In this paper, we prove two existence results of solutions for an ψ-Hilfer fractional non-instantaneous impulsive differential inclusion in the presence of delay in an infinite dimensional Banah spaces. Then, by using the multivalued weakly Picard operator theory, we study the stability of solutions for the considered problem in the sense of ψ-generalized Ulam-Hyers. To achieve our aim, we present a relation between any solution of the considered problem and the corresponding fractional integral equation. The given problem here is new because it contains a delay and non-instantaneous impulses effect. Examples are given to clarify the possibility of applicability our assumptions.
Citation: A.G. Ibrahim, A.A. Elmandouh. Existence and stability of solutions of ψ-Hilfer fractional functional differential inclusions with non-instantaneous impulses[J]. AIMS Mathematics, 2021, 6(10): 10802-10832. doi: 10.3934/math.2021628
[1] | Thabet Abdeljawad, Pshtiwan Othman Mohammed, Hari Mohan Srivastava, Eman Al-Sarairah, Artion Kashuri, Kamsing Nonlaopon . Some novel existence and uniqueness results for the Hilfer fractional integro-differential equations with non-instantaneous impulsive multi-point boundary conditions and their application. AIMS Mathematics, 2023, 8(2): 3469-3483. doi: 10.3934/math.2023177 |
[2] | Weerawat Sudsutad, Chatthai Thaiprayoon, Sotiris K. Ntouyas . Existence and stability results for ψ-Hilfer fractional integro-differential equation with mixed nonlocal boundary conditions. AIMS Mathematics, 2021, 6(4): 4119-4141. doi: 10.3934/math.2021244 |
[3] | Mohamed Adel, M. Elsaid Ramadan, Hijaz Ahmad, Thongchai Botmart . Sobolev-type nonlinear Hilfer fractional stochastic differential equations with noninstantaneous impulsive. AIMS Mathematics, 2022, 7(11): 20105-20125. doi: 10.3934/math.20221100 |
[4] | Muneerah AL Nuwairan, Ahmed Gamal Ibrahim . The weighted generalized Atangana-Baleanu fractional derivative in banach spaces- definition and applications. AIMS Mathematics, 2024, 9(12): 36293-36335. doi: 10.3934/math.20241722 |
[5] | Xiaoming Wang, Rizwan Rizwan, Jung Rey Lee, Akbar Zada, Syed Omar Shah . Existence, uniqueness and Ulam's stabilities for a class of implicit impulsive Langevin equation with Hilfer fractional derivatives. AIMS Mathematics, 2021, 6(5): 4915-4929. doi: 10.3934/math.2021288 |
[6] | J. Vanterler da C. Sousa, E. Capelas de Oliveira, F. G. Rodrigues . Ulam-Hyers stabilities of fractional functional differential equations. AIMS Mathematics, 2020, 5(2): 1346-1358. doi: 10.3934/math.2020092 |
[7] | Murugesan Manigandan, R. Meganathan, R. Sathiya Shanthi, Mohamed Rhaima . Existence and analysis of Hilfer-Hadamard fractional differential equations in RLC circuit models. AIMS Mathematics, 2024, 9(10): 28741-28764. doi: 10.3934/math.20241394 |
[8] | Thabet Abdeljawad, Sabri T. M. Thabet, Imed Kedim, Miguel Vivas-Cortez . On a new structure of multi-term Hilfer fractional impulsive neutral Levin-Nohel integrodifferential system with variable time delay. AIMS Mathematics, 2024, 9(3): 7372-7395. doi: 10.3934/math.2024357 |
[9] | Muneerah Al Nuwairan, Ahmed Gamal Ibrahim . Nonlocal impulsive differential equations and inclusions involving Atangana-Baleanu fractional derivative in infinite dimensional spaces. AIMS Mathematics, 2023, 8(5): 11752-11780. doi: 10.3934/math.2023595 |
[10] | Ugyen Samdrup Tshering, Ekkarath Thailert, Sotiris K. Ntouyas . Existence and stability results for a coupled system of Hilfer-Hadamard sequential fractional differential equations with multi-point fractional integral boundary conditions. AIMS Mathematics, 2024, 9(9): 25849-25878. doi: 10.3934/math.20241263 |
In this paper, we prove two existence results of solutions for an ψ-Hilfer fractional non-instantaneous impulsive differential inclusion in the presence of delay in an infinite dimensional Banah spaces. Then, by using the multivalued weakly Picard operator theory, we study the stability of solutions for the considered problem in the sense of ψ-generalized Ulam-Hyers. To achieve our aim, we present a relation between any solution of the considered problem and the corresponding fractional integral equation. The given problem here is new because it contains a delay and non-instantaneous impulses effect. Examples are given to clarify the possibility of applicability our assumptions.
A non-instantaneous impulsive differential equation is due to Hernándaz et. al.[1], and is used to describe impulsive action, which stays active on a finite time interval. Hilfer [2] introduced a fractional derivative, which is a generalization for Riemann-Liouville fractional derivative and Caputo fractional derivative. Many works have been appeared studying various models involving fractional differential with instantaneous and non-instantaneous impulses and providing solutions to those models. For example, Saravanakumar et al. [3] analyzed the existence of mild solution of non instantaneous impulsive for Hilfer fractional stochastic differential equations driven by fractional Brownian motion, . Shu et al.[4] presented a right formula of mild solutions to a fractional semilinear evolution equation generated by a sectorial operator, and its order belongs to the intervals (0,1) and (1,2), Wang et al. [5] studied the global attracting solutions to non-instantaneous impulsive differential inclusions containing Hilfer fractional, and Ngo et al.[6] presented a formula of solution for a non-instantaneous impulsive differential equation containing ψ−Hilfer derivative with lower limit of the fractional derivative at zero. For more works on non-instantaneous impulsive differential equations and inclusions, we refer to [7,8,9,10,11,12,13].
Moreover, Ulam problem [14] has been attracted by many researchers. We highlight some recent works on the existence and Hyers-Ulam stability of solutions for fractional differential equations. Guo et al.[15] investigated the existence and Hyers-Ulam stability of mild solution for an impulsive Riemann-Liouville fractional neutral functional stochastic differential equation with infinite delay of order between one and two, Guo et al.[16] proved the existence and Hyers-Ulam stability of the almost periodic solution to fractional differential equations with impulse involving fractional Brownian, Wang et al. [11] presented the generalized Ulam-Hyers stability for a non-instantaneous impulsive differential inclusions containing the Caputo derivative and Vanterler et al. [17] studied, in finite dimensional Banach spaces, the stability of a Volterra integro-differential equation containing ψ− Hilfer derivative in the sense of Ulam-Hyers. More recently, Vanterler et al.[18] investigated, in finite dimensional Banach spaces, the δ−Ulam-Hyers-Rassias stability for a non-instantaneous impulsive fractional differential equation containing ψ−Hilfer derivative, Benchohra et al. [19] established, in finite dimensional spaces, the existence and stability of solutions for an implicit fractional differential equations with Riemann-Liouville fractional derivative, and Kumar et al. [20] studied the existence and stability of solution for a fractional differential equation with non-instantaneous integral impulses. Very recently, Ben Mahlouf et al.[21] given sufficient conditions to guarantee the existence and stability of solutions for generalized nonlinear fractional differential equations of order α∈(1,2), Elsayed et al.[22] established the existence and stability of boundary value problem for differential equation with Hilfer-Katugampola fractional derivative. For more papers on Ulam-Hyers stability of solutions, we refer to [23,24,25,26,27,28,29,30,31].
It is worth noting that, when the considered problem contains non-instantaneous impulses, there are two approaches in the literature, one by keeping the lower limit of the fractional derivative at zero [6,11,17,18], and the other by switching it at the impulsive points [5,10] Motivated by the above cited work, we prove two existence results of solutions, in infinite dimensional Banach spaces, for a non-instantaneous impulsive fractional differential inclusion involving ψ−Hilfer derivative with delay and we switch the lower limit of the fractional derivative at the impulsive points, and then we study the ψ−generalized Ulam-Hyers stability.
Let E be a real Banach space, J=[0,b], b>0, J∗=(0,b], r>0, 0<ϑ<1, 0≤ν≤1, μ=ϑ+ν−ϑν, Ψ:[−r,0]→E a continuous function except a finite number of discontinuity points s≠0 such that Ψ(0)=0, all values x(s+), and x(s−) are finite, ψ∈C1([0,b],R) be increasing, ψ´(ϱ)>0,;∈J, and Dϑ,ν,ψsi+ be the ψ−Hilfer derivative with lower limit at si of orderϑ and type ν. Moreover, 0=s0< ϱ1<s1<ϱ2<⋯<ϱn<sn<ϱn+1=b, and I1−μ,ψs+ix(s+i)=limϱ→s+i I1−μ,ψs+ix(ϱ) , F:J×E→2E−{ϕ} is a multifunction, and gi:[ϱi,si]×E⟶Ei=1,2,…,n. Finally, for any ϱ∈J, τ(ϱ):H→Θ, x(θ)=x(ϱ+θ),θ∈[−r,0]x∈H, where Θ and H will be introduced in the next section. In this paper, we establish existence results of solutions of the following ψ−Hilfer fractional non-instantaneous impulsive differential inclusions with delay:
{Dϑ,ν,ψs+ix(ϱ)∈F(ϱ,τ(ϱ)x)),a.e.ϱ∈∪i=ni=0(si,ϱi+1]x(ϱ)=Ψ(ϱ),ϱ∈[−r,0]I1−μ,ψ0+x(0+)=Ψ(0),x(ϱ+i)=gi(ϱi,x(ϱ−i)),i=1,......n,x(ϱ)=gi(ϱ,x(ϱ−i)),ϱ∈(ϱisi],i=1,......n,I1−μ,ψs+ix(s+i)=gi(si,x(ϱ−i)),i=1,......n. | (1) |
Then, we investigate the ψ-generalized Ulam-Hyers stability of Problem (1). To achieve our aim, we present a relation between the solutions of this problem and the corresponding fractional integral equation (Lemma5).
To make a comparison between the present paper objectives and other relevant recent papers, we refer to the following:
1-Abbas et al.[31] proved the existence of solutions and studied Ulam-Hyers-Rassias stability of problem (1) in the absence of both delay and impulses effect, E=R, ψ(ϱ)=lnϱ,ϱ∈[1,b], F is a single-valued function.
2-Benchohra [19] investigated the existence and Ulam stability for nonlinear implicit differential equations with Riemann-Liouville derivative, which is including in Hilfer derivative
3-Ngo et al.[6] presented a formula of solution for a non-instantaneous impulsive differential equation containing ψ−Hilfer derivative with lower limit of the fractional derivative at zero and in the absence of delay.
4-Vanterler el al.[17] established the existence and stability of solutions for Problem (1) in the absence of delay. and when E=R, the lower limit of the fractional derivative at zero F is a single-valued function
5-Wang et al. [10] considered Problem (1) in the absence of delay, when ψ(ϱ)=ϱ and without studying the stability of solutions.
6-Wang et al.[11] consider a non-instantaneous impulsive semilinear differential inclusions containing Caputo derivative and in the absence of delay.
To clarify the novelty and contribution of this study, we refer to, in this paper, we present a relation between a solution of Problem (1) and the corresponding fractional integral equation (Lemma5), provide two methods to demonstrate the existence of solutions for Problem (1), then, investigate the ψ−generalized Ulam-Hyers stability of solutions. Because our considered problem contains ψ−Hilfer fractional derivative, non-instantaneous impulses with the lower limit of the fractional derivative switches at the impulsive points, presence of delay, and the right hand side is a multi-valued function, therefore, this study generalize recent results, as it is shown above, such as [6,10,11,17,19,31]. In addition, there isn't work in the literature, on ψ−Hilfer fractional non-instantaneous impulsive differential inclusions, in infinite dimensional spaces, in the presence of delay, and the lower limit of the fractional derivative switches at the impulsive points. Moreover, the technique presented in this paper can be used to study the existence and Ulam-Hyers stability of solutions or mild solutions for the problems considered in [3,4,15,16,20,21,22] to the case when, there are impulses and delay on the system, the right hand side is a multi-valued function and involving ψ−Hilfer fractional derivative.
In section 2, we prove some properties for ψ−fractional integral and ψ−fractional derivative, then we present, in Lemma 3.3, a relation between any solution of problem (1) and the corresponding fractional integral equation. In section 3, we prove an existence result of Problem (1). In section 4, we give another existence result of (1), then we investigate the ψ−generalized Ulam-Hyers stability of solutions. In the last section, examples are given to clarify the possibility of applicability of our assumptions.
