). | (2.7) |
On the other side, we have
1∫01∫0(1−(1−t)γ1γ1)α−1(1−t)γ1−1(1−(1−s)γ2γ2)β−1(1−s)γ2−1dsdt=1γα1γβ2αβ. | (2.8) |
If we substitute the Eqs (2.4)–(2.8) in (2.3), then we get
F(η1+η22,υ1+υ22)1γα1γβ2αβ≤14[Γ(α)Γ(β)(η2−η1)γ1α(υ2−υ1)γ2β(γ1γ2Jα,βη+1,υ+1F)(η2,υ2)+Γ(α)Γ(β)(η2−η1)γ1α(υ2−υ1)γ2β(γ1γ2Jα,βη+1,υ−2F)(η2,υ1)+Γ(α)Γ(β)(η2−η1)γ1α(υ2−υ1)γ2β(γ1γ2Jα,βη−2,υ+1F)(η1,υ2)+Γ(α)Γ(β)(η2−η1)γ1α(υ2−υ1)γ2β(γ1γ2Jα,βη−2,υ−2F)(η1,υ1)]≤F(η1,υ1)+F(η1,υ2)+F(η2,υ1)+F(η2,υ2)41γα1γβ2αβ, | (2.9) |
which concludes the proof.
Remark 2.1. In Theorem 2.1, if we choose γ1=1 and γ2=1, then we have the following inequalities for Riemann-Liouville fractional integrals
F(η1+η22,υ1+υ22)≤Γ(α+1)Γ(β+1)4(η2−η1)α(υ2−υ1)β[Iα,βη+1,υ+1F(η2,υ2)+Iα,βη+1,υ−2F(η2,υ1) +Iα,βη−2,υ+1F(η1,υ2)+Iα,βη−2,υ−2F(η1,υ1)]≤F(η1,υ1)+F(η1,υ2)+F(η2,υ1)+F(η2,υ2)4, | (2.10) |
which is proved by Sarikaya in [23, Theorem 3].
Remark 2.2. In Theorem 2.1, if we choose γ1=1, γ2=1,α=1 and β=1, then we have the following inequalities
F(η1+η22,υ1+υ22)≤1(η2−η1)(υ2−υ1)η2∫η1υ2∫υ1F(t,s)dsdt≤F(η1,υ1)+F(η1,υ2)+F(η2,υ1)+F(η2,υ2)4, | (2.11) |
which is given by Alomari and Darus [26, Theorem 1.1].
Theorem 2.2. Let F:Δ→R be co-ordinated convex on Δ and F∈L1(Δ). Then the following Hermite-Hadamard inequality for conformable fractional integrals holds:
F(η1+η22,υ1+υ22)≤Γ(α+1)γα14(η2−η1)γ1α[γ1Jαη+1F(η2,υ1+υ22)+γ1Jαη−2F(η1,υ1+υ22)]+Γ(β+1)γβ24(υ2−υ1)γ2β[γ2Jβυ+1F(η1+η22,υ2)+γ2Jβυ−2F(η1+η22,υ1)]≤Γ(α+1)Γ(β+1)γα1γβ24(η2−η1)γ1α(υ2−υ1)γ2β[γ1γ2Jα,βη+1,υ+1F(η2,υ2)+γ1γ2Jα,βη+1,υ−2F(η2,υ1)+γ1γ2Jα,βη−2,υ+1F(η1,υ2)+γ1γ2Jα,βη2−,υ−2F(η1,υ1)]≤Γ(α+1)γα18(η2−η1)γ1α[γ1Jαη+1F(η2,υ1)+γ1Jαη+1F(η2,υ2)+γ1Jαη−2F(η1,υ1)+γ1Jαη−2F(η1,υ2)]+Γ(β+1)γβ28(υ2−υ1)γ2β[γ2Jβυ+1F(η1,υ2)+γ2Jβυ+1F(η2,υ2)+γ2Jβυ−2F(η1,υ1)+γ2Jβυ−2F(η2,υ1)]≤F(η1,υ1)+F(η1,υ2)+F(η2,υ1)+F(η2,υ2)4 | (2.12) |
for γ1,γ2∈(0,1], α>0, β>0.
