
We aimed to analyze a new class of sequential fractional differential inclusions that involves a combination of ς-Hilfer and ς-Caputo fractional derivative operators, along with non-separated boundary conditions. Two cases of convex-valued and non-convex-valued set-valued maps are considered. Our outcomes are obtained from some famous theorems of fixed point method within the framework of the set-valued analysis. Additionally, some examples are provided to illustrate the applicability of our outcomes.
Citation: Adel Lachouri, Naas Adjimi, Mohammad Esmael Samei, Manuel De la Sen. Non-separated inclusion problem via generalized Hilfer and Caputo operators[J]. AIMS Mathematics, 2025, 10(3): 6448-6468. doi: 10.3934/math.2025294
[1] | Adel Lachouri, Mohammed S. Abdo, Abdelouaheb Ardjouni, Bahaaeldin Abdalla, Thabet Abdeljawad . On a class of differential inclusions in the frame of generalized Hilfer fractional derivative. AIMS Mathematics, 2022, 7(3): 3477-3493. doi: 10.3934/math.2022193 |
[2] | Idris Ahmed, Sotiris K. Ntouyas, Jessada Tariboon . Separated boundary value problems via quantum Hilfer and Caputo operators. AIMS Mathematics, 2024, 9(7): 19473-19494. doi: 10.3934/math.2024949 |
[3] | Ayub Samadi, Chaiyod Kamthorncharoen, Sotiris K. Ntouyas, Jessada Tariboon . Mixed Erdélyi-Kober and Caputo fractional differential equations with nonlocal non-separated boundary conditions. AIMS Mathematics, 2024, 9(11): 32904-32920. doi: 10.3934/math.20241574 |
[4] | Ishfaq Mallah, Idris Ahmed, Ali Akgul, Fahd Jarad, Subhash Alha . On $ \psi $-Hilfer generalized proportional fractional operators. AIMS Mathematics, 2022, 7(1): 82-103. doi: 10.3934/math.2022005 |
[5] | Abdelkader Moumen, Hamid Boulares, Tariq Alraqad, Hicham Saber, Ekram E. Ali . Newly existence of solutions for pantograph a semipositone in $ \Psi $-Caputo sense. AIMS Mathematics, 2023, 8(6): 12830-12840. doi: 10.3934/math.2023646 |
[6] | Saima Rashid, Abdulaziz Garba Ahmad, Fahd Jarad, Ateq Alsaadi . Nonlinear fractional differential equations and their existence via fixed point theory concerning to Hilfer generalized proportional fractional derivative. AIMS Mathematics, 2023, 8(1): 382-403. doi: 10.3934/math.2023018 |
[7] | Lakhlifa Sadek, Tania A Lazǎr . On Hilfer cotangent fractional derivative and a particular class of fractional problems. AIMS Mathematics, 2023, 8(12): 28334-28352. doi: 10.3934/math.20231450 |
[8] | Maliha Rashid, Amna Kalsoom, Maria Sager, Mustafa Inc, Dumitru Baleanu, Ali S. Alshomrani . Mellin transform for fractional integrals with general analytic kernel. AIMS Mathematics, 2022, 7(5): 9443-9462. doi: 10.3934/math.2022524 |
[9] | A.G. Ibrahim, A.A. Elmandouh . Existence and stability of solutions of $ \psi $-Hilfer fractional functional differential inclusions with non-instantaneous impulses. AIMS Mathematics, 2021, 6(10): 10802-10832. doi: 10.3934/math.2021628 |
[10] | M. Manigandan, Subramanian Muthaiah, T. Nandhagopal, R. Vadivel, B. Unyong, N. Gunasekaran . Existence results for coupled system of nonlinear differential equations and inclusions involving sequential derivatives of fractional order. AIMS Mathematics, 2022, 7(1): 723-755. doi: 10.3934/math.2022045 |
We aimed to analyze a new class of sequential fractional differential inclusions that involves a combination of ς-Hilfer and ς-Caputo fractional derivative operators, along with non-separated boundary conditions. Two cases of convex-valued and non-convex-valued set-valued maps are considered. Our outcomes are obtained from some famous theorems of fixed point method within the framework of the set-valued analysis. Additionally, some examples are provided to illustrate the applicability of our outcomes.
Fractional differential inclusions (FDIs), as an extension of fractional differential equations (FDEs), have gained popularity among mathematical researchers due to their importance and value in optimization and stochastic processes in economics [1,2] and finance [3]. In addition to their applications in understanding engineering [4] and dynamic systems [5,6] in biological [7,8], medical [9], physics [10] and chemical sciences [11], FDIs are also relevant in various other scientific fields [12].
Sousa and Oliveira [13] introduced the new fractional derivative ς-Hilfer to unify different types of fractional derivatives into a single operator, expanding fractional derivatives to the types of operators with potentially applicable value. After that, Asawasamrit et al. [14] investigated the following Hilfer-FDE under nonlocal integral boundary conditions (BCs):
{HDr1,r2ϰ(υ)=ℷ(υ,ϰ(υ)),1<r1<2,0≤r2≤1,υ∈℧:=[˜s,˜b],ϰ(˜s)=0,ϰ(˜b)=m∑i=1δiRLIςiϰ(˜ξi),φi>0,δi∈R,˜ξi∈℧. | (1.1) |
In [15], an existence outcome was shown by employing the FPTs (fixed-point theorems) for a sequential FDE of the type,
{(HDr1,r2,ς(CDr3,ςϰ))(s)=ℷ(s,ϰ(s),RLIr5,ςϰ(υ),∫˜b0ϰ(v)dv),υ∈B:=[0,˜b],ϰ(0)+η1ϰ(˜b)=0,CDr4+r3−1,ςϰ(0)+ηC2Dδ+r3−1,ςϰ(˜b)=0, |
where ri∈(0,1), i=1,2,3, r4=r1+r2(1−r1), r4+r3>1, η1,η2∈R, r5>0, and ℷ∈C(B×R3) is a nonlinear function. In 2024, Ahmed et al. [16] investigated a class of separated boundary value problems of the form
{(HDr1,r2q(CDr3qϰ))(υ)=ℷ(υ,ϰ(υ)),q∈(0,1),υ∈B,ϰ(0)+λC1Dr3+r4−1qϰ(0)=ϰ(˜b)+λC2Dr3+r4−1qϰ(˜b)=0,λ1,λ2∈R, |
where 0<r1,r3<1, r2∈[0,1] with r4=r1+r2(1−r1), r3+r4>1 and ℷ∈C(B×R). Lachouri et al., in [17], established the existence of solutions to the nonlinear neutral FDI involving ς-Caputo fractional derivative with ς-Riemann–Liouville (RL) fractional integral boundary conditions:
{CDr1,ς(CDr2,ςϰ(υ)−y(υ,ϰ(υ)))∈ℷ(υ,ϰ(υ)),υ∈[0,˜b),ϰ(a)=RLIr3,ςϰ(˜b)=0,a∈(0,˜b), |
where ℷ:B×R→P(R) is a set-valued map. Surang et al., in [18], studied the ς-Hilfer type sequential FDEs and FDIs subject to integral multi-point BCs of the form
{(HDr1,r2,ς+kHDr1−1,r2,ς)ϰ(υ)=ℷ(υ,ϰ(υ)),υ∈℧,ϰ(˜s)=0,ϰ(˜b)=n∑i=1μi∫ηi˜sψ′(s)ϰ(s)ds+m∑j=1θjϰ(ξj), | (1.2) |
where r1∈(1,2), r2∈[0,1], ℷ∈C(℧×R), k,μi,θj∈R, and ηi,ξj∈(˜s,˜b], i=¯1,n, j=¯1,m. Etemad et al. [19] introduced and studied a novel existence technique based on some special set-valued maps (SVMs) to guarantee the existence of a solution for the following fractional jerk inclusion problem involving the derivative operator in the sense of Caputo–Hadamard
{(CHDr11+(CHDr21+(CHDr31+ϰ)))(υ)∈ℷ(υ,ϰ(υ),CHDr31+ϰ(υ),(CHDr21+(CHDr31+ϰ))(υ)),ϰ(1)+ϰ(exp(1))=CHDr31+ϰ(η)=(CHDr21+(CHDr31+ϰ))(exp(1))=0, |
for υ∈[1,exp(1)], where ri∈(0,1], i=1,2,3, η∈(1,exp(1)), and the operator ℷ:[1,exp(1)]×R3→P(R) is an SVM, where P(R) denotes all nonempty subsets of R.
The boundary conditions (BCs) used in (1.1) and (1.2), share a common feature: the requirement of a zero initial condition, which is essential for the solution to be well-defined. Consequently, certain classes of Hilfer FDEs cannot be addressed, including cases with BCs such as,
● ϰ(0)=−ϰ(˜b), ϰ′(0)=−ϰ′(˜b) (anti-periodic),
● ϰ(0)+η1ϰ′(0)=0, ϰ(˜b)+η2ϰ′(˜b)=0 (separated),
● ϰ(0)+η1ϰ(˜b)=0, ϰ′(0)+η2ϰ′(˜b)=0 (non-separated), etc.
To address this limitation and study Hilfer FDEs with such BCs, regardless of whether they are anti-periodic, separated, or non-separated, we propose a novel approach in this research. Specifically, we combine the Hilfer and Caputo fractional derivatives, enabling the study of boundary value problems under these conditions. More specifically, we aimed to analyze a class of FDEs for FDI, subject to non-separated BCs of the form,
{HDr1,r2,ς(CDr3,ςϰ(υ)−y(υ,ϰ(υ)))∈ℷ(υ,ϰ(υ)),υ∈B,ϰ(0)+η1ϰ(˜b)=0,CDδ+r3−1,ςϰ(0)+ηC2Dδ+r3−1,ςϰ(˜b)=0, | (1.3) |
where ri∈(0,1), i=1,2,3, δ=r1+r2(1−r1), δ+r3>1, η1,η2∈R, y∈C(B×R) and ℷ:B×R→P(R) denotes a SVM, with power set P(R) of R.