Let Pck(E) be the family of non-empty convex and compact subsets of E. Since the given problem containing Hilfer derivative we need to the the spaces:
C1−μ,ψ(J,E):={x∈C(J∗,E):(ψ(.)−ψ(a))1−μx(.)∈C([a,b],E)}, |
and
Cn1−μ,ψ(J,E):={x∈Cn−1(J,E):[1ψ′(ϱ)ddϱ]n x∈C1−μ,ψ(J,E),n∈N. |
Obviously C1−μ,ψ(J,E) and Cn1−μ,ψ(J,E) are Banach spaces with norms
||x||C1−μ,ψ(J,E):=supϱ∈J|| (ψ(ϱ) −ψ(0))1−μx(ϱ)||, |
and
||x||Cn1−μ,ψ(J,E):=k=n−1∑k=1||x(k)||C(J,E)+||[1ψ′(ϱ)ddϱ]n x||C1−μ,ψ(J,E). |
Because Problem (1) involving impulses effect we recall the Banach space:
PC1−μ,ψ(J,E):={x:J∗→E, (ψ(.)−ψ(sk))1−μx(.)∈C(Jk,E),k=0,1,..,n,limϱ→s+k(ψ(ϱ)−ψ(sk))1−μx(ϱ)exists,x∈C(ϱi,E), andlimϱ→ϱ+ix(ϱ)exist,i=1,2,..,n}, |
endowed with the norm
||x||PC1−μ,ψ(J,E):=max{supϱ∈¯Jkk=0,1,,,,n,(ψ(ϱ)−ψ(sk))1−μ||x(ϱ)||E, supϱ∈¯ϱii=1,...,n||x(ϱ)||E}, |
where Jk=(sk,ϱk+1], ¯Jk=[sk,ϱk+1] (k=0,1,..,n),ϱi=(ϱi,si] and ¯ϱi=[ϱi,si] (i=1,2,..,n),
Next, the function χPC1−μ(J,E):Pb(PC1−μ,ψ(J,E))→[0,∞),given by by
χPC1−μ,ψ(J,E)(D):=max{maxk=0,1,..,nχC(¯Jk,E)(D|¯Jk),maxi=1,..,nχC(¯ϱi,E)(D|¯ϱi)} |
is a measure of noncompactness on PC1−μ(J,E), where
D∣¯Jk:={h∗∈C(¯Jk,E):h∗(ϱ)=(ψ(ϱ)−ψ(sk))1−μh(ϱ),ϱ∈Jk,h∗(sk)=limϱ→s+kh∗(ϱ),h∈D}, |
and
D∣¯ϱi:={h∗∈C(¯ϱi,E):h∗(ϱ)=h(ϱ),ϱ∈ϱi,h∗(ϱi)=h(ϱ+i),h∈D}. |
In the sequel, Iq,ψa+ denotes to the ψ−Riemann-Liouville fractional integral operator of order q with the lower limit at a, Dϑ,ψa+f to the ψ−Riemann-Liouville fractional derivative operator of order ϑ with the lower limit at a and cDϑ,ψa+f to the ψ−Caputo fractional derivative of order ϑ with the lower limit at a for f ∈AC1,ψ([a,b],E), where
AC1,ψ([a,b],E):={x:J→E,[1ψ′(ϱ)ddϱ] x∈AC(J,E)}. |
If f ∈C1,ψ([a,b],E):={x∈C(J,E):[1ψ′(ϱ)ddϱ] x∈C(J,E)}, then
cDϑ,ψa+f(ϱ):=I1−ϑ,ψa+[1ψ′(ϱ)ddϱ] f(ϱ),ϱ∈[a,b]. |
If ψ(ϱ)=ϱ, we obtain the Caputo fractional derivative, and if ψ(ϱ)=lnϱ, we obtain the Caputo-Hadamard fractional derivative. The following remark and more information about ψ−fractional integral and derivative can be found in [32,33,34,35]
Remark 2.1. If q=1, then I1,ψa+f(ϱ)=∫ϱaψ′(s)f(s) ds, and hence
1ψ′(ϱ)ddϱ I1,ψa+f(ϱ)=1ψ′(ϱ)ddϱ∫ϱa ψ′(s)f(s) ds=f(ϱ),a.e.for ϱ∈[a,b]. |
In the following lemma we give an important for Iϑ,ψa+, which we need later.
Lemma 2.1. Let 0<η≤ϑ. Then Iϑ,ψa+is bounded from Cη,ψ([a,b],E) into C([a,b],E) and
Iϑ,ψa+f(a)=limϱ→a+Iϑ,a+f(ϱ)=0,∀f∈Cη,ψ([a,b],E). |
Proof. The assumption f∈Cη,ψ([a,b],E) leads to (ψ(ϱ)−ψ(a))ηf(ϱ) is continuous on [a,b], and hence there is M>0 such that ||(ψ(ϱ)−ψ(a))ηf(ϱ)||≤M,∀ϱ∈ [a,b]. As a consequence, ||f(ϱ)||≤(ψ(ϱ)−ψ(a))−ηM,∀ϱ∈ (a,b]. Then
||Iϑ,ψa+f(ϱ)||=||∫ϱa (ψ(ϱ)−ψ(s))ϑ−1ψ′(s)Γ(ϑ)f(s) ds||≤MΓ(ϑ) |Iϑ,ψa+(ψ(ϱ)−ψ(a))−η|. |
In virtu of Lemma2 in[35], Iϑ,ψa+(ψ(ϱ)−ψ(a))−η=Γ(1−η)Γ(1−η+ϑ)(ψ(ϱ)−ψ(a))ϑ−η, and hence
||Iϑ,ψa+f(ϱ)||≤MΓ(ϑ)Γ(1−η)Γ(1−η+ϑ)(ψ(ϱ)−ψ(a))ϑ−η |
Since 0<η≤ϑ, we get limϱ→a+Iϑ,ψa+f(ϱ)=0, which means that Iϑ,ψa+f(ϱ) is continuous. Moreover, Iϑ,ψa+is bounded from Cη,ψ([a,b],E) into C([a,b],E).
Let us recall the definition of ψ−Hilfer fractional derivative.
Definition 1. [2] Let f∈L1([a,b],E) be such that I(1−ν)(1−ϑ),ψa+f∈AC1,ψ([a,b],E). The ψ−Hilfer fractional derivative of order 0<ϑ<1and type 0≤ν≤1 and with lower limit at a for a function f:[a,b]→E is defined by
Dϑ,ν,ψa+f(ϱ)=Iν(1−ϑ),ψa+[1ψ′(ϱ)ddϱ] (I(1−ν)(1−ϑ),ψa+f)(ϱ),ϱ∈[a,b], |
Denote
Cμ1−μ,ψ(J,E):={x∈C1−μ,ψ(J,E),Dμ,ψa+x∈C1−μ,ψ(J,E)}, |
Cϑ,ν1−μ,,ψ(J,E):={x∈C1−μ(J,E),Dϑ,ν,ψa+x∈C1−μ,ψ(J,E)}, |
PCμ1−μ,ψ(J,E):={x∈PC1−μ(J,E),Dμ,ψs+kx|Jk∈C1−μ,ψ(Jk,E),k=0,1,..,n}, |
and
PCϑ,ν1−μ,ψ(J,E):={x∈PC1−μ,ψ(J,E),Dϑ,ν,ψs+kx|Jk∈C1−μ,ψ(Jk,E), k=0,1,..,n}. |
Notice that, the operator Dϑ,ν,ψa+ can be written as:
Let
Dϑ,ν,ψa+f(ϱ)=Iν(1−ϑ),ψa+[1ψ′(ϱ)ddϱ](I1−μa+f(ϱ)=Iν(1−ϑ),ψa+Dμ,ψa+f(ϱ), μ=ϑ+ν−ϑν. |
So, if f∈Cμ1−μ,ψ([a,b],E), then by Lemma 2.1, Dϑ,ν,ψa+f(ϱ) exists ϱ∈[a,b].
Remark 2.2. Since Dϑ,ν,ψa+x=(Iν(1−ϑ),ψa+Dμ,ψa+x)(ϱ), it follows from lemma1. that Cμ1−μ,ψ([a,b],E) ⊆Cϑ,ν1−μ,ψ([a,b],E). Similarly, PCμ1−μ,ψ([a,b],E) ⊆PCϑ,ν1−μ,ψ([a,b],E).
Now, since our considered problem contains a delay we need to present the following spaces:
1- The normed space
Θ={z:[−r,0]→E suchthatz hasafinitenumberofdiscontinuitypointss≠0,allvaluesz(s+),and z(s−) arefinite}, |
endowed with the norm:
||z||Θ=∫0−r||z(s)||ds. |
2-The metric space (the space of solutions)
H:={x:[−r,b]→E,x|[−r,0]=Ψ, x|J∗∈PC1−μ,ψ(J,E)}, |
where the metric function is given by:
dH(x,y):=supϱ∈J||x(ϱ)−y(ϱ)||. |
3- The Banach space
H:={x:[−r,b]→Esuchthat x(ϱ)=0,∀ϱ∈[−r,0],x|J∗∈PC1−μ,ψ(J,E)}, |
endowed with the norm:
||x||H:=||x|J∗||PC1−μ,ψ(J,E)+||x|[−r,0]||Θ=||x|J∗||PC1−μ,ψ(J,E). |
Remark 2.3. (i) If x∈H, then x(0−)=0 and x(0+)=limϱ→0+(ψ(ϱ)−ψ(0))1−μx(ϱ).
(ⅱ) If x∈H, then x(0−)=Ψ(0) and x(0+−)=limϱ→0+(ψ(ϱ)−ψ(0))1−μx(ϱ). So, if Ψ(0)=0, then x will be continuous at zero.
It is easily seen that the function:
χH(B):=χPC1−μ(J,E){x|J:x∈B}, |
define a measure of noncompactness on H, where B is a bounded subset of H.
We need to the following fixed point for multi-valued functions.
Lemma 2.2. ([36], Theorem 3.1) Let W be a closed convex subset of a Banach space X and ϱ:W→Pc(W). Suppose that ϱ is closed, ϱ(D) is relatively compact, whenever D is compact, and that, for some x0∈W, one has
B⊆W, B=conv({x0}∪ϱ(B)), ¯B=¯C withC⊆B countable⟹B isrelativelycompact. |
Then, there is a fixed point for ϱ.
In this section, we demonstrate the existence of solutions of Problem (1). For any x∈H let
S1F(.,τ(.)x)={z∈L1(J,E):z(ϱ)∈F(ϱ,τ(.)x),a.e. for ϱ∈J }. |
and
Iν(1−ϑ),ψ(PC1−μ,ψ(J,E))={f:J→E, thereish∈PC1−μ,ψ(J,E)suchthatf(ϱ)=Iν(1−ϑ),ψsi+h(ϱ),ϱ∈Jk, k=0,1,2,..,n}. |
and for any x∈H let
¯x(ϱ):={Ψ(ϱ),ϱ∈[−r,0],x(ϱ),ϱ∈(0,b]. |
In order to derive the relation between any solution for Problem (1) and the corresponding fractional integral equation, we need to the following essential Lemmas.
Lemma 3.1. Let 0<ϑ<1,η∈[0,1).If f∈Cη,ψ([a,b],E) and I1−ϑ,ψa+f∈C1η,ψ([a,b],E), then
Iϑ,ψa+Dϑ,ψa+f(ϱ)=f(ϱ)−(ψ(ϱ)−ψ(a))ϑ−1I1−ϑ,ψa+f(a)Γ(ϑ),ϱ∈[a,b]. |
Proof. Since f∈Cη,ψ([a,b],E), then I1−ϑ,ψa+f(ϱ) is defined for ϱ∈[a,b]. Moreover, the assumption I1−ϑ,ψa+f∈C1η,ψ([a,b],E) implies to Dϑ,ψa+f(ϱ)∈Cη,ψ([a,b],E), and hence Iϑ,ψa+Dϑ,ψa+f(ϱ) and Iϑ+1,ψa+Dϑ,ψa+f(ϱ) are well defined for ϱ∈[a,b]. Observe that
Iϑ,ψa+Dϑ,ψa+f(ϱ)=1ψ′(ϱ)ddϱ(∫ϱa ψ′(s)Iϑ,ψa+Dϑ,ψa+f(s)ds)=1ψ′(ϱ)ddϱI1,ψa+Iϑ,ψa+Dϑ,ψa+f(ϱ)=1ψ′(ϱ)ddϱIϑ+1,ψa+Dϑ,ψa+f(ϱ),ϱ∈[a,b]. |
Now,
Iϑ+1,ψa+Dϑ,ψa+f(ϱ)=1Γ(ϑ+1)∫ϱa (ψ(ϱ)−ψ(s))ϑψ′(s)(1ψ′(s)dds)(I1−ϑ,ψa+f(s))ds=1Γ(ϑ+1)∫ϱa (ψ(ϱ)−ψ(s))ϑdds(I1−ϑ,ψa+f(s))ds. |
By integration by parts, we get
Iϑ+1,ψa+Dϑ,ψa+f(ϱ)=−(ψ(ϱ)−ψ(a))ϑI1−ϑ,ψa+f(a)Γ(ϑ+1)+1Γ(ϑ)∫ϱa (ψ(ϱ)−ψ(s))ϑ−1ψ′(s)I1−ϑ,ψa+f(s)ds=−(ψ(ϱ)−ψ(a))ϑI1−ϑ,ψa+f(a)Γ(ϑ+1)+Iϑ,ψa+I1−ϑ,ψa+f(ϱ)=I1,ψa+f(ϱ)−(ψ(ϱ)−ψ(a))ϑI1−ϑ,ψa+f(a)Γ(ϑ+1). |
It follows from Remark 2.1, that
Iϑ,ψa+Dϑ,ψa+f(ϱ)=1ψ′(ϱ)ddϱI1,ψa+f(ϱ)−1ψ′(ϱ)ddϱ(ψ(ϱ)−ψ(a))ϑ(I1−ϑ,ψa+f(a))Γ(ϑ+1)]=f(ϱ)−(ψ(ϱ)−ψ(a))ϑ−1I1−ϑ,ψa+f(a)Γ(ϑ). |
Lemma 3.2. Let α∈(0,1), η>0 and f∈Cη,ψ([a,b],E). Then Dα,ψa+Iα,ψa+f(ϱ)=f(ϱ),a.e. for ϱ∈[a,b].