Proof. Since F:Δ→R is a co-ordinated convex function, then the function hδ:[υ1,υ2]→R, hδ(ξ)=F(δ,ξ) is convex on [υ1,υ2] for all δ∈[η1,η2]. Then, by applying (1.15), we can write
hδ(υ1+υ22)≤Γ(β+1)γβ22(υ2−υ1)γ2β[ βJγ2υ+1hδ(υ2)+ βJγ2υ−2hδ(υ1)]≤hδ(υ2)+hδ(υ1)2, δ∈[η1,η2]. | (2.13) |
That is,
F(δ,υ1+υ22)≤βγβ22(υ2−υ1)γ2β[υ2∫υ1((υ2−υ1)γ2−(ξ−υ1)γ2γ2)β−1F(δ,ξ)(ξ−υ1)1−γ2dξ+υ2∫υ1((υ2−υ1)γ2−(υ2−ξ)γ2γ2)β−1F(δ,ξ)(υ2−ξ)1−γ2dξ]≤F(δ,υ1)+F(δ,υ2)2 | (2.14) |
for all δ∈[η1,η2]. Then multiplying both sides of (2.14) by
αγα12(η2−η1)γ1α((η2−η1)γ1−(δ−η1)γ1γ1)α−11(δ−η1)1−γ1 |
and integrating with respect to δ over [η1,η2], we have
αγα12(η2−η1)γ1αη2∫η1((η2−η1)γ1−(δ−η1)γ1γ1)α−1F(δ,υ1+υ22)(δ−η1)1−γ1dδ≤αβγα1γβ24(η2−η1)γ1α(υ2−υ1)γ2β×[η2∫η1υ2∫υ1((η2−η1)γ1−(δ−η1)γ1γ1)α−1((υ2−υ1)γ2−(ξ−υ1)γ2γ2)β−1F(δ,ξ)(δ−η1)1−γ1(ξ−υ1)1−γ2dξdδ+η2∫η1υ2∫υ1((η2−η1)γ1−(δ−η1)γ1γ1)α−1((υ2−υ1)γ2−(υ2−ξ)γ2γ2)β−1F(δ,ξ)(δ−η1)1−γ1(υ2−ξ)1−γ2dξdδ]≤αγα14(η2−η1)γ1α[η2∫η1((η2−η1)γ1−(δ−η1)γ1γ1)α−1F(δ,υ1)(δ−η1)1−γ1dδ +η2∫η1((η2−η1)γ1−(δ−η1)γ1γ1)α−1F(δ,υ2)(δ−η1)1−γ1dδ]. | (2.15) |
Similarly, let us multiply both sides of (2.14) by
αγα12(η2−η1)γ1α((η2−η1)γ1−(η2−δ)γ1γ1)α−11(η2−δ)1−γ1 |
and integrate with respect to δ on the interval [η1,η2]; then, we have
αγα12(η2−η1)γ1αη2∫η1((η2−η1)γ1−(η2−δ)γ1γ1)α−1F(δ,υ1+υ22)(η2−η1)1−γ1dδ≤αβγα1γβ24(η2−η1)γ1α(υ2−υ1)γ2β×[η2∫η1υ2∫υ1((η2−η1)γ1−(η2−δ)γ1γ1)α−1((υ2−υ1)γ2−(ξ−υ1)γ2γ2)β−1F(δ,ξ)(η2−δ)1−γ1(ξ−υ1)1−γ2dξdδ+η2∫η1υ2∫υ1((η2−η1)γ1−(η2−δ)γ1γ1)α−1((υ2−υ1)γ2−(υ2−ξ)γ2γ2)β−1F(δ,ξ)(η2−δ)1−γ1(υ2−ξ)1−γ2dξdδ]≤αγα14(η2−η1)γ1α[η2∫η1((η2−η1)γ1−(η2−δ)γ1γ1)α−1F(δ,υ1)(η2−δ)1−γ1dδ +η2∫η1((η2−η1)γ1−(η2−δ)γ1γ1)α−1F(δ,υ2)(η2−δ)1−γ1dδ]. | (2.16) |
In the same way, since F:Δ→R is a co-ordinated convex function, the function gξ:[η1,η1]→R, gξ(δ)=F(δ,ξ) is convex on [η1,η1] for all ξ∈[υ1,υ2]. Then, by applying (1.15), we can write,
gξ(η1+η22)≤Γ(α+1)γα12(η2−η1)γ1α[ αJγ1η+1gξ(η2)+ αJγ1η−2gξ(η1)]≤gξ(η1)+gξ(η2)2. | (2.17) |
That is,
F(η1+η22,ξ)≤αγα12(η2−η1)γ1α[η2∫η1((η2−η1)γ1−(δ−η1)γ1γ1)α−1F(δ,ξ)(δ−η1)1−γ1dδ+η2∫η1((η2−η1)γ1−(η2−δ)γ1γ1)α−1F(δ,ξ)(η2−δ)1−γ1dδ]≤F(η1,ξ)+F(η2,ξ)2 | (2.18) |
for all ξ∈[υ1,υ2]. Then multiplying both sides of (2.18) by
βγβ22(υ2−υ1)γ2β((υ2−υ1)γ2−(ξ−υ1)γ2γ2)β−11(ξ−υ1)1−γ2 |
and integrating with respect to ξ over [υ1,υ2], we have,