The paper is structured as follows. Section 2 is devoted to discussing the fundamental concepts fractional calculus and set-valued analysis, while Section 3 presents important findings on the qualitative properties of solutions to the ς-Hilfer inclusion FDI (1.3) utilizing FPTs. Finally, Section 4, includes three illustrative examples.
We outline the background material that is pertinent to our study. We consider the Banach spaces E=C(B) and L1(B) of the Lebesgue integrable functions equipped with the norms ‖ϰ‖=sup{|ϰ(υ)|:υ∈B} and
‖ϰ‖L1=∫B|ϰ(υ)|dυ, |
respectively. Let ς∈Cn(B) be an increasing function such that ς′(υ)≠0, for any υ∈B.
Definition 2.1 ([20]). The ς-RL fractional integral and derivative of order r1 for a given function ϰ are expressed by
RLIr1,ςϰ(υ)=∫υ0ς′(u)Γ(r1)(ςu(υ))r1−1ϰ(u)du,ςu(υ):=ς(υ)−ς(u), |
and
RLDr1,ςϰ(υ)=D[n]ςRLIn−r1,ςϰ(υ),D[n]ς:=(1ς′(υ)ddυ)n, |
where n=[r1]+1, n∈N, respectively.
Definition 2.2 ([21,22]). The Caputo sense of ς-fractional derivative of the ϰ∈Cn(B) of order r1 is given as,
CDr1,ςϰ(s)=RLI(n−r1),ςϰ[n](s),ϰ[n](s)=(1ς′(s)dds)nϰ(s). |
Lemma 2.3 ([20,22]). Let r1,r2>0. Then
i)RLIr1,ς(ς0(υ))r2−1=Γ(r2)Γ(r1+r2)(ς0(υ))r1+r2−1,ii)CDr1,ς(ς0(υ))r2−1=Γ(r2)Γ(r2−r1)(ς0(υ))r1+r2−1. |
Lemma 2.4 ([20]). For ϰ∈Cn(B), we have
RLIr1,ςCDr1,ςϰ(s)=ϰ(s)−n−1∑k=0ϰ[n](0+)k!(ς0(s))k,n−1<r1<n, |
and 0<r2<1. Furthermore, if r1∈(0,1), then RLIr1,ςCDr1,ς ϰ(υ)=ς0(υ).
Definition 2.5 ([13]). The ς-Hilfer fractional derivative for ϰ∈Cn(B), of order n−1<r1<n and type 0≤r2≤1, is defined by
HDr1,r2,ςϰ(υ)=(RLIr2(n−r1),ς(D[n]ς(RLI(1−r2)(n−r1),ςϰ)))(υ). |
Lemma 2.6 ([13,23]). Let r1,r2,μ>0. Then
i)RLIr1,ςRLIr2,ςϰ(υ)=RLIr1+r2,ςϰ(υ),ii)RLIr1,ς(ς0(υ))μ−1=Γ(μ)Γ(r1+μ)(ς0(υ))r1+μ−1. |
Lemma 2.7 ([13]). For μ>0, r1∈(n−1,n), and 0≤r2≤1,
HDr1,r2,ς(ς0(υ))μ−1=Γ(μ)Γ(μ−r1)(ς0(υ))μ−r1−1,μ>n. |
In particular, if r1∈(1,2) and 1<μ≤2, then HDr1,r2,ς(ς0(υ))μ−1=0.
Lemma 2.8 ([13]). If ϰ∈Cn(B), n−1<r1<n and type 0<r2<1, then
i)RLIr1,ςHDr1,r2,ςϰ(υ)=ϰ(υ)−n∑k=1(ς0(υ))δ−kΓ(δ−k+1)D[n−k]ςRLI(1−r2)(n−r1),ςϰ(0),ii)HDr1,r2,ςRLIr1,ςϰ(υ)=ϰ(υ). |
Consider the Banach space (E,‖⋅‖) and SVM Θ:E→P(E). Θ is a) closed (convex), b) bounded and c) measurable, whenever Θ(ϰ) is closed (convex) for every ϰ∈E, Θ(B)=∪ϰ∈BΘ(ϰ) is bounded for any bounded set B⊆E, that is
supϰ∈B{sup|ρ|:ρ∈Θ(ϰ)}<∞, |
and ∀ρ∈R, the function
υ→d(ρ,Θ(υ))=inf{|ρ−λ|:λ∈Θ(υ)}, |
is measurable, respectively. One can find the definitions of completely continuous and upper semi-continuous in [24]. Additionally, the set of selections of ℷ is described as
Rℷ,ρ={σ∈L1(B):σ(υ)∈ℷ(υ,ρ),∀υ∈B}. |
Next, we take
Pβ(E)={Ω∈P(E):Ω≠∅ with has a property β}, |
where Pcl, Pc, Pb, and Pcp represent the classes of every compact, bounded, closed, and convex subset of E, respectively.
Definition 2.9 ([25]). An SVM ℷ:B×R→P(R) is called Carathéodory if the mapping υ→ℷ(υ,ϰ) is measurable for all ϰ∈R, and ϰ→ℷ(υ,ϰ) is upper semicontinuous for almost every υ∈B. Additionally, we say ℷ is L1-Carathéodory whenever for all m>0, exists z∈L1(B,R+) such that for a.e. υ∈B,
‖ℷ(υ,ϰ)‖=sup{|σ|:σ∈ℷ(υ,ϰ)}≤z(υ),∀‖z‖≤m. |
To achieve the intended outcomes in this search, the following lemmas are necessary.
Lemma 2.10 ([25], Proposition 1.2). Consider SVM Θ:E→Pcl(Z) with the graph, Gr(Θ)={(ϰ,ρ)∈E×Z:ρ∈Θ(ϰ)}. Gr(Θ) is a closed subset of E×Z whenever Θ is upper semi-continuous. Conversely, Θ is upper semi-continuous, when it has a closed graph and is completely continuous.
Lemma 2.11 ([26]). Consider a separable Banach space E along with a L1-Carathéodory SVM ℷ:B×R→Pcp,c(E) and a linear continuous map Υ:L1(B,E)→C(B,E). Then, the composition
{Υ∘Rℷ:C(B,E)→Pcp,c(C(B,E)),ϰ→(Υ∘Rℷ)(ϰ)=Υ(Rℷ,ϰ), |
is a closed graph map in C(B,E)×C(B,E).
In relation to the FDI (1.3), the auxiliary Lemma 3.1 is required.
Lemma 3.1. For y,ℷ∈C(B), the solution of linear-type problem
{HDr1,r2,ς(CDr3,ςϰ(υ)−y(υ))=ℷ(υ),υ∈B∖{˜b},ϰ(0)+η1ϰ(˜b)=0,CDδ+r3−1,ςϰ(0)+ηC2Dδ+r3−1,ςϰ(˜b)=0, | (3.1) |
is obtained as follows:
ϰ(υ)=RLIr3,ςy(υ)+RLIr1+r3,ςℷ(υ)+[Λ3(ς0(˜b))r3+δ−1−Λ1(ς0(υ))r3+δ−1](RLI1−δ,ςy(˜b)+RLIr1−δ+1,ςℷ(˜b))−Λ2(RLIr3,ςy(˜b)+RLIr1+r3,ςℷ(˜b)), | (3.2) |
where for η1,η2≠−1,
Λ1=η2(η2+1)Γ(r3+δ),Λ2=η1η1+1,Λ3=η1η2(η2+1)Γ(r3+δ). | (3.3) |
Proof. Applying the ς-fractional integral RLIr1,ς to the first equation of (1.3), and using Lemma 2.4, we get
CDr3,ςϰ(υ)=y(υ)+RLIr1,ςℷ(υ)+c1(ς0(υ))δ−1,υ∈B,c1∈R, | (3.4) |
where δ=r1+r2(1−r1). Now, by taking RLIr3,ς in (3.4) from Lemma 2.3, we get
ϰ(υ)=RLIr3,ςy(υ)+RLIr1+r3,ςℷ(υ)+c1Γ(δ)Γ(r3+δ)(ς0(υ))r3+δ−1+c2,c2∈R. | (3.5) |
According to Lemma 2.3, we can obtain
CDδ+r3−1,ςϰ(υ)=RLI1−δ,ςy(υ)+RLIr1−δ+1,ςℷ(υ)+c1Γ(δ). | (3.6) |
Next, by combining the BCs ϰ(0)+η1ϰ(˜b)=0 and
CDδ+r3−1,ςϰ(0)+ηC2Dδ+r3−1,ςϰ(˜b)=0 |
with (3.6), we get
c2(1+η1)+ηRL1Ir3,ςy(˜b)+ηRL1Ir1+r3,ςℷ(υ)+c1η1Γ(δ)Γ(r3+δ)(ς0(˜b))r3+δ−1=0, | (3.7) |
c1(1+η2)Γ(δ)+ηRL2I1−δ,ςy(˜b)+ηRL2Ir1−δ+1,ςℷ(˜b)=0. | (3.8) |
From (3.7) and (3.8), we find
c1=−η2(1+η2)Γ(δ)(RLI1−δ,ςy(˜b)+RLIr1−δ+1,ςℷ(˜b)),c2=η1η2(1+η2)Γ(r3+δ)(ς0(υ))r3+δ−1(RLI1−δ,ςy(ς0(υ))+RLIr1−δ+1,ςℷ(˜b))−η1(1+η1)(RLIr3,ςy(˜b)+RLIr1+r3,ςℷ(υ)). |
By substituting the values of c1 and c2 into (3.5), we arrive at the fractional integral equation (3.2).
