In this article, we investigate new results of existence and uniqueness for systems of nonlinear coupled differential equations and inclusions involving Caputo-type sequential derivatives of fractional order and along with new kinds of coupled discrete (multi-points) and fractional integral (Riemann-Liouville) boundary conditions. Our investigation is mainly based on the theorems of Schaefer, Banach, Covitz-Nadler, and nonlinear alternatives for Kakutani. The validity of the obtained results is demonstrated by numerical examples.
Citation: M. Manigandan, Subramanian Muthaiah, T. Nandhagopal, R. Vadivel, B. Unyong, N. Gunasekaran. Existence results for coupled system of nonlinear differential equations and inclusions involving sequential derivatives of fractional order[J]. AIMS Mathematics, 2022, 7(1): 723-755. doi: 10.3934/math.2022045
[1] | Saeed M. Ali, Mohammed S. Abdo, Bhausaheb Sontakke, Kamal Shah, Thabet Abdeljawad . New results on a coupled system for second-order pantograph equations with ABC fractional derivatives. AIMS Mathematics, 2022, 7(10): 19520-19538. doi: 10.3934/math.20221071 |
[2] | Abdelkader Lamamri, Iqbal Jebril, Zoubir Dahmani, Ahmed Anber, Mahdi Rakah, Shawkat Alkhazaleh . Fractional calculus in beam deflection: Analyzing nonlinear systems with Caputo and conformable derivatives. AIMS Mathematics, 2024, 9(8): 21609-21627. doi: 10.3934/math.20241050 |
[3] | Xinwei Su, Shuqin Zhang, Lixin Zhang . Periodic boundary value problem involving sequential fractional derivatives in Banach space. AIMS Mathematics, 2020, 5(6): 7510-7530. doi: 10.3934/math.2020481 |
[4] | Ymnah Alruwaily, Lamya Almaghamsi, Kulandhaivel Karthikeyan, El-sayed El-hady . Existence and uniqueness for a coupled system of fractional equations involving Riemann-Liouville and Caputo derivatives with coupled Riemann-Stieltjes integro-multipoint boundary conditions. AIMS Mathematics, 2023, 8(5): 10067-10094. doi: 10.3934/math.2023510 |
[5] | Adel Lachouri, Naas Adjimi, Mohammad Esmael Samei, Manuel De la Sen . Non-separated inclusion problem via generalized Hilfer and Caputo operators. AIMS Mathematics, 2025, 10(3): 6448-6468. doi: 10.3934/math.2025294 |
[6] | Subramanian Muthaiah, Dumitru Baleanu, Nandha Gopal Thangaraj . Existence and Hyers-Ulam type stability results for nonlinear coupled system of Caputo-Hadamard type fractional differential equations. AIMS Mathematics, 2021, 6(1): 168-194. doi: 10.3934/math.2021012 |
[7] | Muath Awadalla, Manigandan Murugesan, Subramanian Muthaiah, Bundit Unyong, Ria H Egami . Existence results for a system of sequential differential equations with varying fractional orders via Hilfer-Hadamard sense. AIMS Mathematics, 2024, 9(4): 9926-9950. doi: 10.3934/math.2024486 |
[8] | Xiaojun Zhou, Yue Dai . A spectral collocation method for the coupled system of nonlinear fractional differential equations. AIMS Mathematics, 2022, 7(4): 5670-5689. doi: 10.3934/math.2022314 |
[9] | Sumaiya Tasneem Zubair, Kalpana Gopalan, Thabet Abdeljawad, Nabil Mlaiki . Novel fixed point technique to coupled system of nonlinear implicit fractional differential equations in complex valued fuzzy rectangular b-metric spaces. AIMS Mathematics, 2022, 7(6): 10867-10891. doi: 10.3934/math.2022608 |
[10] | Yujun Cui, Chunyu Liang, Yumei Zou . Existence and uniqueness of solutions for a class of fractional differential equation with lower-order derivative dependence. AIMS Mathematics, 2025, 10(2): 3797-3818. doi: 10.3934/math.2025176 |
In this article, we investigate new results of existence and uniqueness for systems of nonlinear coupled differential equations and inclusions involving Caputo-type sequential derivatives of fractional order and along with new kinds of coupled discrete (multi-points) and fractional integral (Riemann-Liouville) boundary conditions. Our investigation is mainly based on the theorems of Schaefer, Banach, Covitz-Nadler, and nonlinear alternatives for Kakutani. The validity of the obtained results is demonstrated by numerical examples.
Over the last two decades, fractional calculus has gained a lot of attention. As a result, there is a growing interest in the theory and applications of fractional differential equations (FDEs) under various initial and boundary conditions (BCs); see, for example, [1,2,3,4,5,6,7,8], and the references cited therein. Fractional differentiation and integration have greatly aided the evaluation of mathematical models of numerous real-world situations in fractional contexts. It has been discovered that this subject has applications in a wide range of technical and physical sciences, including complex media electrodynamics, control theory ecology, viscoelasticity, biomathematics, electrical circuits, electroanalytical chemistry, aerodynamics, and blood flow phenomena [9,10,11,12,13,14,15,16]. The topic of consecutive fractional-order operators (i.e., sequential fractional derivative (SFD)) was described throughout the exceptional monograph [17]. Because it has been established that SFDs and non-SFDs are intimately related, some recent work on sequential fractional differential equations (SFDEs) has been published ([18,19,20]). Except for fractional-order boundary value problems (BVPs) for equations and inclusions [21,22], the study of systems of coupled FDEs has advanced and engaged scholars. Disease models, Lorenz systems, ecological models, Duffing systems, synchronisation of chaotic systems, and so on are examples of coupled system applications [23,24,25]. We recommend readers to [26,27] and the sources listed therein for the empirical research of coupled systems of FDEs. To demonstrate the effect of existence and uniqueness on the studied equations, sufficient conditions are used. Numerous mathematicians and applied researchers have attempted to use fractional calculus to model real-world processes. It has been deduced in biology that the membranes of biological organism cells have fractional-order electrical conductance [28] and thus, are classified in groups of non-integer-order models. Fractional derivatives are the most successful in the field of rheology because they embody essential features of cell rheological behaviour [29]. In most biological systems, such as HIV infection, hepatitis C virus (HCV) infection, and cancer spread, fractional-order ordinary differential equations are naturally related to systems with long-time memory. Additionally, they are related to fractals, which occur frequently in biological systems. Wang and Li [30] analyzed the global dynamics of HIV infection of CD4+ cells. Arafal et al. [31] studied fractional modeling dynamics of HIV and CD4+ T-cells during primary infection. As a result, fractional-order differential equations are thought to be a better tool than integer-order differential equations for describing hereditary properties of various materials and processes. Fractional-order models have become more realistic and practical than their classical integer-order counterparts as a result of this advantage, and their dynamics behaviour is also as stable as their integer-order counterparts. Due to the fact that theoretical results can aid in the development of a more complete understanding of the dynamic behaviour of biological processes, the study of abstract fractional dynamic models is becoming increasingly relevant and important in the modern era. On the other hand, the BCs in (1.2) are referred to as coupled BCs; they are encountered in the study of reaction-diffusion equations, Sturm-Liouville problems, and mathematical biology, among other fields. Recently in [32], authors discussed the existence and uniqueness of coupled system of FDEs with a novel class of coupled boundary conditions specified by
{CDαu(t)=f(t,u(t),v(t)), t∈J=[0,T],CDβv(t)=g(t,u(t),v(t)), t∈J=[0,T],(u+v)(0)=−(u+v)(T), ∫ηξ(u−v)(s)ds=A, | (1.1) |
where CDχ is the Caputo fractional derivatives (CFD) of order χ∈{α,β}, α,β∈(0,1], f,g:[0,T]×R2→R are continuous functions, and A is non-negative constant. A fixed point equivalent problem is created by transforming the system (1.2) into a fixed point equivalent problem and solving it using conventional fixed point theorems. As far as we know, the single-valued and multi-valued maps for the solutions of nonlinear coupled SFDEs with coupled boundary conditions have been rarely investigated. Motivated by the HIV infection model and its application background, we study the consequences of existence for a system of nonlinear coupled Caputo-type SFDEs and inclusions subject to multi-point and fractional integral boundary conditions of the form
{(CDϑ+φCDϑ−1)u(t)=G1(t,u(t),v(t)), t∈J=[0,T](CDϖ+φCDϖ−1)v(t)=G2(t,u(t),v(t)), t∈J=[0,T](u+v)(0)=−(u+v)(T),m∑i=0xi(u−v)(ξi)+μ∫η0(η−s)δ−1Γ(δ)(u−v)(s)ds=A, | (1.2) |
where CDς denotes CFD of order ς is defined by
CDςv(t)=1Γ(n−ς)∫t0(t−s)n−ς−1(dds)nv(s)ds, n−1<ς<n, n=[ς]+1, |
and the Riemann-Liouville integral of fractional order ς defined by
RLIςv(t)=1Γ(ς)∫t0(t−s)ς−1v(s)ds, ς>0, |
where ς∈{ϑ,ϖ}, ϑ,ϖ∈(0,1], given constants φ,A,xi (i=0,1,...,m)∈R, and G1,G2:[0,T]×R2→R, G1,G2:[0,T]×R2→U(R) are continuous functions, U(R) is the collection of non-empty subsets of R. We should point out that the term "sequential" is used in this context in the sense that the operator CDϑ+φCDϑ−1 can be written as the composition of the operators CDϑ−1(D+φ). Under the same assumptions,
{(CDϑ+φCDϑ−1)u(t)∈G1(t,u(t),v(t)), t∈J=[0,T](CDϖ+φCDϖ−1)v(t)∈G2(t,u(t),v(t)), t∈J=[0,T],(u+v)(0)=−(u+v)(T),m∑i=0xi(u−v)(ξi)+μ∫η0(η−s)δ−1Γ(δ)(u−v)(s)ds=A, | (1.3) |
the existence of the following nonlinear coupled differential inclusion is investigated further. Unlike the [32], the main results of this article are entirely different. Because we consider the problems in the context of SFD, employ unique techniques based on Schaefer's and Banach's, Covitz- Nadler's, and nonlinear alternatives for Kakutani fixed point theorems, and investigate the nonlinear coupled differential inclusion (1.3), which was not considered in [32]. Furthermore, to the best of our knowledge, there are no published results relating to the system (1.3). Additionally, the boundary conditions (1.2) establish that the sum of the unknown functions u and v at the interval [0,T]'s equals zero. The second is the sum of the unknown function's Riemann-Liouville fractional integral values on the strip (η,0), while the unknown function's multi-point values at ξi (i=0,1,...,m) remain constant. On the other hand, Section 2 gives important preliminaries and an auxiliary lemma that are required to solve the given problem. The key conclusions are discussed in Section 3, where we look at the existence and uniqueness of solutions for systems (1.2) and (1.3), respectively. Section 4 provides particular examples that are consistent with the investigated systems and the fundamental theorems.
The purpose of this part is to recall some definitions of multi-valued maps and lemmas that are important for establishing fundamental results [11,33,34].
Let (S,‖⋅‖) be a normed space and that Ucl(S)={P∈U(S):P is closed }, Uc,cp(S)={P∈U(S):P is convex and compact }.
A multi-valued map Q:S→U(S) is
(a) convex valued if Q(s) is convex ∀s∈S;
(b) upper semi-continuous (U.S.C.) on S if, for each s0∈S; the set Q(s0) is a non-empty closed subset of S and if, for each open set V of S containing Q(s0), there exists an open neighborhood V0 of s0 such that Q(V0)⊂V;
(c) lower semi-continuous (L.S.C.) if the set {s∈S:Q(s)∩E≠⊘} is open for any open set E in H;
(d) completely continuous (C.C) if Q(E) is relatively compact (r.c) for every E∈Ub(S)={P∈U(S):P is bounded}.
A map Q:[c,d]→Ucl(R) of multi-valued is said to be measurable if, for every s∈R, the function t⟼d(s,Q(t))=inf{|s−l|:l∈Q(t)} is measurable.
A multi-valued map Q:[c,d]×R→U(R) is said to be Caratheodory if
(i) t⟼Q(t,q,s) is measurable for each q,s∈R;
(ii) (q,s)⟼Q(t,q,s) is U.S.C for almost all t∈[c,d].
Further a Caratheodory function Q is called L1-Caratheodory if
(i) for each ε>0, ∃ϕεL1([c,d],R+)∋‖Q(t,q,s)‖=sup{|q|:q∈Q(t,q,s)≤ϕε(t)}∀ q,s∈R with ‖q‖,‖s‖≤ε and for a.e. t∈[c,d].
Lemma 2.1. [35] Let M a closed convex subset of a Banach space S and W be an open subset of K with 0∈W. In addition, H:ˆW→Zc,cp(K) is an u.s.c compact map. Then either
● H has fixed point in ˆW or
● ∃ w∈∂W and λ∈(0,1) such that w∈λH(w).
Lemma 2.2. [36] Let (S,d) be a complete metric space. If Q:S→Zcl(S) is a contraction, then Fix Q≠0.
Lemma 2.3. [37] Let Y:S→S be a completely continous operator in Banach Space S and the set Ψ={s∈S|s=δYs,0<δ<1} is bounded. Then Y has a fixed point in S.
Lemma 2.4. [11] Let ς>0. Then for u∈C(0,T)∩L(0,T) it holds
Iς(CDςu)(t)=u(t)+d0+d1t+⋅⋅⋅+dn−1tn−1, |
where di∈R, i=1,2,⋅⋅⋅,n−1 and n=[ς]+1.