Proof. In view of Remark 2.1, we get for a.e.ϱ∈[a,b]
Dα,ψa+Iα,ψa+f(ϱ)=[1ψ′(ϱ)ddϱ] I1−α,ψa+Iα,ψa+f(ϱ)=[1ψ′(ϱ)ddϱ] I1,ψa+f(ϱ)=f(ϱ). |
Now, we give in the following lemma the relation between any solution for Problem (1) and the corresponding fractional integral equation.
Lemma 3.3. Let 0<ϑ<1, 0≤ν≤1, μ=ϑ+ν−ϑν and x∈PCν(1−ϑ),ψ1−μ,ψ([0,b],E), gi:(ϱi,si]→E,i=1,......n, is continuous. The following hold.
(1) The function y:(0,b]→E given by
y(ϱ)={(ψ(ϱ)−ψ(0))μ−1Γ(μ)Ψ(0)+Iϑ,ψ0+x(ϱ),ϱ∈(0,ϱ1]gi(ϱ,x(ϱ−i)),ϱ∈(ϱi,si],i=1,......n,(ψ(ϱ)−ψ(si))μ−1Γ(μ)gi(si,x(ϱ−i))+Iϑ,ψsi+x(ϱ),ϱ∈(siϱi+1],i=1,......n, | (2) |
belongs to PCμ1−μ,ψ([0,b],E), Dϑ,ν,ψsi+y(ϱ) exists for any ϱ∈(si ϱi+1], i=0,1,......n, and verifies the ψ−Hilfer fractional problem:
{Dϑ,ν,ψs+iy(ϱ)=x(ϱ),ϱ∈∪i=ni=0(si,ϱi+1]I1−μ0+y(0+)=Ψ(0),y(ϱ+i)=gi(ϱi,x(ϱ−i)),i=1,......n,y(ϱ)=gi(ϱ,x(ϱ−i)),ϱ∈(ϱisi],i=1,......n,I1−μs+iy(s+i)=gi(si,x(ϱ−i)),i=1,......n, | (3) |
(2) If y∈PCμ1−μ,ψ([0,b],E) is a solution of (3), then y satisfies (2).
Proof. Let ϱ∈(0,ϱ1]. In view of (2)
y(ϱ)=(ψ(ϱ)−ψ(0))μ−1Γ(μ)Ψ(0)+Iϑ,ψ0+x(ϱ). | (4) |
According to Lemma 3.1 in[35], Dμ,ψ0+(ψ(ϱ)−ψ(a))μ−1=0. Then, by applying Dμ,ψa+ to both side of (4), it yields
D0+y(ϱ)=(1ψ′(ϱ)ddϱ)I(1−μ),ψ0+Iϑ,ψ0+x(ϱ)=(1ψ′(ϱ)ddϱ)I1−(μ−ϑ),ψ0+x(ϱ)=Dμ−ϑ,ψ0+x(ϱ)=Dν(1−ϑ),ψ0+x(ϱ). | (5) |
Observe that the assumption x∈PCν(1−ϑ),ψ1−μ,ψ([0,b],E) implies to Dν(1−ϑ),ψ0+x|J0∈C1−μ,ψ([0,ϱ1],E). It follows from (5) that Dμ,ψa+y∈C1−μ,ψ([0,ϱ1],E) and hence y|J0∈Cμ1−μ,ψ([0,ϱ1],E). Consequently y|J0∈Cϑ,ν1−μ,ψ([0,ϱ1],E) (see, Remark 2), and this assures that Dϑ,ν,ψ0+y(ϱ) is well defined for ϱ∈J0. Now, since Dν(1−ϑ),ψ0+x|J0∈C1−μ,ψ([0,ϱ1],E), then (1ψ′(ϱ)ddϱ)I1−ν(1−ϑ),ψ0+x|J0∈C1−μ,ψ([0,ϱ1],E). So, I1−ν(1−ϑ),ψ0+x|J0∈C11−μ,ψ([0,ϱ1],E). As a result from Lemma (3) one obtains
Dϑ,ν,ψ0+y(ϱ)=Iν(1−ϑ)0+Dμ,ψ0+y(ϱ)=Iν(1−ϑ)0+Dν(1−ϑ),ψ0+x(ϱ)=x(ϱ)−(ψ(ϱ)−ψ(0))ν(1−ϑ)−1Γ(ν(1−ϑ))(I1−ν(1−ϑ),ψ0+x)(0). |
Since I1−ν(1−ϑ),ψ0+x∈C1−μ,ψ([0,b],E) and 1−μ<1−ν(1−ϑ), then, by Lemma(1) (I1−ν(1−ϑ),ψ0+x)(0)=0. So, Dϑ,ν,ψ0+y(ϱ)=x(ϱ), ϱ∈[0,ϱ1]. It remains to demonstrate that y satisfies I1−μ0+y(0+)=ya. To do this, apply I1−μ,ψa+ to both side of (4)
I1−μ,ψ0+y(ϱ)=Ψ(0)Γ(μ)I1−μ,ψ0+(ψ(ϱ)−ψ(0))μ−1(0)+I1−μ,ψ0+Iϑ,ψa+x(ϱ)=Ψ(0)+I1−μ+ϑ,ψ0+Iϑ,ψa+x(ϱ). |
Because x∈C1−μ,ψ([0,ϱ1],E) and 1−μ<1−μ+ϑ, then, by Lemma(1),I1−μ+ϑ,ψ0+Iϑ,ψ0+x(0)=0. So, I1−μ,ψ0+y(0)=Ψ(0).
Similarly, we can show that for ϱ∈(si ϱi+1],i=1,......n,we have Dϑ,ν,ψs+iy(ϱ)=x(ϱ) and I1−μs+iy(s+i)=gi(si,x(ϱ−i)), and hence y is a solution for(3).
(2) Let y∈PCμ1−μ,ψ(J,E) be a solution of (3). Let i=0. Then y∈C1−μ,ψ(J0,E) and (1ψ′(ϱ)ddϱ)I1−μ,ψ0+y|J0∈C1−μ,ψ(J0,E). Thus, I1−μ,ψsiy|J0∈C11−μ,ψ(J0,E). By applying Lemma (3) it yields
Iμ,ψ0+Dμ,ψ0+y(ϱ)=y(ϱ)−(ψ(ϱ)−ψ(0))μ−1Γ(μ)(I1−μ,ψ0+x)(0)=y(ϱ)−(ψ(ϱ)−ψ(0))μ−1Γ(μ)Ψ(0),ϱ∈(0,ϱ1). | (6) |
Next, applying Iϑ,ψ0+ to both side of the equation Dϑ,ν,ψ0+y(ϱ)=x(ϱ), we get from (6)
Iϑ,ψ0+x(ϱ)=Iϑ,ψ0+Dϑ,ν,ψ0+y(ϱ)=Iϑ,ψ0+Iμ−ϑ,ψ0+Dμ,ψ0+y(ϱ)=Iμ,ψ0+Dμ,ψ0+y(ϱ)=y(ϱ)−(ψ(ϱ)−ψ(0))μ−1Γ(μ)Ψ(0),ϱ∈(0,ϱ1]. |
So,
y(ϱ)=(ψ(ϱ)−ψ(0))μ−1Γ(μ)Ψ(0)+Iϑ,ψ0+x(ϱ),ϱ∈(0,ϱ1]. |
Similarly, we can show that for i=1,......n,
y(ϱ)=(ψ(ϱ)−ψ(si))μ−1Γ(μ)gi(si,x(ϱ−i))+Iϑ,ψ0+x(ϱ),ϱ∈(siϱi+1]. |
Now, based on Lemma 3.3, we can give the concept of solutions for problem (1).
Definition 2. A function ¯x∈H is called a mild solution of (1) if there is f∈S1F(,τ(ϱ)¯x) such that ¯x satisfies the integral equation
¯x(ϱ)={Ψ(ϱ),ϱ∈[−r,0](ψ(ϱ)−ψ(0))μ−1Γ(μ)Ψ(0)+Iϑ,ψ0+f(ϱ),ϱ∈(0,ϱ1]gi(ϱ,x(ϱ−i)),ϱ∈(ϱi,si],i=1,......n,(ψ(ϱ)−ψ(si))μ−1Γ(μ)gi(si,x(ϱ−i))+Iϑ,ψs+if(ϱ),ϱ∈(siϱi+1],i=1,......n. |
Remark 3.1. The function ¯x is not necessarily continuous at the points si,i=0,1,......n. But if Ψ(0)=0, then it will be continuous at s0, and if gi(si,x(ϱ−i))=0, it will be continuous at si,i=1,......n.
In the following, we present our first existence result of solutions for Problem (1).
Theorem 3.1. Let F:J×Θ→Pck(E) be a multifunction, Ψ∈Θ, and gi:[ϱi,si]×E→E (i=1,2,....n). We assume the following conditions
(F1) For every z∈H, S1F(.,τ(.)z) is not empty subset of Iν(1−ϑ),ψ(PC1−μ,ψ(J,E)) and for almost every ϱ∈J,z⟶F(ϱ,τ(ϱ)z) is upper semicontinuous.
(F2) There is a φ∈L1q(I,R+),(0<q<ϑ) such that for any z∈H
‖F(ϱ,τ(ϱ)¯z‖≤φ(ϱ)(1+||z||H),a.e,ϱ∈J |
(F3) There is a ς∈L1q(I,R+),(0<q<ϑ) with the property that for any bounded subset D⊆H, any k=0,1,2,..,n, and a.e., for ϱ∈Jk
χE(F(ϱ,{τ(ϱ)¯x:x∈D))≤(ψ(ϱ)−ψ(sk))1−μς(ϱ)supθ∈[−r,0]χE{(τ(ϱ))¯x(θ):x∈D}, |
and
2κ1Γ(ϑ) η||ς||L1q(I,R+)<1, | (7) |
where η=δq(ψ(b)−ψ(0))ϑ−q(ϑ−q1−q)1−q, δ=maxs∈Jψ′(s), κ1=(ψ(b)−ψ(0))1−μ and χ is the Hausdorff measure of noncompactness on E.
(H1) for every i=1,2,…,n, gi:[ϱi,si]×E→E is uniformly continuous on bounded sets and for any ϱ∈J, gi (ϱ,.) maps any bounded subset of E to a relatively compact subset and there exists a positive constant hi such that for any x∈E
‖gi(ϱ,x))‖≤hi(ψ(ϱi)−ψ(si−1))1−μ‖x‖, ϱ∈(ϱi,si],x∈E. |
Then Problem (1) has a mild solution provided that
κ1Γ(ϑ)||φ||L1q(J,R+)η+h∗+h∗Γ(μ)<1, | (8) |
where, h∗=∑i=ni=0hi.