Definition 3.2. An element ϰ∈C1(B) can be a solution of (1.3), if there is σ∈L1(B) with σ(υ)∈ℷ(υ,ϰ) for every υ∈B fulfilling the non-separated BC's, ϰ(0)+η1ϰ(˜b)=0,
CDδ+r3−1,ζϰ(0)+ηC2Dδ+r3−1,ζϰ(˜b)=0, |
and
ϰ(υ)=RLIr3,ςy(υ,ϰ(υ))+RLIr1+r3,ςσ(υ)+[Λ3(ς0(˜b))r3+δ−1−Λ1(ς0(υ))r3+δ−1](RLI1−δ,ςy(˜b,ϰ(˜b))+RLIr1−δ+1,ςσ(˜b))−Λ2(RLIr3,ςy(˜b,ϰ(˜b))+RLIr1+r3,ςσ(˜b)). | (3.9) |
The first consequence addresses the convex-valued ℷ using the nonlinear alternative for contractive maps [27].
Theorem 3.3. Suppose that
P1) ℷ:B×R→Pcp,c(R) is a L1-Carathéodory SVM;
P2) There is a exist ˜ϖ1∈C(B,R+) and a nondecreasing ˜ϖ2∈C(R+,R+) with,
‖ℷ(υ,ϰ)‖P=sup{|ρ|:ρ∈ℷ(υ,ϰ)}≤˜ϖ1(υ)˜ϖ2(‖ϰ‖),∀(υ,ϰ)∈B×R; |
P3) There is a constant ly<λ−12 such that |y(υ,ϰ1)−y(υ,ϰ2)|≤ly|ϰ1−ϰ2|;
P4) There is a exist ϑy∈C(B,R+) such that |y(υ,ϰ)|≤ϑy(υ), for each (υ,ϰ)∈B×R;
P5) There is an N>0 satisfying
Nλ1‖˜ϖ1‖˜ϖ2(N)+λ2‖ϑy‖>1, | (3.10) |
where
λ1=(ς0(˜b))r3+r1[|Λ3|+|Λ1|Γ(r1−δ+2)+1+|Λ2|Γ(r1+r3+1)],λ2=(ς0(˜b))r3[|Λ3|+|Λ1|Γ(2−δ)+1+|Λ2|Γ(r3+1)]. | (3.11) |
Then, (1.3) admits a solution of B.
Proof. At first, to convert the sequential-type FDI (1.3) into a problem of the FP type, we write Θ:E→P(E) as follows:
Θ(ϰ)={z∈C(B):z(υ)={RLIr3,ςy(υ,ϰ(υ))+RLIr1+r3,ςσ(υ)+(Λ3(ς0(˜b))r3+δ−1−Λ1(ς0(υ))r3+δ−1)×(RLI1−δ,ςy(˜b,ϰ(˜b))+RLIr1−δ+1,ςσ(˜b))−Λ2(RLIr3,ςy(˜b,ϰ(˜b))+RLIr1+r3,ςσ(˜b))}, | (3.12) |
for σ∈Rℷ,ϰ. Consider two operators Ψ1:E→E and Ψ2:E→P(E) as follows:
Ψ1ϰ(υ)=[Λ3(ς0(˜b))r3+δ−1−Λ1(ς0(υ))r3+δ−1]RLI1−δ,ςy(˜b,ϰ(˜b))+RLIr3,ςy(υ,ϰ(υ))−ΛRL2Ir3,ςy(˜b,ϰ(˜b)), |
and
Ψ2(ϰ)={z∈E:z(υ)={[Λ3(ς0(˜b))r3+δ−1−Λ1(ς0(υ))r3+δ−1]RLIr1−δ+1,ςσ(˜b)+RLIr1+r3,ςσ(υ)−ΛRL2Ir1+r3,ςσ(˜b)}. |
Obviously, Θ=Ψ1+Ψ2. In the following, we demonstrate that Ψ1 and Ψ2 fulfill the conditions of the nonlinear alternative for contractive maps [27, Corollary 3.8]. Initially, we consider the set,
Ωγ∗={ϰ∈E:‖ϰ‖≤γ∗},γ∗>0, | (3.13) |
which is bounded, and show that Ψ˚ȷ define the SVMs Ψ˚ȷ:Ωγ∗→Pcp,c(E), ˚ȷ=1,2. To achieve this, we need to prove that Ψ1 and Ψ2 are compact and convex-valued. The proof will proceed in five steps.
Step 1. Ψ2 is bounded on bounded sets of E. Let Ωγ∗ be a bounded set in E. Then for every z∈Ψ2(ϰ) and ϰ∈Ωγ∗, σ∈Rℷ,ϰ exists such that,
z(υ)=[Λ3(ς0(˜b))r3+δ−1−Λ1(ς0(υ))r3+δ−1]RLIr1−δ+1,ςσ(˜b)+RLIr1+r3,ςσ(υ)−ΛRL2Ir1+r3,ςσ(˜b). |
Let (P1) holds. For any υ∈B, we obtain,
|z(υ)|≤[|Λ3|(ς0(˜b))r3+δ−1+|Λ1|(ς0(υ))r3+δ−1]RLIr1−δ+1,ς|σ(˜b)|+RLIr1+r3,ς|σ(υ)|+|Λ2|RLIr1+r3,ς|σ(˜b)|≤‖˜ϖ1‖˜ϖ2(γ∗)(ς0(˜b))r3+r1[|Λ3|+|Λ1|Γ(r1−δ+2)+1+|Λ2|Γ(r1+r3+1)]. |
Indeed, ‖z‖≤λ1‖˜ϖ1‖˜ϖ2(γ∗).
Step 2. Ψ2 maps bounded sets of E into equicontinuous sets. Let ϰ∈Ωγ∗ and z∈Ψ2(ϰ). In this case, an element σ∈Rℷ,ϰ exists such that
z(υ)=[Λ3(ς0(˜b))r3+δ−1−Λ1(ς0(υ))r3+δ−1]RLIr1−δ+1,ςσ(˜b)+RLIr1+r3,ςσ(υ)−ΛRL2Ir1+r3,ςσ(˜b),υ∈B. |
Let υ1,υ2∈B, υ1<υ2. Then
|z(υ2)−z(υ1)|≤‖˜ϖ1‖˜ϖ2(γ∗)(ς0(˜b))r1−δ+1Γ(r1−δ+2)(|Λ1|(ς0(υ2))r3+δ−1−(ς0(υ1))r3+δ−1)+‖˜ϖ1‖˜ϖ2(γ∗)Γ(r1+r3+1)[(ς0(υ2))r1+r3−(ς0(υ1))r1+r3]. |
As υ1→υ2, we obtain, |z(υ2)−z(υ1)|→0. Therefore, Ψ2(Ωγ∗) is equicontinuous. Combining the results from Steps 1 and 2, and employing the theorem of Arzelà-Ascoli, we can confirm the completely continuity of Ψ2.
Step 3. Ψ2(ϰ) is convex for all ϰ∈E. Let z1,z2∈Ψ2(ϰ). Then σ1,σ2∈Rℷ,ϰ exist such that for each υ∈B
zj(υ)=[Λ3(ς0(˜b))r3+δ−1−Λ1(ς0(υ))r3+δ−1]RLIr1−δ+1,ςσj(˜b)+RLIr1+r3,ςσj(υ)−ΛRL2Ir1+r3,ςσj(˜b),j=1,2. |
Let μ∈[0,1]. Then for any υ∈B,
(μz1(υ)+(1−μ)z2(υ))=[Λ3(ς0(˜b))r3+δ−1−Λ1(ς0(υ))r3+δ−1]RLIr1−δ+1,ς(μσ1(˜b)+(1−μ)σ2(˜b))+RLIr1+r3,ς(μσ1(υ)+(1−μ)σ2(υ))−ΛRL2Ir1+r3,ς(μσ1(˜b)+(1−μ)σ2(˜b)). |
Since ℷ has convex values, Rℷ,ϰ is convex, and for μ∈[0,1], (μσ1(υ)+(1−μ)σ2(υ))∈Rℷ,ϰ. Therefore, μz1(υ)+(1−μ)z2(υ)∈Ψ2(ϰ), which shows that Ψ2 is convex-valued. Moreover, Ψ1 is compact and convex-valued.
Step 4. We prove that Gr(Ψ2) is closed. Let ϰn→ϰ∗, zn∈Ψ2(ϰn) and zn→z∗. We show that z∗∈Ψ2(ϰ∗). Since zn∈Ψ2(ϰn), there is a σn∈Rℷ,ϰn such that,
zn(υ)=[Λ3(ς0(˜b))r3+δ−1−Λ1(ς0(υ))r3+δ−1]RLIr1−δ+1,ςσn(˜b)+RLIr1+r3,ςσn(υ)−ΛRL2Ir1+r3,ςσn(˜b). |
Therefore, we need to prove the existence of σ∗∈Rℷ,ϰ∗ such that for each υ∈B,
z∗(υ)=[Λ3(ς0(˜b))r3+δ−1−Λ1(ς0(υ))r3+δ−1]RLIr1−δ+1,ςσ∗(˜b)+RLIr1+r3,ςσ∗(υ)−ΛRL2Ir1+r3,ςσ∗(˜b),υ∈B. |
Let Υ:L1(B,R)→C(B,R) be a continuous linear operator defined as follows:
σ→Υ(σ)(υ)=[Λ3(ς0(˜b))r3+δ−1−Λ1(ς0(υ))r3+δ−1]Ia1−δ+1,ςσ(˜b)+RLIr1+r3,ςσ(υ)−ΛRL2Ir1+r3,ςσ(˜b),υ∈B. |
Notice that
‖zn−z∗‖=‖[Λ3(ς0(˜b))r3+δ−1−Λ1(ς0(υ))r3+δ−1]RLIr1−δ+1,ς(σn(˜b)−σ∗(˜b))+RLIr1+r3,ς(σn(υ)−σ∗(υ))−ΛRL2Ir1+r3,ς(σn(˜b)−σ∗(˜b))‖→0, |
when n→∞. Therefore, by Lemma 2.11, Υ∘Rℷ,ϰ is a closed graph operator. Additionally, zn∈Υ(Rℷ,ϰn). Since ϰn→ϰ∗, Lemma 2.11 gives
z∗(υ)=[Λ3(ς0(˜b))r3+δ−1−Λ1(ς0(υ))r3+δ−1]RLIr1−δ+1,ςσ∗(˜b)+RLIr1+r3,ςσ∗(υ)−ΛRL2Ir1+r3,ςσ∗(˜b), |
for some σ∗∈Rℷ,ϰ∗. Thus, the graph of Ψ2 is closed. As a result, Ψ2 is compact and upper semi-continuous.
