In this study, the concept of (m,n)−polynomial (p1,p2)- convex functions on the co-ordinates has been established with some basic properties. Dependent on this new concept, a new Hermite-Hadamard type inequality has been proved, then some new integral inequalities have been obtained for partial differentiable (m,n)−polynomial (p1,p2)- convex functions on the co-ordinates. Several special cases that some of them proved in earlier works have been considered.
Citation: Ahmet Ocak Akdemir, Saad Ihsan Butt, Muhammad Nadeem, Maria Alessandra Ragusa. Some new integral inequalities for a general variant of polynomial convex functions[J]. AIMS Mathematics, 2022, 7(12): 20461-20489. doi: 10.3934/math.20221121
[1] | Saad Ihsan Butt, Ahmet Ocak Akdemir, Muhammad Nadeem, Nabil Mlaiki, İşcan İmdat, Thabet Abdeljawad . $ (m, n) $-Harmonically polynomial convex functions and some Hadamard type inequalities on the co-ordinates. AIMS Mathematics, 2021, 6(5): 4677-4690. doi: 10.3934/math.2021275 |
[2] | Humaira Kalsoom, Muhammad Idrees, Artion Kashuri, Muhammad Uzair Awan, Yu-Ming Chu . Some New $(p_1p_2,q_1q_2)$-Estimates of Ostrowski-type integral inequalities via n-polynomials s-type convexity. AIMS Mathematics, 2020, 5(6): 7122-7144. doi: 10.3934/math.2020456 |
[3] | Mehmet Eyüp Kiriş, Miguel Vivas-Cortez, Gözde Bayrak, Tuğba Çınar, Hüseyin Budak . On Hermite-Hadamard type inequalities for co-ordinated convex function via conformable fractional integrals. AIMS Mathematics, 2024, 9(4): 10267-10288. doi: 10.3934/math.2024502 |
[4] | Serap Özcan, Saad Ihsan Butt, Sanja Tipurić-Spužević, Bandar Bin Mohsin . Construction of new fractional inequalities via generalized $ n $-fractional polynomial $ s $-type convexity. AIMS Mathematics, 2024, 9(9): 23924-23944. doi: 10.3934/math.20241163 |
[5] | Eze R. Nwaeze, Muhammad Adil Khan, Ali Ahmadian, Mohammad Nazir Ahmad, Ahmad Kamil Mahmood . Fractional inequalities of the Hermite–Hadamard type for $ m $-polynomial convex and harmonically convex functions. AIMS Mathematics, 2021, 6(2): 1889-1904. doi: 10.3934/math.2021115 |
[6] | Hasan Kara, Hüseyin Budak, Mehmet Eyüp Kiriş . On Fejer type inequalities for co-ordinated hyperbolic ρ-convex functions. AIMS Mathematics, 2020, 5(5): 4681-4701. doi: 10.3934/math.2020300 |
[7] | Muhammad Tariq, Asif Ali Shaikh, Sotiris K. Ntouyas, Jessada Tariboon . Some novel refinements of Hermite-Hadamard and Pachpatte type integral inequalities involving a generalized preinvex function pertaining to Caputo-Fabrizio fractional integral operator. AIMS Mathematics, 2023, 8(11): 25572-25610. doi: 10.3934/math.20231306 |
[8] | Haoliang Fu, Muhammad Shoaib Saleem, Waqas Nazeer, Mamoona Ghafoor, Peigen Li . On Hermite-Hadamard type inequalities for $ n $-polynomial convex stochastic processes. AIMS Mathematics, 2021, 6(6): 6322-6339. doi: 10.3934/math.2021371 |
[9] | Ghulam Farid, Hafsa Yasmeen, Hijaz Ahmad, Chahn Yong Jung . Riemann-Liouville Fractional integral operators with respect to increasing functions and strongly $ (\alpha, m) $-convex functions. AIMS Mathematics, 2021, 6(10): 11403-11424. doi: 10.3934/math.2021661 |
[10] | Muhammad Samraiz, Kanwal Saeed, Saima Naheed, Gauhar Rahman, Kamsing Nonlaopon . On inequalities of Hermite-Hadamard type via $ n $-polynomial exponential type $ s $-convex functions. AIMS Mathematics, 2022, 7(8): 14282-14298. doi: 10.3934/math.2022787 |
In this study, the concept of (m,n)−polynomial (p1,p2)- convex functions on the co-ordinates has been established with some basic properties. Dependent on this new concept, a new Hermite-Hadamard type inequality has been proved, then some new integral inequalities have been obtained for partial differentiable (m,n)−polynomial (p1,p2)- convex functions on the co-ordinates. Several special cases that some of them proved in earlier works have been considered.
While the concept of convex function comes to the forefront with its applications in many branches of mathematics, it is a frequently used concept especially in inequality theory studies. The Hermite-Hadamard inequality, a classical inequality that produces bounds on the Cauchy mean value of a convex function, is one of the most famous inequalities proven in this sense. We will now start by recalling this inequality.
Suppose that f:I⊆R→R is a convex mapping defined in the interval I of R where a,b∈I such that a<b. The statement below:
f(a+b2)≤1b−ab∫af(x)dx≤f(a)+f(b)2 |
holds and known as Hermite-Hadamard inequality. Both inequalities are reversed if f is concave.
Although the concept of convex function has various types and generalizations, it has also been carried to different spaces. In [1], Dragomir touched upon the issue of transferring convex functions to multiple dimensions. This modification is very attractive due to its wide usage in many inequalities and applications in different fields of mathematics, especially convex programming.
Definition 1.1. Let us consider a bi-dimensional interval Δ=[a,b]×[c,d] in R2 with a<b, c<d. A function f:Δ→R will be called convex on the co-ordinates if the partial mappings fy:[a,b]→R, fy(u)=f(u,y) and fx:[c,d]→R, fx(v)=f(x,v) are convex where defined for all y∈[c,d] and x∈[a,b]. Recall that the mapping f:Δ→R is convex on Δ if the following inequality holds,
f(λx+(1−λ)z,λy+(1−λ)w)≤λf(x,y)+(1−λ)f(z,w) |
for all (x,y),(z,w)∈Δ and λ∈[0,1].
Giving modifications of the convex function concept in multidimensional spaces undoubtedly revealed the fact that concerning Hadamard type inequalities will be proved for these new function classes. In [1], Dragomir has performed some integral inequalities for double integrals as the expansion of Hermite-Hadamard inequality to a rectangle from the plane R2 as following:
Theorem 1.2. Suppose that f:Δ=[a,b]×[c,d]→R is convex on the co-ordinates on Δ. Then one has the inequalities:
f(a+b2,c+d2)≤12[1b−a∫baf(x,c+d2)dx+1d−c∫dcf(a+b2,y)dy]≤1(b−a)(d−c)∫ba∫dcf(x,y)dxdy≤14[1(b−a)∫baf(x,c)dx+1(b−a)∫baf(x,d)dx+1(d−c)∫dcf(a,y)dy+1(d−c)∫dcf(b,y)dy]≤f(a,c)+f(a,d)+f(b,c)+f(b,d)4. | (1.1) |
The above inequalities are sharp.
Numerous variants of this inequality were obtained for convexity and other types of convex functions in co-ordinates by several researchers (see the papers [2,3,4,5,6,7,8,9,10,11]). Also, we can state that the authors have established new integral identities in order to prove new inequalities in these papers as following:
Lemma 1.3. [10] Let f:Δ⊂R2→R2 be a partial differentiable mapping on Δ=[a,b]×[c,d] in R2 with a<b and c<d. If ∂2f∂t∂s∈L(Δ), then the following equality holds:
f(a,c)+f(b,c)+f(a,d)+f(b,d)4+1(b−a)(d−c)∫ba∫dcf(x,y)dxdy−12[1d−c∫dcf(a,y)dy+1d−c∫dcf(b,y)dy+1b−a∫baf(x,c)dx+1b−a∫baf(x,d)dx]=(b−a)(d−c)4×∫10∫10(1−2t)(1−2s)∂2f∂t∂s(ta+(1−t)b,sc+(1−s)d)dsdt. |
We shall proceed to recall an interesting class of functions that is called n−polynomial convex functions as follows:
Definition 1.4. (See [12]) Let n∈N, f:I⊂R→R is an n−polynomial convex function, if
f(tx+(1−t)y)≤1nn∑μ=1(1−(1−t)μ)f(x)+1nn∑μ=1(1−tμ)f(y) |
is valid for each x,y∈I and t∈[0,1].