Proof. We define a multioperator Φ:H→P(H) as follows: let x∈H, then due to (F1) there is f ∈S1F(.,τ(.)¯x), and hence we can define y∈Φ(x) if and only if
y(ϱ)={0,ϱ∈[−r,0](ψ(ϱ)−ψ(0))μ−1Γ(μ)Ψ(0)+Iϑ,ψ0+f(ϱ),ϱ∈(0,ϱ1]gi(ϱ,x(ϱ−i)),ϱ∈(ϱi,si],i=1,......n,(ψ(ϱ)−ψ(0))μ−1Γ(μ)gi(si,x(ϱ−i))+Iϑ,ψs+if(ϱ),ϱ∈(siϱi+1],i=1,......n. | (9) |
Let us clarify that a point x is a fixed point for Φ if and only if ¯x is a solution for (1). Let x be a fixed point to Φ. Then
x(ϱ)={0,ϱ∈[−r,0](ψ(ϱ)−ψ(0))μ−1Γ(μ)Ψ(0)+Iϑ,ψ0+f(ϱ),ϱ∈(0,ϱ1]gi(ϱ,x(ϱ−i)),ϱ∈(ϱi,si],i=1,......n,(ψ(ϱ)−ψ(0))μ−1Γ(μ)gi(si,x(ϱ−i))+Iϑ,ψs+if(ϱ),ϱ∈(siϱi+1],i=1,......n. | (10) |
where f ∈S1F(.,τ(.)¯x). Therefore,
¯x(ϱ)={Ψ(ϱ),ϱ∈[−r,0](ψ(ϱ)−ψ(0))μ−1Γ(μ)Ψ(0)+Iϑ,ψ0+f(ϱ)ds,ϱ∈(0,ϱ1]gi(ϱ,x(ϱ−i)),ϱ∈(ϱi,si],i=1,......n,(ψ(ϱ)−ψ(0))μ−1Γ(μ)gi(si,x(ϱ−i))+Iϑ,ψs+if(ϱ),ϱ∈(siϱi+1],i=1,......n. |
This means ¯x satisfies (4), and hence it is a solution for (1). Similarly, it is easy to see that if ¯x satisfies (4), then x is a fixed point for Φ. So we prove, by application Lemma 3.3, that Φ has a fixed point. Obviously the values of Φ are convex.
Step1. We demonstrate that there is a n∈N with Φ(Bn)⊆Bn,where Bn={x∈H:‖x‖H≤n}. Suppose that for any natural number n, there are xn,yn∈H with yn∈Φ(xn),‖xn‖H≤n and ‖yn‖H>n. Then, there is fn∈ S1F(.,τ(.)¯xn), n≥1 such that
yn(ϱ)={0,ϱ∈[−r,0](ψ(ϱ)−ψ(0))μ−1Γ(μ)Ψ(0)+Iϑ,ψ0+fn(ϱ)∈(0,ϱ1]gi(ϱ,xn(ϱ−i)),ϱ∈(ϱi,si],i=1,......n,(ψ(ϱ)−ψ(si))μ−1Γ(μ)gi(si,xn(ϱ−i))+Iϑ,ψs+ifn(ϱ),ϱ∈(siϱi+1],i=1,......n. |
In view of (F2), we get for almost ϱ∈J
||fn(ϱ)||≤φ(ϱ)(1+‖xn‖H)≤φ(ϱ)(1+n). | (11) |
Then, if for almost ϱ∈(0,ϱ1], we get from Holder's inequality and (12)
(ψ(ϱ)−ψ(0))1−μ||yn (ϱ)||≤Ψ(0)Γ(μ)+(1+n)(ψ(b)−ψ(0))1−μΓ(ϑ)∫ϱ0(ψ(ϱ)−ψ(s))ϑ−1ψ′(s)φ(ϱ)ds |
Now, from Holder's inequality
∫ϱ0(ψ(ϱ)−ψ(s))ϑ−1ψ′(s)φ(ϱ)ds≤||φ||L1q(J,R+)[∫ϱ0(ψ(ϱ)−ψ(s))ϑ−11−q(ψ′(s))11−qds]1−q≤||φ||L1q(J,R+)[∫ϱ0(ψ(ϱ)−ψ(s))ϑ−11−qψ′(s)(ψ′(s))q1−qds]1−q≤δq||φ||L1q(J,R+)[∫ϱ0(ψ(ϱ)−ψ(s))ϑ−11−qψ′(s)ds]1−q≤δq(ψ(b)−ψ(0))ϑ−q(ϑ−q1−q)1−q=η. | (12) |
Then,
(ψ(ϱ)−ψ(0))1−μ||yn (ϱ)||≤Ψ(0)Γ(μ)+(1+n)(ψ(b)−ψ(0))1−μΓ(ϑ)∫ϱ0(ψ(ϱ)−ψ(s))ϑ−1ψ′(s)φ(ϱ)ds≤Ψ(0)Γ(μ)+κ1Γ(ϑ)||φ||L1q(J,R+)(1+n)η. | (13) |
If ϱ∈(ϱi si],=1,2,…,n, then by (H1)
||yn(ϱ)||=supϱ∈(ϱisi]||gi(ϱ,xn(ϱ−i))||≤h∗(ψ(ϱi) −ψ(si−1))1−μ||xn(ϱ−i)||≤h∗||xn||H≤hn. | (14) |
Similar as in (13), we get for almost ϱ∈(si ϱi+1],i=1,2,…,n.
(ψ(ϱ)−ψ(si))1−μ||yn(ϱ)||≤||gi(si,xn(ϱ−i))||Γ(μ)+ κ1Γ(ϑ)||φ||L1q(J,R+)(1+n)η≤h∗nΓ(μ)+ κ1Γ(ϑ)||φ||L1q(J,R+)(1+n)η. |
It follows from this inequality, (13) and (14), that
n<||yn||H≤Ψ(0)Γ(μ)+h∗n+h∗nΓ(μ)+κ1Γ(ϑ)||φ||L1q(J,R+)(1+n)η. |
By dividing both side by n and taking the limit as n→∞, one obtains
1<κ1Γ(ϑ)||φ||L1q(J,R+)η+h∗+h∗Γ(μ), |
which contradicts with (8). Thus, there is a natural number n0 such that Φ(Bn0)⊆Φ(Bn0).
Step2. Φ is closed on Bn0.
Let (xn)n≥1, (yn)n≥1be two sequences in Bn0 with xn→x in Bn0,yn→y in H and yn∈Φ(xn);n≥1. Then, there is fn ∈S1F(.,τ(.)¯xn) such that
yn(ϱ)={0,ϱ∈[−r,0](ψ(ϱ)−ψ(0))μ−1Γ(μ)Ψ(0)+1Γ(ϑ)∫ϱ0(ψ(ϱ)−ψ(s))ϑ−1ψ′(s)fn(s)ds,ϱ∈(0,ϱ1]gi(ϱ,xn(ϱ−i)),ϱ∈(ϱi,si],i=1,......n,(ψ(ϱ)−ψ(si))μ−1Γ(μ)gi(si,xn(ϱ−i))+1Γ(ϑ)∫ϱsi(ψ(ϱ)−ψ(s))ϑ−1ψ′(s)fn(s),ϱ∈(siϱi+1],i=1,......n. | (15) |
According to (11), it follows that ||fn(ϱ)||≤φ(ϱ)(1+n),a.e.ϱ∈J, and hence (fn)n≥1 is bounded in L1q(J,E). Since L1q(J,E) is reflexive, then, by using Mazur's Lemma, there is sequence, (zj)j≥1, of convex combinations of (fn)n≥1 converging strongly to f in L1(J,E) as j→∞. Notice that, by (F2) again, for every ϱ∈J,s∈(0,ϱ] and every n≥1
||(ϱ−s)ϑ−1fn(s)||≤ |ϱ−s)|ϑ−1φ(ϱ)(1+n)∈L1((0,ϱ],R+). |
Let
˜yn(ϱ)={0,ϱ∈[−r,0](ψ(ϱ)−ψ(0))μ−1Γ(μ)Ψ(0)+1Γ(ϑ)∫ϱ0(ψ(ϱ)−ψ(s))ϑ−1ψ′(s)zn(s)ds,ϱ∈(0,ϱ1]gi(ϱ,xn(ϱ−i)),ϱ∈(ϱi,si],i=1,......n,(ψ(ϱ)−ψ(si))μ−1Γ(μ)gi(si,xn(ϱ−i))+1Γ(ϑ)∫ϱsi(ψ(ϱ)−ψ(s))ϑ−1ψ′(s)zn(s),ϱ∈(siϱi+1],i=1,......n. | (16) |
Clearly ˜yn(ϱ)→y(ϱ), ϱ∈J and zn(ϱ)→f(ϱ), for almost ϱ∈J. Also, τ(ϱ)¯xn→τ(ϱ)¯x;ϱ∈J, and hence, by the upper semicontinuity of F(ϱ,.);a.e. ϱ∈J, it follows that f(ϱ)∈F(ϱ,τ(ϱ)¯x),a.e.[[37]. Theorem1, Sec. 4, Ch.1 ]. Therefore, by, the uniform continuity of gi(si,.) on bounded subsets and by passing to the limit as n→∞ in (15) we obtain, from the Lebesgue dominated convergence theorem y∈Φ(x).
Step3. We show that M∣¯Jk (k=0,1,...,n) and M∣¯ϱi (i=1,2,....,n) are equicontinuous, where
M∣¯Jk={z:¯Jk→E, z(ϱ)=(ψ(ϱ)−ψ(sk))1−μy(ϱ),ϱ∈Jk,z(sk)=limϱ→sk(ψ(ϱ)−ψ(sk))1−μy(ϱ), y∈Φ(x),x∈Bn0}, |
and
M∣¯ϱi={y∗∈C(¯ϱi,E):y∗(ϱ)=y(ϱ),ϱ∈(ϱi,si],y∗(ϱi)=y(ϱ+i),y∈Φ(x),x∈Bn0}. |
Case 1.let z∈M∣¯J0.Then there are x∈Bn0and y∈Φ(x) such that for ϱ∈(0,ϱ1],
y(ϱ)=(ψ(ϱ)−ψ(0))1−μΨ(0)Γ(μ)+1Γ(ϑ)∫ϱ0(ψ(ϱ)−ψ(s))ϑ−1ψ′(s)f(s)ds, |
z(ϱ)=(ψ(ϱ)−ψ(0))1−μy(ϱ) and z(0)=limϱ→0+(ψ(ϱ)−ψ(0))1−μy(ϱ), where f ∈S1F(.,τ(.)¯x). It follows
limδ→0+z(0+δ)=limδ→0+z(δ)=limδ→0+(ψ(δ)−ψ(0))1−μy(δ)=z(0). |
Let ϱ1,ϱ2 be two points in (0,ϱ1] be such that ϱ1<ϱ2. Then,
‖z(ϱ2)−z(ϱ1)‖≤||(ψ(ϱ2)−ψ(0))1−μΓ(ϑ)∫ϱ20(ψ(ϱ2)−ψ(s))ϑ−1ψ′(s)f(s)ds−(ψ(ϱ1)−ψ(0))1−μΓ(ϑ)∫ϱ10(ψ(ϱ1)−ψ(s))ϑ−1ψ′(s)f(s)ds||≤(ψ(ϱ2)−ψ(0))1−μΓ(ϑ)||∫ϱ2ϱ1(ψ(ϱ2)−ψ(s))ϑ−1ψ′(s)f(s)ds||+||∫ϱ10(ψ(ϱ1)−ψ(s))ϑ−1ψ′(s)||f(s)||ds× |(ψ(ϱ2)−ψ(0))1−μΓ(ϑ)−(ψ(ϱ1)−ψ(0))1−μΓ(ϑ)|+(ψ(ϱ1)−ψ(0))1−μΓ(ϑ)×||∫ϱ10[(ψ(ϱ2)−ψ(s))ϑ−1ψ′(s)−(ψ(ϱ1)−ψ(s))ϑ−1ψ′(s)]||f(s)||ds||. |
By the absolute integral of the Lebesgue integral and Holder's inequality, it yields from (12)
limϱ2→ϱ1(ψ(ϱ2)−ψ(0))1−μΓ(ϑ)∫ϱ2ϱ1(ψ(ϱ2)−ψ(s))ϑ−1ψ′(s)||f(s)||ds≤κ1Γ(ϑ)(1+n0)limϱ2→ϱ1∫ϱ2ϱ1(ψ(ϱ2)−ψ(s))ϑ−1ψ′(s)φ(s)ds≤κ1Γ(ϑ)(1+n0)=0, |
independent of x.