Step 5. We prove that Ψ1 is a contraction in E. Let ϰ1,ϰ2∈E. By using the assumption (P3), we get,
|Ψ1ϰ1(υ)−Ψ1ϰ2(υ)|≤ly(ς0(˜b))r3(|Λ3|+|Λ1|Γ(2−δ)+1+|Λ2|Γ(r3+1))‖ϰ1−ϰ2‖. |
Thus, ‖Ψ1ϰ1−Ψ1ϰ2‖≤lyλ2‖φ−¯φ‖. As lyλ2<1, we conclude that Ψ1 is a contraction. Thus, the operators Ψ1 and Ψ2 meet the theorem [27] hypotheses. As a result, we conclude that either of the two following conditions holds, (a) Θ has an FP in ¯E, (b) we have ϰ∈∂E and ξ∈(0,1) with ϰ∈ξF(ϰ). We show that conclusion (b) is not possible. If ϰ∈ξΨ1(ϰ)+ξΨ2(ϰ) for ξ∈(0,1). Then, σ∈Rℷ,ϰ exists such that
|ϰ(υ)|=|ξRLIr3,ςy(υ,ϰ(υ))+ξRLIr1+r3,ςσ(υ)+ξ[Λ3(ς0(˜b))r3+δ−1−Λ1(ς0(υ))r3+δ−1](RLI1−δ,ςy(˜b,ϰ(˜b))+RLIr1−δ+1,ςσ(˜b))−ξΛ2(RLIr3,ςy(˜b,ϰ(˜b))+RLIr1+r3,ςσ(˜b))|≤λ1‖˜ϖ1‖˜ϖ2(ϰ)+λ2‖ϑy‖, |
which implies that |ϰ(υ)|≤λ1‖˜ϖ1‖˜ϖ2(ϰ)+λ2‖ϑy‖, for each υ∈B. If criterion of [27, Theorem-(b)] is true, then ξ∈(0,1) and ϰ∈∂E with ϰ=ξΘ(ϰ) exist. Therefore, ϰ is a solution of (1.3) with ‖ϰ‖=N. Now, thanks to |ϰ(υ)|≤λ1‖˜ϖ1‖˜ϖ2(ϰ)+λ2‖ϑy‖, we get
Nλ1‖˜ϖ1‖˜ϖ2(N)+λ2‖ϑy‖≤1, |
which contradicts (3.10). Thus, it follows from the theorem [27] that Θ admits an FP, and it is a solution of (1.3).
We try to establish a more general existence criterion for the FDI (1.3) under new hypotheses. Specifically, we demonstrate the desired existence result for a nonconvex-valued right-hand side using the theorem of Covitz and Nadler [28]. For a metric space (E,ϱ), we define
{Hϱ:P(E)×P(E)→R+∪{∞},Hϱ(˜R1,˜R2)=max{sup˜r1∈˜R1ϱ(˜r1,˜R2),sup˜r2∈˜R2ϱ(˜R1,˜r2)}, |
where ϱ(˜R1,˜r2)=inf˜r1∈˜R1ϱ(˜r1,ϱ2) and ϱ(˜r1,˜R2)=inf˜r2∈˜R2ϱ(˜r1,˜r2). Then (Pb,cl(E),Hϱ) forms a metric space [29].
Definition 3.4. An SVM Ω:E→Pcl(E) is a ˜η-Lipschitz if and only if ˜η>0 exists such that
Hϱ(Ω(ϰ1),Ω(ϰ2))≤˜ηϱ(ϰ1,ϰ2),∀ϰ1,ϰ2∈E. |
In particular, Ω is a contraction whenever ˜η<1.
Theorem 3.5. Assume that (P3) and the following conditions hold:
P6) The map ℷ:B×R→Pcp(R) is such that ℷ(⋅,φ):B→Pcp(R) is measurable for any ϰ∈R;
P7) The condition Hϱ(ℷ(υ,ϰ1),ℷ(υ,ϰ2))≤n(υ)|ϰ1−ϰ2| holds for a.e. υ∈B and ϰ1,ϰ2∈R with n∈C(B,R+) and ϱ(0,ℷ(υ,0))≤n(υ) for a.e. υ∈B.
Then FDI (1.3) has at least one solution for B whenever ‖n‖λ1+lyλ2<1, where λ1,λ2 are given in (3.11).
Proof. By assumption (P6) and [30, Theorem III.6], ℷ has a measurable selection σ:B→R, with σ∈L1(B), which implies that ℷ is integrability bounded. Therefore, Rℷ,ϰ≠∅. We demonstrate that the operator Ω:E→P(E) described in (3.12) meets the conditions required by Nadler and Covitz's FPT. Specifically, we prove that Ω(ϰ) is closed for each ϰ∈E. Assume a sequence such that {un}n≥0∈Ω(ϰ) and un→u(n→∞) in E. Then u∈E and σn∈RG,ϰn exists such that
un(υ)=RLIr3,ςy(υ,ϰ(υ))+RLIr1+r3,ςσn(υ)+[Λ3(ς0(˜b))r3+δ−1−Λ1(ς0(υ))r3+δ−1](RLI1−δ,ςy(˜b,ϰ(˜b))+RLIr1−δ+1,ςσn(˜b))−Λ2(RLIr3,ςy(˜b,ϰ(˜b))+RLIr1+r3,ςσn(˜b)). |
So there is a subsequence σn that converges to σ in L1(B), because ℷ has compact values. As a result, σ∈Rℷ,ϰ, and we get
un(υ)→u(υ)=RLIr3,ςy(υ,ϰ(υ))+RLIr1+r3,ςσ(υ)+[Λ3(ς0(˜b))r3+δ−1−Λ1(ς0(υ))r3+δ−1](RLI1−δ,ςy(˜b,ϰ(˜b))+RLIr1−δ+1,ςσ(˜b))−Λ2(RLIr3,ςy(˜b,ϰ(˜b))+RLIr1+r3,ςσ(˜b)). |
Hence u∈Ω(ϰ). Next, we show that a Δ∈(0,1), (Δ=‖n‖λ1+lyλ2) exists such that
Hϱ(Ω(ϰ1),Ω(ϰ2))≤Δ‖ϰ1−ϰ2‖,∀ϰ1,ϰ2∈E. |
Let ϰ1,ϰ2∈E and v1∈Ω(ϰ1). Then σ1(υ)∈ℷ(υ,ϰ1(υ)) exists such that for all υ∈B and
v1(υ)=RLIr3,ςy(υ,ϰ1(υ))+RLIr1+r3,ςσ1(υ)+[Λ3(ς0(˜b))r3+δ−1−Λ1(ς0(υ))r3+δ−1](RLI1−δ,ςy(˜b,ϰ1(˜b))+RLIr1−δ+1,ςσ1(˜b))−Λ2(RLIr3,ςy(˜b,ϰ1(˜b))+RLIr1+r3,ςσ1(˜b)). |
By (P7), we have
Hϱ(ℷ(υ,ϰ1(υ)),ℷ(υ,ϰ2(υ)))≤n(υ)|ϰ1(υ)−ϰ2(υ)|. |
Thus, χ(υ)∈ℷ(υ,ϰ2) exists such that |σ1(υ)−χ|≤n(υ)|ϰ1(υ)−ϰ2(υ)|, for each υ∈B. We build an SVM, O:B→P(R) as follows:
O(υ)={χ∈R:|σ1(υ)−χ|≤n(υ)|ϰ1(υ)−ϰ2(υ)|}. |
Notice that σ1 and ω=n|ϰ1−ϰ2| are measurable, so it follows that O(υ)∩ℷ(υ,ϰ2) is measurable. Next, we select the function σ2(υ)∈ℷ(υ,ϰ2) such that,
|σ1(υ)−σ2(υ)|≤n(υ)|ϰ1(υ)−ϰ2(υ)|,∀υ∈B. |
Define
v2(υ)=RLIr3,ςy(υ,ϰ2(υ))+IRLIr1+r3,ςσ2(υ)+[Λ3(ς0(˜b))r3+δ−1−Λ1(ς0(υ))r3+δ−1](RLI1−δ,ςy(˜b,ϰ2(˜b))+RLIr1−δ+1,ςσ2(˜b))−Λ2(RLIr3,ςy(˜b,ϰ2(˜b))+RLIr1+r3,ςσ2(˜b)). |
As a results, we arrive at,
|v1(υ)−v2(υ)|≤(‖n‖λ1+lyλ2)‖ϰ1−ϰ2‖, |
which implies ‖v1−v2‖≤(‖n‖λ1+lyλ2)‖ϰ1−ϰ2‖. Now, by interchanging the roles of ϰ1 and ϰ2, we obtain,
Hϱ(Ω(ϰ1),Ω(ϰ2))≤(‖n‖λ1+lyλ2)‖ϰ1−ϰ2‖. |
Since Ω is a contraction, it follows that the Covitz and Nadler theorem that Ω has an FP, which is a solution of the FDI (1.3).