We will indicate by POLC(I) at the interval I as the class of all n− polynomial convex functions. Recently, a lot of developments are done for functions of such classes (see [13,14,15]) and references therein. In [12], the following Hadamard type of inequality have been demonstrated by Toplu et al. for n−polynomial convex functions.
Theorem 1.5. Let f∈POLC(I), if a<b and f∈L[a,b], then the following Hermite-Hadamard type inequality holds:
12(nn+2−n−1)f(a+b2)≤1b−ab∫af(x)dx≤f(a)+f(b)nn∑μ=1μμ+1. |
Theorem 1.6. (See [16]) Let f:[a,b]→R be an n−polynomial p−convex function. If a<b and f∈[a,b], then the following Hermite-Hadamard type inequalities holds:
12(nn+2−n−1)f([ap+bp2]1p)≤pbp−ap∫baf(x)x1−pdx≤f(a)+f(b)nn∑μ=1μμ+1. | (1.2) |
2F1 hypergeometric function which will be used in order to prove the main findings can be defined as (see [17]):
2F1(a,b;c;z)=1β(b,c−b)∫10tb−1(1−t)c−b−1(1−zt)−adt, c>b>0,|z|<1. |
One of the effective ways to find precise and optimal boundaries for Hadamard type inequalities is to use different kinds of convex functions. As a product of this effort, a new concept (m,n)−polynomial (p1,p2)− convex function will be constructed on the co-ordinates and properties in this article. Also, new integral inequalities of Hadamard type will be proved with this new function class. Considering some special cases of the results, scientific knowledge in this field will be contributed.
We start by introducing the following new class of function unifying convexity and harmonic convexity on the co-ordinates:
Definition 2.1. Let m,n∈N and Δ=[a,b]×[c,d] be a bi-dimensional interval. A non-negative real valued function f:Δ→R is said to be (m,n)− polynomial (p1,p2)- convex function on Δ on the co-ordinates, if the following inequality holds:
f([txp1+(1−t)zp1]1p1,[syp2+(1−s)wp2]1p2)≤1nn∑μ=1(1−(1−t)μ)1mm∑ν=1(1−(1−s)ν)f(x,y)+1nn∑μ=1(1−(1−t)μ)1mm∑ν=1(1−sν)f(x,w)+1nn∑μ=1(1−tμ)1mm∑ν=1(1−(1−s)ν)f(z,y)+1nn∑μ=1(1−tμ)1mm∑ν=1(1−sν)f(z,w) |
where (x,y),(x,w),(z,y),(z,w)∈Δ, p1,p2∈R and t,s∈[0,1].
Remark 2.2. If we choose m=n=1, it is easy to see that the definition of (m,n)− polynomial (p1,p2)- convex function reduces to the class of (p1,p2) convex functions.
Remark 2.3. If we choose p1=p2=1 and p1=p2=−1, the definitions of (m,n)−polynomial (p1,p2)-convex function can be easily declared to be reduce to the class of (m,n)−polynomial convex function and (m,n)− Harmonically polynomial convex function on co-ordinates on Δ, respectively.
Remark 2.4. The (2,2)−polynomial (p1,p2) convex functions satisfy the following inequality
f([txp1+(1−t)zp1]1p1,[syp2+(1−s)wp2]1p2)≤3t−t223s−s22f(x,y)+3t−t222−s−s22f(x,w)+2−t−t223s−s22f(z,y)+2−t−t222−s−s22f(z,w) |
where (x,y),(x,w),(z,y),(z,w)∈Δ and t,s∈[0,1].
Example 2.5. Assume that fα:(0,∞)×(0,∞)→R be a family of (m,n)−polynomial (p1,p2)-convex functions, and f(x,y)=supfα(x,y). If
K={u∈[a,b]⊂(0,∞),v∈[c,d]⊂(0,∞)} |
is nonempty, then K is a bi-dimensional interval and f is an (m,n)− polynomial (p1,p2)-convex function on K.
Theorem 2.6. Assume that b>a>0, d>c>0, fα:[a,b]×[c,d]→[0,∞) be a family of the (m,n)−polynomial (p1,p2)-convex function on Δ and f(u,v)=supfα(u,v). Then, f is (m,n)−polynomial (p1,p2)-convex function on the co-ordinates, if K={x,y∈[a,b]×[c,d]:f(x,y)<∞} is bidimensional interval.
Proof. For t,s∈[0,1] and (x,y),(x,w),(z,y),(z,w)∈Δ, we can write
f([txp1+(1−t)zp1]1p1,[syp2+(1−s)wp2]1p2)=supf∞([txp1+(1−t)zp1]1p1,[syp2+(1−s)wp2]1p2)≤1nn∑μ=1(1−(1−t)μ)1mn∑ν=1(1−(1−s)ν)supf∞(x,y)+1nn∑μ=1(1−(1−t)μ)1mn∑ν=1(1−sν)supf∞(x,w)+1nn∑μ=1(1−tμ)1mn∑ν=1(1−(1−s)ν)supf∞(z,y)+1nn∑μ=1(1−tμ)1mn∑ν=1(1−sν)supf∞(z,w)=1nn∑μ=1(1−(1−t)μ)1mn∑ν=1(1−(1−s)ν)f(x,y)+1nn∑μ=1(1−(1−t)μ)1mn∑ν=1(1−sν)f(x,w)+1nn∑μ=1(1−tμ)1mn∑ν=1(1−(1−s)ν)f(z,y)+1nn∑μ=1(1−tμ)1mn∑ν=1(1−sν)f(z,w). |
Which completes the proof.
Lemma 2.7. Every (m,n)−polynomial (p1,p2)-convex function on Δ is (m,n)−polynomial (p1,p2)-convex function on the co-ordinates.
Proof. Consider the function f:Δ→R is (m,n)−polynomial (p1,p2)-convex function on Δ. Then, the partial mapping f:[c,d]→R, fx(v)=f(x,v) is valid. Then, we can write
fx([twp2+(1−t)vp2]1p2)=f(x,[twp2+(1−t)vp2]1p2)=f([txp1+(1−t)xp1]1p1,[twp2+(1−t)vp2]1p2)≤1nn∑μ=1(1−(1−t)μ)f(x,w)+1nn∑μ=1(1−tμ)f(x,v)=1nn∑μ=1(1−(1−t)μ)fx(w)+1nn∑μ=1(1−tμ)fx(v). |
for ∀t∈[0,1] and v,w∈[c,d]. This shows the n−polynomial p2−convexity of fx. By a similar argument, one can see the m−polynomial p1−convexity of fy. We omit the details.
Now, we will establish associated Hadamard type inequality for (m,n)− polynomial (p1,p2)- convex function on the co-ordinates.
Theorem 2.8. Suppose that f:Δ→R is (m,n)−polynomial (p1,p2)- convex on the co-ordinates on Δ, then the following inequality holds:
14(mm+2−m−1)(nn+2−n−1)×f([ap1+bp12]1p1,[cp2+dp22]1p2)≤14[(nn+2−n−1)p2dp2−cp2∫dcf([ap1+bp12]1p1,y)y1−p2dy+(mm+2−m−1)p1bp1−ap1∫baf(x,[cp2+dp22]1p2)x1−p1dx]≤p1p2(bp1−ap1)(dp2−cp2)∫ba∫dcf(x,y)x1−p1y1−p2dxdy≤12[1n(p2dp2−cp2∫dcf(a,y)y1−p2dy+p2dp2−cp2∫dcf(b,y)y1−p2dy)n∑t=1tt+1+1m(p1bp1−ap1∫baf(x,c)x1−p1dx+p1bp1−ap1∫baf(x,d)x1−p1dx)n∑s=1ss+1]≤f(a,c)+f(a,d)+f(b,c)+f(b,d)4m∑s=1ss+1n∑t=1tt+1 | (2.1) |
where for ∀t,s∈[0,1] and p1,p2∈R.