Lemma 2.5. Let ˆG1,ˆG2∈C[0,T] and u,v∈AC(S). The solution of the linear system of FDEs:
{(CDϑ+φCDϑ−1)u(t)=ˆG1(t), t∈J:=[0,T],(CDϖ+φCDϖ−1)v(t)=ˆG2(t), t∈J:=[0,T],(u+v)(0)=−(u+v)(T),m∑i=0xi(u−v)(ξi)+μ∫η0(η−s)δ−1Γ(δ)(u−v)(s)ds=A, | (2.1) |
is given by
u(t)=e−φ(t)2[1Δ2{A−(m∑i=1xi{∫ξi0e−φ(ξi−s)(∫s0(s−a)(ϑ−2)Γ(ϑ−1)ˆG1(a)da)ds}−m∑i=1xi{∫ξi0e−φ(ξi−s)(∫s0(s−a)(ϖ−2)Γ(ϖ−1)ˆG2(a)da)ds}+{μ∫η0(η−s)(δ−1)Γ(δ)(∫s0e−φ(s−a)(∫a0(a−m)(ϑ−2)Γ(ϑ−1)ˆG1(m)dm)da)ds−μ∫η0(η−s)(δ−1)Γ(δ)(∫s0e−φ(s−a)(∫a0(a−m)(ϖ−2)Γ(ϖ−1)ˆG2(m)dm)da)ds})}−1Δ1{∫T0e−φ(T−s)(∫s0(s−a)ϑ−2Γ(ϑ−1)ˆG1(a)da)ds+∫T0e−φ(T−s)(∫s0(s−a)ϖ−2Γ(ϖ−1)ˆG2(a)da)ds}]+∫t0e−φ(t−s)(∫s0(s−a)ϑ−2Γ(ϑ−1)ˆG1(a)da)ds, | (2.2) |
and
v(t)=e−φ(t)2[−1Δ2{A−(m∑i=1xi{∫ξi0e−φ(ξi−s)(∫s0(s−a)(ϑ−2)Γ(ϑ−1)ˆG1(a)da)ds}−m∑i=1xi{∫ξi0e−φ(ξi−s)(∫s0(s−a)(ϖ−2)Γ(ϖ−1)ˆG2(a)da)ds}+{μ∫η0(η−s)(δ−1)Γ(δ)(∫s0e−φ(s−a)(∫a0(a−m)(ϑ−2)Γ(ϑ−1)ˆG1(m)dm)da)ds−μ∫η0(η−s)(δ−1)Γ(δ)(∫s0e−φ(s−a)(∫a0(a−m)(ϖ−2)Γ(ϖ−1)ˆG2(m)dm)da)ds})}−1Δ1{∫T0e−φ(T−s)(∫s0(s−a)(ϑ−2)Γ(ϑ−1)ˆG1(a)da)ds+∫T0e−φ(T−s)(∫s0(s−a)(ϖ−2)Γ(ϖ−1)ˆG2(a)da)ds}]+∫t0e−φ(t−s)(∫s0(s−a)(ϖ−2)Γ(ϖ−1)ˆG2(a)da)ds, | (2.3) |
where
Δ1=(1+e−φ(T)), Δ2=(m∑i=1xie−φ(ξi)+μ∫η0(η−s)δ−1Γ(δ)e−φsds). | (2.4) |
The main results are stated and supported by the facts in this section. The results are obtained individually for the systems (1.2) and (1.3).
Define S=C(J,R)×C(J,R) as the Banach space endowed with norm ‖(u,v)‖=supt∈J|u(t)|+supt∈J|v(t)|, for (u,v)∈S. Using Lemma 2.5, we convert system (1.2) into a fixed point problem as u=Ωu, the following operator Ω:S→S is defined by:
Ω(u,v)(t)=(Ω1(u,v)(t),Ω2(u,v)(t)), | (3.1) |
where
(Ω1(u,v))(t)=e−φ(t)2[1Δ2{A−(m∑i=1xi{∫ξi0e−φ(ξi−s)(∫s0(s−a)(ϑ−2)Γ(ϑ−1)G1(a,u(a),v(a))da)ds}−m∑i=1xi{∫ξi0e−φ(ξi−s)(∫s0(s−a)(ϖ−2)Γ(ϖ−1)G2(a,u(a),v(a))da)ds}+{μ∫η0(η−s)(δ−1)Γ(δ)(∫s0e−φ(s−a)(∫a0(a−m)(ϑ−2)Γ(ϑ−1)G1(m,u(m),v(m))dm)da)ds−μ∫η0(η−s)(δ−1)Γ(δ)(∫s0e−φ(s−a)(∫a0(a−m)(ϖ−2)Γ(ϖ−1)G2(m,u(m),v(m))dm)da)ds})}−1Δ1{∫T0e−φ(T−s)(∫s0(s−a)ϑ−2Γ(ϑ−1)G1(a,u(a),v(a))da)ds+∫T0e−φ(T−s)(∫s0(s−a)ϖ−2Γ(ϖ−1)G2(a,u(a),v(a))da)ds}]+∫t0e−φ(t−s)(∫s0(s−a)ϑ−2Γ(ϑ−1)G1(a,u(a),v(a))da)ds, | (3.2) |
and
(Ω2(u,v))(t)=e−φ(t)2[−1Δ2{A−(m∑i=1xi{∫ξi0e−φ(ξi−s)(∫s0(s−a)(ϑ−2)Γ(ϑ−1)G1(a,u(a),v(a))da)ds}−m∑i=1xi{∫ξi0e−φ(ξi−s)(∫s0(s−a)(ϖ−2)Γ(ϖ−1)G2(a,u(a),v(a))da)ds}+{μ∫η0(η−s)(δ−1)Γ(δ)(∫s0e−φ(s−a)(∫a0(a−m)(ϑ−2)Γ(ϑ−1)G1(m,u(m),v(m))dm)da)ds−μ∫η0(η−s)(δ−1)Γ(δ)(∫s0e−φ(s−a)(∫a0(a−m)(ϖ−2)Γ(ϖ−1)G2(m,u(m),v(m))dm)da)ds})}−1Δ1{∫T0e−φ(T−s)(∫s0(s−a)ϑ−2Γ(ϑ−1)G1(a,u(a),v(a))da)ds+∫T0e−φ(T−s)(∫s0(s−a)ϖ−2Γ(ϖ−1)G2(a,u(a),v(a))da)ds}]+∫t0e−φ(t−s)(∫s0(s−a)ϖ−2Γ(ϖ−1)G2(a,u(a),v(a))da)ds. | (3.3) |
Next, the following assumptions will be used to demonstrate the paper's study results.
Let G1,G2:J×R2→R be continuous functions.
(W1) There exist continuous non-negative function γi,ki∈C(J,R+),i=1,2,3, such that
|G1(t,u,v)|≤γ1(t)+γ2(t)|u|+γ3(t)|v| for all (t,u,v)∈J×R2,|G2(t,u,v)|≤k1(t)+k2(t)|u|+k3(t)|v| for all (t,u,v)∈J×R2; |
(W2) There exist non-negative constents C1,C2, K1 and K2 such that, ∀ t∈J ui,vi∈R,i=1,2.
|G1(t,u1,v1)−G1(t,u2,v2)|≤C1(|u1−u2|+C2|v1−v2|), for all t∈J,|G2(t,u1,v1)−G2(t,u2,v2)|≤K1(|u1−u2|+K2|v1−v2|), for all t∈J. |
To facilitate the computation, we introduce the notation:
p=e−φT2, |
Υ1=p[1Δ2{m∑i=1xi(ξϑ−1iφΓ(ϑ)(1−e−φ(ξi)))}+μ(ηϑ+δ−2φ2Γ(δ)Γ(ϑ)(ηφ+e−φη−1))+1Δ1(T(ϑ−1)φΓ(ϑ)(1−e−φT))], | (3.4) |
Υ2=p[1Δ2{m∑i=1xi(ξϖ−1iφΓ(ϖ)(1−e−φ(ξi)))}+μ(ηϖ+δ−2φ2Γ(δ)Γ(ϖ)(ηφ+e−φη−1))+1Δ1(T(ϖ−1)φΓ(ϖ)(1−e−φT))], | (3.5) |
and
Φ=min{1−[||γ2||(2Υ1+Tϑ−1φΓ(ϑ)(1−e−φT))+||k2||(2Υ2+Tϖ−1φΓ(ϖ)(1−e−φT))],1−[||γ3||(2Υ1+Tϑ−1φΓ(ϑ)(1−e−φT))+||k3||(2Υ2+Tϖ−1φΓ(ϖ)(1−e−φT))]}. |
In this part, we prove the existence of a solution to the BVP (1.2) via fixed point theorem of Schaefer's [37].
Theorem 3.1. Assume that (W1) holds. In addition, the assumption is that
||γ2||(2Υ1+Tϑ−1φΓ(ϑ)(1−e−φT))+||k2||(2Υ2+Tϖ−1φΓ(ϖ)(1−e−φT))<1,||γ3||(2Υ1+Tϑ−1φΓ(ϑ)(1−e−φT))+||k3||(2Υ2+Tϖ−1φΓ(ϖ)(1−e−φT))<1. | (3.6) |
where Υi(i=1,2) are defined by (3.4) and (3.5). Then the problem (1.2) has at least one solution on J
Proof. In the first part, we demonstrate that the operator Ω:S → S is c.c. The G1 and G2, functions demonstrate that the Ω1 and Ω2 operators are both continuous. Thus, Ω is a continuous operator. Following that, we show that the Ω operator is continuously bounded. Let Πˉr⊂S be bounded. Then ∃ non-negative LG1 and LG2 constants, which means
|G1(t,u(t),v(t))|≤LG1,|G2(t,u(t),v(t))|≤LG2, |
for all (u,v)∈Πˉr,t∈J, we have
|Ω1(u,v)(t)|≤LG1(Υ1+Tϑ−1φΓ(ϑ)(1−e−φT))+LG2Υ2+AΔ2,|Ω2(u,v)(t)|≤LG1Υ1+LG2(Υ2+Tϖ−1φΓ(ϖ)(1−e−φT))+AΔ2. |
Thus,
||Ω(u,v)||=||Ω1(u,v)||+||Ω2(u,v)||≤LG1(2Υ1+Tϑ−1φΓ(ϑ)(1−e−φT))+LG2(2Υ2+Tϖ−1φΓ(ϖ)(1−e−φT))+2AΔ2. |
It implies that the Ω operator has uniformly bounded from the inequality shown above.
In order to show that Ω maps bounded sets into equi-continuous sets of S, let t1,t2∈[0,T], t1<t2, and (u,v∈ Πˉr). Following that,
|(Ω1(u,v)(t2)−Ω1(u,v)(t1))|≤|(e−φ(t2)−e−φ(t1)2)[1Δ2{A+(m∑i=1xi{∫ξi0e−φ(ξi−s)(∫s0(s−a)(ϑ−2)Γ(ϑ−1)LG1da)ds}+m∑i=1xi{∫ξi0e−φ(ξi−s)(∫s0(s−a)(ϖ−2)Γ(ϖ−1)LG2da)ds}+{μ∫η0(η−s)(δ−1)Γ(δ)(∫s0e−φ(s−a)(∫a0(a−m)(ϑ−2)Γ(ϑ−1)LG1dm)da)ds+μ∫η0(η−s)(δ−1)Γ(δ)(∫s0e−φ(s−a)(∫a0(a−m)(ϖ−2)Γ(ϖ−1)LG2dm)da)ds})}+1Δ1{∫T0e−φ(T−s)(∫s0(s−a)ϑ−2Γ(ϑ−1)LG1da)ds+∫T0e−φ(T−s)(∫s0(s−a)ϖ−2Γ(ϖ−1)LG2da)ds}]+∫t10(e−φ(t2−s)−e−φ(t1−s))(∫s0(s−a)ϑ−2Γ(ϑ−1)LG1da)ds+∫t2t1e−φ(t2−s)(∫s0(s−a)ϑ−2Γ(ϑ−1)LG1da)ds|. |
Similarly, we can obtain
|(Ω2(u,v)(t2)−Ω2(u,v)(t1))|≤|(e−φ(t2)−e−φ(t1)2)[1Δ2{A+(m∑i=1xi{∫ξi0e−φ(ξi−s)(∫s0(s−a)(ϑ−2)Γ(ϑ−1)LG1da)ds}+m∑i=1xi{∫ξi0e−φ(ξi−s)(∫s0(s−a)(ϖ−2)Γ(ϖ−1)LG2da)ds}+{μ∫η0(η−s)(δ−1)Γ(δ)(∫s0e−φ(s−a)(∫a0(a−m)(ϑ−2)Γ(ϑ−1)LG1dm)da)ds+μ∫η0(η−s)(δ−1)Γ(δ)(∫s0e−φ(s−a)(∫a0(a−m)(ϖ−2)Γ(ϖ−1)LG2dm)da)ds})}+1Δ1{∫T0e−φ(T−s)(∫s0(s−a)ϑ−2Γ(ϑ−1)LG1da)ds+∫T0e−φ(T−s)(∫s0(s−a)ϖ−2Γ(ϖ−1)LG2da)ds}]+∫t10(e−φ(t2−s)−e−φ(t1−s))(∫s0(s−a)ϖ−2Γ(ϖ−1)LG2da)ds+∫t2t1e−φ(t2−s)(∫s0(s−a)ϖ−2Γ(ϖ−1)LG2da)ds|. |
In the limit of t1→t2 notice that the right-hand sides of the above inequalities tend to zero independently of (u,v)∈Πˉr. Thus, it follows by the Arzela-Ascoli theorem that the operator Ω:E→E is c.c. Next, we consider the set Θ={(u,v)∈S|(u,v)=γΩ(u,v),0<γ<1}. For any t∈J, we have
u(t)=γΩ1(u,v)(t), v(t)=γΩ2(u,v)(t). |
Using Υi(i=1,2) given by (3.4) and (3.5), we find that
|u(t)|=γ|Ω1(u,v)(t)|≤(||γ1||+||γ2||||u||+||γ3||||v||)(Υ1+Tϑ−1φΓ(ϑ)(1−e−φT))+(||k1||+||k2||||u||+||k3||||v||)Υ2+AΔ2, |
|v(t)|=γ|Ω2(u,v)(t)|≤(||γ1||+||γ2||||u||+||γ3||||v||)Υ1+(||k1||+||k2||||u||+||k3||||v||)(Υ2+Tϖ−1φΓ(ϖ)(1−e−φT))+AΔ2. |
In consequence, we get
||u||+||v||≤||γ1||(2Υ1+Tϑ−1φΓ(ϑ)(1−e−φT))+||k1||(2Υ2+Tϖ−1φΓ(ϖ)(1−e−φT))+2AΔ2+[||γ2||(2Υ1+Tϑ−1φΓ(ϑ)(1−e−φT))+||k2||(2Υ2+Tϖ−1φΓ(ϖ)(1−e−φT))]||u||+[||γ3||(2Υ1+Tϑ−1φΓ(ϑ)(1−e−φT))+||k3||(2Υ2+Tϖ−1φΓ(ϖ)(1−e−φT))]||v||. |
Thus, using (3.6) the above assigned equations, we can get
||(u,v)||≤||γ1||(2Υ1+Tϑ−1φΓ(ϑ)(1−e−φT))+||k1||(2Υ2+Tϖ−1φΓ(ϖ)(1−e−φT))+2AΔ2Φ, |
It shows that ||(u,v)|| is bounded for t∈J. The set Θ is bounded. Therefore, the fixed point theorem of Schaefer's concludes and, therefore, the Ω operator has at least one fixed point, which is a solution for the problem (1.2).