In order to validate the theoretical findings, we provide specific cases of FDIs in this section. In fact, we focus on the FDI with the following form:
{HDr1,r2,ς(CDr3,ςϰ(υ)−y(υ,ϰ(υ)))∈ℷ(υ,ϰ(υ)),υ∈B,ϰ(0)+η1ϰ(˜b)=0,CDδ+r3−1,ςϰ(0)+ηC2Dδ+r3−1,ςϰ(˜b)=0. | (4.1) |
The examples below are special cases of FDIs given by (4.1).
Example 4.1. Using the FDIs defined by (4.1) and taking r1∈{12,23,56}, r2=13, r3=15, ς(υ)=υ2, η1=14, η2=16, δ=0.666,0.777,0.888, and ˜b=1, the problem (4.1) is reduced to
{HD1/2,1/3,υ2(CD1/5,υ2ϰ(υ)−y(υ,ϰ(υ)))∈ℷ(υ,ϰ(υ)),ϰ(0)+14ϰ(1)=0,CD−2/15,υ2ϰ(0)+16CD−2/15,υ2ϰ(1)=0, | (4.2) |
for υ∈B. With these data, it follows from (3.3), that we have
Λ1=η2(η2+1)Γ(r3+δ)≃{0.1302,r1=1/2,0.1409,r1=2/3,0.1494,r1=5/6,Λ2=η1η1+1≃{0.2000,r1=1/2,0.2000,r1=2/3,0.2000,r1=5/6,Λ3=η1η2(η2+1)Γ(r3+δ)≃{0.0325,r1=1/2,0.0352,r1=2/3,0.0373,r1=5/6. |
We define the function y and the SVM ℷ:B×R→P(R) as follows:
y(υ,ϰ)=cos(υ)υ2+2(|ϰ||ϰ|+1),∀(υ,ϰ)∈B×R, | (4.3) |
and
ℷ(υ,ϰ)=[1(5υ2+7exp(υ))ϰ5(ϰ+3), 1√υ2+16|ϰ||ϰ|+1]. | (4.4) |
For ϰ,¯ϰ∈R, we have
|y(υ,ϰ)−y(υ,¯ϰ)|=|cos(υ)υ2+2(|ϰ||ϰ|+1−|¯ϰ||¯ϰ|+1)|≤1υ2+2(|ϰ−¯ϰ|(1+|ϰ|)(1+|¯ϰ|))≤ly|ϰ−¯ϰ|, | (4.5) |
with ly=12 and also,
y(υ,ϰ)≤1exp(υ2)+1=ϑy(υ),∀(υ,ϰ)∈B×R. |
Thus, the assumptions (P3) and (P4) hold. It is also clear that the SVM ℷ satisfies the assumption (P1) and
‖ℷ(υ,ϰ)‖P=sup{|η|:η∈ℷ(υ,ϰ)}≤1√υ2+16=˜ϖ1(υ)˜ϖ2(‖ϰ‖), |
where ‖˜ϖ1‖=14 and ˜ϖ2(‖ϰ‖)=1. Thus, (P2) holds, and by (P5),
λ1=(ς0(˜b))r3+r1[|Λ3|+|Λ1|Γ(r1−δ+2)+1+|Λ2|Γ(r1+r3+1)]≃{1.494,r1=1/2,1.446,r1=2/3,1.374,r1=5/6,λ2=(ς0(˜b))r3[|Λ3|+|Λ1|Γ(2−δ)+1+|Λ2|Γ(r3+1)]≃{1.489,r1=1/2,1.500,r1=2/3,1.504,r1=5/6, |
for which the curves are shown in Figure 1, Moreover,
N>λ1‖˜ϖ1‖˜ϖ2(N)+λ2‖ϑy‖≃{1.140,r1=1/2,1.117,r1=2/3,1.086,r1=5/6, |
whenever N=1.15, which it is shown in Figure 2. As seen in Table 1, the effect of the order of the derivative r1 is very insignificant. So all assumptions of Theorem 3.3 are valid. Hence the FDI (4.2) has a solution for B.
υ | r1=12r1=12 | r1=23r1=23 | r1=56r1=56 | ||||||||
λ1 | λ2 | N>... | λ1 | λ2 | N>... | λ1 | λ2 | N>... | |||
0.00 | 0.000 | 0.000 | 0.000 | 0.000 | 0.000 | 0.000 | 0.000 | 0.000 | 0.000 | ||
0.10 | 0.059 | 0.593 | 0.316 | 0.027 | 0.597 | 0.307 | 0.012 | 0.599 | 0.303 | ||
0.20 | 0.157 | 0.782 | 0.443 | 0.089 | 0.788 | 0.423 | 0.049 | 0.790 | 0.411 | ||
0.30 | 0.277 | 0.920 | 0.552 | 0.179 | 0.927 | 0.523 | 0.114 | 0.929 | 0.502 | ||
0.40 | 0.414 | 1.032 | 0.653 | 0.295 | 1.040 | 0.618 | 0.207 | 1.043 | 0.590 | ||
0.50 | 0.566 | 1.129 | 0.751 | 0.435 | 1.137 | 0.712 | 0.328 | 1.140 | 0.678 | ||
0.60 | 0.731 | 1.214 | 0.849 | 0.597 | 1.223 | 0.809 | 0.478 | 1.226 | 0.771 | ||
0.70 | 0.907 | 1.291 | 0.945 | 0.779 | 1.301 | 0.908 | 0.657 | 1.304 | 0.869 | ||
0.80 | 1.093 | 1.362 | 1.042 | 0.982 | 1.372 | 1.011 | 0.866 | 1.376 | 0.974 | ||
0.90 | 1.289 | 1.428 | 1.140 | 1.205 | 1.438 | 1.117 | 1.105 | 1.442 | 1.086 | ||
1.00 | 1.494 | 1.489 | 1.238 | 1.446 | 1.500 | 1.228 | 1.374 | 1.504 | 1.206 |
In the next example, we check the changes in the derivative order r2.
Example 4.2. Using the FDI defined by (4.1) and taking r1=12, r2∈{115,17,13}, r3=15, ς(υ)=υ, η1=14, η2=16, δ=0.533,0.571,0.666, and ˜b=1, 4.1 is reduced to
{HD1/2,1/3,υ(CD1/5,υϰ(υ)−y(υ,ϰ(υ)))∈ℷ(υ,ϰ(υ)),υ∈B,ϰ(0)+14ϰ(1)=0,CD−2/15,υϰ(0)+16CD−2/15,υϰ(1)=0. | (4.6) |
With these data, we find
Λ1≃{0.114,r2=1/15,0.119,r2=1/7,0.130,r2=1/3,Λ2≃{0.200,r2=1/15,0.200,r2=1/7,0.200,r2=1/3,Λ3≃{0.028,r2=1/15,0.029,r2=1/7,0.032,r2=1/3. |
Consider the SVM ℷ:B×R→P(R) is defined by, φ→ℷ(υ,ϰ)=[0,sin(ϰ)5√υ2+4+112], and the function y defined in (4.3). From (4.5), we see that the assumption (P3) is satisfied with ly=12. Next, we have Hϱ(ℷ(υ,ϰ),ℷ(υ,¯ϰ))≤n(υ)|ϰ−¯ϰ|, where n(υ)=15√υ2+4 and ϱ(0,ℷ(υ,0))=112≤n(υ) for a.e. υ∈B. Figure 3 shows the curves of λi, i=1,2, whenever r2 varies in the interval B. By comparing the curves and data in Table 2, it can be clearly seen that as r2 approaches zero, λi decreases.
υ | r2=115r2=115 | r2=17r2=17 | r2=13r2=13 | ||||||||
λ1 | λ2 | ‖n‖λ1+lyλ2 | λ1 | λ2 | ‖n‖λ1+lyλ2 | λ1 | λ2 | ‖n‖λ1+lyλ2 | |||
0.00 | 0.000 | 0.000 | 0.000 | 0.000 | 0.000 | 0.000 | 0.000 | 0.000 | 0.000 | ||
0.10 | 0.292 | 0.927 | 0.493 | 0.294 | 0.931 | 0.495 | 0.298 | 0.940 | 0.500 | ||
0.20 | 0.475 | 1.064 | 0.580 | 0.478 | 1.069 | 0.582 | 0.484 | 1.079 | 0.588 | ||
0.30 | 0.631 | 1.154 | 0.640 | 0.635 | 1.159 | 0.643 | 0.643 | 1.171 | 0.650 | ||
0.40 | 0.772 | 1.223 | 0.688 | 0.776 | 1.228 | 0.692 | 0.787 | 1.240 | 0.699 | ||
0.50 | 0.902 | 1.278 | 0.729 | 0.907 | 1.284 | 0.733 | 0.919 | 1.296 | 0.740 | ||
0.60 | 1.025 | 1.326 | 0.765 | 1.031 | 1.332 | 0.769 | 1.045 | 1.345 | 0.777 | ||
0.70 | 1.142 | 1.367 | 0.798 | 1.148 | 1.374 | 0.802 | 1.164 | 1.387 | 0.810 | ||
0.80 | 1.254 | 1.404 | 0.828 | 1.261 | 1.411 | 0.831 | 1.278 | 1.424 | 0.840 | ||
0.90 | 1.361 | 1.438 | 0.855 | 1.369 | 1.444 | 0.859 | 1.388 | 1.458 | 0.868 | ||
1.00 | 1.466 | 1.468 | 0.881 | 1.474 | 1.475 | 0.885 | 1.494 | 1.489 | 0.894 |
Furthermore, we obtain ‖n‖=110, resulting in
‖n‖λ1+lyλ2≃{0.881,r2=1/15,0.885,r2=1/7,0.894,r2=1/3.}<1. | (4.7) |
These results are shown in Table 2. Furthermore, the curves of Eq (4.7) for three cases of r2 are shown in Figure 4.
Therefore, all the assumptions of Theorem 3.5 are satisfied, which implies that at least one solution to the problem (4.6) for B.