Proof. Since f is (m,n)−polynomial (p1,p2)- convex function on the coordinates, it follows that the mapping hx and hy are (m,n)− polynomial (p1,p2)- convex functions. Therefore, by using the inequality (1.2) for the partial mappings, we can write
12(mm+2−m−1)hx([cp2+dp22]1p2)≤p2dp2−cp2∫dcf(x,y)y1−p2dy≤hx(c)+hx(d)mm∑s=1ss+1. | (2.2) |
Namely,
12(mm+2−m−1)f(x,[cp2+dp22]1p2)≤p2dp2−cp2∫dcf(x,y)y1−p2dy≤f(x,c)+f(x,d)mm∑s=1ss+1. | (2.3) |
Dividing both sides of (2.3) by 1bp1−ap1 and integrating the resulting inequality over [a,b], we have
12(mm+2−m−1)p1bp1−ap1∫baf(x,[cp2+dp22]1p2)x1−p1dx≤p1p2(bp1−ap1)(dp2−cp2)∫ba∫dcf(x,y)x1−p1y1−p2dxdy≤[p1bp1−ap1∫baf(x,c)x1−p1+p1bp1−ap1∫baf(x,d)x1−p1]1mm∑s=1ss+1. | (2.4) |
By a similar argument for (2.3), but now for dividing both sides by 1dp2−cp2 and integrating over [c,d] and by using the mapping hy is (m,n)−polynomial (p1,p2)- convexity we get
12(nn+2−n−1)p2bp1−ap1∫dcf([ap1+bp12]1p1,y)y1−p2dy≤p1p2(bp1−ap1)(dp2−cp2)∫ba∫dcf(x,y)x1−p1y1−p2dxdy≤[p2dp2−cp2∫dcf(a,y)y1−p2+p2dp2−cp2∫dcf(b,y)y1−p2]1nn∑t=1tt+1. | (2.5) |
By summing the inequalities (2.4) and (2.5) side by side, we obtain the second and third inequalities of (2.1).
By the inequality (1.2), we also have
12(mm+2−m−1)f([ap1+bp12]1p1,[cp2+dp22]1p2)≤p2dp2−cp2∫dcf([ap1+bp12]1p1,y)y1−p2dy |
12(nn+2−n−1)f([ap1+bp12]1p1,[cp2+dp22]1p2)≤p1bp1−ap1∫baf(x,[cp2+dp22]1p2)x1−p1dx. |
Which gives the first inequality of (2.1) by addition.
Finally, by using the inequality (1.2), we obtain
p2dp2−cp2∫dcf(a,y)y1−p2dy≤f(a,c)+f(a,d)mm∑s=1ss+1 |
p2dp2−cp2∫dcf(b,y)y1−p2dy≤f(b,c)+f(b,d)mm∑s=1ss+1 |
p1bp1−ap1∫baf(x,c)x1−p1dx≤f(a,c)+f(a,d)nn∑t=1tt+1 |
p1bp1−ap1∫baf(x,d)x1−p1dx≤f(a,d)+f(b,d)nn∑t=1tt+1. |
We can provide the last inequality of (2.1) by addition.
Remark 2.9. If we choose p1=p2=1, then we get the Hermite- Hadamard type inequality for (m,n)−polynomial convex function on coordinates on Δ.
14(mm+2−m−1)(nn+2−n−1)f(a+b2,c+d2)≤14[(mm+2−m−1)1b−a∫baf(x,c+d2)dx+(nn+2−n−1)1d−c∫dcf(a+b2,y)dy]≤1(b−a)(d−c)∫ba∫dcf(x,y)dxdy≤12[1n(1(d−c)∫dcf(a,y)dy+1(d−c)∫dcf(b,y)dy)n∑μ=1μμ+1+1m(1(b−a)∫baf(x,c)dx+1(b−a)∫baf(x,d)dx)m∑ν=1νν+1]≤(f(a,c)+f(a,d)+f(b,c)+f(b,d)nm)(n∑μ=1μμ+1m∑ν=1νν+1). |
Remark 2.10. If we choose p1=p2=−1, then we get the (m,n)−Harmonically polynomial convex function on Δ (See [18]).
Lemma 2.11. Let f:Δ→R be a twice partial differentiable function on Δ=[a,b]×[c,d]⊂(0,∞)×(0,∞) with a<b and c<d. If ∂2f∂t∂s∈L1(Δ), then we have
M(p1,p2;f)=(bp1−ap1)(dp2−cp2)4p1p2×∫10∫10(1−2t[tap1+(1−t)bp1]1−1p1)(1−2s[scp2+(1−s)dp2]1−1p2)×∂2f∂t∂s([tap1+(1−t)bp1]1p1,[scp2+(1−s)dp2]1p2)dtds |
where
M(p1,p2;f)=f(a,c)+f(b,c)+f(a,d)+f(b,d)4−12{p1bp1−ap1{∫baf(x,c)x1−p1dx+f(x,d)x1−p1dx}+p2dp2−cp2{∫dcf(a,y)y1−p2dy+f(b,y)y1−p2dy}}+p1p2(bp1−ap1)(dp2−cp2)∫ba∫dcf(x,y)x1−p1y1−p2dxdy |
for p1,p2∈R.
Proof. It suffices to note that,
M(p1,p2;f)= (bp1−ap1)(dp2−cp2)4p1p2×∫10(1−2t[tap1+(1−t)bp1]1−1p1){∫10(1−2r[rcp2+(1−r)dp2]1−1p2)×∂2f∂t∂r([tap1+(1−t)bp1]1p1,[rcp2+(1−r)dp2]1p2)dr}dt. | (2.6) |
We will denote
I1= ∫10(1−2r[rcp2+(1−r)dp2]1−1p2)×∂2f∂t∂r([tap1+(1−t)bp1]1p1,[rcp2+(1−r)dp2]1p2)dr. |
Now, by applying integrating by parts for I1, we have
I1= p2(dp2−cp2)∂f∂t([tap1+(1−t)bp1]1p1,c)+p2(dp2−cp2)∂f∂t([tap1+(1−t)bp1]1p1,d)−2p2(dp2−cp2)∫10∂f∂t([tap1+(1−t)bp1]1p1,[rcp2+(1−r)dp2]1p2)dr. |
Integrating again the equality above and using also the (2.6), we get
I2= ∫10(1−2t[tap1+(1−t)bp1]1−1p1)∂f∂t([tap1+(1−t)bp1]1p1,c)dt= p1(bp1−ap1){f(a,c)+f(b,c)}−2p21(bp1−ap1)2∫baf(x,c)x1−p1dx. |
I3= ∫10(1−2t[tap1+(1−t)bp1]1−1p1)∂f∂t([tap1+(1−t)bp1]1p1,d)dt= p1(bp1−ap1){f(a,d)+f(b,d)}−2p21(bp1−ap1)2∫baf(x,d)x1−p1dx. |
I4= ∫10{∫10(1−2t[tap1+(1−t)bp1]1−1p1)×∂f∂t([tap1+(1−t)bp1]1p1,[rcp2+(1−r)dp2]1p2)dt}dr. |
Summing up of above I1 to I4 and changing of the variables, we complete the proof of the lemma.