βγβ22(υ2−υ1)γ2βυ2∫υ1((υ2−υ1)γ2−(ξ−υ1)γ2γ2)β−1F(η1+η22,ξ)(ξ−υ1)1−γ2dξ≤αβγα1γβ24(η2−η1)γ1α(υ2−υ1)γ2β×[η2∫η1υ2∫υ1((η2−η1)γ1−(δ−η1)γ1γ1)α−1((υ2−υ1)γ2−(ξ−υ1)γ2γ2)β−1F(δ,ξ)(δ−η1)1−γ1(ξ−υ1)1−γ2dξdδ+η2∫η1υ2∫υ1((η2−η1)γ1−(η2−δ)γ1γ1)α−1((υ2−υ1)γ2−(ξ−υ1)γ2γ2)β−1F(δ,ξ)(η2−δ)1−γ1(ξ−υ1)1−γ2dξdδ]≤βγβ24(υ2−υ1)γ2β[υ2∫υ1((υ2−υ1)γ2−(ξ−υ1)γ2γ2)β−1F(η1,ξ)(ξ−υ1)1−γ2dξ +υ2∫υ1((υ2−υ1)γ2−(ξ−υ1)γ2γ2)β−1F(η2,ξ)(ξ−υ1)1−γ2dξ]. | (2.19) |
Similarly, let us multiply both sides of (2.18) by
βγβ22(υ2−υ1)γ2β((υ2−υ1)γ2−(υ2−ξ)γ2γ2)β−11(υ2−ξ)1−γ2 |
and integrate with respect to ξ in the interval [υ1,υ2]; then, we have
βγβ22(υ2−υ1)γ2βυ2∫υ1((υ2−υ1)γ2−(υ2−ξ)γ2γ2)β−1F(η1+η22,ξ)(υ2−ξ)1−γ2dξ≤αβγα1γβ24(υ2−υ1)γ1α(υ2−υ1)γ2β×[η2∫η1υ2∫υ1((η2−η1)γ1−(δ−η1)γ1γ1)α−1((υ2−υ1)γ2−(υ2−ξ)γ2γ2)β−1F(δ,ξ)(δ−η1)1−γ1(υ2−ξ)1−γ2dξdδ+η2∫η1υ2∫υ1((η2−η1)γ1−(η2−δ)γ1γ1)α−1((υ2−υ1)γ2−(υ2−ξ)γ2γ2)β−1F(δ,ξ)(η2−δ)1−γ1(υ2−ξ)1−γ2dξdδ]≤βγβ24(υ2−υ1)γ2β[υ2∫υ1((υ2−υ1)γ2−(υ2−ξ)γ2γ2)β−1F(η1,ξ)(υ2−ξ)1−γ2dξ +υ2∫υ1((υ2−υ1)γ2−(υ2−ξ)γ2γ2)β−1F(η2,ξ)(υ2−ξ)1−γ2dξ]. | (2.20) |
If we add (2.15), (2.16), (2.19) and (2.20) and divide by 2, we get,
Γ(α+1)γα14(η2−η1)γ1α[γ1Jαη+1F(η2,υ1+υ22)+ γ1Jαη−2F(η1,υ1+υ22)]+Γ(β+1)γβ22(υ2−υ1)γ2β[γ2Jβυ+1F(η1+η22,υ2)+ γ2Jβυ−2F(η1+η22,υ1)]≤Γ(α+1)Γ(β+1)γα1γβ24(η2−η1)γ1α(υ2−υ1)γ2β[γ1γ2Jα,βη+1,υ+1F(η2,υ2)+ γ1γ2Jα,βη+1,υ−2F(η2,υ1) + γ1γ2Jα,βη−2,υ1+F(η1,υ2)+ γ1γ2Jα,βη−2,υ−2F(η1,υ1)]≤Γ(α+1)γα18(η2−η1)γ1α[γ1Jαη+1F(η2,υ1)+ γ1Jαη+1F(η2,υ2)+ γ1Jαη−2F(η1,υ1)+ γ1Jαη−2F(η1,υ2)]+Γ(β+1)γβ28(η2−η1)γ2β[γ2Jβυ+1F(η1,υ2)+ γ2Jβυ+1F(η2,d)+ γ2Jβυ−2F(η1,υ1)+ γ2Jβυ−2F(η2,υ1)], | (2.21) |
which give the second and the third inequalities in (2.12).
Now, let us write δ=η1+η22 on the left side of the inequality (2.14); we have
F(η1+η22,υ1+υ22)≤βγβ22(υ2−υ1)γ2β[υ2∫υ1((υ2−υ1)γ2−(ξ−υ1)γ2γ2)β−1F(η1+η22,ξ)(ξ−υ1)1−γ2dξ+υ2∫υ1((υ2−υ1)γ2−(υ2−ξ)γ2γ2)β−1F(η1+η22,ξ)(υ2−ξ)1−γ2dξ], | (2.22) |
and then, incorporating ξ=υ1+υ22 on the left side of the inequality (2.18), we have
F(η1+η22,υ1+υ22)≤αγα12(η2−η1)γ1α[η2∫η1((η2−η1)γ1−(δ−η1)γ1γ1)α−1F(δ,υ1+υ22)(δ−η1)1−γ1dδ+η2∫η1((η2−η1)γ1−(η2−δ)γ1γ1)α−1F(δ,υ1+υ22)(η2−δ)1−γ1dδ]. | (2.23) |
If we add the inequalities (2.22) and (2.23) and divide by 2, then we get the following inequality
F(η1+η22,υ1+υ22)≤Γ(α+1)γα14(η2−η1)γ1α[γ1Jαη1+F(η2,υ1+υ22)+ γ1Jαη2−F(η1,υ1+υ22)+Γ(β+1)γβ24(υ2−υ1)γ2β[γ1Jαυ+1F(η1+η22,υ2)+ γ1Jαυ−2F(η1+η22,υ1)]]. | (2.24) |
The inequality in (2.24) is the first inequality of (2.12).