If γ2(t)=γ3(t)≡0 and k2(t)=k2(t)≡0 are valid, then Theorem (3.1) has the special case form shown below.
Remark 3.1. There exist positive functions γ1,k1∈C(J,R+) and G1,G2:J×R2→R which are continuous functions such that
|G1(t,u,v)|≤γ1(t), |G2(t,u,v)|≤k1(t) forall(t,u,v)∈J×R2; |
Then system (1.2) has at least one solution on J.
Remark 3.2. According to the assumptions of Theorem 3.1, if γi(t)=δi,ki(t)=εi,i=1,2,3(εi and δi) non-negative constants, and the criteria of the functions G1 and G2 have the following form:
(ˆW1) there are real constants δi,εi>0,i=1,2,3, so
|G1(t,u,v)|≤δ1+δ2|u|+δ3|v| forall(t,u,v)∈J×R2,|G2(t,u,v)|≤ε1+ε2|u|+ε3|v| forall(t,u,v)∈J×R2; |
and (3.6) becomes
δ2(2Υ1+Tϑ−1φΓ(ϑ)(1−e−φT))+ε2(2Υ2+Tϖ−1φΓ(ϖ)(1−e−φT))<1,δ3(2Υ1+Tϑ−1φΓ(ϑ)(1−e−φT))+ε3(2Υ2+Tϖ−1φΓ(ϖ)(1−e−φT))<1. |
Theorem 3.2. Assume that (W2) holds and that
C(2Υ1+Tϑ−1φΓ(ϑ)(1−e−φT))+K(2Υ2+Tϖ−1φΓ(ϖ)(1−e−φT))<1, | (3.7) |
where C=max{C1,C2}, K=max{K1,K2} and Υi,i=1,2 are defined by (3.4) and (3.5). Then the problem (1.2) has a unique solution on J
Proof. Consider the operator Ω:S→S defined by (3.1) and fix
r>M1(2Υ1+Tϑ−1φΓ(ϑ)(1−e−φT))+M2(2Υ2+Tϖ−1φΓ(ϖ)(1−e−φT))1−(C(2Υ1+Tϑ−1φΓ(ϑ)(1−e−φT))+K(2Υ2+Tϖ−1φΓ(ϖ)(1−e−φT))), |
where M1=supt∈J|G1(t,0,0)|, and M2=supt∈J|G2(t,0,0)|. Then we show that ΩBr⊂Br, where Br={(u,v)∈S:||(u,v)||≤r}, we have
‖Ω1(u,v)‖≤(C(Υ1+Tϑ−1φΓ(ϑ)(1−e−φT))+KΥ2)(||u||+||v||)+M1(Υ1+Tϑ−1φΓ(ϑ)(1−e−φT))+M2Υ2, |
when the norm for t∈J. In the same way, for (u,v)∈Br, one can obtain
‖Ω2(u,v)‖≤(K(Υ2+Tϖ−1φΓ(ϖ)(1−e−φT))+CΥ1)(||u||+||v||)+M2(Υ2+Tϖ−1φΓ(ϖ)(1−e−φT))+M1Υ1. |
Therefore, for any (u,v)∈Br, we have
||Ω(u,v)||=||Ω1(u,v)||+||Ω2(u,v)||≤(C(2Υ1+Tϑ−1φΓ(ϑ)(1−e−φT))+K(2Υ2+Tϑ−1φΓ(ϑ)(1−e−φT)))(||u||+||v||)+M1(2Υ1+Tϑ−1φΓ(ϑ)(1−e−φT))+M2(2Υ2+Tϖ−1φΓ(ϖ)(1−e−φT))<r. |
which shows that Ω maps Br into itself.
In order to demonstrate that the Ω operator is a contraction, let (u1,v1),(u2,v2)∈S,t∈[0,1] in view of (W2), we obtain
‖(Ω1(u1,v1))−(Ω1(u2,v2))‖≤(C(Υ1+Tϑ−1φΓ(ϑ)(1−e−φT))+KΥ2)(||u||+||v||), |
and
‖(Ω2(u1,v1))−(Ω2(u2,v2))‖≤(K(Υ2+Tϖ−1φΓ(ϖ)(1−e−φT))+CΥ1)(||u||+||v||). |
Clearly, the preceding inequalities imply that
||(Ω(u1,v1))−(Ω(u2,v2))||=‖(Ω1(u1,v1))−(Ω1(u2,v2))‖+‖(Ω2(u1,v1))−(Ω2(u2,v2))‖≤(C(2Υ1+Tϑ−1φΓ(ϑ)(1−e−φT))+K(2Υ2+Tϖ−1φΓ(ϖ)(1−e−φT)))||(u1−u2,v1−v2)||. |
As a result, the operator Ω is a contraction in light of assumption (3.7). The mapping theorem has a unique fixed point as a result of Banach's contraction. It indicates that system (1.2) has a solution that is unique on J.
Definition 3.3. A function (u,v)∈C(J,R)×C(J,R) satisfying the BCs and for which ∃ function g1,g2∈L1(J,R)∋g1(t)∈G1(t,u(t),v(t)), g2(t)∈G2(t,u(t),v(t)) a.e. on t∈J and
u(t)=e−φ(t)2[1Δ2{A−(m∑i=1xi{∫ξi0e−φ(ξi−s)(∫s0(s−a)(ϑ−2)Γ(ϑ−1)g1(a)da)ds}−m∑i=1xi{∫ξi0e−φ(ξi−s)(∫s0(s−a)(ϖ−2)Γ(ϖ−1)g2(a)da)ds}+{μ∫η0(η−s)(δ−1)Γ(δ)(∫s0e−φ(s−a)(∫a0(a−m)(ϑ−2)Γ(ϑ−1)g1(m)dm)da)ds−μ∫η0(η−s)(δ−1)Γ(δ)(∫s0e−φ(s−a)(∫a0(a−m)(ϖ−2)Γ(ϖ−1)g2(m)dm)da)ds})}−1Δ1{∫T0e−φ(T−s)(∫s0(s−a)ϑ−2Γ(ϑ−1)g1(a)da)ds+∫T0e−φ(T−s)(∫s0(s−a)ϖ−2Γ(ϖ−1)g2(a)da)ds}]+∫t0e−φ(t−s)(∫s0(s−a)ϑ−2Γ(ϑ−1)g1(a)da)ds, | (3.8) |
and
v(t)=e−φ(t)2[−1Δ2{A−(m∑i=1xi{∫ξi0e−φ(ξi−s)(∫s0(s−a)(ϑ−2)Γ(ϑ−1)g1(a)da)ds}−m∑i=1xi{∫ξi0e−φ(ξi−s)(∫s0(s−a)(ϖ−2)Γ(ϖ−1)g2(a)da)ds}+{μ∫η0(η−s)(δ−1)Γ(δ)(∫s0e−φ(s−a)(∫a0(a−m)(ϑ−2)Γ(ϑ−1)g1(m)dm)da)ds−μ∫η0(η−s)(δ−1)Γ(δ)(∫s0e−φ(s−a)(∫a0(a−m)(ϖ−2)Γ(ϖ−1)g2(m)dm)da)ds})}−1Δ1{∫T0e−φ(T−s)(∫s0(s−a)(ϑ−2)Γ(ϑ−1)g1(a)da)ds+∫T0e−φ(T−s)(∫s0(s−a)(ϖ−2)Γ(ϖ−1)g2(a)da)ds}]+∫t0e−φ(t−s)(∫s0(s−a)(ϖ−2)Γ(ϖ−1)g2(a)da)ds. | (3.9) |
is referred to as a coupled solution for system (1.3). Let
WG1(u,v)={g1∈L1(J,R):g1(t)∈G1(t,u(t),v(t)) for a.e. t∈J} |
and
WG2(u,v)={g2∈L1(J,R):g2(t)∈G2(t,u(t),v(t)) for a.e. t∈J}, |
define the sets of G1,G2 selections for each (u,v)∈S×S. Using Lemma 2.5, the following operators K1×K2:S×S→U(S×S) are defined by:
K1(u,v)(t)={h1∈S×S: there exist g1∈WG1(u,v),g2∈WG2(u,v) such that h1(u,v)(t)=Q1(u,v)(t),∀ t∈J} | (3.10) |
K2(u,v)(t)={h2∈S×S: there exist g1∈WG1(u,v),g2∈WG2(u,v) such that h2(u,v)(t)=Q2(u,v)(t),∀ t∈J} | (3.11) |
where
Q1(u,v)(t)=e−φ(t)2[1Δ2{A−(m∑i=1xi{∫ξi0e−φ(ξi−s)(∫s0(s−a)(ϑ−2)Γ(ϑ−1)g1(a)da)ds}−m∑i=1xi{∫ξi0e−φ(ξi−s)(∫s0(s−a)(ϖ−2)Γ(ϖ−1)g2(a)da)ds}+{μ∫η0(η−s)(δ−1)Γ(δ)(∫s0e−φ(s−a)(∫a0(a−m)(ϑ−2)Γ(ϑ−1)g1(m)dm)da)ds−μ∫η0(η−s)(δ−1)Γ(δ)(∫s0e−φ(s−a)(∫a0(a−m)(ϖ−2)Γ(ϖ−1)g2(m)dm)da)ds})}−1Δ1{∫T0e−φ(T−s)(∫s0(s−a)ϑ−2Γ(ϑ−1)g1(a)da)ds+∫T0e−φ(T−s)(∫s0(s−a)ϖ−2Γ(ϖ−1)g2(a)da)ds}]+∫t0e−φ(t−s)(∫s0(s−a)ϑ−2Γ(ϑ−1)g1(a)da)ds, | (3.12) |
and
Q2(u,v)(t)=e−φ(t)2[−1Δ2{A−(m∑i=1xi{∫ξi0e−φ(ξi−s)(∫s0(s−a)(ϑ−2)Γ(ϑ−1)g1(a)da)ds}−m∑i=1xi{∫ξi0e−φ(ξi−s)(∫s0(s−a)(ϖ−2)Γ(ϖ−1)g2(a)da)ds}+{μ∫η0(η−s)(δ−1)Γ(δ)(∫s0e−φ(s−a)(∫a0(a−m)(ϑ−2)Γ(ϑ−1)g1(m)dm)da)ds−μ∫η0(η−s)(δ−1)Γ(δ)(∫s0e−φ(s−a)(∫a0(a−m)(ϖ−2)Γ(ϖ−1)g2(m)dm)da)ds})}−1Δ1{∫T0e−φ(T−s)(∫s0(s−a)(ϑ−2)Γ(ϑ−1)g1(a)da)ds+∫T0e−φ(T−s)(∫s0(s−a)(ϖ−2)Γ(ϖ−1)g2(a)da)ds}]+∫t0e−φ(t−s)(∫s0(s−a)(ϖ−2)Γ(ϖ−1)g2(a)da)ds. | (3.13) |
Following that, we define the operator K:S×S→U(S×S) by
K(u,v)(t)=(K1(u,v)(t)K2(u,v)(t)), |
where K1 and K2 are defined by 3.10 and 3.11.