In Example 4.3, we examine our proven theorems for changes of function ς(υ).
Example 4.3. Using the FDIs defined by (4.1) and taking r1∈23, r2=13, r3=15,
ς1(υ)=υ2,ς2(υ)=υ,ς3(υ)=√υ,ς4(υ)=ln(υ+0.01), | (4.8) |
η1=14, η2=16, δ=0.777, ˜b=1, the problem (4.1) is reduced to
{HD2/3,1/3,ςj(υ)(CD1/5,ςj(υ)ϰ(υ)−y(υ,ϰ(υ)))∈ℷ(υ,ϰ(υ)),ϰ(0)+14ϰ(1)=0,CD−2/15,ςj(υ)ϰ(0)+16CD−2/15,ςj(υ)ϰ(1)=0, | (4.9) |
for υ∈B. With these data, it follows from (3.3) that
Λ1=η2(η2+1)Γ(r3+δ)≃0.1409,Λ2=η1η1+1≃0.2000,Λ3=η1η2(η2+1)Γ(r3+δ)≃0.0352. |
We define the function y and the SVM ℷ:B×R→P(R) as follows:
y(υ,ϰ)=cos(υ)υ2+2(|ϰ||ϰ|+1),∀(υ,ϰ)∈B×R, |
and
ℷ(υ,ϰ)=[1(5υ2+7exp(υ))ϰ5(ϰ+3), 1√υ2+16|ϰ||ϰ|+1]. |
For ϰ,¯ϰ∈R, we have
|y(υ,ϰ)−y(υ,¯ϰ)|=|cos(υ)υ2+2(|ϰ||ϰ|+1−|¯ϰ||¯ϰ|+1)|≤1υ2+2(|ϰ−¯ϰ|(1+|ϰ|)(1+|¯ϰ|))≤ly|ϰ−¯ϰ|, |
with ly=12, as well as y(υ,ϰ)≤1exp(υ2)+1=ϑy(υ), for each (υ,ϰ)∈B×R. Thus, the assumptions (P3) and (P4) hold. It is also clear that the SVM ℷ satisfies the assumption (P1) and
‖ℷ(υ,ϰ)‖P=sup{|η|:η∈ℷ(υ,ϰ)}≤1√υ2+16=˜ϖ1(υ)˜ϖ2(‖ϰ‖), |
where ‖˜ϖ1‖=14 and ˜ϖ2(‖ϰ‖)=1. Thus, (P2) holds, and by (P5)
λ1=(ς0(˜b))r3+r1[|Λ3|+|Λ1|Γ(r1−δ+2)+1+|Λ2|Γ(r1+r3+1)]≃{1.494,ς1(υ)=υ2,1.446,ς2(υ)=υ,1.374,ς3(υ)=√υ,1.374,ς4(υ)=ln(υ+0.01),λ2=(ς0(˜b))r3[|Λ3|+|Λ1|Γ(2−δ)+1+|Λ2|Γ(r3+1)]≃{1.494,ς1(υ)=υ2,1.446,ς2(υ)=υ,1.374,ς3(υ)=√υ,1.374,ς4(υ)=ln(υ+0.01), |
for which the curves are shown in Figure 5. Moreover
N>λ1‖˜ϖ1‖˜ϖ2(N)+λ2‖ϑy‖≃{1.117,ς1(υ)=υ2,1.114,ς2(υ)=υ,1.138,ς3(υ)=√υ,1.142,ς4(υ)=ln(υ+0.01), |
whenever N=1.15, which is shown in Figure 6. As seen in Table 3, the effect of ς(υ) is very remarkable.
υ | ς1(υ)=υ2ς1(υ)=υ2 | ς2(υ)=υς2(υ)=υ | ς3(υ)=√υς3(υ)=√υ | ς4(υ)=ln(υ+0.01)ς4(υ)=ln(υ+0.01) | |||||||||||
λ1 | λ2 | N>... | λ1 | λ2 | N>... | λ1 | λ2 | N>... | λ1 | λ2 | N>… | ||||
0.00 | 0.000 | 0.000 | 0.000 | 0.000 | 0.000 | 0.000 | 0.000 | 0.000 | 0.000 | 0.000 | 0.000 | 0.000 | |||
0.10 | 0.027 | 0.597 | 0.307 | 0.197 | 0.946 | 0.530 | 0.533 | 1.192 | 0.739 | 3.086 | 1.787 | 1.008 | |||
0.20 | 0.089 | 0.788 | 0.423 | 0.358 | 1.087 | 0.647 | 0.720 | 1.277 | 0.832 | 3.795 | 1.874 | 1.078 | |||
0.30 | 0.179 | 0.927 | 0.523 | 0.509 | 1.179 | 0.736 | 0.858 | 1.330 | 0.895 | 4.213 | 1.920 | 1.116 | |||
0.40 | 0.295 | 1.040 | 0.618 | 0.654 | 1.249 | 0.812 | 0.972 | 1.369 | 0.945 | 4.508 | 1.950 | 1.142 | |||
0.50 | 0.435 | 1.137 | 0.712 | 0.793 | 1.306 | 0.881 | 1.071 | 1.400 | 0.987 | 4.737 | 1.973 | 1.162 | |||
0.60 | 0.597 | 1.223 | 0.809 | 0.929 | 1.354 | 0.944 | 1.159 | 1.425 | 1.023 | 4.923 | 1.990 | 1.178 | |||
0.70 | 0.779 | 1.301 | 0.908 | 1.062 | 1.397 | 1.004 | 1.239 | 1.447 | 1.056 | 5.081 | 2.005 | 1.191 | |||
0.80 | 0.982 | 1.372 | 1.011 | 1.192 | 1.435 | 1.060 | 1.313 | 1.467 | 1.085 | 5.216 | 2.017 | 1.202 | |||
0.90 | 1.205 | 1.438 | 1.117 | 1.320 | 1.469 | 1.114 | 1.382 | 1.484 | 1.113 | 5.336 | 2.027 | 1.212 | |||
1.00 | 1.446 | 1.500 | 1.228 | 1.446 | 1.500 | 1.166 | 1.446 | 1.500 | 1.138 | 5.443 | 2.037 | 1.220 |
So all the assumptions of Theorem 3.3 are valid. Hence the FDI (4.9) has a solution for B.
In the investigation of FDEs and FDIs that contain Hilfer fractional derivative operators, a zero initial condition is typically required. To address this limitation, we proposed a novel approach that combines Hilfer and Caputo fractional derivatives. In this research, we applied this method to study a class of FDEs for FDIs with non-separated BCs, incorporating both Hilfer and Caputo fractional derivative operators. The existence results are established by examining cases where the set-valued map has either convex or nonconvex values. For convex SVMs, the Leray-Schauder FPT was applied, whereas Nadler's and Covitz's FPTs are used for nonconvex SVMs. The findings are well demonstrated with two relevant illustrative examples. The findings of this study contribute significantly to the emerging field of FDIs. In future work, we aim to apply this method to study other types of FDEs with nonzero initial conditions, as well as coupled systems of FDEs that incorporate both Hilfer and Caputo FDs.
Data sharing not applicable to this article as no datasets were generated or analyzed during the current study.
Adel Lachouri: Actualization, methodology, formal analysis, validation, investigation, initial draft and a major contribution to writing the manuscript. Naas Adjimi: Actualization, methodology, formal analysis, validation, investigation and review. Mohammad Esmael Samei: Actualization, methodology, formal analysis, validation, investigation, software, simulation, review and a major contribution to writing the manuscript. Manuel De la Sen: Validation, review, funding. All authors read and approved the final manuscript.
The authors declare they have not used Artificial Intelligence (AI) tools in the creation of this article.
This research was funded by the Basque Government, Grant IT1555-22.
The authors declare that they have no competing interests.