Theorem 2.12. Let f:Δ→R be a twice partial differentiable function on Δ=[a,b]×[c,d]∈(0,∞)×(0,∞) with a<b and c<d. If ∂2f∂t∂s is (m,n)−polynomial (p1,p2) - convex functions on Δ such that ∂2f∂t∂s∈L1(Δ), then one has the inequality:
|M(p1,p2;f)|≤(bp1−ap1)(dp2−cp2)4p1p2[C1|∂2f∂t∂s(a,c)|+C2|∂2f∂t∂s(a,d)|+C3|∂2f∂t∂s(b,c)|+C4|∂2f∂t∂s(b,d)|] |
for p1,p2∈R where
C1=1nn∑μ=1[1b(p1−1)(2F1(1−1p1,2;3;1−ap1bp1)−2F1(1−1p1,1;2;1−ap1bp1)+2F1(1−1p1,1;3;12(1−ap1bp1))+1μ+12F1(1−1p1,1;μ+2;1−ap1bp1)−2(μ+1)(μ+2)2F1(1−1p1,2;μ+3;1−ap1bp1))+1a(p1−1)(2μ+12F1(1−1p1,μ+1;μ+2;1−bp1ap1)−4μ+22F1(1−1p1,μ+2;μ+3;1−bp1ap1)−12μ−1(μ+1)(μ+2)2F1(1−1p1,μ+1;μ+3;12(1−bp1ap1)))]1mm∑ν=1[1d(p2−1)(2F1(1−1p2,2;3;1−cp2dp2)−2F1(1−1p2,1;2;1−cp2dp2)+2F1(1−1p2,1;3;12(1−cp2dp2))+1ν+12F1(1−1p2,1;ν+2;1−cp2dp2))−2(ν+1)(ν+2)1p2.2F1(1−1p2,2;ν+3;1−cp2dp2)+1c(p2−1)(2ν+12F1(1−1p2,ν+1;ν+2;1−dp2cp2)−4ν+22F1(1−1p2,ν+2;ν+3;1−dp2cp2)−12ν−1(ν+1)(ν+2)2F1(1−1p2,ν+1;ν+3;12(1−dp2cp2)))], |
C2=1nn∑μ=1[1b(p1−1)(2F1(1−1p1,2;3;1−ap1bp1)−2F1(1−1p1,1;2;1−ap1bp1)+2F1(1−1p1,1;3;12(1−ap1bp1))+1μ+12F1(1−1p1,1;μ+2;1−ap1bp1))−2(μ+1)(μ+2)2F1(1−1p1,2;μ+3;1−ap1bp1)+1a(p1−1)(2μ+12F1(1−1p1,μ+1;μ+2;1−bp1ap1)−4μ+22F1(1−1p1,μ+2;μ+3;1−bp1ap1)−12μ−1(μ+1)(μ+2)2F1(1−1p1,μ+1;μ+3;12(1−bp1ap1)))]1mm∑ν=1[1d(p2−1)(2F1(1−1p2,2;3;1−cp2dp2)−2F1(1−1p2,1;2;1−cp2dp2)+2F1(1−1p2,1;3;1−cp2dp2)+1ν+12F1(1−1p2,ν+1;ν+2;1−cp2dp2)−2(ν+2)2F1(1−1p2,ν+2;ν+3;1−cp2dp2)−12ν−1(ν+1)(ν+2)2F1(1−1p2,ν+1;ν+3;12(1−dp2cp2)))], |
C3=1nn∑μ=1[1b(p1−1)(2F1(1−1p1,2;3;1−ap1bp1)−2F1(1−1p1,1;2;1−ap1bp1)+2F1(1−1p1,1;3;12(1−ap1bp1))+1μ+12F1(1−1p1,μ+1;μ+2;1−ap1bp1)−2(μ+2)2F1(1−1p1,μ+2;μ+3;1−ap1bp1))−12μ−1(μ+1)(μ+2)2F1(1−1p1,μ+1;μ+3;12(1−ap1bp1)))]×1mm∑ν=1[1d(p2−1)(2F1(1−1p2,2;3;1−cp2dp2)−2F1(1−1p2,1;2;1−cp2dp2)+2F1(1−1p2,1;3;1−cp2dp2)+1ν+12F1(1−1p2,1;ν+2;1−cp2dp2)−2(ν+1)(ν+2)1p22F1(1−1p2,2;ν+3;1−cp2dp2)+1c(p2−1)(2ν+12F1(1−1p2,v+1;v+2;1−cp2dp2)−4ν+22F1(1−1p2,v+2;v+3;1−cp2dp2)−12ν−1(ν+1)(ν+2)2F1(1−1p2,ν+1;ν+3;12(1−dp2cp2)))], |
C4=1nn∑μ=1[1b(p1−1)(2F1(1−1p1,2;3;1−ap1bp1)−2F1(1−1p1,1;2;1−ap1bp1)+2F1(1−1p1,1;3;12(1−ap1bp1))−2(μ+2)2F1(1−1p1,μ+2;μ+3;1−ap1bp1)−12μ−1(μ+1)(μ+2)2F1(1−1p1,μ+1;μ+3;12(1−ap1bp1))+2F1(1−1p1,1;3;12(1−ap1bp1))+1μ+12F1(1−1p1,μ+1;μ+2;1−ap1bp1))−12μ−1(μ+1)(μ+2)2F1(1−1p1,μ+1;μ+3;12(1−ap1bp1)))]×1mm∑ν=1[1d(p2−1)(2F1(1−1p2,2;3;1−cp2dp2)−2F1(1−1p2,1;2;1−cp2dp2)+2F1(1−1p2,1;3;1−cp2dp2)+1ν+12F1(1−1p2,ν+1;ν+2;1−cp2dp2)−2(ν+2)2F1(1−1p2,ν+2;ν+3;1−cp2dp2)−12ν−1(ν+1)(ν+2)2F1(1−1p2,ν+1;ν+3;12(1−dp2cp2)))] |
and At=[tap1+(1−t)bp1], Bs=[scp2+(1−s)dp2] for fixed t,s∈[0,1].
Proof. From the definition of (m,n)−polynomial (p1,p2)- convex functions, we can write
|∂2f∂t∂s(At1p1,Bs1p2)|≤1nn∑μ=1(1−(1−t)μ)1mm∑ν=1(1−(1−s)ν)|∂2f∂t∂s(a,c)|+1nn∑μ=1(1−(1−t)μ)1mm∑ν=1(1−sν)|∂2f∂t∂s(a,d)|+1nn∑μ=1(1−tμ)1mm∑ν=1(1−(1−s)ν)|∂2f∂t∂s(b,c)|+1nn∑μ=1(1−tμ)1mm∑ν=1(1−sν)|∂2f∂t∂s(b,d)|. |
By using the above inequality with lemma, we have
|M(p1,p2;f)|≤(bp1−ap1)(dp2−cp2)4p1p2∫10∫10|1−2t||1−2s|A1−1p1tB1−1p2s|∂2f∂t∂s(A1p1tB1p2s)|dtds≤(bp1−ap1)(dp2−cp2)4p1p2∫10∫10|1−2t||1−2s|A1−1p1tB1−1p2s×[1nn∑μ=1(1−(1−t)μ)1mm∑ν=1(1−(1−s)ν)|∂2f∂t∂s(a,c)|+1nn∑μ=1(1−(1−t)μ)1mm∑ν=1(1−sν)|∂2f∂t∂s(a,d)|+1nn∑μ=1(1−tμ)1mm∑ν=1(1−sν)|∂2f∂t∂s(b,c)|+1nn∑μ=1(1−tμ)1mm∑ν=1(1−sν)|∂2f∂t∂s(b,d)|]dtds. |
which implies
|M(p1,p2;f)|≤(bp1−ap1)(dp2−cp2)4p1p2[|∂2f∂t∂s(a,c)|1nn∑μ=1∫10|1−2t|(1−(1−t)μ)A1−1p1tdt×1mm∑ν=1∫10|1−2t|(1−(1−s)ν)B1−1p2sds+|∂2f∂t∂s(a,d)|1nn∑μ=1∫10|1−2t|(1−(1−t)μ)A1−1p1tdt1mm∑ν=1∫10|1−2s|(1−sν)B1−1p2sds+|∂2f∂t∂s(b,c)|1nn∑μ=1∫10|1−2t|(1−tμ)A1−1p1tdt1mm∑ν=1∫10|1−2s|(1−sν)B1−1p2sds+|∂2f∂t∂s(b,d)|1nn∑μ=1∫10|1−2t|(1−tμ)A1−1p1tdt1mm∑ν=1∫10|1−2s|(1−sν)B1−1p2sds]. | (2.7) |
By computing the above integrals, we can easily see that
|M(p1,p2;f)|≤(bp1−ap1)(dp2−cp2)4p1p2[C1|∂2f∂t∂s(a,c)|+C2|∂2f∂t∂s(a,d)|+C3|∂2f∂t∂s(b,c)|+C4|∂2f∂t∂s(b,d)|]. | (2.8) |
This completes the proof.