Since ψ is continuous, we get by (12)
||∫ϱ10(ψ(ϱ1)−ψ(s))ϑ−1ψ′(s)Γ(ϑ)f(s)ds||× |(ψ(ϱ2)−ψ(0))1−μ−(ψ(ϱ1)−ψ(0))1−μ|≤(1+n0)∫ϱ10(ψ(ϱ1)−ψ(s))ϑ−1ψ′(s)Γ(ϑ)φ(s)ds×limϱ2→ϱ1|(ψ(ϱ2)−ψ(0))1−μ−(ψ(ϱ1)−ψ(0))1−μ|=0 |
Moreover,
limϱ2→ϱ1(ψ(ϱ1)−ψ(0))1−μΓ(ϑ)×||∫ϱ10[(ψ(ϱ2)−ψ(s))ϑ−1ψ′(s)−(ψ(ϱ1)−ψ(s))ϑ−1ψ′(s)]f(s)ds||≤κ1Γ(ϑ)(1+n0)×limϱ2→ϱ1∫ϱ10[(ψ(ϱ2)−ψ(s))ϑ−1ψ′(s)−(ψ(ϱ1)−ψ(s))ϑ−1ψ′(s)]φ(s)ds≤κ1Γ(ϑ)(1+n0)||φ||L1q(I,R+)×limϱ2→ϱ1[∫ϱ10[(ψ(ϱ2)−ψ(s))ϑ−1ψ′(s)−(ψ(ϱ1)−ψ(s))ϑ−1ψ′(s)]11−qds]1−q |
Put ¯ω=ϑ−11−q∈(−1,0), then for s<ϱ1<ϱ2, we have (ψ(ϱ1)−ψ(s))¯ω≥(ψ(ϱ2)−ψ(s))¯ω. By applying Lemma 3.1 in [43] and taking into account 1−q∈(0,1), we get
|[(ψ(ϱ1)−ψ(s))¯ω]1−q−[(ψ(ϱ2)−ψ(s))¯ω]1−q| ≤[(ψ(ϱ1)−ψ(s))¯ω−(ψ(ϱ2)−ψ(s))¯ω]1−q. |
Then,
|(ψ(ϱ1)−ψ(s))ϑ−1−(ψ(ϱ2)−ψ(s))ϑ−1|≤ [(ψ(ϱ1)−ψ(s))¯ω−(ψ(ϱ2)−ψ(s))¯ω]1−q. |
This leads to
|(ψ(ϱ1)−ψ(s))ϑ−1−(ψ(ϱ2)−ψ(s))ϑ−1|11−q≤(ψ(ϱ1)−ψ(s))¯ω−(ψ(ϱ2)−ψ(s))¯ω. |
Therefore,
limϱ2→ϱ1[∫ϱ10[(ψ(ϱ2)−ψ(s))ϑ−1ψ′(s)−(ψ(ϱ1)−ψ(s))ϑ−1ψ′(s)]11−qds]1−q≤limϱ2→ϱ1[∫ϱ10[(ψ(ϱ2)−ψ(s))ϑ−1−(ψ(ϱ1)−ψ(s))ϑ−1]11−q(ψ′(s))11−qds]1−q≤limϱ2→ϱ1[∫ϱ10[(ψ(ϱ1)−ψ(s))¯ω−(ψ(ϱ2)−ψ(s))¯ω](ψ′(s))11−qds]1−q≤δqlimϱ2→ϱ1[∫ϱ10[(ψ(ϱ1)−ψ(s))¯ω−(ψ(ϱ2)−ψ(s))¯ω]ψ′(s)ds]1−q=δqlimϱ2→ϱ1[(ψ(ϱ1)−ψ(s))¯ω+1¯ω+1−(ψ(ϱ2)−ψ(s))¯ω+1¯ω+1]1−q=0. |
Thus,
limϱ2→ϱ1(ψ(ϱ1)−ψ(0))1−μΓ(ϑ)×||∫ϱ10[(ψ(ϱ2)−ψ(s))ϑ−1ψ′(s)−(ψ(ϱ1)−ψ(s))ϑ−1ψ′(s)]f(s)ds||=0 |
independent of x.
Case 2. Let i∈{1,2,..,n} be fixed and set Ki={x(ϱ−i):x∈Bn0}.ObviouslyKi is bounded subset of E.
Let y∈M∣ϱi. Then, there is x∈Bn0 such that
y(ϱ)=gi(ϱ,x(ϱ−i)),ϱ∈(ϱi,si] |
It follows, from the uniform continuity of gi on the bounded set [ϱi,si]×Ki, that for ϱ1,ϱ2∈(ϱi,si]
limϱ2→ϱ1||y(ϱ2)−y(ϱ1)||=limϱ2→ϱ1||gi(ϱ2,x(ϱ−i))−gi(ϱ1,x(ϱ−i))||=0, |
independent of x. When ϱ=ϱi, let δ>0 be such that ϱi+δ∈(ϱi,si] and λ>0 with ϱi<λ<ϱi+δ≤si. Then, we have
limδ→0+‖y∗(ϱi+δ)−y∗(ϱi)‖=limδ→0+limλ→ϱ+i‖y(ϱi+δ)−y(λ)‖=0. |
Case 3. let k=1,…,n be fixed, z∈M∣¯Jk. Then, there are x∈Bn0and y∈Φ(x) such that for ϱ∈ϱ∈(sk,ϱk+1],
y(ϱ)=(ψ(ϱ)−ψ(sk))μ−1Γ(μ)gk(sk,xn(ϱ−k))+1Γ(ϑ)∫ϱsk(ψ(ϱ)−ψ(s))ϑ−1ψ′(s)zn(s), |
z(ϱ)=(ψ(ϱ)−ψ(sk))1−μy(ϱ) and z(sk)=limϱ→sk+(ψ(ϱ)−ψ(sk))1−μy(ϱ), where f ∈S1F(.,τ(.)¯x). It follows
limδ→0+z(sk+δ)=limδ→0+(ψ(sk+δ)−ψ(sk))1−μy(sk+δ)=limϱ→sk+(ψ(ϱ)−ψ(sk))1−μy(ϱ)=z(sk). |
Next, let ϱ1,ϱ2∈(sk,ϱk+1](ϱ1< ϱ2).By arguing as in case 1, one can show that
limϱ2→ϱ1‖z(ϱ+δ)−z(ϱ)‖=0, |
independent of x.
Step 4. Let K⊆Bn0, K=conv({0}∪Φ(K)), ¯Z=¯C with C⊆K countable. We have to show that K is relatively compact in H Let D={yn:n≥1}⊆Φ(K) with C⊆conv({x0}∪D), xn∈K with yn∈Φ(xn).This means that, there is fn∈S1F(.,τ(.)¯xn) such that the relation (15) holds. Observe that, from (F3) it holds for a.e.s∈J0
χE{fn(s):n≥1}≤(ψ(ϱ)−ψ(0))1−μς(ϱ)χ{F(s,τ(s)¯xn):n≥1}≤ζ(s)(ψ(ϱ)−ψ(0))1−μsupθ∈[−r,0] χ{¯xn(s+θ):n≥1}≤ζ(s)(ψ(ϱ)−ψ(0))1−μsupδ∈[−r,s] χ{¯xn(δ):n≥1}. |
Because supδ∈[−r,0] χ{¯xn(δ):n≥1}=supδ∈[−r,0] χ{Ψ(δ)}=0. Thus,
χE{fn(s):n≥1}≤ζ(s)(ψ(ϱ)−ψ(0))1−μ supδ∈[0,s]χ{xn(δ):n≥1}=ζ(s)supδ∈[0,s]χ{(ψ(ϱ)−ψ(0))1−μxn(δ):n≥1}≤ζ(s)χPC1−μ,ψ(J,E){xn:n≥1}≤ζ(s)χH(Bn−1). | (17) |
According to the definition χH(Z), one obtains
χH(Z)=χH(¯Z)=χH(¯C)=χH(C))≤χH(conv({x0}∪D))=χH(D)=max{maxk=0,1,..,nχC(¯Jk,E)(D|¯Jk),maxi=1,..,nχC(¯ϱi,E)(D|¯ϱi)}. | (18) |
In view of Step 3, D|¯Ji and D|¯ϱi are equicontinuous, consequently
χH(K)≤max{maxi=0,1,..,nmaxϱ∈¯Jkχ{y∗n(ϱ):n≥1},maxi=1,..,nmaxϱ∈¯ϱiχ{y∗n(ϱ):n≥1}}, | (19) |
Let ϱ∈(0,ϱ1]. Then,
y∗n(ϱ)=Ψ(0)Γ(μ)+(ψ(ϱ)−ψ(0))1−μΓ(ϑ)∫ϱ0(ψ(ϱ)−ψ(0))ϑ−1ψ′(s)fn(s)ds, |
which yields with (17)
χ{y∗n(ϱ):n≥1}≤(ψ(ϱ)−ψ(0))1−μΓ(ϑ)∫ϱ0(ψ(ϱ)−ψ(0))ϑ−1ψ′(s)χ{fn(s):n≥1}ds≤(ψ(b)−ψ(0))1−μΓ(ϑ)χH(Bn−1)∫ϱ0(ψ(ϱ)−ψ(0))ϑ−1ψ′(s)ζ(s)ds≤κ1Γ(ϑ) η||ς||L1q(I,R+)χH(Bn−1). | (20) |
Notice that
χ{y∗n(0):n≥1}=χ{limϱ→0+y∗n(ϱ):n≥1}=χ{Ψ(0)Γ(μ)}=0. | (21) |
Moreover, from the fact that ||xn||H≤n0,the set {xn(ϱ−i):n≥1} is bounded for every i=1,2,...,n and hence from the assumption (H1), we get
χ{gi(ϱ,xn(ϱ−i)),n≥1}=0,ϱ∈(ϱi,si],i=1,...,n. | (22) |
and
χ{gi(ϱi,xn(ϱ−i)),n≥1}=χ{gi(si,xn(ϱ−i)):n≥1}=0. | (23) |
Similarly,
χ{y∗n(si):n≥1}=χ{limϱ→s+i(ψ(ϱ)−ψ(si))1−μyn(ϱ),:n≥1}=χ{1Γ(μ)gi(si,xn(ϱ−i)):n≥1}=0,i=1,2,..,n. | (24) |
By arguing as in (20), one can show that
maxϱ∈¯Jkχ{y∗n(ϱ):n≥1}≤κ1Γ(ϑ) η||ς||L1q(I,R+)χH(Bn−1),k=1,2,..n. | (25) |
From the relations (7), (19)–(25), it follows that
χH(K)≤χH(K)2κ1Γ(ϑ) η||ς||L1q(I,R+) <χH(K). |
So, χPC1−μ(J,E)(K)=0, and hence K is relatively compact.
Step5. Φ maps compact sets into relatively compact sets.
Let B be a compact subset of Bn0, {yn,:n≥1}⊆Φ(B) Then, there is xn∈B,n≥1, such that yn ∈Φ(xn). So, there is fn∈S1F(.,¯xn(.)) such that (15) holds. We have to show that the set Z={yn:n≥1} is relatively compact in H. Note that, since B is compact in H, then from (F3) we get for a.e. s∈J0,
χE{fn(s):n≥1}≤(ψ(ϱ)−ψ(0))1−μς(ϱ)χ{F(s,τ(s)¯xn):n≥1}≤ζ(s)(ψ(ϱ)−ψ(0))1−μsupθ∈[−r,0] χ{¯xn(s+θ):n≥1}≤ζ(s)(ψ(ϱ)−ψ(0))1−μsupδ∈[−r,s] χ{¯xn(δ):n≥1}≤ζ(s)(ψ(ϱ)−ψ(0))1−μ supδ∈[0,s]χ{xn(δ):n≥1}=ζ(s)supδ∈[0,s]χ{(ψ(ϱ)−ψ(0))1−μxn(δ):n≥1}≤ζ(s)χPC1−μ,ψ(J,E){xn:n≥1}≤ζ(s)χH(B)=0. |
By the same reasons, one can show that for a.e. s∈Jk, k=1,2,..,n
χE{fn(s):n≥1}=0. |
By arguing as in the previous step one can show that Z is relatively compact, and hence Φ(B) is relatively compact.
Now, by applying Lemma 8, there is x∈H andf ∈S1F(.,τ(.)¯x) such that
x(ϱ)={0,ϱ∈[−r,0](ψ(ϱ)−ψ(0))μ−1Γ(μ)Ψ(0)+1Γ(ϑ)∫ϱ0(ψ(ϱ)−ψ(s))ϑ−1ψ′(s)f(s)ds,ϱ∈(0,ϱ1]gi(ϱ,x(ϱ−i)),ϱ∈(ϱi,si],i=1,......n,(ψ(ϱ)−ψ(0))μ−1Γ(μ)gi(si,x(ϱ−i))+1Γ(ϑ)∫ϱsi(ψ(ϱ)−ψ(s))ϑ−1ψ′(s)f(s),ϱ∈(siϱi+1],i=1,......n. |
Next, in view of (F1), there is h∈PC1−μ,ψ(J,E) such that f(ϱ)=Iν(1−ϑ),ψsi+h(ϱ),ϱ∈Jk,k=0,..,n, and hence, from Lemma 3.3,
Dν(1−ϑ),ψsi+f(ϱ)=Dν(1−ϑ),ψsi+Iν(1−ϑ)ψsi+h(ϱ)=h(ϱ),ϱ∈Jk,k=0,..,n. |
This yields that f∈PCν(1−ϑ)1−μ,ψ(J,E). Then, the function
¯x(ϱ)={Ψ(ϱ),ϱ∈[−r,0](ψ(ϱ)−ψ(0))μ−1Γ(μ)Ψ(0)+1Γ(ϑ)∫ϱ0(ψ(ϱ)−ψ(s))ϑ−1ψ′(s)f(s)ds,ϱ∈(0,ϱ1]gi(ϱ,x(ϱ−i)),ϱ∈(ϱi,si],i=1,......n,(ψ(ϱ)−ψ(si))μ−1Γ(μ)gi(si,x(ϱ−i))+1Γ(ϑ)∫ϱsi(ψ(ϱ)−ψ(s))ϑ−1ψ′(s),ϱ∈(siϱi+1],i=1,......n. | (26) |
belongs to H and in view of Lemma(6) it is a solution for (1). This completes the proof.