[1] |
S. Rogosin, M. Karapiyenya, Fractional models for analysis of economic risks, Fract. Calc. Appl. Anal., 26 (2023), 2602–2617. https://doi.org/10.1007/s13540-023-00202-y doi: 10.1007/s13540-023-00202-y
![]() |
[2] |
B. Acay, E. Bas, T. Abdeljawad, Fractional economic models based on market equilibrium in the frame of different type kernels, Chaos Soliton. Fract., 130 (2020), 109438. https://doi.org/10.1016/j.chaos.2019.109438 doi: 10.1016/j.chaos.2019.109438
![]() |
[3] |
R. P. Chaouhan, S. Kumar, B. S. T. Alkahtani, S. S. Alzaid, A study on fractional order financial model by using Caputo-Fabrizio derivative, Results Phys., 57 (2024), 107335. https://doi.org/10.1016/j.rinp.2024.107335 doi: 10.1016/j.rinp.2024.107335
![]() |
[4] |
L. Debnath, Recent applications of fractional calculus to science and engineering, Int. J. Math. Math. Sci., 2003 (2003), 3413–3442. https://doi.org/10.1155/S0161171203301486 doi: 10.1155/S0161171203301486
![]() |
[5] |
J. Alzabut, S. R. Grace, S. S. Santra, M. E. Samei, Oscillation of even-order nonlinear dynamic equations with sublinear and superlinear neutral terms on time scales, Qual. Theory Dyn. Syst., 23 (2024), 103. https://doi.org/10.1007/s12346-024-00961-w doi: 10.1007/s12346-024-00961-w
![]() |
[6] |
S. T. M. Thabet, M. Vivas-Cortez, I. Kedim, M. E. Samei, M. I. Ayari, Solvability of ϱ-Hilfer fractional snap dynamic system on unbounded domains, Fractals Fract., 7 (2023), 607. https://doi.org/10.3390/fractalfract7080607 doi: 10.3390/fractalfract7080607
![]() |
[7] |
R. Magin, Fractional calculus in bioengineering, part 1, Criti. Rev. Biomed. Eng., 32 (2004), 1–104. https://doi.org/10.1615/CritRevBiomedEng.v32.i1.10 doi: 10.1615/CritRevBiomedEng.v32.i1.10
![]() |
[8] |
A. S. Alshehry, S. Mukhtar, A. M. Mahnashi, Analytical methods in fractional biological population modeling: unveiling solitary wave solutions, AIMS Math., 9 (2024), 15,966–15,987. https://doi.org/10.3934/math.2024773 doi: 10.3934/math.2024773
![]() |
[9] |
B. Mohammadaliee, V. Roomi, M. E. Samei, SEIARS model for analyzing COVID-19 pandemic process via ψ-Caputo fractional derivative and numerical simulation, Sci. Rep., 14 (2024), 723. https://doi.org/10.1038/s41598-024-51415-x doi: 10.1038/s41598-024-51415-x
![]() |
[10] | R. Hilfer, Applications of fractional calculus in physics, Singapore: World Scientific, 2000. https://doi.org/10.1142/3779 |
[11] |
C. Thaiprayoon, W. Sudsutad, J. Alzabut, S. Etemad, S. Rezapour, On the qualitative analysis of the fractional boundary value problem describing thermostat control model via ψ-Hilfer fractional operator, Adv. Differ. Equ., 2021 (2021), 201. https://doi.org/10.1186/s13662-021-03359-z doi: 10.1186/s13662-021-03359-z
![]() |
[12] | D. Baleanu, J. A. T. Machado, A. C. J. Luo, Fractional dynamics and control, Springer, 2002. |
[13] |
J. V. C. Sousa, E. C. D. Oliveira, On the ϑ-Hilfer fractional derivative, Commun. Nonlinear Sci. Numer. Simul., 60 (2018), 72–91. https://doi.org/10.1016/j.cnsns.2018.01.005 doi: 10.1016/j.cnsns.2018.01.005
![]() |
[14] |
S. Asawasamrit, A. Kijjathanakorn, S. K. Ntouyas, J. Tariboon, Nonlocal boundary value problems for Hilfer fractional differential equations, Bull. Korean Math. Soc., 55 (2018), 1639–1657. https://doi.org/10.4134/BKMS.b170887 doi: 10.4134/BKMS.b170887
![]() |
[15] |
A. Samadi, S. K. Ntouyas, J. Tariboon, Mixed Hilfer and caputo fractional Riemann-Stieltjes integro-differential equations with non-separated boundary conditions, Mathematics, 12 (2024), 1361. https://doi.org/10.3390/math12091361 doi: 10.3390/math12091361
![]() |
[16] | I. Ahmed, S. K. Ntouyas, J. Tariboon, Separated boundary value problems via quantum Hilfer and Caputo operators. AIMS Math., 9 (2024), 19473–19494. https://doi.org/10.3934/math.2024949 |
[17] |
A. Lachouri, M. S. Abdo, A. Ardjouni, S. Etemad, S. Rezapou, A generalized neutral-type inclusion problem in the frame of the generalized Caputo fractional derivatives, Adv. Differ. Equ., 2021 (2021), 404. https://doi.org/10.1186/s13662-021-03559-7 doi: 10.1186/s13662-021-03559-7
![]() |
[18] |
S. Surang, S. K. Ntouyasm, S. Ayub, T. Jessada, Boundary value problems for ψ-Hilfer type sequential fractional differential equations and inclusions with integral multi-point boundary conditions, Mathematics, 9 (2021), 1001. https://doi.org/10.3390/math9091001 doi: 10.3390/math9091001
![]() |
[19] |
S. Etemad, I. Iqbal, M. E. Samei, S. Rezapour, J. Alzabut, W. Sudsutad, et al., Some inequalities on multi-functions for applying fractional caputo-hadamard jerk inclusion system, J. Inequal. Appl., 2022 (2022), 84. https://doi.org/10.1186/s13660-022-02819-8 doi: 10.1186/s13660-022-02819-8
![]() |
[20] |
F. Jarad, T. Abdeljawad, Generalized fractional derivatives and Laplace transform, Discrete Contin. Dyn. Syst.-Ser. S, 13 (2019), 709–722. https://doi.org/10.3934/dcdss.2020039 doi: 10.3934/dcdss.2020039
![]() |
[21] |
R. Almeida, A Caputo fractional derivative of a function with respect to another function, Commun. Nonlinear Sci. Numer. Simul., 44 (2017), 460–481. https://doi.org/10.1016/j.cnsns.2016.09.006 doi: 10.1016/j.cnsns.2016.09.006
![]() |
[22] | S. G. Samko, A. A. Kilbas, O. I. Marichev, Fractional integrals and derivatives: theory and applications, Gordon and Breach Science Publishers, 1993. |
[23] | A. A. Kilbas, H. M. Srivastava, J. J. Trujillo, Theory and applications of fractional differential equations, Vol. 204, Elsevier, 2006, |
[24] |
M. Aitalioubrahim, S. Sajid, Higher-order boundary value problems for Carathéodory differential inclusions, Miskolc Math. Notes, 9 (2008), 7–15. https://doi.org/ 10.18514/MMN.2008.180 doi: 10.18514/MMN.2008.180
![]() |
[25] | K. Deimling, Multivalued differential equations, De Gruyter, 1992. https://doi.org/10.1515/9783110874228 |
[26] | A. Lasota, Z. Opial, An application of the Kakutani–Ky fan theorem in the theory of ordinary differential equations, Bull. Acad. Polon. Sci. Ser. Sci. Math. Astoronom. Phys., 13 (1955), 781–786. |
[27] |
W. V. Petryshyn, P. M. Fitzpatrick, A degree theory, fixed point theorems, and mapping theorems for multivalued noncompact maps, Trans. Amer. Math. Soc., 194 (1974), 1–25. https://doi.org/10.2307/1996791 doi: 10.2307/1996791
![]() |
[28] |
H. Covitz, S. B. Nadler, Multivalued contraction mappings in generalized metric spaces, Israel J. Math., 8 (1970), 5–11. https://doi.org/10.1007/BF02771543 doi: 10.1007/BF02771543
![]() |
[29] | M. Kisielewicz, Differential inclusions and optimal control, Vol. 44, Springer Dordrecht, 1991. |
[30] | C. Castaing, M. Valadier, Convex analysis and measurable multifunction, Lecture Notes in Mathematics, Springer, 1977. |
1. | Maryam Moghaddamfar, Manochehr Kazemi, Reza Ezzati, Existence results for generalized 2D fractional partial integro-differential equations, 2025, 03770427, 116705, 10.1016/j.cam.2025.116705 |
υ | r1=12r1=12 | r1=23r1=23 | r1=56r1=56 | ||||||||