Corollary 2.13. If we set m=n=1 in (2.8), we have the following inequality for (p1,p2)-convex function on Δ.
|M(p1,p2;f)|≤(bp1−ap1)(dp2−cp2)4p1p2[C11|∂2f∂t∂s(a,c)|+C22|∂2f∂t∂s(a,d)|+C33|∂2f∂t∂s(b,c)|+C44|∂2f∂t∂s(b,d)|] |
where
C11=[1b(p1−1)[2F1(1−1p1,2;3;1−ap1bp1)−2F1(1−1p1,1;2;1−ap1bp1)+2F1(1−1p1,1;3;12(1−ap1bp1))+1μ+12F1(1−1p1,1;μ+2;1−ap1bp1)−2(μ+1)(μ+2)2F1(1−1p1,2;μ+3;1−ap1bp1)]+1a(p1−1)[2μ+12F1(1−1p1,μ+1;μ+2;1−bp1ap1)−4μ+22F1(1−1p1,μ+2;μ+3;1−bp1ap1)−12μ−1(μ+1)(μ+2)2F1(1−1p1,μ+1;μ+3;12(1−bp1ap1))]]⋅[1d(p2−1)[2F1(1−1p2,2;3;1−cp2dp2)−2F1(1−1p2,1;2;1−cp2dp2)+2F1(1−1p2,1;3;12(1−cp2dp2))+1ν+12F1(1−1p2,1;ν+2;1−cp2dp2)−2(ν+1)(ν+2)1p22F1(1−1p2,2;ν+3;1−cp2dp2)]+1c(p2−1)[2ν+12F1(1−1p2,ν+1;ν+2;1−dp2cp2)−4ν+22F1(1−1p2,ν+2;ν+3;1−dp2cp2)−12ν−1(ν+1)(ν+2)2F1(1−1p2,ν+1;ν+3;12(1−dp2cp2))]], |
C22=[1b(p1−1)[2F1(1−1p1,2;3;1−ap1bp1)−2F1(1−1p1,1;2;1−ap1bp1)+2F1(1−1p1,1;3;12(1−ap1bp1))+1μ+12F1(1−1p1,1;μ+2;1−ap1bp1)−2(μ+1)(μ+2)2F1(1−1p1,2;μ+3;1−ap1bp1)]+1a(p1−1)[2μ+12F1(1−1p1,μ+1;μ+2;1−bp1ap1)−4μ+22F1(1−1p1,μ+2;μ+3;1−bp1ap1)−12μ−1(μ+1)(μ+2)2F1(1−1p1,μ+1;μ+3;12(1−bp1ap1))]][1d(p2−1)[2F1(1−1p2,2;3;1−cp2dp2)−2F1(1−1p2,1;2;1−cp2dp2)+2F1(1−1p2,1;3;1−cp2dp2)+1ν+12F1(1−1p2,ν+1;ν+2;1−cp2dp2)−2(ν+2)2F1(1−1p2,ν+2;ν+3;1−cp2dp2)−12ν−1(ν+1)(ν+2)2F1(1−1p2,ν+1;ν+3;12(1−dp2cp2))]], |
C33=[1b(p1−1)[2F1(1−1p1,2;3;1−ap1bp1)−2F1(1−1p1,1;2;1−ap1bp1)+2F1(1−1p1,1;3;12(1−ap1bp1))+1μ+12F1(1−1p1,μ+1;μ+2;1−ap1bp1)−2(μ+2)2F1(1−1p1,μ+2;μ+3;1−ap1bp1)−12μ−1(μ+1)(μ+2)2F1(1−1p1,μ+1;μ+3;12(1−ap1bp1))]][1d(p2−1)[2F1(1−1p2,2;3;1−cp2dp2)−2F1(1−1p2,1;2;1−cp2dp2)+2F1(1−1p2,1;3;12(1−cp2dp2))+1ν+12F1(1−1p2,1;ν+2;1−cp2dp2)−2(ν+1)(ν+2)12F1(1−1p2,2;ν+3;1−cp2dp2)]+1c(p2−1)[2ν+12F1(1−1p2,ν+1;ν+2;1−dp2cp2)−4ν+22F1(1−1p2,ν+2;ν+3;1−dp2cp2)−12ν−1(ν+1)(ν+2)2F1(1−1p2,ν+1;ν+3;12(1−dp2cp2))]], |
C44=[1b(p1−1)[2F1(1−1p1,2;3;1−ap1bp1)−2F1(1−1p1,1;2;1−ap1bp1)+2F1(1−1p1,1;3;12(1−ap1bp1))+1μ+12F1(1−1p1,μ+1;μ+2;1−ap1bp1)−2(μ+2)2F1(1−1p1,μ+2;μ+3;1−ap1bp1)−12μ−1(μ+1)(μ+2)2F1(1−1p1,μ+1;μ+3;12(1−ap1bp1))]][1d(p2−1)[2F1(1−1p2,2;3;1−cp2dp2)−2F1(1−1p2,1;2;1−cp2dp2)+2F1(1−1p2,1;3;1−cp2dp2)+1ν+12F1(1−1p2,ν+1;ν+2;1−cp2dp2)−2(v+2)2F1(1−1p2,ν+2;ν+3;1−cp2dp2)−12ν−1(ν+1)(ν+2)2F1(1−1p2,ν+1;ν+3;12(1−dp2cp2))]. |
Corollary 2.14. If we set p1=p2=1 in (2.8), then we have the following inequality for (m,n)−polynomial convex function on Δ.
|M(1,1;f)|≤(b−a)(d−c)mnn∑μ=1[2μ(μ2+μ+2)−22μ+1(μ+1)(μ+2)]m∑ν=1[2ν(ν2+ν+2)−22ν+1(ν+1)(ν+2)]×[|∂2f∂t∂s(a,c)|+|∂2f∂t∂s(a,d)|+|∂2f∂t∂s(b,c)|+|∂2f∂t∂s(b,d)|4] |
where
M(1,1;f)=f(a,c)+f(b,c)+f(a,d)+f(b,d)4+1(b−a)(d−c)∫ba∫dcf(x,y)dydx−12[1d−c∫dcf(a,y)dy+1d−c∫dcf(b,y)dy+1b−a∫baf(x,c)dx+1b−a∫baf(x,d)dx] |
for t,s∈[0,1].
Corollary 2.15. If we set p1=p2=−1 in (2.8) then we have the following inequality for (m,n)−harmonically polynomial convex function on Δ.