Finally, assuming that ξ=υ1 and ξ=υ2 on the right-hand side of (2.18), we have
αγα12(η2−η1)γ1α[η2∫η1((η2−η1)γ1−(δ−η1)γ1γ1)α−1F(δ,υ1)(δ−η1)1−γ1dδ+η2∫η1((η2−η1)γ1−(η2−δ)γ1γ1)α−1F(δ,υ1)(η2−δ)1−γ1dδ]≤F(η1,υ1)+F(η2,υ1)2 | (2.25) |
and
αγα12(η2−η1)γ1α[η2∫η1((η2−η1)γ1−(δ−η1)γ1γ1)α−1F(δ,υ2)(δ−η1)1−γ1dδ+η2∫η1((η2−η1)γ1−(η2−δ)γ1γ1)α−1F(δ,υ2)(η2−δ)1−γ1dδ]≤F(η1,υ2)+F(η2,υ2)2, | (2.26) |
respectively. Likewise, assuming that δ=η1 and δ=η2 on the right-hand side of (2.14), we have
βγβ22(υ2−υ1)γ2β[υ2∫υ1((υ2−υ1)γ2−(ξ−υ1)γ2γ2)β−1F(η1,ξ)(ξ−υ1)1−γ2dξ+υ2∫υ1((υ2−υ1)γ2−(υ2−ξ)γ2γ2)β−1F(η1,ξ)(υ2−ξ)1−γ2dξ]≤F(η1,υ1)+F(η1,υ2)2 | (2.27) |
and
βγβ22(υ2−υ1)γ2β[υ2∫υ1((υ2−υ1)γ2−(ξ−υ1)γ2γ2)β−1F(η2,ξ)(ξ−υ1)1−γ2dξ+υ2∫υ1((υ2−υ1)γ2−(υ2−ξ)γ2γ2)β−1F(η2,ξ)(υ2−ξ)1−γ2dξ]≤F(η2,υ1)+F(η2,υ2)2, | (2.28) |
respectively. If we add the inequalites (2.25)–(2.28) and divide by 4, then we get the following inequality
Γ(α+1)γα18(η2−η1)γ1α[γ1Jαη+1F(η2,υ1)+ γ1Jαη+1F(η2,υ2)+ γ1Jαη−2F(η1,υ1)+ γ1Jαη2−F(η1,υ2)]+2γ1β−3Γ(β+1)γβ28(υ2−υ1)γ2β[γ2Jβυ+1F(η1,υ2)+ γ2Jβυ+1F(η2,υ2)+ γ2Jβυ−2F(η1,υ1)+ γ2Jβυ−2F(η2,υ1)]≤F(η1,υ1)+F(η1,υ2)+F(η2,υ1)+F(η2,υ2)4, |
which gives the last inequality in (2.12). This completes the proof.
Remark 2.3. In Theorem 2.2, if we choose γ1=1 and γ2=1, then we have the following Hermite-Hadamard inequalities for Riemann-Liouville fractional integrals
F(η1+η22,υ1+υ22)≤Γ(α+1)4(η2−η1)α[Iαη+1F(η2,υ1+υ22)+Iαη−2F(η1,υ1+υ22)]+Γ(β+1)4(υ2−υ1)β[Iβυ+1F(η1+η22,υ2)+Iβυ−2F(η1+η22,υ1)]≤Γ(α+1)Γ(β+1)4(η2−η1)α(υ2−υ1)β[Iα,βη+1,υ+1F(η2,υ2)+Iα,βη+1,υ−2F(η2,υ1) +Iα,βη−2,υ+1F(η1,υ2)+Iα,βη−2,υ−2F(η1,υ1)]≤Γ(α+1)8(η2−η1)α[Iαη+1F(η2,υ1)+Iαη+1F(η2,υ2)+Iαη−2F(η1,υ1)+Iαη−2F(η1,υ2)]+Γ(β+1)8(υ2−υ1)β[Iβυ+1F(η1,υ2)+Iβυ+1F(η2,υ2)+Iβυ−2F(η1,υ1)+Iβυ−2F(η2,υ1)]≤F(η1,υ1)+F(η1,υ2)+F(η2,υ1)+F(η2,υ2)4 | (2.29) |
which is proved by Sarikaya in [23, Theorem 4].
Remark 2.4. In Theorem 2.2, if we choose γ1=1, γ2=1,α=1 and β=1,we have the following Hermite-Hadamard inequalities
F(η1+η22,υ1+υ22)≤12(η2−η1)η2∫η1F(t,υ1+υ22)dt+12(υ2−υ1)υ2∫υ1F(η1+η22,s)ds≤1(η2−η1)(υ2−υ1)η2∫η1υ2∫υ1F(t,s)dsdt≤14(η2−η1)[η2∫η1F(t,υ1)dt+η2∫η1F(t,υ2)dt]+14(υ2−υ1)[υ2∫υ1F(η1,s)ds+υ2∫υ1F(η2,s)ds]≤F(η1,υ1)+F(η1,υ2)+F(η2,υ1)+F(η2,υ2)4, | (2.30) |
which is proved by Dragomir in [3, Theorem 1].
In this section, we prove a trapezoid type inequality by using conformable fractional integrals. First, we need the following lemma.