Remark 3.2. Theorem 1 remains true if condition (F2) is replaced by the following assumption:
(F2)∗There is a φ∈L1q(I,R+) such that for any z∈Θ
‖F(ϱ,z)‖≤{φ(ϱ) (1+(ψ(ϱ)−ψ(si))1−μ‖z(0)‖E),a.e.ϱ∈∪i=ni=0(siϱi+1],φ(ϱ) (1+‖z(0)‖E),a.e.ϱ∈∪i=ni=1(ϱi,si]. |
In fact, condition (F2) is used only to prove relation (11). We show this relation by using (F2)∗. Let fn∈ S1F(.,τ(.)¯xn), n≥1 Then, by (F2)∗, for almost ϱ∈∪i=ni=0(si ϱi+1] we get
||fn(ϱ)||≤φ(ϱ)(1+(ψ(ϱ)−ψ(si))1−μ||τ(ϱ)¯xn(0)||)≤φ(ϱ)(1+(ψ(ϱ)−ψ(si))1−μ||¯xn(ϱ)||)≤φ(ϱ)(1+(ψ(ϱ)−ψ(si))1−μ||xn(ϱ)||≤φ(ϱ)(1+‖xn‖H). |
and for almost ϱ∈∪i=ni=1(ϱi si]
||fn(ϱ)||≤φ(ϱ)(1+||τ(ϱ)¯xn(0)||E)≤φ(ϱ)(1+¯xn(ϱ))≤φ(ϱ)(1+||xn(ϱ)||)≤φ(ϱ)(1+‖xn‖H). |
In this section, we give another version for the existence of solutions and investigate the generalized ψ−generalized Ulam-Hyers stability of problem (1). For basic information about multivalued weakly Picard operators we refer to [38].
Definition 3. [39,40] A An increasing function ς:[0,∞)→[0,∞) is called comparison function if limn→∞ςn(s)=0, ∀s∈[0,∞),where ςn(s)=ςn−1(ς(s)).If in addition ∞∑n=1ςn(ϱ)<∞,∀s∈(0,∞), then ς:[0,∞)→[0,∞) is called strictly comparison.
Remark 4.1. [41]
1- If ς:[0,∞)→[0,∞) is comparisons, then ς(s)<s,∀s>0,ς(0)=0 and ς is continuous at 0.
2-the functions ς1(s)=cϱ;c∈[0,1) and ς2(s)=ss+1:s∈[0,∞) are strictly comparison
Let M:={y∈H:y|J∈PCμ1−μ,ψ(J,E), Dϑ,ν,ψsi+y(ϱ) exists for any ϱ∈(si ϱi+1], i=0,1,......n,}
Definition 4. [12] Problem (1) is called ψ−generalized Ulam- Hyers stable if there is a continuous function θ:[0,∞)→[0,∞) and θ(0)=0 such that for each ϵ>0 and each solution y∈M of the inequality
{d(Dϑ,ν,ψs+iy(ϱ),F(ϱ,τ(ϱ)y))≤ϵ,a.e.ϱ∈(si,ϱi+1],i=0,1,....,n,||y(ϱ)−gi(ϱ,y(ϱ−i))||≤ϵ,ϱ∈(ϱisi],i=1,......n,,||y(ϱ+i)−gi(ϱi,y(ϱ−i))||≤ϵ,i=1,......n, | (27) |
there is a solution x∈H for (1) with
supϱ∈J||x(ϱ)−y(ϱ)||≤θ(ϵ). | (28) |
In the following theorem, we establish the existence and generalized ψ− Ulam-Hyers stability of solutions Problem (1).
Theorem 4.1. Let F:J×Θ→Pck(E), Ψ∈Θ andgi:[ϱi,si]×E→E (i=1,2,....n)be such that:
(F4) For every z∈H, S1F(.,τ(.)z) is a non-empty subset of Iν(1−ϑ),ψ(PC1−μ,ψ(J,E)).
(F5) There is a function σ∈L1q(I,R+),0<q<ϑ and a strict comparison function ς:[0,∞)→[0,∞) such that
(ⅰ) For every x1,x2∈H
h(F(ϱ,τ(ϱ)¯x1),F(ϱ,τ(ϱ)¯x2))≤σ(ϱ)ς(‖x1−x2‖)H,∀ϱ∈J. |
(ⅱ)
Sup{ ||y|| : y∈F(ϱ,τ(ϱ)¯x0)}≤σ(ϱ),fora.e.ϱ∈J, |
where ¯x0(s)=Ψ(s);s∈[−r,0] and ¯x0(s)=0;s∈(0,b].
(H2)For anyi=1,2,....n, there ξi >0 such that for any ϱ∈[ϱi,si]
‖gi(ϱ,x)−gi(ϱ,y)‖≤ξi ς(‖x−y‖E),∀x,y∈E. |
Then, there is solution for Problem(1) provided that
ξΓ(μ)+ ηδq(ψ(b)−ψ(0))1−μΓ(ϑ)||σ||L1q(I,R+)<1, | (29) |
where ξ=∑i=ni=1ξi.Moreover, if, in addition there, is a c>1such that ς(cϱ)≤c ς(ϱ);ϱ∈[0,∞) and ϱ=0 is a point of uniform convergence for the series ∞∑n=1ςn(ϱ), then problem (1) is a ψ−generalized Ulam-Hyers stable.
Proof. Condition (F4) allows to define a multifunction Φ:H→P(H) as in (9) Note that by (F5), for every x∈H, and for a.e.ϱ∈J
||F(ϱ,τ(ϱ)¯x)||=h(F(ϱ,τ(ϱ)¯x),{0})≤h(F(ϱ,τ(ϱ)¯x),F(ϱ,τ(ϱ)¯x0))+h(F(ϱ,τ(ϱ)¯x0),{0})≤σ(ϱ)ς(‖x‖H)+σ(ϱ)≤σ(ϱ)(1+ς(‖x‖H)),for a.e.ϱ∈J. |
Then, as the reasons of Theorem 1, we can show that the values of Φ are closed. We show that Φ is ς−contraction. Let x2,x1∈H and y1∈Φ(x1). Then, there exists f∈S1F(.,τ(.)¯x1)such that
y1(ϱ)={0,ϱ∈[−r,0](ψ(ϱ)−ψ(0))μ−1Γ(μ)Ψ(0)+1Γ(ϑ)∫ϱ0(ψ(ϱ)−ψ(s))ϑ−1ψ′(s)f(s)ds,ϱ∈(0,ϱ1]gi(ϱ,x(ϱ−i)),ϱ∈(ϱi,si],i=1,......n,(ψ(ϱ)−ψ(si))μ−1Γ(μ)gi(si,x(ϱ−i))+1Γ(ϑ)∫ϱsi(ψ(ϱ)−ψ(s))ϑ−1ψ′(s)f(s),ϱ∈(siϱi+1],i=1,......n. |
Define Π:J→2E as
Π(ϱ)={u∈E:||f (ϱ)−u || ≤σ(ϱ)ς(‖x1−x2‖H)}. |
From (F5)(i), we have
h(F(ϱ,τ(ϱ)¯x1),F(ϱ,τ(ϱ)¯x2))≤σ(ϱ)ς(‖x1−x2‖H),ϱ∈J, |
Since the values of F are compact, there exists uϱ ∈F(ϱ,τ(ϱ)x2) such that
||uϱ−f(ϱ)|| ≤σ(ϱ)ς(‖x1−x2‖H), |
as a consequence Π(ϱ);ϱ∈J is not empty. Furthermore, because f,σ,x1,x2 are measurable and E is separable, it follows from [[42], Theorem Ⅲ.41], the multifunction s→ Π(s)∩F(s,τ(s)¯x2) is measurable and since its values are non-empty and compact, there is h∈S1F(ϱ,τ(ϱ)¯x2) such that
||h(ϱ)−f(ϱ)|| ≤ σ(ϱ)ς(‖x1−x2‖H),a.e.ϱ∈J. |
Set
y2(ϱ)={0,ϱ∈[−r,0](ψ(ϱ)−ψ(0))μ−1Γ(μ)Ψ(0)+1Γ(ϑ)∫ϱ0(ψ(ϱ)−ψ(s))ϑ−1ψ′(s)h(s)ds,ϱ∈(0,ϱ1]gi(ϱ,x2(ϱ−i)),ϱ∈(ϱi,si],i=1,......n,(ψ(ϱ)−ψ(si))μ−1Γ(μ)gi(si,x2(ϱ−i))+1Γ(ϑ)∫ϱsi(ψ(ϱ)−ψ(s))ϑ−1ψ′(s)h(s),ϱ∈(siϱi+1],i=1,......n. |
Notice that, y2∈ Φ(x2) and if ϱ∈J0,, we get from Holder's inequality
(ψ(ϱ)−ψ(0))1−μ||y2(ϱ)−y1(ϱ)|| ≤(ψ(ϱ)−ψ(0))1−μΓ(ϑ)∫ϱ0(ψ(ϱ)−ψ(s))ϑ−1ψ′(s)σ(s) ||h(s)−f(s)||ds≤(ψ(ϱ)−ψ(0))1−μΓ(ϑ)ς(‖x1−x2‖H)∫ϱ0(ψ(ϱ)−ψ(s))ϑ−1ψ′(s)σ(s)ds≤(ψ(ϱ)−ψ(0))1−μΓ(ϑ) ς(‖x1−x2‖H)||σ||L1q(I,R+)δq(ψ(b)−ψ(0))ϑ−q(ϑ−q1−q)1−q≤ηδq(ψ(b)−ψ(0))1−μΓ(ϑ)||σ||L1q(I,R+)ς(‖x1−x2‖H). | (30) |
Similarly, if ϱ∈(si ϱi+1],i=1,......,n, we get
(ψ(ϱ)−ψ(si))||y2(ϱ)−y1(ϱ)||≤1Γ(μ)||gi(si,x1(ϱ−i))−gi(si,x2(ϱ−i))||+ηδq(ψ(b)−ψ(0))1−μΓ(ϑ)||σ||L1q(I,R+)ς(‖x1−x2‖H).≤ξΓ(μ)ς(‖x1−x2‖H)+ηδq(ψ(b)−ψ(0))1−μΓ(ϑ)||σ||L1q(I,R+)ς(‖x1−x2‖H).≤ς(‖x1−x2‖H)[ξΓ(μ)+ ηδq(ψ(b)−ψ(0))1−μΓ(ϑ)||σ||L1q(I,R+)], | (31) |
where ξ=∑i=ni=1ξi. Furthermore, If ϱ∈(ϱi,si],i=1,......n, then by (H2)one obtains
||y2(ϱ)−y1(ϱ)||≤||gi(ϱ,x(ϱ−i))−gi(ϱ,x(ϱ−i))||≤ξς(||x1(ϱ−i)−x2(ϱ−i)||) ≤ξ ς(‖x1−x2‖H). | (32) |
It follows from (30)–(32),
hH(Φ(x2),Φ(x1))<ς(‖x1−x2‖H)[ξΓ(μ)+ ηδq(ψ(ϱ)−ψ(0))1−μΓ(ϑ)||σ||L1q(I,R+)], |
where, hH is the Hausdorff distance in H. This inequality and (29) imply that Φ is ς−contraction and thus by Theorem 3.1(i) in [41], Φ has a fixed point and as in Theorem 1, this fixed point is a solution for Problem (1).