Here we demonstrate the existence of solutions for the BVP (1.3) using the nonlinear alternative of Leray-Schauder [36] to verify the existence of solutions. Following that, we begin to develop the hypotheses that will be used to support the main results presented in the paper.
(B1) G1, G2:J×R2→U(R) are L1 - Caratheodory and have convex values;
(B2) There exist continuous non-decreasing functions ψ1,ψ2,ϕ1,ϕ2:[0,∞)→[0,∞) and functions p1,p2∈C(J,R+) such that
||G1(t,u,v)||U:=sup{|g1|:g1∈G1(t,u,v)}≤p1(t)[ψ1(||u||)+ϕ1(||v||)] |
and
||G2(t,u,v)||U:=sup{|g2|:g2∈G2(t,u,v)}≤p2(t)[ψ1(||u||)+ϕ2(||v||)] |
for each (t,u,v)∈J×R2;
(B3) there exists a number N>0 such that
N(2Υ1)||p1||(ψ1(N)+ϕ1(N))+(2Υ2)||p2||(ψ2(N)+ϕ2(N))>1, |
where Υi(i=1,2) are defined by (3.4) and (3.5).
(B4)G1,G2:J×R2→Ucp(R) are such that G1(.,u,v):J→Ucp(R) and G2(.,u,v):J→Ucp(R) are measurable for each u,v∈R;
(B5)
Hd(G1(t,u,v),G1(t,ˉu,ˉv))≤m1(t)(|u−ˉu|+|v−ˉv|) |
and
Hd(G2(t,u,v),G2(t,ˉu,ˉv))≤m2(t)(|u−ˉu|+|v−ˉv|) |
∀t∈J and u,v,ˉu,ˉv∈R with m1,m2∈C(J,R+) and d(0,G1(t,0,0))≤m1(t),d(0,G2(t,0,0))≤m2(t) for almost t∈J.
Theorem 3.4. Suppose that (B1), (B2), and (B3) hold. Then coupled system (1.3) has at least one solution on J.
Proof. Consider K1×K2:S×S→U(S×S) the operators which is given by 3.10 and 3.11, respectively. Using the assumption (B1), the sets WG1(u,v) and WG2(u,v) are non-empty for each (u,v)∈S×S. Then, for g1∈WG1(u,v),g2∈WG2(u,v) for (u,v)∈S×S, we have
h1(u,v)(t)=e−φ(t)2[1Δ2{A−(m∑i=1xi{∫ξi0e−φ(ξi−s)(∫s0(s−a)(ϑ−2)Γ(ϑ−1)g1(a)da)ds}−m∑i=1xi{∫ξi0e−φ(ξi−s)(∫s0(s−a)(ϖ−2)Γ(ϖ−1)g2(a)da)ds}+{μ∫η0(η−s)(δ−1)Γ(δ)(∫s0e−φ(s−a)(∫a0(a−m)(ϑ−2)Γ(ϑ−1)g1(m)dm)da)ds−μ∫η0(η−s)(δ−1)Γ(δ)(∫s0e−φ(s−a)(∫a0(a−m)(ϖ−2)Γ(ϖ−1)g2(m)dm)da)ds})}−1Δ1{∫T0e−φ(T−s)(∫s0(s−a)ϑ−2Γ(ϑ−1)g1(a)da)ds+∫T0e−φ(T−s)(∫s0(s−a)ϖ−2Γ(ϖ−1)g2(a)da)ds}]+∫t0e−φ(t−s)(∫s0(s−a)ϑ−2Γ(ϑ−1)g1(a)da)ds, |
and
h2(u,v)(t)=e−φ(t)2[−1Δ2{A−(m∑i=1xi{∫ξi0e−φ(ξi−s)(∫s0(s−a)(ϑ−2)Γ(ϑ−1)g1(a)da)ds}−m∑i=1xi{∫ξi0e−φ(ξi−s)(∫s0(s−a)(ϖ−2)Γ(ϖ−1)g2(a)da)ds}+{μ∫η0(η−s)(δ−1)Γ(δ)(∫s0e−φ(s−a)(∫a0(a−m)(ϑ−2)Γ(ϑ−1)g1(m)dm)da)ds−μ∫η0(η−s)(δ−1)Γ(δ)(∫s0e−φ(s−a)(∫a0(a−m)(ϖ−2)Γ(ϖ−1)g2(m)dm)da)ds})}−1Δ1{∫T0e−φ(T−s)(∫s0(s−a)(ϑ−2)Γ(ϑ−1)g1(a)da)ds+∫T0e−φ(T−s)(∫s0(s−a)(ϖ−2)Γ(ϖ−1)g2(a)da)ds}]+∫t0e−φ(t−s)(∫s0(s−a)(ϖ−2)Γ(ϖ−1)g2(a)da)ds. |
Where h1∈K1(u,v),h2∈K2(u,v), and (h1,h2)∈K(u,v).
In a series of phases, will demonstrated that operator K satisfies the Leray-Schauder nonlinear alternative hypothesis. First, we show that K(u,v) has a convex value. Let (h,ˉh)∈(K1,K2),i=1,2. Then there exist g1i∈WG1(u,v),g2i∈WG2(u,v),i=1,2, such that, for each t∈J, we have
hi(t)=e−φ(t)2[1Δ2{A−(m∑i=1xi{∫ξi0e−φ(ξi−s)(∫s0(s−a)(ϑ−2)Γ(ϑ−1)g1(a)da)ds}−m∑i=1xi{∫ξi0e−φ(ξi−s)(∫s0(s−a)(ϖ−2)Γ(ϖ−1)g2(a)da)ds}+{μ∫η0(η−s)(δ−1)Γ(δ)(∫s0e−φ(s−a)(∫a0(a−m)(ϑ−2)Γ(ϑ−1)g1(m)dm)da)ds−μ∫η0(η−s)(δ−1)Γ(δ)(∫s0e−φ(s−a)(∫a0(a−m)(ϖ−2)Γ(ϖ−1)g2(m)dm)da)ds})}−1Δ1{∫T0e−φ(T−s)(∫s0(s−a)ϑ−2Γ(ϑ−1)g1(a)da)ds+∫T0e−φ(T−s)(∫s0(s−a)ϖ−2Γ(ϖ−1)g2(a)da)ds}]+∫t0e−φ(t−s)(∫s0(s−a)ϑ−2Γ(ϑ−1)g1(a)da)ds, |
and
ˉhi(t)=e−φ(t)2[−1Δ2{A−(m∑i=1xi{∫ξi0e−φ(ξi−s)(∫s0(s−a)(ϑ−2)Γ(ϑ−1)g1(a)da)ds}−m∑i=1xi{∫ξi0e−φ(ξi−s)(∫s0(s−a)(ϖ−2)Γ(ϖ−1)g2(a)da)ds}+{μ∫η0(η−s)(δ−1)Γ(δ)(∫s0e−φ(s−a)(∫a0(a−m)(ϑ−2)Γ(ϑ−1)g1(m)dm)da)ds−μ∫η0(η−s)(δ−1)Γ(δ)(∫s0e−φ(s−a)(∫a0(a−m)(ϖ−2)Γ(ϖ−1)g2(m)dm)da)ds})}−1Δ1{∫T0e−φ(T−s)(∫s0(s−a)(ϑ−2)Γ(ϑ−1)g1(a)da)ds+∫T0e−φ(T−s)(∫s0(s−a)(ϖ−2)Γ(ϖ−1)g2(a)da)ds}]+∫t0e−φ(t−s)(∫s0(s−a)(ϖ−2)Γ(ϖ−1)g2(a)da)ds. |
Let 0≤ω≤1. Then, for each t∈J, we have
[ωh1+(1−ω)h2](t)=e−φ(t)2[1Δ2{A−(m∑i=1xi{∫ξi0e−φ(ξi−s)(∫s0(s−a)(ϑ−2)Γ(ϑ−1)[ωg11(a)+(1−ω)g12(a)]da)ds}−m∑i=1xi{∫ξi0e−φ(ξi−s)(∫s0(s−a)(ϖ−2)Γ(ϖ−1)[ωg21(a)+(1−ω)g22(a)]da)ds}+{μ∫η0(η−s)(δ−1)Γ(δ)(∫s0e−φ(s−a)(∫a0(a−m)(ϑ−2)Γ(ϑ−1)[ωg11(m)+(1−ω)g12(m)]dm)da)ds−μ∫η0(η−s)(δ−1)Γ(δ)(∫s0e−φ(s−a)(∫a0(a−m)(ϖ−2)Γ(ϖ−1)[ωg21(m)+(1−ω)g22(m)]dm)da)ds})}−1Δ1{∫T0e−φ(T−s)(∫s0(s−a)ϑ−2Γ(ϑ−1)[ωg11(a)+(1−ω)g12(a)]da)ds+∫T0e−φ(T−s)(∫s0(s−a)ϖ−2Γ(ϖ−1)[ωg21(a)+(1−ω)g22(a)]da)ds}]+∫t0e−φ(t−s)(∫s0(s−a)ϑ−2Γ(ϑ−1)[ωg11(a)+(1−ω)g12(a)]da)ds, |
[ωˉh1+(1−ω)ˉh2](t)=e−φ(t)2[−1Δ2{A−(m∑i=1xi{∫ξi0e−φ(ξi−s)(∫s0(s−a)(ϑ−2)Γ(ϑ−1)[ωg11(a)+(1−ω)g12(a)]da)ds}−m∑i=1xi{∫ξi0e−φ(ξi−s)(∫s0(s−a)(ϖ−2)Γ(ϖ−1)[ωg21(a)+(1−ω)g22(a)]da)ds}+{μ∫η0(η−s)(δ−1)Γ(δ)(∫s0e−φ(s−a)(∫a0(a−m)(ϑ−2)Γ(ϑ−1)[ωg11(m)+(1−ω)g12(m)]dm)da)ds−μ∫η0(η−s)(δ−1)Γ(δ)(∫s0e−φ(s−a)(∫a0(a−m)(ϖ−2)Γ(ϖ−1)[ωg21(m)+(1−ω)g22(m)]dm)da)ds})}−1Δ1{∫T0e−φ(T−s)(∫s0(s−a)(ϑ−2)Γ(ϑ−1)[ωg11(a)+(1−ω)g12(a)]da)ds+∫T0e−φ(T−s)(∫s0(s−a)(ϖ−2)Γ(ϖ−1)[ωg21(a)+(1−ω)g22(a)]da)ds}]+∫t0e−φ(t−s)(∫s0(s−a)(ϖ−2)Γ(ϖ−1)[ωg21(a)+(1−ω)g22(a)]da)ds. |
We may deduce that WG1(u,v) and WG2(u,v) have convex values since G1,G2 have convex values. Obviously, [ωh1+(1−ω)h2]∈K1, [ωˉh1+(1−ω)ˉh2]∈K2, and hence [ω(h1,h2)+(1−ω)(ˉh1,ˉh2)]∈K. For a positive number r, let Br={(u,v)∈S×S:||(u,v)||≤r} be a bounded set in S×S. Then there exist g1∈WG1(u,v) and g2∈WG2(u,v) such that
h1(u,v)(t)=e−φ(t)2[1Δ2{A−(m∑i=1xi{∫ξi0e−φ(ξi−s)(∫s0(s−a)(ϑ−2)Γ(ϑ−1)g1(a)da)ds}−m∑i=1xi{∫ξi0e−φ(ξi−s)(∫s0(s−a)(ϖ−2)Γ(ϖ−1)g2(a)da)ds}+{μ∫η0(η−s)(δ−1)Γ(δ)(∫s0e−φ(s−a)(∫a0(a−m)(ϑ−2)Γ(ϑ−1)g1(m)dm)da)ds−μ∫η0(η−s)(δ−1)Γ(δ)(∫s0e−φ(s−a)(∫a0(a−m)(ϖ−2)Γ(ϖ−1)g2(m)dm)da)ds})}−1Δ1{∫T0e−φ(T−s)(∫s0(s−a)ϑ−2Γ(ϑ−1)g1(a)da)ds+∫T0e−φ(T−s)(∫s0(s−a)ϖ−2Γ(ϖ−1)g2(a)da)ds}]+∫t0e−φ(t−s)(∫s0(s−a)ϑ−2Γ(ϑ−1)g1(a)da)ds, |
and
h2(u,v)(t)=e−φ(t)2[−1Δ2{A−(m∑i=1xi{∫ξi0e−φ(ξi−s)(∫s0(s−a)(ϑ−2)Γ(ϑ−1)g1(a)da)ds}−m∑i=1xi{∫ξi0e−φ(ξi−s)(∫s0(s−a)(ϖ−2)Γ(ϖ−1)g2(a)da)ds}+{μ∫η0(η−s)(δ−1)Γ(δ)(∫s0e−φ(s−a)(∫a0(a−m)(ϑ−2)Γ(ϑ−1)g1(m)dm)da)ds−μ∫η0(η−s)(δ−1)Γ(δ)(∫s0e−φ(s−a)(∫a0(a−m)(ϖ−2)Γ(ϖ−1)g2(m)dm)da)ds})}−1Δ1{∫T0e−φ(T−s)(∫s0(s−a)(ϑ−2)Γ(ϑ−1)g1(a)da)ds+∫T0e−φ(T−s)(∫s0(s−a)(ϖ−2)Γ(ϖ−1)g2(a)da)ds}]+∫t0e−φ(t−s)(∫s0(s−a)(ϖ−2)Γ(ϖ−1)g2(a)da)ds. |
Then we have
|h1(u,v)(t)|≤Υ1(||p1||(ψ1(r)+ϕ1(r))+Υ2||p2||(ψ2(r)+ϕ2(r))), |
and
|h2(u,v)(t)|≤Υ1(||p1||(ψ1(r)+ϕ1(r))+Υ2||p2||(ψ2(r)+ϕ2(r))).