|M(−1,−1;f)|≤abcd(b−a)(d−c)4[C⋆1|∂2f∂t∂s(a,c)|+C⋆2|∂2f∂t∂s(a,d)|+C⋆3|∂2f∂t∂s(b,c)|+C⋆4|∂2f∂t∂s(b,d)|] |
where
|M(−1,−1;f)=f(a,c)+f(b,c)+f(a,d)+f(b,d)4+abcd(b−a)(d−c)∫ba∫dcf(x,y)(xy)2dydx−12[cdd−c∫dcf(a,y)y2dy+cdd−c∫dcf(b,y)y2dy+abb−a∫baf(x,c)x2dx+abb−a∫baf(x,d)x2dx], |
C⋆1=1nn∑μ=1[a2[2F1(2,2;3;1−ba)−2F1(2,1;2;1−ba)+2F1(2,1;3;12(1−ba))+1μ+12F1(2,1;μ+2;1−ba)−2(μ+1)(μ+2)2F1(2,2;μ+3;1−ba)]+b2[2(μ+1)2F1(2,μ+1;μ+2;1−ab)−4(μ+2)2F1(2,μ+2;μ+3;1−ab)−12μ−1(μ+1)(μ+2)×2F1(2,μ+1;μ+3;12(1−ab))]]1mm∑ν=1[c2[2F1(2,2;3;1−dc)−2F1(2,1;2;1−dc)+2F1(2,1;3;12(1−dc))+1ν+12F1(2,1;ν+2;1−dc)−2(ν+1)(ν+2)2F1(2,2;ν+3;1−dc)]+d2[2(ν+1)2F1(2,ν+1;ν+2;1−cd)−4(ν+2)2F1(2,ν+2;ν+3;1−cd)−12ν−1(ν+1)(ν+2)2F1(2,ν+1;ν+3;12(1−cd))]], |
C⋆2=1nn∑μ=1[a2[2F1(2,2;3;1−ba)−2F1(2,1;2;1−ba)+2F1(2,1;3;12(1−ba))+1μ+1−ba)+2F1(2,1;3;12(1−ba))+1μ+12F1(2,1;μ+2;1−ba)−2(μ+1)(μ+2)2F1(2,2;μ+3;1−ba)]+b2[2(μ+1)2F1(2,μ+1;μ+2;1−ab)−4(μ+2)2F1(2,μ+2;μ+3;1−ab)−12μ−1(μ+1)(μ+2)2F1(2,μ+1;μ+3;12(1−ab))]]1mm∑ν=1[c2[2F1(2,2;3;1−dc)−2F1(2,1;2;1−dc)+2F1(2,1;3;12(1−dc))+1ν+12F1(2,ν+1;ν+2;1−dc)−2(ν+2)2F1(2,ν+2;ν+3;1−dc)−12ν−1(ν+1)(ν+2)2F1(2,ν+1;ν+3;12(1−dc))]], |
C⋆3=1nn∑μ=1[a2[2F1(2,2;3;1−ba)−2F1(2,1;2;1−ba)+2F1(2,1;3;12(1−ba))+1μ+12F1(2,μ+1;μ+2;1−ba)−2(μ+2)2F1(2,μ+2;μ+3;1−ba)+2(μ+1)2F1(2,μ+1;μ+2;1−ab)−12μ−1(μ+1)(μ+2)2F1(2,μ+1;μ+3;12(1−ba))]]1mm∑ν=1[c2[2F1(2,2;3;1−dc)−2F1(2,1;2;1−dc)+2F1(2,1;3;12(1−dc))+1ν+12F1(2,1;ν+2;1−dc)−2(ν+1)(ν+2)2F1(2,2;ν+3;1−dc)]+d2[2(ν+1)2F1(2,ν+1;ν+2;1−cd)−4(ν+2)2F1(2,ν+2;ν+3;1−cd)−12ν−1(ν+1)(ν+2)2F1(2,ν+1;ν+3;12(1−cd))]], |
and
C⋆4=1nn∑μ=1[a2[2F1(2,2;3;1−ba)−2F1(2,1;2;1−ba)+2F1(2,1;3;12(1−ba))+1μ+12F1(2,μ+1;μ+2;1−ba)−2(μ+2)2F1(2,μ+2;μ+3;1−ba)+2(μ+1)2F1(2,μ+1;μ+2;1−ab)−12μ−1(μ+1)(μ+2)2F1(2,μ+1;μ+3;12(1−ba))]]1mm∑ν=1[c2[2F1(2,2;3;1−dc)−2F1(2,1;2;1−dc)+2F1(2,1;3;12(1−dc))+1ν+12F1(2,ν+1;ν+2;1−dc)−2(ν+2)2F1(2,ν+2;ν+3;1−dc)−12ν−1(ν+1)(ν+2)2F1(2,ν+1;ν+3;12(1−dc))]]. |
Theorem 2.16. Let f:Δ=[a,b]×[c,d]∈(0,∞)×(0,∞)→R be a partial differential mapping on Δ and ∂2f∂t∂s∈L(Δ). If |∂2f∂t∂s|q is (m,n)−polynomial (p1,p2)- convex function on Δ, then one has the following inequality
|M(p1,p2;f)|≤(bp1−ap1)(dp2−cp2)4p1p2(r+1)2r[C5|∂2f∂t∂s(a,c)|q+C6|∂2f∂t∂s(a,d)|q+C7|∂2f∂t∂s(b,c)|q+C8|∂2f∂t∂s(b,d)|q]1q |
where
C5=1nn∑μ=1∫10(1−(1−t)μ)A−q(1−1p1)tdt1mm∑ν=1∫10(1−(1−s)ν)B−q(1−1p2)sds=1bq(p1−1)1nn∑μ=1[2F1(q(1−1p1),1;2;1−ap1bp1)−1μ+12F1(q(1−1p1),1;μ+2;1−ap1bp1)]×1dq(p2−1)1mm∑ν=1[2F1(q(1−1p2),1;2;1−cp2dp2)−1ν+12F1(q(1−1p2),1;ν+2;1−cp2dp2)], |
C6=1nn∑μ=1∫10(1−(1−t)μ)A−q(1−1p1)tdt1mm∑ν=1∫10(1−sν)B−q(1−1p2)sds=1bq(p1−1)1nn∑μ=1[2F1(q(1−1p1),1;2;1−ap1bp1)−1μ+12F1(q(1−1p1),1;μ+2;1−ap1bp1)]×1dq(p2−1)1mm∑ν=1[2F1(q(1−1p2),1;2;1−cp2dp2)−1ν+12F1(q(1−1p2),ν+1;ν+2;1−cp2dp2)], |
C7=1nn∑μ=1∫10(1−tμ)A−q(1−1p1)tdt1mm∑ν=1∫10(1−(1−s)ν)B−q(1−1p2)sds=1bq(p1−1)1nn∑μ=1[2F1(q(1−1p1),1;2;1−ap1bp1)−1μ+12F1(q(1−1p1),μ+1;μ+2;1−ap1bp1)]×1dq(p2−1)1mm∑ν=1[2F1(q(1−1p2),1;2;1−cp2dp2)−1ν+12F1(q(1−1p2),1;ν+2;1−cp2dp2)], |
and
C8=1nn∑μ=1∫10(1−tμ)A−q(1−1p1)tdt1mm∑ν=1∫10(1−sν)B−q(1−1p2)sds=1bq(p1−1)1nn∑μ=1[2F1(q(1−1p1),1;2;1−ap1bp1)−1μ+12F1(q(1−1p1),μ+1;μ+2;1−ap1bp1)]×1dq(p2−1)1mm∑ν=1[2F1(q(1−1p2),1;2;1−cp2dp2)−1ν+12F1(q(1−1p2),ν+1;ν+2;1−cp2dp2)] |
where At=[tap1+(1−t)bp1] and Bs=[scp2+(1−s)dp2] for fixed t,s∈[0,1], r,q>1 and 1r+1q.
Proof. With the aid of the identity that is given in Lemma 2.11 and by using the Hölder inequality for double integrals, we get
|M(p1,p2;f)|≤(bp1−ap1)(dp2−cp2)4p1p2∫10∫10|1−2t||1−2s|A1−1p1tB1−1p2s|∂2f∂t∂s(A1p1tB1p2s)|dtds≤(bp1−ap1)(dp2−cp2)4p1p2(∫10∫10|1−2t|r|1−2s|rdtds)1r×(∫10∫10A−q(1−1p1)tB−q(1−1p2)sdtds|∂2f∂t∂s(A1p1tB1p2s)|q)1q. |
Taking into account (m,n)−polynomial (p1,p2)- convexity of |∂2f∂t∂s|q, we obtain
|M(p1,p2;f)|≤(bp1−ap1)(dp2−cp2)4(1r+1)2r[|∂2f∂t∂s(a,c)|q1nn∑μ=1∫10(1−(1−t)μ)A−q(1−1p1)tdt×1mm∑ν=1∫10(1−(1−s)ν)B−q(1−1p2)sds+|∂2f∂t∂s(a,d)|q1nn∑μ=1∫10(1−(1−t)μ)A−q(1−1p1)tdt×1mm∑ν=1∫10(1−sν)B−q(1−1p2)sds+|∂2f∂t∂s(b,c)|q1nn∑μ=1∫10(1−tμ)A−q(1−1p1)tdt×1mm∑ν=1∫10(1−(1−s)ν)B−q(1−1p2)sds+|∂2f∂t∂s(b,d)|q1nn∑μ=1∫10(1−tμ)A−q(1−1p1)tdt×1mm∑ν=1∫10(1−sν)B−q(1−1p2)sds]1q. | (2.9) |
We get the desired result by computing the above integral.