Now, in order to demonstrate that Problem(1) is a ψ−generalized Ulam-Hyers stable. Let ϵ>0 and y∈M be a solution of inequality (27). Because the values of F are compact, there f∈S1F(.,τ(ϱ)y) such that
||Dϑ,ν,ψs+iy(ϱ)−f(ϱ)||=d(Dϑ,ν,ψs+iy(ϱ),F(ϱ,τ(ϱ)y)),a.e.ϱ∈(si,ϱi+1],i=0,1,....,n. |
Then, for almost everywhere ϱ∈∪i=ni=0(si,ϱi+1]
Dϑ,ν,ψs+iy(ϱ)=w(ϱ)+f(ϱ), |
where w∈PCν(1−ϑ)1−μ,ψ(J,E) and ||w(ϱ)|≤ϵ,∀ϱ∈J. Furthermore, according to (F4), there is h∈PC1−μ,ψ(J,E) such that f(ϱ)=Iν(1−ϑ),ψsi+h(ϱ),ϱ∈Jk, k=0,1,2,..,n, and hence, from Lemma 3.2,
\begin{equation*} D_{s_{i}+}^{\nu (1-\vartheta ),\psi }f(\mathcal{\varrho }) = D_{s_{i}+}^{\nu (1-\vartheta ),\psi }I_{s_{i}+}^{\nu (1-\vartheta )\psi }h(\mathcal{\varrho } ) = h(\mathcal{\varrho }),\mathcal{\varrho }\in J_{k},\ k = 0,1,2,..,n. \end{equation*} |
This yields that f\in PC_{1-\mu, \psi }^{\nu (1-\vartheta)}(J, E). Therefore, y(\mathcal{\varrho }) = \Psi (\mathcal{\varrho }), \mathcal{\varrho }\in \lbrack -r, 0]\ and
\begin{equation} \left\{ \begin{array}{l} D_{s_{i}^{+}}^{\vartheta ,\nu ,\psi }y(\mathcal{\varrho }) = f(\mathcal{ \varrho })+\vartheta (\mathcal{\varrho }),{\rm{ }}a.e.{\rm{ }}\mathcal{ \varrho }\in (s_{i},{\rm{ }}\mathcal{\varrho }_{i+1}],i = 0,1,....,n, \\ y(\mathcal{\varrho }) = g_{i}(\mathcal{\varrho },y(\mathcal{\varrho } _{i}^{-}))+\epsilon ,\mathcal{\varrho }\in (\mathcal{\varrho }_{i}{\rm{ }} s_{i}],i = 1,......n,, \\ y(\mathcal{\varrho }_{i}^{+}) = g_{i}(\mathcal{\varrho }_{i},y(\mathcal{ \varrho }_{i}^{-}))+\epsilon ,i = 1,......n, \end{array} \right. \end{equation} | (33) |
In view of the second assertion of Lemma 3.3, relation (33) one obtains
\begin{equation} y(\mathcal{\varrho }) = \left\{ \begin{array}{l} \Psi (\mathcal{\varrho }),\mathcal{\varrho }\in \lbrack -r,0]\ \\ \frac{(\psi (\mathcal{\varrho })-\psi (0))^{\mu -1}}{\Gamma (\mu )}\Psi (0)+ \frac{1}{\Gamma (\vartheta )}\int_{0}^{\mathcal{\varrho }}(\psi (\mathcal{ \varrho })-\psi (s))^{\vartheta -1}f(s)ds \\ +\frac{1}{\Gamma (\vartheta )}\int_{0}^{\mathcal{\varrho }}(\psi (\mathcal{ \varrho })-\psi (s))^{\vartheta -1}\vartheta (\mathcal{\varrho })ds,\mathcal{ \varrho }\in (0,\mathcal{\varrho }_{1}], \\ g_{i}(\mathcal{\varrho },y(\mathcal{\varrho }_{i}^{-}))+\epsilon ,\mathcal{ \varrho }\in (\mathcal{\varrho }_{i}{\rm{ }}s_{i}],i = 1,2,\ldots ,n, \\ \frac{(\psi (\mathcal{\varrho })-\psi (s_{i}))^{\mu -1}}{\Gamma (\mu )} y(s_{i})+\frac{1}{\Gamma (\vartheta )}\int_{0}^{\mathcal{\varrho }}(\psi ( \mathcal{\varrho })-\psi (s))^{\vartheta -1}\psi \prime (s)(f(s))ds \\ +\frac{1}{\Gamma (\vartheta )}\int_{0}^{\mathcal{\varrho }}(\psi (\mathcal{ \varrho })-\psi (s))^{\vartheta -1}\psi \prime (s)\vartheta (\mathcal{ \varrho })ds,\mathcal{\varrho }\in (s_{i}{\rm{ }}\mathcal{\varrho } _{i+1}],i = 1,2,\ldots ,n. \end{array} \right. \end{equation} | (34) |
Let
\begin{equation*} z(\mathcal{\varrho }) = \left\{ \begin{array}{l} 0,\mathcal{\varrho }\in \lbrack -r,0]\ \\ \frac{(\psi (\mathcal{\varrho })-\psi (0))^{\mu -1}}{\Gamma (\mu )}\Psi (0)+ \frac{1}{\Gamma (\vartheta )}\int_{0}^{\mathcal{\varrho }}(\psi (\mathcal{ \varrho })-\psi (s))^{\vartheta -1}\psi \prime (s)f(s)ds,\mathcal{\varrho } \in (0,\mathcal{\varrho }_{1}], \\ g_{i}(\mathcal{\varrho },y(\mathcal{\varrho }_{i}^{-})),\mathcal{\varrho } \in (\mathcal{\varrho }_{i}{\rm{ }}s_{i}],i = 1,2,\ldots ,n, \\ \frac{(\psi (\mathcal{\varrho })-\psi (s_{i}))^{\mu -1}}{\Gamma (\mu )} g_{i}(s_{i},y(\mathcal{\varrho }_{i}^{-}))+\frac{1}{\Gamma (\vartheta )} \int_{0}^{\mathcal{\varrho }}(\psi (\mathcal{\varrho })-\psi (s))^{\vartheta -1}\psi \prime (s)(f(s))ds| \\ +\frac{1}{\Gamma (\vartheta )}\int_{0}^{\mathcal{\varrho }}(\psi (\mathcal{ \varrho })-\psi (s))^{\vartheta -1}\psi \prime (s)\vartheta (\mathcal{ \varrho })ds,\mathcal{\varrho }\in (s_{i}{\rm{ }}\mathcal{\varrho } _{i+1}],i = 1,2,\ldots ,n. \end{array} \right. \end{equation*} |
Obviously, z\in \Phi (y^{\ast }) , where
\begin{equation*} y^{\ast }(\mathcal{\varrho }) = \left\{ \begin{array}{l} 0,\mathcal{\varrho }\in \lbrack -r,0]\ \\ \frac{(\psi (\mathcal{\varrho })-\psi (0))^{\mu -1}}{\Gamma (\mu )}\Psi (0)+ \frac{1}{\Gamma (\vartheta )}\int_{0}^{\mathcal{\varrho }}(\psi (\mathcal{ \varrho })-\psi (s))^{\vartheta -1}\psi \prime (s)f(s)ds \\ +\frac{1}{\Gamma (\vartheta )}\int_{0}^{\mathcal{\varrho }}(\psi (\mathcal{ \varrho })-\psi (s))^{\vartheta -1}\vartheta (\mathcal{\varrho })ds,\mathcal{ \varrho }\in (0,\mathcal{\varrho }_{1}], \\ g_{i}(\mathcal{\varrho },y(\mathcal{\varrho }_{i}^{-}))+\epsilon ,\mathcal{ \varrho }\in (\mathcal{\varrho }_{i}{\rm{ }}s_{i}],i = 1,2,\ldots ,n, \\ \frac{(\psi (\mathcal{\varrho })-\psi (s_{i}))^{\mu -1}}{\Gamma (\mu )} y(s_{i})+\frac{1}{\Gamma (\vartheta )}\int_{0}^{\mathcal{\varrho }}(\psi ( \mathcal{\varrho })-\psi (s))^{\vartheta -1}\psi \prime (s)(f(s))ds| \\ +\frac{1}{\Gamma (\vartheta )}\int_{0}^{\mathcal{\varrho }}(\psi (\mathcal{ \varrho })-\psi (s))^{\vartheta -1}\psi \prime (s)\vartheta (\mathcal{ \varrho })ds,\mathcal{\varrho }\in (s_{i}{\rm{ }}\mathcal{\varrho } _{i+1}],i = 1,2,\ldots ,n. \end{array} \right. \end{equation*} |
Moreover, from (33) and (34) we get for \mathcal{\varrho }\in (0, \mathcal{\varrho }_{1}]
\begin{eqnarray*} ||z(\mathcal{\varrho })-y^{\ast }(\mathcal{\varrho })|| &\leq &\frac{1}{ \Gamma (\vartheta )}\int_{0}^{\mathcal{\varrho }}(\psi (\mathcal{\varrho } )-\psi (s))^{\vartheta -1}\psi \prime (s)||\vartheta (\mathcal{\varrho })||ds \\ &\leq &\frac{\epsilon (\psi (b)-\psi (0))^{\vartheta }}{\Gamma (\vartheta +1) }. \end{eqnarray*} |
If \mathcal{\varrho }\in (\mathcal{\varrho }_{i} s_{i}], then ||\overline{ z}(\mathcal{\varrho })-y(\mathcal{\varrho })||\leq \epsilon. If \ \mathcal{ \varrho }\in (s_{i} \mathcal{\varrho }_{i+1}], then
\begin{eqnarray*} ||z(\mathcal{\varrho })-y^{\ast }(\mathcal{\varrho })|| &\leq &||\frac{(\psi (\mathcal{\varrho })-\psi (s_{i}))^{\mu -1}}{\Gamma (\mu )}g_{i}(s_{i},y( \mathcal{\varrho }_{i}^{-}))\frac{(\psi (\mathcal{\varrho })-\psi (s_{i}))^{\mu -1}}{\Gamma (\mu )}y(s_{i})|| \\ &&+\frac{1}{\Gamma (\vartheta )}\int_{0}^{\mathcal{\varrho }}(\psi (\mathcal{ \varrho })-\psi (s))^{\vartheta -1}\psi \prime (s)||\vartheta (\mathcal{ \varrho })||ds \\ &\leq &\frac{(\psi (\mathcal{\varrho })-\psi (s_{i}))^{\mu -1}}{\Gamma (\mu ) }||g_{i}(s_{i},y(\mathcal{\varrho }_{i}^{-}))-y(s_{i})|| \\ &&+\frac{\epsilon (\psi (b)-\psi (0))^{\vartheta }}{\Gamma (\vartheta +1)} \\ &\leq &\epsilon \frac{(\psi (b)-\psi (0))^{\mu -1}}{\Gamma (\mu )}+\frac{ \epsilon (\psi (b)-\psi (0))^{\vartheta }}{\Gamma (\vartheta +1)} \\ & = &\epsilon \lbrack \frac{(\psi (b)-\psi (0))^{\mu -1}}{\Gamma (\mu )}+\frac{ (\psi (b)-\psi (0))^{\vartheta }}{\Gamma (\vartheta +1)}+1] \end{eqnarray*} |
As a consequence,
\begin{equation} \sup\limits_{\mathcal{\varrho }\in J}||y^{\ast }(\mathcal{\varrho })-z(\mathcal{ \varrho })||\leq \epsilon \lbrack \frac{(\psi (b)-\psi (0))^{\mu -1}}{\Gamma (\mu )}+\frac{(\psi (b)-\psi (0))^{\vartheta }}{\Gamma (\vartheta +1)}+1]. \end{equation} | (35) |
On the other hand, from the facts that \Phi \ is \varsigma - contraction, \varsigma is strictly comparison, \varsigma (c\mathcal{ \varrho })\leq c\ \varsigma (\mathcal{\varrho })(c > 1)\ for every \mathcal{ \varrho }\in \lbrack 0, \infty) and \mathcal{\varrho } = 0 is a point of uniform convergence for the series \sum\limits_{n = 1}^{\infty }\varsigma ^{n}(\mathcal{\varrho }), it yields from Theorem3.1(ii)[41], \ that \Phi \ is \rho - multivalued weakly Picard operator, where \rho (\mathcal{\varrho }) = \mathcal{\varrho }+\sum\limits_{n = 1}^{\infty }\ \varsigma ^{n}(\mathcal{\varrho }). Then, the function \Phi ^{\infty }:Graph(\Phi)\rightarrow Fix(\Phi)\ is well defined and
\begin{equation} ||y^{\ast }-\Phi ^{\infty }(y^{\ast },z)||_{\mathcal{H}}\leq \rho (||y^{\ast }-z||_{\mathcal{H}}). \end{equation} | (36) |
Put x = \Phi ^{\infty }(y^{\ast }, z).\ So, x\in \Phi (x)\ and from (35) and (36) we get
\begin{eqnarray*} d_{H}(y,\overline{x}) &\leq &||y^{\ast }-\Phi ^{\infty }(y^{\ast },z)||_{\mathcal{H}}\leq \rho (||y^{\ast }-z||_{\mathcal{H}}) \\ & = &\rho (\epsilon \lbrack \frac{(\psi (b)-\psi (0))^{\mu -1}}{\Gamma (\mu )}+ \frac{(\psi (b)-\psi (0))^{\vartheta }}{\Gamma (\vartheta +1)}+1]) = \theta (\epsilon ), \end{eqnarray*} |
where \theta (\mathcal{\varrho }) = \rho (\mathcal{\varrho }[\frac{(\psi (b)-\psi (0))^{\mu -1}}{\Gamma (\mu)}+\frac{(\psi (b)-\psi (0))^{\vartheta } }{\Gamma (\vartheta +1)}+1]). Consequently, Problem (1) is \psi - generalized Ulam-Hyers stable.
In this section we give examples to clarify the possibility of applicability our assumptions.