Hence we obtain
||(h1,h2)||=||h1(u,v)||+||h2(u,v)|| |
≤(2Υ1)||p1||(ψ1(N)+ϕ1(N))+(2Υ2)||p2||(ψ2(N)+ϕ2(N)). |
Next, we show that K is equicontinuous. Let t1,t2∈J with t1<t2. Then there exist g1∈WG1(u,v) and g2∈WG2(u,v) such that
|h1(u,v)(t2)−h1(u,v)(t1)|≤|e−φt2−e−φt12[1Δ2{A−(m∑i=1xi{∫ξi0e−φ(ξi−s)(∫s0(s−a)(ϑ−2)Γ(ϑ−1)||p1||(ψ1(r)+ϕ1(r))da)ds}−m∑i=1xi{∫ξi0e−φ(ξi−s)(∫s0(s−a)(ϖ−2)Γ(ϖ−1)||p2||(ψ2(r)+ϕ2(r))da)ds}+{μ∫η0(η−s)(δ−1)Γ(δ)(∫s0e−φ(s−a)(∫a0(a−m)(ϑ−2)Γ(ϑ−1)||p1||(ψ1(r)+ϕ1(r))dm)da)ds−μ∫η0(η−s)(δ−1)Γ(δ)(∫s0e−φ(s−a)(∫a0(a−m)(ϖ−2)Γ(ϖ−1)||p2||(ψ2(r)+ϕ2(r))dm)da)ds})}−1Δ1{∫T0e−φ(T−s)(∫s0(s−a)ϑ−2Γ(ϑ−1)||p1||(ψ1(r)+ϕ1(r))da)ds+∫T0e−φ(T−s)(∫s0(s−a)ϖ−2Γ(ϖ−1)||p2||(ψ2(r)+ϕ2(r))da)ds}]+∫t10(e−φ(t2−s)−e−φ(t1−s))(∫s0(s−a)ϑ−2Γ(ϑ−1)||p1||(ψ1(r)+ϕ1(r))da)ds−∫t2t1e−φ(t2−s)(∫s0(s−a)ϑ−2Γ(ϑ−1)||p1||(ψ1(r)+ϕ1(r))da)ds|. |
Similarly, we can obtain
|h2(u,v)(t2)−h2(u,v)(t1)|≤|e−φt2−e−φt12[−1Δ2{A−(m∑i=1xi{∫ξi0e−φ(ξi−s)(∫s0(s−a)(ϑ−2)Γ(ϑ−1)||p1||(ψ1(r)+ϕ1(r))da)ds}−m∑i=1xi{∫ξi0e−φ(ξi−s)(∫s0(s−a)(ϖ−2)Γ(ϖ−1)||p2||(ψ2(r)+ϕ2(r))da)ds}+{μ∫η0(η−s)(δ−1)Γ(δ)(∫s0e−φ(s−a)(∫a0(a−m)(ϑ−2)Γ(ϑ−1)||p1||(ψ1(r)+ϕ1(r))dm)da)ds−μ∫η0(η−s)(δ−1)Γ(δ)(∫s0e−φ(s−a)(∫a0(a−m)(ϖ−2)Γ(ϖ−1)||p2||(ψ2(r)+ϕ2(r))dm)da)ds})}−1Δ1{∫T0e−φ(T−s)(∫s0(s−a)ϑ−2Γ(ϑ−1)||p1||(ψ1(r)+ϕ1(r))da)ds+∫T0e−φ(T−s)(∫s0(s−a)ϖ−2Γ(ϖ−1)||p2||(ψ2(r)+ϕ2(r))da)ds}]+∫t10(e−φ(t2−s)−e−φ(t1−s))(∫s0(s−a)ϖ−2Γ(ϖ−1)||p2||(ψ2(r)+ϕ2(r))da)ds−∫t2t1e−φ(t2−s)(∫s0(s−a)ϖ−2Γ(ϖ−1)||p2||(ψ2(r)+ϕ2(r))da)ds|. |
As a result, the operator K(u,v) is equicontinuous, hence the operator K(u,v) is c.c according to the Ascoli-Arzela theorem. We know that [[34], Proposition 1.2] a C.C operator is U.S.C if it has a closed graph. As a consequence, we need to prove that K has a closed graph. Let (un,vn)→(u∗,v∗), (hn,ˉhn)∈K(un,vn) and (hn,ˉhn)→(h∗,ˉh∗), then we need to show (h∗,ˉh∗)∈K(u∗,v∗). Observe that (hn,ˉhn)∈K(un,vn) implies that exist g1n∈WG1(un,vn) and g2n∈WG2(un,vn) such that
hn(un,vn)(t)=e−φ(t)2[1Δ2{A−(m∑i=1xi{∫ξi0e−φ(ξi−s)(∫s0(s−a)(ϑ−2)Γ(ϑ−1)(g1n)(a)da)ds}−m∑i=1xi{∫ξi0e−φ(ξi−s)(∫s0(s−a)(ϖ−2)Γ(ϖ−1)(g2n)(a)da)ds}+{μ∫η0(η−s)(δ−1)Γ(δ)(∫s0e−φ(s−a)(∫a0(a−m)(ϑ−2)Γ(ϑ−1)(g1n)(m)dm)da)ds−μ∫η0(η−s)(δ−1)Γ(δ)(∫s0e−φ(s−a)(∫a0(a−m)(ϖ−2)Γ(ϖ−1)(g2n)(m)dm)da)ds})}−1Δ1{∫T0e−φ(T−s)(∫s0(s−a)ϑ−2Γ(ϑ−1)(g1n)(a)da)ds+∫T0e−φ(T−s)(∫s0(s−a)ϖ−2Γ(ϖ−1)(g2n)(a)da)ds}]+∫t0e−φ(t−s)(∫s0(s−a)ϑ−2Γ(ϑ−1)(g1n)(a)da)ds, |
ˉhn(un,vn)(t)=e−φ(t)2[−1Δ2{A−(m∑i=1xi{∫ξi0e−φ(ξi−s)(∫s0(s−a)(ϑ−2)Γ(ϑ−1)(g1n)(a)da)ds}−m∑i=1xi{∫ξi0e−φ(ξi−s)(∫s0(s−a)(ϖ−2)Γ(ϖ−1)(g2n)(a)da)ds}+{μ∫η0(η−s)(δ−1)Γ(δ)(∫s0e−φ(s−a)(∫a0(a−m)(ϑ−2)Γ(ϑ−1)(g1n)(m)dm)da)ds−μ∫η0(η−s)(δ−1)Γ(δ)(∫s0e−φ(s−a)(∫a0(a−m)(ϖ−2)Γ(ϖ−1)(g2n)(m)dm)da)ds})}−1Δ1{∫T0e−φ(T−s)(∫s0(s−a)(ϑ−2)Γ(ϑ−1)(g1n)(a)da)ds+∫T0e−φ(T−s)(∫s0(s−a)(ϖ−2)Γ(ϖ−1)(g2n)(a)da)ds}]+∫t0e−φ(t−s)(∫s0(s−a)(ϖ−2)Γ(ϖ−1)(g2n)(a)da)ds. |
Consider the Φ1,Φ2:L1([0,T],E×E)→C([0,T],E×E) continuous linear operator defined by
Φ1(u,v)(t)=e−φ(t)2[1Δ2{A−(m∑i=1xi{∫ξi0e−φ(ξi−s)(∫s0(s−a)(ϑ−2)Γ(ϑ−1)g1(a)da)ds}−m∑i=1xi{∫ξi0e−φ(ξi−s)(∫s0(s−a)(ϖ−2)Γ(ϖ−1)g2(a)da)ds}+{μ∫η0(η−s)(δ−1)Γ(δ)(∫s0e−φ(s−a)(∫a0(a−m)(ϑ−2)Γ(ϑ−1)g1(m)dm)da)ds−μ∫η0(η−s)(δ−1)Γ(δ)(∫s0e−φ(s−a)(∫a0(a−m)(ϖ−2)Γ(ϖ−1)g2(m)dm)da)ds})}−1Δ1{∫T0e−φ(T−s)(∫s0(s−a)ϑ−2Γ(ϑ−1)g1(a)da)ds+∫T0e−φ(T−s)(∫s0(s−a)ϖ−2Γ(ϖ−1)g2(a)da)ds}]+∫t0e−φ(t−s)(∫s0(s−a)ϑ−2Γ(ϑ−1)g1(a)da)ds, |
and
Φ2(u,v)(t)=e−φ(t)2[−1Δ2{A−(m∑i=1xi{∫ξi0e−φ(ξi−s)(∫s0(s−a)(ϑ−2)Γ(ϑ−1)g1(a)da)ds}−m∑i=1xi{∫ξi0e−φ(ξi−s)(∫s0(s−a)(ϖ−2)Γ(ϖ−1)g2(a)da)ds}+{μ∫η0(η−s)(δ−1)Γ(δ)(∫s0e−φ(s−a)(∫a0(a−m)(ϑ−2)Γ(ϑ−1)g1(m)dm)da)ds−μ∫η0(η−s)(δ−1)Γ(δ)(∫s0e−φ(s−a)(∫a0(a−m)(ϖ−2)Γ(ϖ−1)g2(m)dm)da)ds})}−1Δ1{∫T0e−φ(T−s)(∫s0(s−a)(ϑ−2)Γ(ϑ−1)g1(a)da)ds+∫T0e−φ(T−s)(∫s0(s−a)(ϖ−2)Γ(ϖ−1)g2(a)da)ds}]+∫t0e−φ(t−s)(∫s0(s−a)(ϖ−2)Γ(ϖ−1)g2(a)da)ds. |
We can deduce from [38] that (Φ1,Φ2)∘(WG1,WG2) is closed graph operator. Further, we have (hn,ˉhn)∈(Φ1,Φ2)∘(WG1(un,vn),WG2(un,vn)) for all n. Since (un,vn)→(u∗,v∗), (hn,ˉhn)→(h∗,ˉh∗) it follows that g1n∈WG1(u,v) and g2n∈WG2(u,v) such that
h∗(u∗,v∗)(t)=e−φ(t)2[1Δ2{A−(m∑i=1xi{∫ξi0e−φ(ξi−s)(∫s0(s−a)(ϑ−2)Γ(ϑ−1)(g1∗)(a)da)ds}−m∑i=1xi{∫ξi0e−φ(ξi−s)(∫s0(s−a)(ϖ−2)Γ(ϖ−1)(g2∗)(a)da)ds}+{μ∫η0(η−s)(δ−1)Γ(δ)(∫s0e−φ(s−a)(∫a0(a−m)(ϑ−2)Γ(ϑ−1)(g1∗)(m)dm)da)ds−μ∫η0(η−s)(δ−1)Γ(δ)(∫s0e−φ(s−a)(∫a0(a−m)(ϖ−2)Γ(ϖ−1)(g2∗)(m)dm)da)ds})}−1Δ1{∫T0e−φ(T−s)(∫s0(s−a)ϑ−2Γ(ϑ−1)(g1∗)(a)da)ds+∫T0e−φ(T−s)(∫s0(s−a)ϖ−2Γ(ϖ−1)(g2∗)(a)da)ds}]+∫t0e−φ(t−s)(∫s0(s−a)ϑ−2Γ(ϑ−1)(g1∗)(a)da)ds, |
ˉh∗(u∗,v∗)(t)=e−φ(t)2[−1Δ2{A−(m∑i=1xi{∫ξi0e−φ(ξi−s)(∫s0(s−a)(ϑ−2)Γ(ϑ−1)(g1∗)(a)da)ds}−m∑i=1xi{∫ξi0e−φ(ξi−s)(∫s0(s−a)(ϖ−2)Γ(ϖ−1)(g2∗)(a)da)ds}+{μ∫η0(η−s)(δ−1)Γ(δ)(∫s0e−φ(s−a)(∫a0(a−m)(ϑ−2)Γ(ϑ−1)(g1∗)(m)dm)da)ds−μ∫η0(η−s)(δ−1)Γ(δ)(∫s0e−φ(s−a)(∫a0(a−m)(ϖ−2)Γ(ϖ−1)(g2∗)(m)dm)da)ds})}−1Δ1{∫T0e−φ(T−s)(∫s0(s−a)(ϑ−2)Γ(ϑ−1)(g1∗)(a)da)ds+∫T0e−φ(T−s)(∫s0(s−a)(ϖ−2)Γ(ϖ−1)(g2∗)(a)da)ds}]+∫t0e−φ(t−s)(∫s0(s−a)(ϖ−2)Γ(ϖ−1)(g2∗)(a)da)ds. |
i.e., (hn,ˉhn)∈K(u∗,v∗). Let (u,v)∈νK(u,v). Then there exist g1∈WG1(u,v) and g2∈WG2(u,v) such that
||u||≤Υ1(||p1||(ψ1(r)+ϕ1(r))+Υ2||p2||(ψ2(r)+ϕ2(r))), |
||v||≤Υ1(||p1||(ψ1(r)+ϕ1(r))+Υ2||p2||(ψ2(r)+ϕ2(r))), |
and, for each t∈J, we obtain
||(u,v)||=||u||+||v||≤2Υ1(||p1||(ψ1(r)+ϕ1(r))+2Υ2||p2||(ψ2(r)+ϕ2(r))), |
which implies that
||(u,v)||(2Υ1)||p1||(ψ1(N)+ϕ1(N))+(2Υ2)||p2||(ψ2(N)+ϕ2(N))≤1. |
According to B3 there exists N such that ||(u,v)||≠N. Let us set
E={(u,v)∈S×S:||(u,v)||<N}. |
It should be noted that operator K:ˉE→Ucp,cv(S)×Ucp,cv(S) is C.C and U.S.C. There is no (u,v)∈νK(u,v) for some ν∈(0,1) by choice of U. As a consequence, we can deduce from the nonlinear alternative of Leray-Schauder [36] that K has a fixed point (u,v)∈ˉE, which is a solution of system (1.3).