Corollary 2.17. If we set m=n=1 in Theorem 7, we have the following inequality (p1,p2)-convex function on Δ.
|M(p1,p2;f)|≤(bp1−ap1)(dp2−cp2)4p1p2(r+1)2r[C55|∂2f∂t∂s(a,c)|q+C66|∂2f∂t∂s(a,d)|q+C77|∂2f∂t∂s(b,c)|q+C88|∂2f∂t∂s(b,d)|q]1q |
where
C55=1bq(p1−1)[2F1(q(1−1p1),1;2;1−ap1bp1)−122F1(q(1−1p1),1;3;1−ap1bp1)]×1dq(p2−1)[2F1(q(1−1p2),1;2;1−cp2dp2)−122F1(q(1−1p2),1;3;1−cp2dp2)], |
C66=1bq(p1−1)[2F1(q(1−1p1),1;2;1−ap1bp1)−122F1(q(1−1p1),1;3;1−ap1bp1)]×1dq(p2−1)[2F1(q(1−1p2),1;2;1−cp2dp2)−122F1(q(1−1p2),2;3;1−cp2dp2)], |
C77=1bq(p1−1)[2F1(q(1−1p1),1;2;1−ap1bp1)−122F1(q(1−1p1),2;3;1−ap1bp1)]×1dq(p2−1)[2F1(q(1−1p2),1;2;1−cp2dp2)−122F1(q(1−1p2),1;3;1−cp2dp2)], |
and
C88=1bq(p1−1)[2F1(q(1−1p1),1;2;1−ap1bp1)−122F1(q(1−1p1),2;3;1−ap1bp1)]×1dq(p2−1)[2F1(q(1−1p2),1;2;1−cp2dp2)−122F1(q(1−1p2),2;3;1−cp2dp2)]. |
Corollary 2.18. If we set p1=p2=1 in Theorem 7, then we get (m,n)−polynomial convex function on Δ.
|M(1,1;f)|≤(b−a)(d−c)4(1r+1)2r(1nn∑μ=1μμ+1)1q(1mn∑ν=1νν+1)1q×[|∂2f∂t∂s(a,c)|q+|∂2f∂t∂s(a,d)|q+|∂2f∂t∂s(b,c)|q+|∂2f∂t∂s(b,d)|q]1q |
for t,s∈[0,1] and 1r+1q=1.
Corollary 2.19. If we set p1=p2=−1 in Theorem 7, then we get the (m,n)− harmonically polynomial convex function on Δ (See[18]).
|M(−1,−1;f)|≤bd(b−a)(d−c)4ac(r+1)2r[C⋆5|∂2f∂t∂s(a,c)|q+C⋆6|∂2f∂t∂s(a,d)|q+C⋆7|∂2f∂t∂s(b,c)|+C⋆8|q∂2f∂t∂s(b,d)|q]1q |
where
C⋆5=1nn∑μ=1[2F1(2q,1;2;1−ba)−1μ+12F1(2q,1;μ+2;1−ba)]×1mm∑ν=1[2F1(2q,1;2;1−dc)−1ν+12F1(2q,1;ν+2;1−dc)], |
C⋆6=1nn∑μ=1[2F1(2q,1;2;1−ba)−1μ+12F1(2q,1;μ+2;1−ba)]×1mm∑ν=1[2F1(2q,1;2;1−dc)−1ν+12F1(2q,ν+1;ν+2;1−dc)], |
C⋆7=1nn∑μ=1[2F1(2q,1;2;1−ba)−1μ+12F1(2q,μ+1;μ+2;1−ba)]×1mm∑ν=1[2F1(2q,1;2;1−dc)−1ν+12F1(2q,1;ν+2;1−dc)], |
and
C⋆8=1nn∑μ=1[2F1(2q,1;2;1−ba)−1μ+12F1(2q,μ+1;μ+2;1−ba)]×1mm∑ν=1[2F1(2q,1;2;1−dc)−1ν+12F1(2q,ν+1;ν+2;1−dc)]. |
Theorem 2.20. Let f:Δ=[a,b]×[c,d]∈→R be a partial differential mapping on Δ and ∂2f∂t∂s∈L(Δ). If |∂2f∂t∂s|q is (m,n)−polynomial (p1,p2)- convex function on Δ, then one has the following inequality for q>1
|M(p1,p2;f)|≤(bp1−ap1)(dp2−cp2)4p1p2(D)1−1q[C1|∂2f∂t∂s(a,c)|q+C2|∂2f∂t∂s(a,d)|q+C3|∂2f∂t∂s(b,c)|q+C4|∂2f∂t∂s(b,d)|q]1q | (2.10) |
where
D=∫10∫10|1−2t|A1−1p1t|1−2s|B1−1p2sdtds=1b(p1−1)[2F1(1−1p1,2;3;1−ap1bp1)−2F1(1−1p1,1;2;1−ap1bp1)+2F1(1−1p1,1;3;12(1−ap1bp1))]1d(p2−1)[2F1(1−1p2,2;3;1−cp2dp2)−2F1(1−1p2,1;2;1−cp2dp2)+2F1(1−1p2,1;3;12(1−cp2dp2))] |
for C1,C2,C3 and C4 are same with Theorem 2.12.
Proof. We have the following
|M(p1,p2;f)|≤(bp1−ap1)(dp2−cp2)4p1p2∫10∫10|1−2t||1−2s|A1−1p1tB1−1p2s|∂2f∂t∂s(A1p1tB1p2s)|dtds≤(bp1−ap1)(dp2−cp2)4p1p2(∫10∫10|1−2t||1−2s|A1−1p1tB1−1p2sdtds)1−1q×(∫10∫10|1−2t||1−2s|A1−1p1tB1−1p2s|∂2f∂t∂s(A1p1t,B1p2s)|dtds)1q. |
By applying the (m,n)−polynomial (p1,p2)- convexity of |∂2f∂t∂s|q, we get
|M(p1,p2;f)|≤(bp1−ap1)(dp2−cp2)4p1p2(∫10∫10|1−2t||1−2s|A1−1p1tB1−1p2sdtds)1−1q(|∂2f∂t∂s(a,c)|q1nn∑μ=1∫10|1−2t|(1−(1−t)μ)A(1−1p1)tdt1mm∑ν=1∫10|1−2s|(1−(1−s)ν)B(1−1p2)sds+|∂2f∂t∂s(a,d)|q1nn∑μ=1∫10|1−2t|(1−(1−t)μ)A(1−1p1)tdt1mm∑ν=1∫10|1−2s|(1−sν)B(1−1p2)sds+|∂2f∂t∂s(b,c)|q1nn∑μ=1∫10|1−2t|(1−tμ)A(1−1p1)tdt1mm∑ν=1∫10|1−2s|(1−(1−s)ν)B(1−1p2)sds+|∂2f∂t∂s(b,d)|q1nn∑μ=1∫10|1−2t|(1−tμ)A(1−1p1)tdt1mm∑ν=1∫10|1−2s|(1−sν)B(1−1p2)sds)1q. | (2.11) |
We get the desired result by computing the above integrals.
Corollary 2.21. If we set m=n=1 in (2.10), we have the following inequality (p1,p2)-convex function on Δ.
|M(p1,p2;f)|≤(bp1−ap1)(dp2−cp2)4p1p2(D)1−1q[C11|∂2f∂t∂s(a,c)|q+C22|∂2f∂t∂s(a,d)|q+C33|∂2f∂t∂s(b,c)|q+C44|∂2f∂t∂s(b,d)|q]1q |
where C11,C22,C33 and C44 are same in Corollary 2.13.