λ1 | λ2 | N>... | λ1 | λ2 | N>... | λ1 | λ2 | N>... | |||
0.00 | 0.000 | 0.000 | 0.000 | 0.000 | 0.000 | 0.000 | 0.000 | 0.000 | 0.000 | ||
0.10 | 0.059 | 0.593 | 0.316 | 0.027 | 0.597 | 0.307 | 0.012 | 0.599 | 0.303 | ||
0.20 | 0.157 | 0.782 | 0.443 | 0.089 | 0.788 | 0.423 | 0.049 | 0.790 | 0.411 | ||
0.30 | 0.277 | 0.920 | 0.552 | 0.179 | 0.927 | 0.523 | 0.114 | 0.929 | 0.502 | ||
0.40 | 0.414 | 1.032 | 0.653 | 0.295 | 1.040 | 0.618 | 0.207 | 1.043 | 0.590 | ||
0.50 | 0.566 | 1.129 | 0.751 | 0.435 | 1.137 | 0.712 | 0.328 | 1.140 | 0.678 | ||
0.60 | 0.731 | 1.214 | 0.849 | 0.597 | 1.223 | 0.809 | 0.478 | 1.226 | 0.771 | ||
0.70 | 0.907 | 1.291 | 0.945 | 0.779 | 1.301 | 0.908 | 0.657 | 1.304 | 0.869 | ||
0.80 | 1.093 | 1.362 | 1.042 | 0.982 | 1.372 | 1.011 | 0.866 | 1.376 | 0.974 | ||
0.90 | 1.289 | 1.428 | 1.140 | 1.205 | 1.438 | 1.117 | 1.105 | 1.442 | 1.086 | ||
1.00 | 1.494 | 1.489 | 1.238 | 1.446 | 1.500 | 1.228 | 1.374 | 1.504 | 1.206 |
υ | r2=115r2=115 | r2=17r2=17 | r2=13r2=13 | ||||||||
λ1 | λ2 | ‖n‖λ1+lyλ2 | λ1 | λ2 | ‖n‖λ1+lyλ2 | λ1 | λ2 | ‖n‖λ1+lyλ2 | |||
0.00 | 0.000 | 0.000 | 0.000 | 0.000 | 0.000 | 0.000 | 0.000 | 0.000 | 0.000 | ||
0.10 | 0.292 | 0.927 | 0.493 | 0.294 | 0.931 | 0.495 | 0.298 | 0.940 | 0.500 | ||
0.20 | 0.475 | 1.064 | 0.580 | 0.478 | 1.069 | 0.582 | 0.484 | 1.079 | 0.588 | ||
0.30 | 0.631 | 1.154 | 0.640 | 0.635 | 1.159 | 0.643 | 0.643 | 1.171 | 0.650 | ||
0.40 | 0.772 | 1.223 | 0.688 | 0.776 | 1.228 | 0.692 | 0.787 | 1.240 | 0.699 | ||
0.50 | 0.902 | 1.278 | 0.729 | 0.907 | 1.284 | 0.733 | 0.919 | 1.296 | 0.740 | ||
0.60 | 1.025 | 1.326 | 0.765 | 1.031 | 1.332 | 0.769 | 1.045 | 1.345 | 0.777 | ||
0.70 | 1.142 | 1.367 | 0.798 | 1.148 | 1.374 | 0.802 | 1.164 | 1.387 | 0.810 | ||
0.80 | 1.254 | 1.404 | 0.828 | 1.261 | 1.411 | 0.831 | 1.278 | 1.424 | 0.840 | ||
0.90 | 1.361 | 1.438 | 0.855 | 1.369 | 1.444 | 0.859 | 1.388 | 1.458 | 0.868 | ||
1.00 | 1.466 | 1.468 | 0.881 | 1.474 | 1.475 | 0.885 | 1.494 | 1.489 | 0.894 |
υ | ς1(υ)=υ2ς1(υ)=υ2 | ς2(υ)=υς2(υ)=υ | ς3(υ)=√υς3(υ)=√υ | ς4(υ)=ln(υ+0.01)ς4(υ)=ln(υ+0.01) | |||||||||||
λ1 | λ2 | N>... | λ1 | λ2 | N>... | λ1 | λ2 | N>... | λ1 | λ2 | N>… | ||||
0.00 | 0.000 | 0.000 | 0.000 | 0.000 | 0.000 | 0.000 | 0.000 | 0.000 | 0.000 | 0.000 | 0.000 | 0.000 | |||
0.10 | 0.027 | 0.597 | 0.307 | 0.197 | 0.946 | 0.530 | 0.533 | 1.192 | 0.739 | 3.086 | 1.787 | 1.008 | |||
0.20 | 0.089 | 0.788 | 0.423 | 0.358 | 1.087 | 0.647 | 0.720 | 1.277 | 0.832 | 3.795 | 1.874 | 1.078 | |||
0.30 | 0.179 | 0.927 | 0.523 | 0.509 | 1.179 | 0.736 | 0.858 | 1.330 | 0.895 | 4.213 | 1.920 | 1.116 | |||
0.40 | 0.295 | 1.040 | 0.618 | 0.654 | 1.249 | 0.812 | 0.972 | 1.369 | 0.945 | 4.508 | 1.950 | 1.142 | |||
0.50 | 0.435 | 1.137 | 0.712 | 0.793 | 1.306 | 0.881 | 1.071 | 1.400 | 0.987 | 4.737 | 1.973 | 1.162 | |||
0.60 | 0.597 | 1.223 | 0.809 | 0.929 | 1.354 | 0.944 | 1.159 | 1.425 | 1.023 | 4.923 | 1.990 | 1.178 | |||
0.70 | 0.779 | 1.301 | 0.908 | 1.062 | 1.397 | 1.004 | 1.239 | 1.447 | 1.056 | 5.081 | 2.005 | 1.191 | |||
0.80 | 0.982 | 1.372 | 1.011 | 1.192 | 1.435 | 1.060 | 1.313 | 1.467 | 1.085 | 5.216 | 2.017 | 1.202 | |||
0.90 | 1.205 | 1.438 | 1.117 | 1.320 | 1.469 | 1.114 | 1.382 | 1.484 | 1.113 | 5.336 | 2.027 | 1.212 | |||
1.00 | 1.446 | 1.500 | 1.228 | 1.446 | 1.500 | 1.166 | 1.446 | 1.500 | 1.138 | 5.443 | 2.037 | 1.220 |
υ | r1=12r1=12 | r1=23r1=23 | r1=56r1=56 | ||||||||
λ1 | λ2 | N>... | λ1 | λ2 | N>... | λ1 | λ2 | N>... | |||
0.00 | 0.000 | 0.000 | 0.000 | 0.000 | 0.000 | 0.000 | 0.000 | 0.000 | 0.000 | ||
0.10 | 0.059 | 0.593 | 0.316 | 0.027 | 0.597 | 0.307 | 0.012 | 0.599 | 0.303 | ||
0.20 | 0.157 | 0.782 | 0.443 | 0.089 | 0.788 | 0.423 | 0.049 | 0.790 | 0.411 | ||
0.30 | 0.277 | 0.920 | 0.552 | 0.179 | 0.927 | 0.523 | 0.114 | 0.929 | 0.502 | ||
0.40 | 0.414 | 1.032 | 0.653 | 0.295 | 1.040 | 0.618 | 0.207 | 1.043 | 0.590 | ||
0.50 | 0.566 | 1.129 | 0.751 | 0.435 | 1.137 | 0.712 | 0.328 | 1.140 | 0.678 | ||
0.60 | 0.731 | 1.214 | 0.849 | 0.597 | 1.223 | 0.809 | 0.478 | 1.226 | 0.771 | ||
0.70 | 0.907 | 1.291 | 0.945 | 0.779 | 1.301 | 0.908 | 0.657 | 1.304 | 0.869 | ||
0.80 | 1.093 | 1.362 | 1.042 | 0.982 | 1.372 | 1.011 | 0.866 | 1.376 | 0.974 | ||
0.90 | 1.289 | 1.428 | 1.140 | 1.205 | 1.438 | 1.117 | 1.105 | 1.442 | 1.086 | ||
1.00 | 1.494 | 1.489 | 1.238 | 1.446 | 1.500 | 1.228 | 1.374 | 1.504 | 1.206 |
υ | r2=115r2=115 | r2=17r2=17 | r2=13r2=13 | ||||||||
λ1 | λ2 | ‖n‖λ1+lyλ2 | λ1 | λ2 | ‖n‖λ1+lyλ2 | λ1 | λ2 | ‖n‖λ1+lyλ2 | |||
0.00 | 0.000 | 0.000 | 0.000 | 0.000 | 0.000 | 0.000 | 0.000 | 0.000 | 0.000 | ||
0.10 | 0.292 | 0.927 | 0.493 | 0.294 | 0.931 | 0.495 | 0.298 | 0.940 | 0.500 | ||
0.20 | 0.475 | 1.064 | 0.580 | 0.478 | 1.069 | 0.582 | 0.484 | 1.079 | 0.588 | ||
0.30 | 0.631 | 1.154 | 0.640 | 0.635 | 1.159 | 0.643 | 0.643 | 1.171 | 0.650 | ||
0.40 | 0.772 | 1.223 | 0.688 | 0.776 | 1.228 | 0.692 | 0.787 | 1.240 | 0.699 | ||
0.50 | 0.902 | 1.278 | 0.729 | 0.907 | 1.284 | 0.733 | 0.919 | 1.296 | 0.740 | ||
0.60 | 1.025 | 1.326 | 0.765 | 1.031 | 1.332 | 0.769 | 1.045 | 1.345 | 0.777 | ||
0.70 | 1.142 | 1.367 | 0.798 | 1.148 | 1.374 | 0.802 | 1.164 | 1.387 | 0.810 | ||
0.80 | 1.254 | 1.404 | 0.828 | 1.261 | 1.411 | 0.831 | 1.278 | 1.424 | 0.840 | ||
0.90 | 1.361 | 1.438 | 0.855 | 1.369 | 1.444 | 0.859 | 1.388 | 1.458 | 0.868 | ||
1.00 | 1.466 | 1.468 | 0.881 | 1.474 | 1.475 | 0.885 | 1.494 | 1.489 | 0.894 |
\upsilon | \pmb{\varsigma_1(\upsilon) =\upsilon^2} | \pmb{\varsigma_2(\upsilon) =\upsilon} | \pmb{\varsigma_3(\upsilon) =\sqrt{\upsilon}} | \pmb{\varsigma_4(\upsilon)=\ln (\upsilon+0.01)} | |||||||||||
\lambda_1 | \lambda_2 | \mathcal{N > ... } | \lambda_1 | \lambda_2 | \mathcal{ N > ... } | \lambda_1 | \lambda_2 | \mathcal{N > ... } | \lambda_1 | \lambda_2 | \mathcal{N > \dots } | ||||
0.00 | 0.000 | 0.000 | 0.000 | 0.000 | 0.000 | 0.000 | 0.000 | 0.000 | 0.000 | 0.000 | 0.000 | 0.000 | |||
0.10 | 0.027 | 0.597 | 0.307 | 0.197 | 0.946 | 0.530 | 0.533 | 1.192 | 0.739 | 3.086 | 1.787 | 1.008 | |||
0.20 | 0.089 | 0.788 | 0.423 | 0.358 | 1.087 | 0.647 | 0.720 | 1.277 | 0.832 | 3.795 | 1.874 | 1.078 | |||
0.30 | 0.179 | 0.927 | 0.523 | 0.509 | 1.179 | 0.736 | 0.858 | 1.330 | 0.895 | 4.213 | 1.920 | 1.116 | |||
0.40 | 0.295 | 1.040 | 0.618 | 0.654 | 1.249 | 0.812 | 0.972 | 1.369 | 0.945 | 4.508 | 1.950 | 1.142 | |||
0.50 | 0.435 | 1.137 | 0.712 | 0.793 | 1.306 | 0.881 | 1.071 | 1.400 | 0.987 | 4.737 | 1.973 | 1.162 | |||
0.60 | 0.597 | 1.223 | 0.809 | 0.929 | 1.354 | 0.944 | 1.159 | 1.425 | 1.023 | 4.923 | 1.990 | 1.178 | |||
0.70 | 0.779 | 1.301 | 0.908 | 1.062 | 1.397 | 1.004 | 1.239 | 1.447 | 1.056 | 5.081 | 2.005 | 1.191 | |||
0.80 | 0.982 | 1.372 | 1.011 | 1.192 | 1.435 | 1.060 | 1.313 | 1.467 | 1.085 | 5.216 | 2.017 | 1.202 | |||
0.90 | 1.205 | 1.438 | 1.117 | 1.320 | 1.469 | 1.114 | 1.382 | 1.484 | 1.113 | 5.336 | 2.027 | 1.212 | |||
1.00 | 1.446 | 1.500 | 1.228 | 1.446 | 1.500 | 1.166 | 1.446 | 1.500 | 1.138 | 5.443 | 2.037 | 1.220 |