Let (S,d) be a metric space induced from the normed space (S;||.||), and let Hd:U(S)×U(S)→R∞ be defined by Hd(E,V)=max{supe∈Ed(e,V),supν∈Vd(E,ν)}, where d(E,ν)=infe∈Ed(e,ν) and d(ν,V)=infν∈Vd(e,ν). Then (Ub,cl(S),Hd) is a metric space and (Ucl(S),Hd) is a generalized metric space (see [39]).
Covitz and Nadler's theorem for multi-valued maps are used in the following result.
Theorem 3.5. Suppose that holds (B4) and (B5) holds. Then system (1.3) has at least one solution on J provided that
(2Υ1)||m1||+(2Υ2)||m2||<1. | (3.14) |
Proof. Assuming (B4) that the sets WG1(u,v) and WG2(u,v) are non-empty for each (u,v)∈S×S, G1 and G2 have measurable selections (see Theorem III.6 in [40]). Next, we show that the operator K satisfies the assumptions of Covitz and Nadler's theorem [35]. Further we show that K(u,v)∈Ucl(S)×Ucl(S) for each (u,v)∈S×S. Let (hn,ˉhn)∈K(un,vn) such that (hn,ˉhn)→(h,ˉh) in S×S. Then (h,ˉh)∈S×S and there exists g1n∈WG1(un,vn) and g2n∈WG2(un,vn) such that
hn(un,vn)(t)=e−φ(t)2[1Δ2{A−(m∑i=1xi{∫ξi0e−φ(ξi−s)(∫s0(s−a)(ϑ−2)Γ(ϑ−1)(g1n)(a)da)ds}−m∑i=1xi{∫ξi0e−φ(ξi−s)(∫s0(s−a)(ϖ−2)Γ(ϖ−1)(g2n)(a)da)ds}+{μ∫η0(η−s)(δ−1)Γ(δ)(∫s0e−φ(s−a)(∫a0(a−m)(ϑ−2)Γ(ϑ−1)(g1n)(m)dm)da)ds−μ∫η0(η−s)(δ−1)Γ(δ)(∫s0e−φ(s−a)(∫a0(a−m)(ϖ−2)Γ(ϖ−1)(g2n)(m)dm)da)ds})}−1Δ1{∫T0e−φ(T−s)(∫s0(s−a)ϑ−2Γ(ϑ−1)(g1n)(a)da)ds+∫T0e−φ(T−s)(∫s0(s−a)ϖ−2Γ(ϖ−1)(g2n)(a)da)ds}]+∫t0e−φ(t−s)(∫s0(s−a)ϑ−2Γ(ϑ−1)(g1n)(a)da)ds, |
and
ˉhn(un,vn)(t)=e−φ(t)2[−1Δ2{A−(m∑i=1xi{∫ξi0e−φ(ξi−s)(∫s0(s−a)(ϑ−2)Γ(ϑ−1)(g1n)(a)da)ds}−m∑i=1xi{∫ξi0e−φ(ξi−s)(∫s0(s−a)(ϖ−2)Γ(ϖ−1)(g2n)(a)da)ds}+{μ∫η0(η−s)(δ−1)Γ(δ)(∫s0e−φ(s−a)(∫a0(a−m)(ϑ−2)Γ(ϑ−1)(g1n)(m)dm)da)ds−μ∫η0(η−s)(δ−1)Γ(δ)(∫s0e−φ(s−a)(∫a0(a−m)(ϖ−2)Γ(ϖ−1)(g2n)(m)dm)da)ds})}−1Δ1{∫T0e−φ(T−s)(∫s0(s−a)(ϑ−2)Γ(ϑ−1)(g1n)(a)da)ds+∫T0e−φ(T−s)(∫s0(s−a)(ϖ−2)Γ(ϖ−1)(g2n)(a)da)ds}]+∫t0e−φ(t−s)(∫s0(s−a)(ϖ−2)Γ(ϖ−1)(g2n)(a)da)ds. |
Due to the fact that G1 and G2 have compact values, we pass onto subsequences to ensure that g1n and g2n converge to g1 and g2 in L1(J,R). Thus g1∈WG1(u,v) and g2∈WG2(u,v) for each t∈J and that
hn(un,vn)(t)→h(u,v)(t)=e−φ(t)2[1Δ2{A−(m∑i=1xi{∫ξi0e−φ(ξi−s)(∫s0(s−a)(ϑ−2)Γ(ϑ−1)(g1)(a)da)ds}−m∑i=1xi{∫ξi0e−φ(ξi−s)(∫s0(s−a)(ϖ−2)Γ(ϖ−1)(g2)(a)da)ds}+{μ∫η0(η−s)(δ−1)Γ(δ)(∫s0e−φ(s−a)(∫a0(a−m)(ϑ−2)Γ(ϑ−1)(g1)(m)dm)da)ds−μ∫η0(η−s)(δ−1)Γ(δ)(∫s0e−φ(s−a)(∫a0(a−m)(ϖ−2)Γ(ϖ−1)(g2)(m)dm)da)ds})}−1Δ1{∫T0e−φ(T−s)(∫s0(s−a)ϑ−2Γ(ϑ−1)(g1)(a)da)ds+∫T0e−φ(T−s)(∫s0(s−a)ϖ−2Γ(ϖ−1)(g2)(a)da)ds}]+∫t0e−φ(t−s)(∫s0(s−a)ϑ−2Γ(ϑ−1)(g1)(a)da)ds, |
ˉhn(un,vn)(t)→ˉhn(u,v)(t)=e−φ(t)2[−1Δ2{A−(m∑i=1xi{∫ξi0e−φ(ξi−s)(∫s0(s−a)(ϑ−2)Γ(ϑ−1)(g1)(a)da)ds}−m∑i=1xi{∫ξi0e−φ(ξi−s)(∫s0(s−a)(ϖ−2)Γ(ϖ−1)(g2)(a)da)ds}+{μ∫η0(η−s)(δ−1)Γ(δ)(∫s0e−φ(s−a)(∫a0(a−m)(ϑ−2)Γ(ϑ−1)(g1)(m)dm)da)ds−μ∫η0(η−s)(δ−1)Γ(δ)(∫s0e−φ(s−a)(∫a0(a−m)(ϖ−2)Γ(ϖ−1)(g2)(m)dm)da)ds})}−1Δ1{∫T0e−φ(T−s)(∫s0(s−a)(ϑ−2)Γ(ϑ−1)(g1)(a)da)ds+∫T0e−φ(T−s)(∫s0(s−a)(ϖ−2)Γ(ϖ−1)(g2)(a)da)ds}]+∫t0e−φ(t−s)(∫s0(s−a)(ϖ−2)Γ(ϖ−1)(g2)(a)da)ds. |
Hence (h,ˉh)∈K, which implies that K is closed. Next we show that there exists (defined by (3.14)) such that
Hd(K(u,v),K(ˉu,ˉv))≤ˉθ(||u−ˉu||+||v−ˉv||) for each u,ˉu,v,ˉv∈E. |
Let (||u,ˉu||),(u,ˉv)∈S×S and (h1,ˉh1)∈K(u,v). Then there exist g11∈WG1(u,v) and g21∈WG2(u,v) such that, for each t∈J, we have
h1(un,vn)(t)=e−φ(t)2[1Δ2{A−(m∑i=1xi{∫ξi0e−φ(ξi−s)(∫s0(s−a)(ϑ−2)Γ(ϑ−1)(g11)(a)da)ds}−m∑i=1xi{∫ξi0e−φ(ξi−s)(∫s0(s−a)(ϖ−2)Γ(ϖ−1)(g21)(a)da)ds}+{μ∫η0(η−s)(δ−1)Γ(δ)(∫s0e−φ(s−a)(∫a0(a−m)(ϑ−2)Γ(ϑ−1)(g11)(m)dm)da)ds−μ∫η0(η−s)(δ−1)Γ(δ)(∫s0e−φ(s−a)(∫a0(a−m)(ϖ−2)Γ(ϖ−1)(g21)(m)dm)da)ds})}−1Δ1{∫T0e−φ(T−s)(∫s0(s−a)ϑ−2Γ(ϑ−1)(g11)(a)da)ds+∫T0e−φ(T−s)(∫s0(s−a)ϖ−2Γ(ϖ−1)(g21)(a)da)ds}]+∫t0e−φ(t−s)(∫s0(s−a)ϑ−2Γ(ϑ−1)(g11)(a)da)ds, |
and
ˉh1(un,vn)(t)=e−φ(t)2[−1Δ2{A−(m∑i=1xi{∫ξi0e−φ(ξi−s)(∫s0(s−a)(ϑ−2)Γ(ϑ−1)(g11)(a)da)ds}−m∑i=1xi{∫ξi0e−φ(ξi−s)(∫s0(s−a)(ϖ−2)Γ(ϖ−1)(g21)(a)da)ds}+{μ∫η0(η−s)(δ−1)Γ(δ)(∫s0e−φ(s−a)(∫a0(a−m)(ϑ−2)Γ(ϑ−1)(g11)(m)dm)da)ds−μ∫η0(η−s)(δ−1)Γ(δ)(∫s0e−φ(s−a)(∫a0(a−m)(ϖ−2)Γ(ϖ−1)(g21)(m)dm)da)ds})}−1Δ1{∫T0e−φ(T−s)(∫s0(s−a)(ϑ−2)Γ(ϑ−1)(g11)(a)da)ds+∫T0e−φ(T−s)(∫s0(s−a)(ϖ−2)Γ(ϖ−1)(g21)(a)da)ds}]+∫t0e−φ(t−s)(∫s0(s−a)(ϖ−2)Γ(ϖ−1)(g21)(a)da)ds. |
Using (B5), we have
Hd(G1(t,u,v),G1(t,ˉu,ˉv))≤m1(t)(|u(t)−ˉu(t)|+|v(t)−ˉv(t)|) |
and
Hd(G2(t,u,v),G2(t,ˉu,ˉv))≤m2(t)(|u(t)−ˉu(t)|+|v(t)−ˉv(t)|). |
So, there exists g1∈G1(t,u,v) and g2∈G2(t,u,v) such that
|g11(t)−w|≤m1(t)(|u(t)−ˉu(t)|+|v(t)−ˉv(t)|) |
and
|g22(t)−z|≤m2(t)(|u(t)−ˉu(t)|+|v(t)−ˉv(t)|). |
Define V1,V2:J→U(R) by
V1(t)={g1∈L1(J,R):|g1(t)−w|≤m1(t)(|u(t)−ˉu(t)|+|v(t)−ˉv(t)|)} |
and
V2(t)={g2∈L1(J,R):|g2(t)−z|≤m2(t)(|u(t)−ˉu(t)|+|v(t)−ˉv(t)|)}. |
There are functions g12(t),g22(t) that are an observable selection for V1, V2 because the multi-valued operators V1∩f(t,u(t),v(t)) and V2∩g(t,u(t),v(t)) are measurable (Proposition III.4 in [17]). And g12(t)∈G1(t,u(t),v(t)), g22(t)∈G2(t,u(t),v(t)) such that, for a.e. t∈J, we have
|g11(t)−g12(t)|≤m1(t)(|u(t)−ˉu(t)|+|v(t)−ˉv(t)|) |
and
|g21(t)−g22(t)|≤m2(t)(|u(t)−ˉu(t)|+|v(t)−ˉv(t)|). |
Let
h2(un,vn)(t)=e−φ(t)2[1Δ2{A−(m∑i=1xi{∫ξi0e−φ(ξi−s)(∫s0(s−a)(ϑ−2)Γ(ϑ−1)(g12)(a)da)ds}−m∑i=1xi{∫ξi0e−φ(ξi−s)(∫s0(s−a)(ϖ−2)Γ(ϖ−1)(g22)(a)da)ds}+{μ∫η0(η−s)(δ−1)Γ(δ)(∫s0e−φ(s−a)(∫a0(a−m)(ϑ−2)Γ(ϑ−1)(g12)(m)dm)da)ds−μ∫η0(η−s)(δ−1)Γ(δ)(∫s0e−φ(s−a)(∫a0(a−m)(ϖ−2)Γ(ϖ−1)(g22)(m)dm)da)ds})}−1Δ1{∫T0e−φ(T−s)(∫s0(s−a)ϑ−2Γ(ϑ−1)(g12)(a)da)ds+∫T0e−φ(T−s)(∫s0(s−a)ϖ−2Γ(ϖ−1)(g22)(a)da)ds}]+∫t0e−φ(t−s)(∫s0(s−a)ϑ−2Γ(ϑ−1)(g12)(a)da)ds, |
and
ˉh2(un,vn)(t)=e−φ(t)2[−1Δ2{A−(m∑i=1xi{∫ξi0e−φ(ξi−s)(∫s0(s−a)(ϑ−2)Γ(ϑ−1)(g12)(a)da)ds}−m∑i=1xi{∫ξi0e−φ(ξi−s)(∫s0(s−a)(ϖ−2)Γ(ϖ−1)(g22)(a)da)ds}+{μ∫η0(η−s)(δ−1)Γ(δ)(∫s0e−φ(s−a)(∫a0(a−m)(ϑ−2)Γ(ϑ−1)(g12)(m)dm)da)ds−μ∫η0(η−s)(δ−1)Γ(δ)(∫s0e−φ(s−a)(∫a0(a−m)(ϖ−2)Γ(ϖ−1)(g22)(m)dm)da)ds})}−1Δ1{∫T0e−φ(T−s)(∫s0(s−a)(ϑ−2)Γ(ϑ−1)(g12)(a)da)ds+∫T0e−φ(T−s)(∫s0(s−a)(ϖ−2)Γ(ϖ−1)(g22)(a)da)ds}]+∫t0e−φ(t−s)(∫s0(s−a)(ϖ−2)Γ(ϖ−1)(g22)(a)da)ds. |
Hence
||h1(u,v)−h2(u,v)||≤Υ1(||m1||+||m2||)(||u(t)−ˉu(t)||+||v(t)−ˉv(t)||). |
Similarly, we can define that
||ˉh1(u,v)−ˉh2(u,v)||≤Υ2(||m1||+||m2||)(||u(t)−ˉu(t)||+||v(t)−ˉv(t)||). |
Thus
||(h1,ˉh1),(h2,ˉh2)||≤(2Υ1||m1||+2Υ2||m2||)(||u(t)−ˉu(t)||+||v(t)−ˉv(t)||). |
Similarly, by swapping the positions of (u,v) and (ˉu,ˉv), we can obtain
Hd[F(h1,h2),F(ˉh1,ˉh2)]≤(2Υ1||m1||+2Υ2||m2||)(||u(t)−ˉu(t)||+||v(t)−ˉv(t)||). |
In light of the assumption, K is a contraction (3.14). As a consequence of theorem Covitz and Nadler's [35], K has a fixed point (u,v) that is a solution to the system (1.3).