Lemma 3.1. Let F:Δ⊂R2→R be a partial differentiable mapping. If ∂2F/∂t∂s∈L1(Δ), then the following equality holds:
F(η1,υ1)+F(η1,υ2)+F(η2,υ1)+F(η2,υ2)4+Γ(α+1)Γ(β+1)γα1γβ24(η2−η1)γ1α(υ2−υ1)γ2β×[γ1γ2Jα,βη+1,υ+1F(η2,υ2)+γ1γ2Jα,βη+1,υ−2F(η2,υ1)+γ1γ2Jα,βη−2,υ+1F(η1,υ2)+γ1γ2Jα,βη2−,υ−2F(η1,υ1)]−A=(η2−η1)(υ2−υ1)γα1γβ241∫01∫0[(1−(1−t)γ1γ1)α−(1−tγ1γ1)α]×[(1−(1−s)γ2γ2)β−(1−sγ2γ2)β]∂2F∂t∂s(tη1+(1−t)η2,sυ1+(1−s)υ2)dsdt, | (3.1) |
where
A=Γ(β+1)γβ24(υ2−υ1)γ2β[γ2Jβυ+1F(η1,υ2)+γ2Jβυ+1F(η2,υ2)+γ2Jβυ−2F(η1,υ1)+γ2Jβυ−2F(η2,υ1)]+Γ(α+1)γα14(η2−η1)γ1α[γ1Jαη+1F(η2,υ1)+γ1Jαη+1F(η2,υ2)+γ1Jαη−2F(η1,υ1)+γ1Jαη−2F(η1,υ2)]. | (3.2) |
Proof. By integration by parts, we get
I1=1∫01∫0(1−(1−t)γ1γ1)α(1−(1−s)γ2γ2)β∂2F∂t∂s(tη1+(1−t)η2,sυ1+(1−s)υ2)dsdt=1∫0(1−(1−s)γ2γ2)β{1η2−η1(1−(1−t)γ1γ1)α∂F∂s(tη1+(1−t)η2,sυ1+(1−s)υ2)|10+αη2−η11∫0(1−(1−t)γ1γ1)α−1(1−t)γ1−1∂F∂s(tη1+(1−t)η2,sυ1+(1−s)υ2)dt}ds=1∫0(1−(1−s)γ2γ2)β{−1γα1(η2−η1)∂F∂s(η1,sυ1+(1−s)υ2)+αη2−η11∫0(1−(1−t)γ1γ1)α−1(1−t)γ1−1∂F∂s(tη1+(1−t)η2,sυ1+(1−s)υ2)dt}ds=−1γα1(η2−η1)1∫0(1−(1−s)γ2γ2)β∂F∂s(η1,sυ1+(1−s)υ2)ds+αη2−η11∫0(1−(1−t)γ1γ1)α−1(1−t)γ1−1[1∫0(1−(1−s)γ2γ2)β×∂F∂s(tη1+(1−t)η2,sυ1+(1−s)υ2)ds]dt=1γα1γβ2(η2−η1)(υ2−υ1)F(η1,υ1)−βγα1(η2−η1)(υ2−υ1)1∫0(1−(1−s)γ2γ2)β−1(1−s)γ2−1F(η1,sυ1+(1−s)υ2)ds−αγβ2(η2−η1)(υ2−υ1)1∫0(1−(1−t)γ1γ1)α−1(1−t)γ1−1F(tη1+(1−t)η2,υ1)dt+αβ(υ2−υ1)(η2−η1)1∫01∫0(1−(1−t)γ1γ1)α−1(1−t)γ1−1×(1−(1−s)γ2γ2)β−1(1−s)γ2−1F(tη1+(1−t)η2,sυ1+(1−s)υ2)dsdt. | (3.3) |
Similarly, by integration by parts, it follows that
I2=1∫01∫0(1−(1−t)γ1γ1)α(1−sγ2γ2)β∂2F∂t∂s(tη1+(1−t)η2,sυ1+(1−s)υ2)dsdt=−1γα1γβ2(η2−η1)(υ2−υ1)F(η1,υ2)+βγα1(η2−η1)(υ2−υ1)1∫0(1−sγ2γ2)β−1sγ2−1F(η1,sυ1+(1−s)υ2)ds+αγβ2(η2−η1)(υ2−υ1)1∫0(1−(1−t)γ1γ1)α−1(1−t)γ1−1F(tη1+(1−t)η2,υ2)dt−αβ(υ2−υ1)(η2−η1)1∫01∫0(1−(1−t)γ1γ1)α−1(1−t)γ1−1(1−sγ2γ2)β−1sγ2−1×F(tη1+(1−t)η2,sυ1+(1−s)υ2)dsdt, | (3.4) |
I3=1∫01∫0(1−tγ1γ1)α(1−(1−s)γ2γ2)β∂2F∂t∂s(tη1+(1−t)η2,sυ1+(1−s)υ2)dsdt=−1γα1γβ2(η2−η1)(υ2−υ1)F(η2,υ1)+βγα1(η2−η1(υ2−υ1)1∫0(1−(1−s)γ2γ2)β−1(1−s)γ2−1F(η2,sυ1+(1−s)υ2)ds+αγβ2(η2−η1)(υ2−υ1)1∫0(1−tγ1γ1)α−1tγ1−1F(tη1+(1−t)η2,υ1)dt−αβ(υ2−υ1)(η2−η1)1∫01∫0(1−tγ1γ1)α−1tγ1−1(1−(1−s)γ2γ2)β−1×(1−s)γ2−1F(tη1+(1−t)η2,sυ1+(1−s)υ2)dsdt, | (3.5) |
and
I4=1∫01∫0(1−tγ1γ1)α(1−sγ2γ2)β∂2F∂t∂s(tη1+(1−t)η2,sυ1+(1−s)υ2)dsdt=1γα1γβ2(η2−η1)(υ2−υ1)F(η2,υ2)−βγα1(η2−η1)(υ2−υ1)1∫0(1−sγ2γ2)β−1sγ2−1F(η2,sυ1+(1−s)υ2)ds−αγβ2(η2−η1)(υ2−υ1)1∫0(1−tγ1γ1)α−1tγ1−1F(tη1+(1−t)η2,υ2)dt+αβ(υ2−υ1)(η2−η1)1∫01∫0(1−tγ1γ1)α−1tγ1−1(1−sγ2γ2)β−1sγ2−1×F(tη1+(1−t)η2,sυ1+(1−s)υ2)dsdt. | (3.6) |
By using the inequalities comprising (3.3)–(3.6) and applying the change of variables technique to δ=tη1+(1−t)η2 and ξ=sυ1+(1−s)υ2 for (t,s)∈[0,1], we can write
I−I2−I3+I4=F(η1,υ1)+F(η2,υ1)+F(η1,υ1)+F(η2,υ2)γα1γβ2(η2−η1)(υ2−υ1)−Γ(β+1)γα1(η2−η1)γ1α+1(υ2−υ1)[γ2Jβυ+1F(η1,υ2)+ γ2Jβυ+1F(η2,υ2)+ γ2Jβυ−2F(η1,υ1)+ γ2Jβυ−2F(η2,υ1)]−Γ(α+1)γβ2(η2−η1)(υ2−υ1)γ2β+1[γ1Jαη+1F(η2,υ1)+ γ1Jαη+1F(η2,υ2)+ γ1Jαη−2F(η1,υ1)+ γ1Jαη−2F(η1,υ2)]+Γ(α+1)Γ(β+1)(η2−η1)γ1α+1(υ2−υ1)γ2β+1×[γ1γ2Jα,βη+1,υ+1F(η2,υ2)+ γ1γ2Jα,βη+1,υ−2F(η2,υ1)+ γ1γ2Jα,βη−2,υ+1F(η1,υ2)+ γ1γ2Jα,βη−2,υ−2F(η1,υ1)]. | (3.7) |
Multiplying the both sides of (3.7) by (η2−η1)(υ2−υ1)γα1γβ24, we obtain the required result (3.1).