Corollary 2.22. If we set p1=p2=1 in (2.11), then we get the (m,n)− polynomial convex function on Δ.
|M(1,1;f)|≤(b−a)(d−c)4(1p+1)2−2q(1nn∑μ=1[2μ(μ2+μ+2)−22μ+1(μ+1)(μ+2)]1mm∑ν=1[2ν(ν2+ν+2)−22ν+1(ν+1)(ν+2)])1q×[|∂2f∂t∂s(a,c)|q+|∂2f∂t∂s(a,d)|q+|∂2f∂t∂s(b,c)|q+|∂2f∂t∂s(b,d)|q]1q. |
Corollary 2.23. If we set p1=p2=−1 in (2.10), then we get the (m,n)− harmonically polynomial convex function on Δ.
|M(−1,−1;f)|≤abcd(b−a)(d−c)4(D1)1−1q×[C⋆1|∂2f∂t∂s(a,c)|q+C⋆2|∂2f∂t∂s(a,d)|q+C⋆3|∂2f∂t∂s(b,c)|q+C⋆4|∂2f∂t∂s(b,d)|q]1q |
where
D1=∫10∫10|1−2t|(At)2|1−2s|(Bs)2dtds=a2[2F1(2,2;3;1−ba)−2F1(2,1;2;1−ba)+2F1(2,1;3;12(1−ba))]c2[2F1(2,2;3;1−dc)−2F1(2,1;2;1−dc)+2F1(2,1;3;12(1−dc))] |
for C⋆1,C⋆2,C⋆3 and C⋆4 are same in Corollary 2.15.
This paper will give directions to several researchers who would like to extend and generalize the main findings. We have introduced the concept of (m,n)−polynomial (p1,p2)- convex functions on the co-ordinates and proved some further properties of this interesting class of function. We have expanded the argument by giving a new variant of Hermite-Hadamard inequality on the co-ordinates. The findings have supported by giving earlier results in the special cases.
The publication has been prepared with the support of P.R.I.N.. The research of the second author has been fully supported by H.E.C. Pakistan under NRPU project 7906. This paper has been supported by TÜBİTAK-BİDEB.
The authors declare no conflict of interest.
[1] |
S. S. Dragomir, On Hadamard's inequality for convex functions on the co-ordinates in a rectangle from the plane, Taiwan. J. Math., 5 (2001), 775–788. https://doi.org/10.11650/twjm/1500574995 doi: 10.11650/twjm/1500574995
![]() |
[2] |
M. E. Özdemir, M. A. Latif, A. O. Akdemir, On some Hadamard-type inequalities for product of two h−convex functions on the co-ordinates, J. Inequal. Appl., 2012 (2012), 21. https://doi.org/10.1186/1029-242X-2012-21 doi: 10.1186/1029-242X-2012-21
![]() |
[3] |
M. K. Bakula, J. Pečarić, On the Jensen's inequality for convex functions on the co-ordinates in a rectangle from the plane, Taiwan. J. Math., 10 (2006), 1271–1292. https://doi.org/10.11650/twjm/1500557302 doi: 10.11650/twjm/1500557302
![]() |
[4] |
S. Banić, M. K. Bakula, Jensen's inequality for functions superquadratic on the co-ordinates, J. Math. Inequal., 9 (2015), 1365–1375. https://doi.org/10.7153/JMI-09-104 doi: 10.7153/JMI-09-104
![]() |
[5] |
S. I. Butt, A. Kashuri, M. Nadeem, A. Aslam, W. Gao, Approximately two-dimensional harmonic (p1,h1)−(p2,h2)-convex functions and related integral inequalities, J. Inequal. Appl., 2020 (2020), 230. https://doi.org/10.1186/s13660-020-02495-6 doi: 10.1186/s13660-020-02495-6
![]() |
[6] |
M. E. Özdemir, A. O. Akdemir, C. Yildiz, On Co-ordinated quasi-convex functions, Czech. Math. J., 62 (2012), 889–900. https://doi.org/10.1007/s10587-012-0072-z doi: 10.1007/s10587-012-0072-z
![]() |
[7] | M. Alomari, M. Darus, The Hadamard's inequality for s−convex functions of 2−variables on the co-ordinates, Int. J. Math. Anal., 2 (2008), 629–638. |
[8] |
T. Du, T. Zhou, On the fractional double integral inclusion relations having exponential kernels via interval-valued co-ordinated convex mappings, Chaos Soliton. Fract., 156 (2022), 111846. https://doi.org/10.1016/j.chaos.2022.111846 doi: 10.1016/j.chaos.2022.111846
![]() |
[9] |
M. V. Mihai, M. U. Awan, M. A. Noor, T. S. Du, A. G. Khan, Two dimensional operator preinvex functions and associated Hermite-Hadamard type inequalities. Filomat, 32 (2018), 2825–2836. https://doi.org/10.2298/FIL1808825M doi: 10.2298/FIL1808825M
![]() |
[10] |
M. Z. Sarıkaya, E. Set, M. Emin Özdemir, S. S. Dragomir, New some Hadamard's type inequalities for co-ordinated convex functions, Tamsui Oxford J. Inf. Math. Sci., 28 (2012), 137–152. https://doi.org/10.48550/arXiv.1005.0700 doi: 10.48550/arXiv.1005.0700
![]() |
[11] |
M. E. Özdemir, H. Kavurmaci, A. O. Akdemir, M. Avci, Inequalities for convex and s−convex functions on Δ=[a,b]×[c,d], J. Inequal. Appl., 2012 (2012), 20. https://doi.org/10.1186/1029-242X-2012-20 doi: 10.1186/1029-242X-2012-20
![]() |
[12] |
T. Toplu, M. Kadakal, I. Iscan, On n−polynomial convexity and some related inequalities, AIMS Mathematics, 5 (2020), 1304–1318. https://doi.org/10.3934/math.2020089 doi: 10.3934/math.2020089
![]() |
[13] |
S. I. Butt, S. Rashid, M. Tariq, M. K. Wang, Novel refinements via polynomial harmonically type convex functions and application in special functions, J. Funct. Space., 2021 (2021), 1–17. https://doi.org/10.1155/2021/6615948 doi: 10.1155/2021/6615948
![]() |
[14] |
S. I. Butt, A. Kashuri, M. Tariq, J. Nasir, A. Aslam, W. Gao, Hermite Hadamard-type inequalities via n-polynomial exponential-type convexity and their applications, Adv. Differ. Equ., 2020 (2020), 508. https://doi.org/10.1186/s13662-020-02967-5 doi: 10.1186/s13662-020-02967-5
![]() |
[15] |
L. Xu, S. Yu, T. Du, Properties and integral inequalities arising from the generalized n-polynomial convexity in the frame of fractal space. Fractals, 30 (2022), 2250084. https://doi.org/10.1142/S0218348X22500840 doi: 10.1142/S0218348X22500840
![]() |
[16] |
C. Park, Y. Chu, M. S. Saleem, N. Jahangir, N. Rehman, On n−polynomial p−convex functions and some related inequalities, Adv. Differ. Equ., 2020 (2020), 666. https://doi.org/10.1186/s13662-020-03123-9 doi: 10.1186/s13662-020-03123-9
![]() |
[17] | M. Abramowitz, I. A. Stegun, Handbook of mathematical functions with formulas, graphs, and mathematical tables, New York: Dover Publications, 1965. |
[18] |
S. I. Butt, A. O. Akdemir, M. Nadeem, N. Mlaiki, I. Iscan, T. Abdeljawad, (m,n)−Harmonically polynomial convex functions and some Hadamard inequalities on co-ordinates, AIMS Mathematics, 6 (2021), 4677–4690. https://doi.org/10.3934/math.2021275 doi: 10.3934/math.2021275
![]() |
1. | Muhammad Tariq, Omar Mutab Alsalami, Asif Ali Shaikh, Kamsing Nonlaopon, Sotiris K. Ntouyas, New Fractional Integral Inequalities Pertaining to Caputo–Fabrizio and Generalized Riemann–Liouville Fractional Integral Operators, 2022, 11, 2075-1680, 618, 10.3390/axioms11110618 | |
2. | Serap Özcan, Luminiţa-Ioana Cotîrlă, Generalized n-Polynomial p-Convexity and Related Inequalities, 2024, 12, 2227-7390, 1042, 10.3390/math12071042 | |
3. | Çetin Yildiz, Levent Akgün, Muhammad Adil Khan, Nasir Rehman, Firdous A. Shah, Some Further Results Using Green’s Function for s -Convexity, 2023, 2023, 2314-4785, 1, 10.1155/2023/3848846 | |
4. | Saadi Achour, Abdelaziz Rahmoune, Djamel Ouchenane, Asma Alharbi, Salah Boulaaras, Initialization of the difference of convex functions optimization algorithm for nonconvex quadratic problems, 2024, 38, 0354-5180, 1069, 10.2298/FIL2403069A |