In this section, we present several instances following the systems (1.2) and (1.3) and the main theorems.
Example 4.1. Consider the following system
(CD83+23CD83−1)u(t)=G1(t,u(t),v(t)), t∈J=[0,1],(CD54+23CD54−1)v(t)=G2(t,u(t),v(t)), t∈J=[0,1],(u+v)(0)=−(u+v)(T),m∑i=0xi(u−v)(ξi)+μ∫η0(η−s)δ−1Γ(δ)(u−v)(s)ds=A, | (4.1) |
where ϑ=8/3,ϖ=5/4,η=1/10,δ=3/2,μ=1,ξ1=1/5,ξ2=2/5,ξ3=3/5,A=3,T=1, x1=1,x2=3/2,x3=5/2, and G1(t,u(t),v(t)) and G2(t,u(t),v(t)) will be fixed later. Using the above data, we get Υ1=0.7579116416 and Υ2=1.313797297, where Υ1 and Υ2 are respectively given by 3.4 and 3.5. From Theorem3.1, we will use
G1(t,u(t),v(t))=e−t2√900+t2(ut+sinv+cost),G2(t,u(t),v(t))=1(3+t)2(sinu+v2+e−t). |
Next, G1 and G2 are continuous and fulfil the hypothesis (W1) with
γ1(t)=e−tcost2√400+t2,γ2(t)=te−t2√400+t2,γ3(t)=e−t2√400+t2,k2=e−t(3+t)2,k1=1(3+t)2 and k3=12(3+t)2. |
Also
||γ2||(2Υ1+Tϑ−1φΓ(ϑ)(1−e−φT))+||k2||(2Υ2+Tϖ−1φΓ(ϖ)(1−e−φT))≈0.0631747638 and||γ3||(2Υ1+Tϑ−1φΓ(ϑ)(1−e−φT))+||k3||(2Υ2+Tϖ−1φΓ(ϖ)(1−e−φT))≈0.0324305431. |
Thus, by Theorem 3.1, ∃ a solution to the system (4.1) on [0,1].
Example 4.2. Consider system (4.1) again. For the application of Theorem 3.2, we choose
G1(t,u(t),v(t))=110(1+t2)(|u||1+|u+tan−1v),G2(t,u(t),v(t))=1√400+t2(sinv+2tan−1u), | (4.2) |
where G1 and G2 are continuous and fulfil the hypothesis (W2) with C1=C2=1/10=C and K1=1/10,K2=1/20 and K=1/10. In addition, we get
(C(2Υ1+Tϑ−1φΓ(ϑ)(1−e−φT))+K(2Υ2+Tϖ−1φΓ(ϖ)(1−e−φT)))≈0.3520736817<1. |
It is clear that all of Theorem 3.2's assumptions are satisfied. As a result, ∃ a unique solution to system (4.2).
Example 4.3. Consider the following system
(CD83+23CD83−1)u(t)∈G1(t,u(t),v(t)), t∈J=[0,1],(CD54+23CD54−1)v(t)∈G2(t,u(t),v(t)), t∈J=[0,1],(u+v)(0)=−(u+v)(T),m∑i=0xi(u−v)(ξi)+μ∫η0(η−s)δ−1Γ(δ)(u−v)(s)ds=A, | (4.3) |
where ϑ=8/3,ϖ=5/4,η=1/10,δ=3/2,μ=1,ξ1=1/5,ξ2=2/5,ξ3=3/5,A=3,T=1, x1=1,x2=3/2,x3=5/2, G1(t,u,v)=[−110|u|1+|u|,0]∪[0,110|sin(v)|1+|sin(v)|] and G2(t,u,v)=[−110|v|1+|v|,0]∪[0,110|cos(u)|1+|cos(u)|], and on the other hand,
Hd(G1(t,u,v),G1(t,ˆv,ˆw))≤110|u−ˆv|+110|v−ˆw|, ∀ u,ˆv,v,ˆw∈R,Gd(G2(t,u,v),G2(t,ˆv,ˆw))≤110|u−ˆv|+110|v−ˆw|, ∀ u,ˆv,v,ˆw∈R. |
Using the above data, we get Υ1=0.7579116416 and Υ2=1.313797297 and (2Υ1)m1+(2Υ2)m2≈0.4143417683<1. All of Theorem 3.5's assumptions are satisfied. As a consequence, ∃ a solution to the system (4.3).
We have introduced a new type of coupled boundary condition that deals with the sum of unknown functions at the boundary points and along an arbitrary segment of the given domain. We solved a nonlinear coupled system of Caputo SFDEs and inclusions under these conditions. The existence and uniqueness results for the given problem are new, and they add to our understanding of fully coupled fractional-order BVPs. Furthermore, this study can be expanded to include fractional differential and integral operators of the Riemann-Liouville and Hadamard types. Our findings are not only novel in the context of the problem, but they also lead to some novel special cases involving specific parameter choices. For instance, our results correspond to those for new coupled discrete boundary conditions of the form: (u+v)(0)=−(u+v)(T) ∑mi=0xi(u−v)(ξi)=A, if we set μ=0 in (1.2) and (1.3). Letting xi=0, (i=0,1,...,m), our results correspond to the Riemann-Liouville integral boundary conditions: (u+v)(0)=−(u+v)(T), μ∫η0(η−s)δ−1Γ(δ)(u−v)(s)ds=A, and also we can obtained new existence results through special cases as stated in Remark 3.1 and Remark 3.2. Future research may concentrate on various concepts of stability with control techniques [41,42] and existence as they relate to a neutral time-delay system/inclusion and a time-delay system/inclusion with finite delay.
The work was supported Thailand Science Research and Innovation (TSRI) Grant Fund No. 64A146000001.
All authors declare no conflicts of interest in this paper.
[1] |
A. Hamoud, Existence and uniqueness of solutions for fractional neutral volterra-fredholm integro differential equations, Advances in the Theory of Nonlinear Analysis and its Application, 4 (2020), 321–331. doi: 10.31197/atnaa.799854. doi: 10.31197/atnaa.799854
![]() |
[2] |
M. Subramanian, J. Alzabut, D. Baleanu, M. E. Samei, A. Zada, Existence, uniqueness and stability analysis of a coupled fractional-order differential systems involving hadamard derivatives and associated with multi-point boundary conditions, Adv. Differ. Equ., 2021 (2021), 267. doi: 10.1186/s13662-021-03414-9. doi: 10.1186/s13662-021-03414-9
![]() |
[3] |
S. Muthaiah, D. Baleanu, N. G. Thangaraj, Existence and hyers-ulam type stability results for nonlinear coupled system of caputo-hadamard type fractional differential equations, Aims Mathematics, 6 (2021), 168–194. doi: 10.3934/math.2021012. doi: 10.3934/math.2021012
![]() |
[4] |
M. S. Hashemi, Invariant subspaces admitted by fractional differential equations with conformable derivatives, Chaos Soliton. Fract., 107 (2018), 161–169. doi: 10.1016/j.chaos.2018.01.002. doi: 10.1016/j.chaos.2018.01.002
![]() |
[5] |
M. S. Hashemi, A. Atangana, S. Hajikhah, Solving fractional pantograph delay equations by an effective computational method, Math. Comput. Simulat., 177 (2020), 295–305. doi: 10.1016/j.matcom.2020.04.026. doi: 10.1016/j.matcom.2020.04.026
![]() |
[6] |
M. S. Hashemi, M. Inc, D. Baleanu, On fractional kdv-burgers and potential kdv equations: Existence and uniqueness results, Therm. Sci., 23 (2019), S2107–S2117. doi: 10.2298/TSCI190101400H. doi: 10.2298/TSCI190101400H
![]() |
[7] |
M. S. Hashemi, A novel approach to find exact solutions of fractional evolution equations with non-singular kernel derivative, Chaos Soliton. Fract., 152 (2021), 111367. doi: 10.1016/j.chaos.2021.111367. doi: 10.1016/j.chaos.2021.111367
![]() |
[8] |
S. Salahshour, A. Ahmadian, C. S. Chan, Successive approximation method for caputo q-fractional ivps, Commun. Nonlinear Sci., 24 (2015), 153–158. doi: 10.1016/j.cnsns.2014.12.014. doi: 10.1016/j.cnsns.2014.12.014
![]() |
[9] | J. Klafter, S. Lim, R. Metzler, Fractional dynamics: recent advances, World Scientific Publishing Company, 2012. |
[10] |
D. Valério, J. T. Machado, V. Kiryakova, Some pioneers of the applications of fractional calculus, Fract. Calc. Appl. Anal., 17 (2014), 552–578. doi: 10.2478/s13540-014-0185-1. doi: 10.2478/s13540-014-0185-1
![]() |
[11] | A. A. A. Kilbas, H. M. Srivastava, J. J. Trujillo, Theory and applications of fractional differential equations, Elsevier, 2006. |
[12] |
M. S. Hashemi, Some new exact solutions of (2+ 1)-dimensional nonlinear heisenberg ferromagnetic spin chain with the conformable time fractional derivative, Opt. Quant. Electron., 50 (2018), 79. doi: 10.1007/s11082-018-1343-1. doi: 10.1007/s11082-018-1343-1
![]() |
[13] | M. S. Hashemi, D. Baleanu, Lie symmetry analysis of fractional differential equations, CRC Press, 2020. |
[14] |
M. Senol, S. Atpinar, Z. Zararsiz, S. Salahshour, A. Ahmadian, Approximate solution of time-fractional fuzzy partial differential equations, Comp. Appl. Math., 38 (2019), 18. doi: 10.1007/s40314-019-0796-6. doi: 10.1007/s40314-019-0796-6
![]() |
[15] | A. Ahmadian, C. S. Chan, S. Salahshour, V. Vaitheeswaran, Ftfbe: A numerical approximation for fuzzy time-fractional bloch equation, In: 2014 IEEE international conference on fuzzy systems (FUZZ-IEEE), IEEE, 2014,418–423. |
[16] |
S. Salahshour, A. Ahmadian, S. Abbasbandy, D. Baleanu, M-fractional derivative under interval uncertainty: Theory, properties and applications, Chaos Soliton. Fract., 117 (2018), 84–93. doi: 10.1016/j.chaos.2018.10.002. doi: 10.1016/j.chaos.2018.10.002
![]() |
[17] | K. S. Miller, B. Ross, An introduction to the fractional calculus and fractional differential equations, Wiley, 1993. |
[18] |
A. Boutiara, S. Etemad, J. Alzabut, A. Hussain, M. Subramanian, S. Rezapour, On a nonlinear sequential four-point fractional q-difference equation involving q-integral operators in boundary conditions along with stability criteria, Adv. Differ. Equ., 2021 (2021), 367. doi: 10.1186/s13662-021-03525-3. doi: 10.1186/s13662-021-03525-3
![]() |
[19] |
B. Ahmad, R. Luca, Existence of solutions for sequential fractional integro-differential equations and inclusions with nonlocal boundary conditions, Appl. Math. Comput., 339 (2018), 516–534. doi: 10.1016/j.amc.2018.07.025. doi: 10.1016/j.amc.2018.07.025
![]() |
[20] |
M. S. Hashemi, M. Inc, S. Hajikhah, Generalized squared remainder minimization method for solving multi-term fractional differential equations, Nonlinear Anal. Model., 26 (2021), 57–71. doi: 10.15388/namc.2021.26.20560. doi: 10.15388/namc.2021.26.20560
![]() |
[21] |
C. Nuchpong, S. K. Ntouyas, A. Samadi, J. Tariboon, Boundary value problems for hilfer type sequential fractional differential equations and inclusions involving riemann–stieltjes integral multi-strip boundary conditions, Adv. Differ. Equ., 2021 (2021), 268. doi: 10.1186/s13662-021-03424-7. doi: 10.1186/s13662-021-03424-7
![]() |
[22] |
N. Phuangthong, S. K. Ntouyas, J. Tariboon, K. Nonlaopon, Nonlocal sequential boundary value problems for hilfer type fractional integro-differential equations and inclusions, Mathematics, 9 (2021), 615. doi: 10.3390/math9060615. doi: 10.3390/math9060615
![]() |
[23] |
M. Faieghi, S. Kuntanapreeda, H. Delavari, D. Baleanu, LMI-based stabilization of a class of fractional-order chaotic systems, Nonlinear Dyn., 72 (2013), 301–309. doi: 10.1007/s11071-012-0714-6. doi: 10.1007/s11071-012-0714-6
![]() |
[24] |
N. Nyamoradi, M. Javidi, B. Ahmad, Dynamics of sveis epidemic model with distinct incidence, Int. J. Biomath., 8 (2015), 1550076. doi: 10.1142/S179352451550076X. doi: 10.1142/S179352451550076X