Now, we can present the following trapezoid-type inequality.
Theorem 3.1. Let F:Δ⊂R2→R be a partial differentiable mapping on Δ:=[η1,η2]×[υ1,υ2] in R2 with 0≤η1≤η2,0≤υ1≤υ2,γ1,γ2≠0, and α,β∈(0,1]. If |∂2F/∂t∂s| is a convex function on the Δ, then the following inequality holds:
|F(η1,υ1)+F(η1,υ2)+F(η2,υ1)+F(η2,υ2)4+Γ(α+1)Γ(β+1)γα1γβ24(η2−η1)γ1α(υ2−υ1)γ2β×[γ1γ2Jα,βη+1,υ+1F(η2,υ2)+γ1γ2Jα,βη+1,υ−2F(η2,υ1)+γ1γ2Jα,βη−2,υ+1F(η1,υ2)+γ1γ2Jα,βη−2,υ−2F(η1,υ1)]−A|≤(η2−η1)(υ2−υ1)4γ1γ2[2B(1γ1,α+1,(12)γ1)−B(1γ1,α+1)]×[2B(1γ2,β+1,(12)γ2)−B(1γ2,β+1)]×[|∂2F∂t∂s(η1,υ1)|+|∂2F∂t∂s(η2,υ1)|+|∂2F∂t∂s(η1,υ2)|+|∂2F∂t∂s(η2,υ2)|], | (3.8) |
where A is defined as in (3.2), and B and B are the beta function and the incomplete beta function, respectively, defined by
B(μ,ν)=1∫0ζμ−1(1−ζ)ν−1dζ,B(μ,ν,r)=r∫0ζμ−1(1−ζ)ν−1dζ. |
Proof. From Lemma 3.1, we have
|F(η1,υ1)+F(η1,υ2)+F(η2,υ1)+F(η2,υ2)4+Γ(α+1)Γ(β+1)γα1γβ24(η2−η1)γ1α(υ2−υ1)γ2β×[γ1γ2Jα,βη+1,υ+1F(η2,υ2)+ γ1γ2Jα,βη+1,υ−2F(η2,υ1)+ γ1γ2Jα,βη−2,υ+1F(η1,υ2)+ γ1γ2Jα,βη−2,υ−2F(η1,υ1)]−A|≤(η2−η1)(υ2−υ1)γα1γβ241∫01∫0|(1−(1−t)γ1γ1)α−(1−tγ1γ1)α||(1−(1−s)γ2γ2)β−(1−sγ2γ2)β|×|∂2F∂t∂s(tη1+(1−t)η2,sυ1+(1−s)υ2)|dsdt. | (3.9) |
Since |∂2F∂t∂s| is a co-ordinated convex function on Δ, then one has
|F(η1,υ1)+F(η1,υ2)+F(η2,υ1)+F(η2,υ2)4+Γ(α+1)Γ(β+1)γα1γβ24(η2−η1)γ1α(υ2−υ1)γ2β×[γ1γ2Jα,βη+1,υ+1F(η2,υ2)+ γ1γ2Jα,βη+1,υ−2F(η2,υ1)+ γ1γ2Jα,βη−2,υ+1F(η1,υ2)+ γ1γ2Jα,βη−2,υ−2F(η1,υ1)]−A|≤(η2−η1)(υ2−υ1)γα1γβ241∫01∫0|(1−(1−t)γ1γ1)α−(1−tγ1γ1)α||(1−(1−s)γ2γ2)β−(1−sγ2γ2)β|×[ts|∂2F∂t∂s(η1,υ1)|+s(1−t)|∂2F∂t∂s(η2,υ1)|+t(1−s)|∂2F∂t∂s(η1,υ2)|+(1−s)(1−t)|∂2F∂t∂s(η2,υ2)|]dsdt=(η2−η1)(υ2−υ1)γα1γβ24(1∫01∫0ts|(1−(1−t)γ1γ1)α−(1−tγ1γ1)α||(1−(1−s)γ2γ2)β−(1−sγ2γ2)β|dsdt)×[|∂2F∂t∂s(η1,υ1)|+|∂2F∂t∂s(η2,υ1)|+|∂2F∂t∂s(η1,υ2)|+|∂2F∂t∂s(η2,υ2)|]. | (3.10) |
Here, we have
1∫0t|(1−(1−t)γ1γ1)α−(1−tγ1γ1)α|dt=1γα1[12∫0t[(1−tγ1)α−(1−(1−t)γ1)α]dt+1∫12t[(1−(1−t)γ1)α−(1−tγ1)α]dt]=1γα1[12∫0t[(1−tγ1)α−(1−(1−t)γ1)α]dt+12∫0(1−t)[(1−tγ1)α−(1−(1−t)γ1)α]dt]=1γα112∫0[(1−tγ1)α−(1−(1−t)γ1)α]dt=1γα+11[2B(1γ1,α+1,(12)γ1)−B(1γ1,α+1)] |
and similarly
1∫0s|(1−(1−s)γ2γ2)β−(1−sγ2γ2)β|ds=1γβ+12[2B(1γ2,β+1,(12)γ2)−B(1γ2,β+1)]. |
This completes the proof.