![]() |
[25] |
A. Carvalho, C. M. Pinto, A delay fractional order model for the co-infection of malaria and hiv/aids, Int. J. Dynam. Control, 5 (2017), 168–186. doi: 10.1007/s40435-016-0224-3. doi: 10.1007/s40435-016-0224-3
![]() |
[26] |
M. M. Matar, E. S. Abu Skhail, J. Alzabut, On solvability of nonlinear fractional differential systems involving nonlocal initial conditions, Math. Method. Appl. Sci., 44 (2021), 8254–8265. doi: 10.1002/mma.5910. doi: 10.1002/mma.5910
![]() |
[27] |
M. M. Matar, J. Alzabut, J. M. Jonnalagadda, A coupled system of nonlinear caputo–hadamard langevin equations associated with nonperiodic boundary conditions, Math. Method. Appl. Sci., 44 (2021), 2650–2670. doi: 10.1002/mma.6711. doi: 10.1002/mma.6711
![]() |
[28] | K. S. Cole, Electric conductance of biological systems, In: Cold Spring Harbor symposia on quantitative biology, Cold Spring Harbor Laboratory Press, 1933,107–116. |
[29] |
V. D. Djordjević, J. Jarić, B. Fabry, J. J. Fredberg, D. Stamenović, Fractional derivatives embody essential features of cell rheological behavior, Annals of biomedical engineering, 31 (2003), 692–699. doi: 10.1114/1.1574026. doi: 10.1114/1.1574026
![]() |
[30] |
L. Wang, M. Y. Li, Mathematical analysis of the global dynamics of a model for hiv infection of cd4+ T cells, Math. Biosci., 200 (2006), 44–57. doi: 10.1016/j.mbs.2005.12.026. doi: 10.1016/j.mbs.2005.12.026
![]() |
[31] |
A. Arafa, S. Rida, M. Khalil, Fractional modeling dynamics of hiv and cd4+ t-cells during primary infection, Nonlinear Biomed. Phys., 6 (2012), 1. doi: 10.1186/1753-4631-6-1. doi: 10.1186/1753-4631-6-1
![]() |
[32] |
B. Ahmad, M. Alghanmi, A. Alsaedi, J. J. Nieto, Existence and uniqueness results for a nonlinear coupled system involving caputo fractional derivatives with a new kind of coupled boundary conditions, Appl. Math. Lett., 116 (2021), 107018. doi: 10.1016/j.aml.2021.107018. doi: 10.1016/j.aml.2021.107018
![]() |
[33] | S. Hu, N. S. Papageorgiou, Handbook of multivalued analysis: Volume II: Applications, Springer Science & Business Media, 2013. |
[34] | K. Deimling, Multivalued differential equations, Walter de Gruyter, 2011. |
[35] |
H. H. Covitz, S. B. Nadler, Multi-valued contraction mappings in generalized metric spaces, Israel J. Math., 8 (1970), 5–11. doi: 10.1007/BF02771543. doi: 10.1007/BF02771543
![]() |
[36] | A. Granas, J. Dugundji, Fixed point theory, Springer, 2013. |
[37] | Y. Zhou, J. R. Wang, L. Zhang, Basic theory of fractional differential equations, WSPC, 2016. |
[38] | A. Losta, Z. Opial, Application of the kakutani-ky-fan theorem in the theory of ordinary differential equations or noncompact acyclic-valued map, \it Bull. Acad. Pol. Sci., Sér. Sci. Math. Astron. Phys, 13 (1965), 781–786. |
[39] | M. Kisielewicz, Stochastic differential inclusions and applications, Springer, 2013. |
[40] | C. Castaing, M. Valadier, Convex analysis and measurable multifunctions, Springer, 2006. |
[41] |
R. Vadivel, P. Hammachukiattikul, N. Gunasekaran, R. Saravanakumar, H. Dutta, Strict dissipativity synchronization for delayed static neural networks: An event-triggered scheme, Chaos Soliton. Fract., 150 (2021), 111212. doi: 10.1016/j.chaos.2021.111212. doi: 10.1016/j.chaos.2021.111212
![]() |
[42] |
R. Anbuvithya, S. D. Sri, R. Vadivel, N. Gunasekaran, P. Hammachukiattikul, Extended dissipativity and non-fragile synchronization for recurrent neural networks with multiple time-varying delays via sampled-data control, IEEE Access, 9 (2021), 31454–31466. doi: 10.1109/ACCESS.2021.3060044. doi: 10.1109/ACCESS.2021.3060044
![]() |
1. | Abeer Al Elaiw, Murugesan Manigandan, Muath Awadalla, Kinda Abuasbeh, Existence results by Mönch's fixed point theorem for a tripled system of sequential fractional differential equations, 2023, 8, 2473-6988, 3969, 10.3934/math.2023199 | |
2. | Muath Awadalla, Murugesan Manigandan, Existence Results for Caputo Tripled Fractional Differential Inclusions with Integral and Multi-Point Boundary Conditions, 2023, 7, 2504-3110, 182, 10.3390/fractalfract7020182 | |
3. | Murugesan Manigandan, Muthaiah Subramanian, Thangaraj Nandha Gopal, Bundit Unyong, Existence and Stability Results for a Tripled System of the Caputo Type with Multi-Point and Integral Boundary Conditions, 2022, 6, 2504-3110, 285, 10.3390/fractalfract6060285 | |
4. | Muath Awadalla, Muthaian Subramanian, Murugesan Manigandan, Kinda Abuasbeh, Umair Ali, Existence and H-U Stability of Solution for Coupled System of Fractional-Order with Integral Conditions Involving Caputo-Hadamard Derivatives, Hadamard Integrals, 2022, 2022, 2314-8888, 1, 10.1155/2022/9471590 | |
5. | Abeer Al Elaiw, Murugesan Manigandan, Muath Awadalla, Kinda Abuasbeh, Mönch's fixed point theorem in investigating the existence of a solution to a system of sequential fractional differential equations, 2023, 8, 2473-6988, 2591, 10.3934/math.2023134 | |
6. | Hassan J. Al Salman, Muath Awadalla, Muthaiah Subramanian, Kinda Abuasbeh, On a System of Coupled Langevin Equations in the Frame of Generalized Liouville–Caputo Fractional Derivatives, 2023, 15, 2073-8994, 204, 10.3390/sym15010204 | |
7. | Muath Awadalla, Murugesan Manigandan, Abdellatif Ben Makhlouf, Existence and Stability Results for Caputo-Type Sequential Fractional Differential Equations with New Kind of Boundary Conditions, 2022, 2022, 1563-5147, 1, 10.1155/2022/3999829 | |
8. | Rajarathinam Vadivel, Porpattama Hammachukiattikul, Seralan Vinoth, Kantapon Chaisena, Nallappan Gunasekaran, An Extended Dissipative Analysis of Fractional-Order Fuzzy Networked Control Systems, 2022, 6, 2504-3110, 591, 10.3390/fractalfract6100591 | |
9. | Muath Awadalla, Kinda Abuasbeh, Muthaiah Subramanian, Murugesan Manigandan, On a System of ψ-Caputo Hybrid Fractional Differential Equations with Dirichlet Boundary Conditions, 2022, 10, 2227-7390, 1681, 10.3390/math10101681 | |
10. | Abeer Al Elaiw, Muath Awadalla, Murugesan Manigandan, Kinda Abuasbeh, A Novel Implementation of Mönch’s Fixed Point Theorem to a System of Nonlinear Hadamard Fractional Differential Equations, 2022, 6, 2504-3110, 586, 10.3390/fractalfract6100586 | |
11. | Muthaiah Subramanian, Murugesan Manigandan, Akbar Zada, Thangaraj Nandha Gopal, Existence and Hyers–Ulam stability of solutions for nonlinear three fractional sequential differential equations with nonlocal boundary conditions, 2022, 0, 1565-1339, 10.1515/ijnsns-2022-0152 | |
12. | Muthaiah Subramanian, P. Duraisamy, C. Kamaleshwari, Bundit Unyong, R. Vadivel, Existence and U-H Stability Results for Nonlinear Coupled Fractional Differential Equations with Boundary Conditions Involving Riemann–Liouville and Erdélyi–Kober Integrals, 2022, 6, 2504-3110, 266, 10.3390/fractalfract6050266 | |
13. | Emad Fadhal, Kinda Abuasbeh, Murugesan Manigandan, Muath Awadalla, Applicability of Mönch’s Fixed Point Theorem on a System of (k, ψ)-Hilfer Type Fractional Differential Equations, 2022, 14, 2073-8994, 2572, 10.3390/sym14122572 | |
14. | Manigandan Murugesan, Subramanian Muthaiah, Jehad Alzabut, Thangaraj Nandha Gopal, Existence and H-U stability of a tripled system of sequential fractional differential equations with multipoint boundary conditions, 2023, 2023, 1687-2770, 10.1186/s13661-023-01744-z | |
15. | Kamel Bensassa, Zoubir Dahmani, Mahdi Rakah, Mehmet Zeki Sarikaya, Beam deflection coupled systems of fractional differential equations: existence of solutions, Ulam–Hyers stability and travelling waves, 2024, 14, 1664-2368, 10.1007/s13324-024-00890-6 | |
16. | Zoubida Bouazza, Mohammed Said Souid, Hatıra Günerhan, Ali Shokri, Eulalia Mart nez, Problem Involving the Riemann–Liouville Derivative and Implicit Variable-Order Nonlinear Fractional Differential Equations, 2024, 2024, 1099-0526, 1, 10.1155/2024/5595720 | |
17. | Nallappan Gunasekaran, Murugesan Manigandan, Seralan Vinoth, Rajarathinam Vadivel, Analysis of Caputo Sequential Fractional Differential Equations with Generalized Riemann–Liouville Boundary Conditions, 2024, 8, 2504-3110, 457, 10.3390/fractalfract8080457 | |
18. | Muath Awadalla, K. Buvaneswari, P. Karthikeyan, Mohamed Hannabou, K. Karthikeyan, Feryal AlAdsani, Jihan Alahmadi, Analysis on a nonlinear fractional differential equations in a bounded domain [1,T], 2024, 70, 1598-5865, 1275, 10.1007/s12190-024-01998-5 | |
19. | Manigandan Murugesan, Subramanian Muthaiah, Rajarathinam Vadivel, Bundit Unyong, Existence of Solutions for Coupled System of Sequential Liouville–Caputo-Type Fractional Integrodifferential Equations, 2023, 7, 2504-3110, 800, 10.3390/fractalfract7110800 | |
20. | Murugesan Manigandan, Kannan Manikandan, Hasanen A. Hammad, Manuel De la Sen, Applying fixed point techniques to solve fractional differential inclusions under new boundary conditions, 2024, 9, 2473-6988, 15505, 10.3934/math.2024750 | |
21. | Muath Awadalla, Manigandan Murugesan, Manikandan Kannan, Jihan Alahmadi, Feryal AlAdsani, Utilizing Schaefer's fixed point theorem in nonlinear Caputo sequential fractional differential equation systems, 2024, 9, 2473-6988, 14130, 10.3934/math.2024687 | |
22. | Muath Awadalla, Manigandan Murugesan, Subramanian Muthaiah, Jihan Alahmadi, Existence Results for the System of Fractional-Order Sequential Integrodifferential Equations via Liouville–Caputo Sense, 2024, 2024, 2314-4629, 1, 10.1155/2024/6889622 | |
23. | Muath Awadalla, Kinda Abuasbeh, Murugesan Manigandan, Ahmed A. Al Ghafli, Hassan J. Al Salman, Yusuf Gurefe, Applicability of Darbo’s Fixed Point Theorem on the Existence of a Solution to Fractional Differential Equations of Sequential Type, 2023, 2023, 2314-4785, 1, 10.1155/2023/7111771 |