Corollary 3.1. In Theorem 3.1, if we choose γ1=1 and γ2=1, then we have the following trapezoid type inequalities for Riemann-Liouville fractional integrals
|F(η1,υ1)+F(η1,υ2)+F(η2,υ1)+F(η2,υ2)4+Γ(α+1)Γ(β+1)4(η2−η1)α(υ2−υ1)β×[Iα,βη+1,υ+1F(η2,υ2)+Iα,βη+1,υ−2F(η2,υ1)+Iα,βη−2,υ+1F(η1,υ2)+Iα,βη−2,υ−2F(η1,υ1)]−B|≤(η2−η1)(υ2−υ1)4(α+1)(β+1)(1−12α)(1−12β)×[|∂2F∂t∂s(η1,υ1)|+|∂2F∂t∂s(η2,υ1)|+|∂2F∂t∂s(η1,υ2)|+|∂2F∂t∂s(η2,υ2)|], |
where
B=Γ(β+1)4(υ2−υ1)β[Iβυ+1F(η1,υ2)+Iβυ+1F(η2,υ2)+Iβυ−2F(η1,υ1)+Iβυ−2F(η2,υ1)]+Γ(α+1)4(η2−η1)α[Iαη+1F(η2,υ1)+Iαη+1F(η2,υ2)+Iαη−2F(η1,υ1)+Iαη−2F(η1,υ2)]. |
Remark 3.1. In Theorem 3.1, if we choose γ1=1, γ2=1,α=1 and β=1,we have the following trapezoid type inequality
|F(η1,υ1)+F(η1,υ2)+F(η2,υ1)+F(η2,υ2)4+1(η2−η1)(υ2−υ1)η2∫η1υ2∫υ1F(t,s)dsdt−12(η2−η1)η2∫η1[F(t,υ1)+F(t,υ2)]dt−12(υ2−υ1)υ2∫υ1[F(η1,s)+F(η2,s)]ds|≤(η2−η1)(υ2−υ1)64[|∂2F∂t∂s(η1,υ1)|+|∂2F∂t∂s(η2,υ1)|+|∂2F∂t∂s(η1,υ2)|+|∂2F∂t∂s(η2,υ2)|], |
which is proved by Sarikaya et al. in [27, Theorem 2].
In this study, new Hermite-Hadamard type inequalities for coordinated convex functions were obtained through the use of conformable fractional integrals. Some remarks have been presented to show the relationship between our results and earlier obtained results. Furthermore, an identity has been established for partially differentiable functions. By using this equality and the concept of coordinated convexity, a trapezoid type inequality for conformable fractional integrals has been proved. This study demonstrates how conformable fractional integrals can be used in Hermite-Hadamard type inequalities for coordinated convex functions. It also introduces a new identity for partially differentiable functions. These results indicate that such inequalities and identities can be applied to a wide range of studies. For researchers, the findings of this study can provide a basis for further studies in this field.
The authors declare that they have not used artificial intelligence tools in the creation of this article.
The authors declare that there are no conflicts of interest regarding the publication of this article.
[1] | S. S. Dragomir, C. E. M. Pearce, Selected topics on Hermite-Hadamard inequalities and applications, RGMIA Monographs, Victoria University, 2000. |
[2] | J. E. Pečarić, F. Proschan, Y. L. Tong, Convex functions, partial orderings and statistical applications, Boston: Academic Press, 1992. |
[3] |
S. S. Dragomir, On the Hadamard's inequlality for convex functions on the co-ordinates in a rectangle from the plane, Taiwanese J. Math., 5 (2001), 775–788. https://doi.org/10.11650/twjm/1500574995 doi: 10.11650/twjm/1500574995
![]() |
[4] |
A. Akkurt, M. Z. Sarikaya, H. Budak, H. Yildirim, On the Hadamard's type inequalities for co-ordinated convex functions via fractional integrals, J. King Saud Univ. Sci., 29 (2017), 380–387. https://doi.org/10.1016/j.jksus.2016.06.003 doi: 10.1016/j.jksus.2016.06.003
![]() |
[5] | A. Akkurt, M. Z. Sarikaya, H. Budak, H. Yildirim, On the Hermite-Hadamard type inequalities for co-ordinated convex functions, Appl. Comput. Math., 20 (2021), 408–420. |
[6] | M. K. Bakula, An improvement of the Hermite-Hadamard inequality for functions convex on the coordinates, Aust. J. Math. Anal. Appl., 11 (2014), 1–7. |
[7] | M. Alomari, M. Darus, The Hadamards inequality for s-convex function of 2-variables on the coordinates, Int. J. Math. Anal., 2 (2008), 629–638. |
[8] |
M. Vivas-Cortez, H. Kara, H. Budak, M. A. Ali, S. Chasreechai, Generalized fractional Hermite-Hadamard type inclusions for co-ordinated convex interval-valued functions, Open Math., 20 (2022), 1887–1903. https://doi.org/10.1515/math-2022-0477 doi: 10.1515/math-2022-0477
![]() |
[9] | A. A. Kilbas, H. M. Srivastava, J. J. Trujillo, Theory and applications of fractional differential equations, Elsevier, 2006. |
[10] | K. S. Miller, B. Ross, An introduction to the fractional calculus and fractional differential equations, New York: Wiley, 1993. |
[11] | I. Podlubny, Fractional differential equations, San Diego, CA: Academic Press, 1999. |
[12] |
R. Khalil, M. Al Horani, A. Yousef, M. Sababheh, A new definition of fractional derivative, J. Comput. Appl. Math., 264 (2014), 65–70. https://doi.org/10.1016/j.cam.2014.01.002 doi: 10.1016/j.cam.2014.01.002
![]() |
[13] |
T. Abdeljawad, On conformable fractional calculus, J. Comput. Appl. Math., 279 (2015), 57–66. https://doi.org/10.1016/j.cam.2014.10.016 doi: 10.1016/j.cam.2014.10.016
![]() |
[14] |
A. A. Abdelhakim, The flaw in the conformable calculus: It is conformable because it is not fractional, Fract. Calc. Appl. Anal., 22 (2019), 242–254. https://doi.org/10.1515/fca-2019-0016 doi: 10.1515/fca-2019-0016
![]() |
[15] |
T. S. Du, Y. Peng, Hermite-Hadamard type inequalities for multiplicative Riemann-Liouville fractional integrals, J. Comput. Appl. Math., 440 (2024), 115582. https://doi.org/10.1016/j.cam.2023.115582 doi: 10.1016/j.cam.2023.115582
![]() |
[16] |
A. A. Hyder, A. A. Almoneef, H. Budak, M. A. Barakat, On new fractional version of generalized Hermite-Hadamard inequalities, Mathematics, 10 (2022), 3337. https://doi.org/10.3390/math10183337 doi: 10.3390/math10183337
![]() |
[17] |
T. U. Khan, M. A. Khan, Generalized conformable fractional operators, J. Comput. Appl. Math., 346 (2019), 378–389. https://doi.org/10.1016/j.cam.2018.07.018 doi: 10.1016/j.cam.2018.07.018
![]() |
[18] | M. Vivas-Cortez, S. Kermausuor, J. E. N. Valdés, Ostrowski type inequalities for conformable fractional calculus via a parameter, In: Advanced mathematical analysis and its applications, Chapman and Hall/CRC, 2023. |
[19] |
F. Jarad, E. Uğurlu, T. Abdeljawad, D. Baleanu, On a new class of fractional operators, Adv. Differ. Equ., 2017 (2017), 247. https://doi.org/10.1186/s13662-017-1306-z doi: 10.1186/s13662-017-1306-z
![]() |
[20] | M. Bozkurt, A. Akkurt, H. Yildirim, Conformable derivatives and integrals for the functions of two variables, Konuralp J. Math., 9 (2021), 49–59. |
[21] | E. Set, J. Choi, A. Gözpinar, Hermite-Hadamard type inequalities involving nonlocal conformable fractional integrals, Malaysian J. Math. Sci., 15 (2021), 33–43. |
[22] | M. A. Latif, M. W. Alomari, Hadamard-type inequalities for product two convex functions on the co-ordinates, Int. Math. Forum, 4 (2009), 2327–2338. |
[23] |
M. Z. Sarikaya, On the Hermite-Hadamard-type inequalities for co-ordinated convex function via fractional integrals, Integr. Transf. Spec. Funct., 25 (2014), 134–147. https://doi.org/10.1080/10652469.2013.824436 doi: 10.1080/10652469.2013.824436
![]() |
[24] |
M. Z. Sarikaya, E. Set, H. Yaldiz, N. Basak, Hermite-Hadamard's inequalities for fractional integrals and related fractional inequalities, Math. Comput. Model., 57 (2013), 2403–2407. https://doi.org/10.1016/j.mcm.2011.12.048 doi: 10.1016/j.mcm.2011.12.048
![]() |
[25] |
M. Z. Sarikaya, A. Akkurt, H. Budak, M. E. Yildirim, H. Yildirim, Hermite-Hadamard's inequalities for conformable fractional integrals, Int. J. Optim. Control Theor. Appl., 9 (2019), 49–59. https://doi.org/10.11121/ijocta.01.2019.00559 doi: 10.11121/ijocta.01.2019.00559
![]() |
[26] | M. W. Alomari, M. Darus, Fejér inequality for double integrals, Facta Univ. Math. Inform., 24 (2009), 15–28. |
[27] | M. Z. Sarikaya, E. Set, M. E. Özdemir, S. S. Dragomir, New some Hadamard's type inequalities for co-ordinated convex functions, Tamsui Oxf. J. Inf. Math. Sci., 28 (2010), 137–152. |
1. | Tingsong Du, Yun Long, The multi-parameterized integral inequalities for multiplicative Riemann–Liouville fractional integrals, 2025, 541, 0022247X, 128692, 10.1016/j.jmaa.2024.128692 | |
2. | Mehmet Eyüp Kiriş, Miguel Vivas-Cortez, Tuğba Yalçin Uzun, Gözde Bayrak, Hüseyin Budak, New version of midpoint-type inequalities for co-ordinated convex functions via generalized conformable integrals, 2024, 2024, 1687-2770, 10.1186/s13661-024-01875-x |