EXAMPLE 1 Let E\ be a Hilbert space, K\ a non-empty convex compact subset of E, r = 1, s_{0} = 0, \mathcal{\varrho }_{1} = 1, s_{1} = 2, \mathcal{\varrho }_{2} = 3, \vartheta = \frac{1}{2}, \nu = \frac{1}{4} and \mu = \vartheta +\nu -\vartheta \nu = \frac{5}{8} . Let F:J\times \Theta \rightarrow P_{ck}(E) be defined as follows:
\begin{equation} F(\mathcal{\varrho },z) = \left\{ \begin{array}{l} (\psi (\mathcal{\varrho })-\psi (0))^{\frac{3}{8}}||z(0)||K,\ \mathcal{ \varrho }\in \lbrack 0,1], \\ ||z(0)||K,\mathcal{\varrho }\in (1,{\rm{ }}2], \\ (\psi (\mathcal{\varrho })-\psi (2))^{\frac{3}{8}}||z(0)||K,\mathcal{\varrho }\in (2,3]. \end{array} \right. \end{equation} | (37) |
Clearly, for almost every \mathcal{\varrho }\in J, z\longrightarrow F(\mathcal{\varrho }, \tau (\mathcal{\varrho })z)\ is upper semicontinuous. Set \lambda = \sup \{||x||:x\in K\} . Then, for any (\mathcal{\varrho }, z)\in J\times \Theta and any y\in F(\mathcal{\varrho }, z) we have
\begin{equation*} ||y(\mathcal{\varrho })||\leq \left\{ \begin{array}{l} (1+(\psi (\mathcal{\varrho })-\psi (0))^{\frac{3}{8}}||z(0)||)\lambda ,\ \mathcal{\varrho }\in \lbrack 0,1], \\ ||z(0)||\lambda ,\mathcal{\varrho }\in (1,{\rm{ }}2], \\ (1+(\psi (\mathcal{\varrho })-\psi (2))^{\frac{3}{8}}||z(0)||)\lambda , \mathcal{\varrho }\in (2,3]. \end{array} \right. \end{equation*} |
Then condition (F_{2}) of Theorem1 is verified with \varphi (\mathcal{ \varrho }) = \lambda; \mathcal{\varrho }\in J . Moreover, if f\in S_{F(, .z)}^{1};z\in \Theta , then
\begin{equation} f(\mathcal{\varrho }) = \left\{ \begin{array}{l} (\psi (\mathcal{\varrho })-\psi (0))^{\frac{3}{8}}||z(0)||y_{0},\ \mathcal{ \varrho }\in \lbrack 0,1], \\ y_{1},\mathcal{\varrho }\in (1,{\rm{ }}2], \\ (\psi (\mathcal{\varrho })-\psi (2))^{\frac{3}{8}}y_{2},\mathcal{\varrho } \in (2,3]. \end{array} \right. \end{equation} | (38) |
We define
\begin{equation} h_{x_{1},x_{2},x_{3}}(\mathcal{\varrho }) = \left\{ \begin{array}{l} \frac{\Gamma (\frac{11}{8})}{\Gamma (\frac{10}{8})}(\psi (\mathcal{\varrho } )-\psi (0))^{\frac{2}{8}}x_{1},\ \mathcal{\varrho }\in \lbrack 0,1], \\ x_{2},\mathcal{\varrho }\in (1,{\rm{ }}2], \\ \frac{\Gamma (\frac{11}{8})}{\Gamma (\frac{10}{8})}(\psi (\mathcal{\varrho } )-\psi (2))^{\frac{2}{8}}x_{3},\mathcal{\varrho }\in (2,3]. \end{array} \right. \end{equation} | (39) |
Obviously h_{x_{1}, x_{2}, x_{3}}\in PC_{1-\mu, \psi }(J, E) and from Lemma 2.2, we get I_{s_{i}^{+}}^{\nu (1-\vartheta), \psi }h_{x_{1}, x_{2}, x_{3}}(\mathcal{\varrho }) = f(\mathcal{\varrho }); i = 0, 1 .
Now, let D\ be a bounded subset of \mathcal{H} , z_{1} , z_{2}\in D , \mathcal{\varrho }\in (0, 1] , \ x\in F(\mathcal{\varrho }.\tau (\mathcal{ \varrho })\overline{z_{1}}) and y\in F(\mathcal{\varrho }.\tau (\mathcal{ \varrho })\overline{z_{2}}) . Then x = (\psi (\mathcal{\varrho })-\psi (0))^{ \frac{3}{8}}||z_{1}(\mathcal{\varrho })||x^{\ast } and y = (\psi (\mathcal{ \varrho })-\psi (0))^{\frac{3}{8}}||z_{2}(\mathcal{\varrho })||y^{\ast } , where x^{\ast }, y^{\ast }\in K . It follows that
\begin{equation*} ||x-y||\leq (\psi (\mathcal{\varrho })-\psi (0))^{\frac{3}{8}}||x^{\ast }||z_{1}(\mathcal{\varrho })||-||z_{2}(\mathcal{\varrho })||y^{\ast }||\rm{ ,} \end{equation*} |
As a result,
\begin{eqnarray*} &&\inf\limits_{y\in F(\mathcal{\varrho }.\tau (\mathcal{\varrho })\overline{z_{2}} )}||x-y|| \\ &\leq &(\psi (\mathcal{\varrho })-\psi (0))^{\frac{3}{8}}||x^{\ast }||z_{1}( \mathcal{\varrho })||-||z_{2}(\mathcal{\varrho })||x^{\ast }|| \\ & = &||x^{\ast }||(\psi (\mathcal{\varrho })-\psi (0))^{\frac{3}{8}}|||z_{1}( \mathcal{\varrho })||-||z_{2}(\mathcal{\varrho })|| \\ &\leq &\lambda ((\psi (\mathcal{\varrho })-\psi (0))^{\frac{3}{8}}||z_{1}( \mathcal{\varrho })-z_{2}(\mathcal{\varrho })||, \end{eqnarray*} |
which means that
\begin{equation} h(F(\mathcal{\varrho }.\tau (\mathcal{\varrho })\overline{z_{1}}),F(\mathcal{ \varrho }.\tau (\mathcal{\varrho })\overline{z_{2}})\leq \lambda ((\psi ( \mathcal{\varrho })-\psi (0))^{\frac{3}{8}}||z_{1}(\mathcal{\varrho })-z_{2}( \mathcal{\varrho })||. \end{equation} | (40) |
Then, for \mathcal{\varrho }\in (0, \mathcal{\varrho }_{1}]
\begin{eqnarray*} \ \chi _{E}(F(\mathcal{\varrho },\{\tau (\mathcal{\varrho })\overline{x} &:&x\in D)) \\ &\leq &\lambda (\psi (\mathcal{\varrho })-\psi (0))^{1-\mu }\varsigma ( \mathcal{\varrho })\chi _{E}\{x(\mathcal{\varrho }):x\in D\} \\ &\leq &\lambda (\psi (\mathcal{\varrho })-\psi (0))^{1-\mu }\varsigma ( \mathcal{\varrho })\sup\limits_{\theta \in \lbrack -r,0]}\chi _{E}\{(\tau (\mathcal{ \varrho }))\overline{x}(\theta ):x\in D\}, \end{eqnarray*} |
Similarly, one can show that if for \mathcal{\varrho }\in (s_{2}, \mathcal{ \varrho }_{3}]
\begin{equation*} \chi _{E}(F(\mathcal{\varrho },D))\leq \lambda (\psi (\mathcal{\varrho } )-\psi (s_{2}))^{1-\mu }\sup\limits_{\theta \in \lbrack -r,0]}\chi _{E}\{(\tau ( \mathcal{\varrho }))\overline{x}(\theta ):x\in D\} \end{equation*} |
and consequently, by choosing \lambda small enough such that the relation (7) becomes realized with \varsigma (\mathcal{\varrho }) = \lambda; \mathcal{ \varrho }\in J. Next, let g_{1}:[1, 2]\times E\rightarrow E such that
\begin{equation} g(\mathcal{\varrho },x) = \rho (\psi (1)-\psi (0))^{\frac{3}{8}}\mathcal{ \varrho }(x), \end{equation} | (41) |
where, \rho is a positive number and \mathcal{\varrho }\ is a linear, bounded and compact operator on E. So, condition (H_{1})\ is satisfied. As a consequence, from Theorem (1), the problem (1) has a solution where F and g are given by (47) and (50) and \Psi \in \Theta provided that
\begin{equation} \ \frac{3\lambda \kappa _{1}}{\Gamma (\frac{1}{2})}\eta +\rho +\frac{\rho }{ \Gamma (\frac{5}{8})} < 1, \end{equation} | (42) |
where, \eta = \delta ^{q}\frac{(\psi (b)-\psi (0))^{\vartheta -q}}{(\frac{ \vartheta -q}{1-q})^{1-q}} , \delta = \max_{s\in J}\psi \prime (s) , q = \frac{1}{4} and \kappa _{1} = (\psi (b)-\psi (0))^{1-\mu } . By choosing \rho small enough relation (42) becomes realized.
EXAMPLE 2 Let E , K , \ r, \ s_{0}, \ \mathcal{\varrho }_{1}, \ s_{1}, \ \mathcal{ \varrho }_{2}, \vartheta, \ \nu, \ \mu , F:J\times \Theta \rightarrow P_{ck}(E)\ and g_{1}:[1, 2]\times E\rightarrow E be as in EXAMPLE 1. Then assumption (F_{4}) is satisfied. Moreover, in view of (40) for any \ z_{1}, z_{1}\in \mathcal{H}
\begin{eqnarray*} h(F(\mathcal{\varrho }.\tau (\mathcal{\varrho })\overline{z_{1}}),F(\mathcal{ \varrho }.\tau (\mathcal{\varrho })\overline{z_{2}}) &\leq &\lambda ((\psi ( \mathcal{\varrho })-\psi (0))^{\frac{3}{8}}||z_{1}(\mathcal{\varrho })-z_{2}( \mathcal{\varrho })|| \\ &\leq &\lambda ||z_{1}-z_{2}||_{\mathcal{H}} \\ & = &\sigma (\mathcal{\varrho })\varsigma (||z_{1}-z_{2}||_{\mathcal{H}}), \end{eqnarray*} |
where, \sigma (\mathcal{\varrho }) = 2\lambda and \varsigma (\mathcal{ \varrho }) = \frac{\mathcal{\varrho }}{2};\mathcal{\varrho }\in J . Observe that \varsigma \ is strictly comparison and \varsigma (c\mathcal{\varrho }) = c\ \varsigma (\mathcal{\varrho }), for \ every c > 0, every \ \mathcal{ \varrho }\in \lbrack 0, \infty) and \mathcal{\varrho } = 0 is a point of uniform convergence for the series \sum\limits_{n = 1}^{\infty }\varsigma ^{n}(\mathcal{\varrho }), and hence assumption (F_{5}) is satisfied. Now, for any \mathcal{\varrho }\in \lbrack 1, 2] and any x, y\in E
\begin{eqnarray*} ||g_{1}(\mathcal{\varrho },x)-g_{1}(\mathcal{\varrho },y)|| &\leq &\rho (\psi (1)-\psi (0))^{\frac{3}{8}}||\mathcal{\varrho }(x)-\mathcal{\varrho } (y)|| \\ &\leq &\rho ||\mathcal{\varrho }||(\psi (1)-\psi (0))^{\frac{3}{8} }||x-y||_{E} \\ & = &\xi \varsigma (||x-y||_{E}), \end{eqnarray*} |
where \xi = 2\rho ||\mathcal{\varrho }||(\psi (1)-\psi (0))^{\frac{3}{8}} . It follows that (H_{2}) is satisfied. By applying Theorem 2, Problem (1) has a solution and it is \psi - generalized Ulam-Hyers stable, where F and g are given by (37) and (40) and \Psi \in \Theta provided that
\begin{equation*} \frac{2\rho ||\mathcal{\varrho }||(\psi (1)-\psi (0))^{\frac{3}{8}}}{\Gamma (\mu )}+\frac{2\rho ||\mathcal{\varrho }||(\psi (1)-\psi (0))^{\frac{3}{8}}}{ \Gamma (\mu )}+\eta ||\sigma ||_{L^{\frac{1}{q}}(I, \mathbb{R} ^{+})} < 1. \end{equation*} |
By choosing \rho small enough this inequality becomes realized.
A relation between a solution of the considered problem and the corresponding fractional integral equation is given, then two existence results of solutions for an \psi -Hilfer fractional non-instantaneous impulsive differential inclusion in the presence of delay in an infinite dimensional Banah spaces are obtained. Moreover, by using the multivalued weakly Picard operator theory, the stability of solutions for the considered problem in the sense of generalized Ulam-Hyers is studied. This work generalizes many recent results in the literature, for example [6,10,11,17,19,31]. Moreover, our technique can be used to study the existence and Ulam-Hyers stability of solutions or mild solutions for the problems considered in [3,4,15,16,20,21,22] to the case when, there are impulses and delay on the system, the right hand side is a multi-valued function and involving \psi - Hilfer fractional derivative. There are many directions for future work, for example: Generalize the obtained results in [3,4,15,16] when, the considered problems in these works involving \psi -Hilfer fractional derivative.
The authors acknowledge the Deanship of Scientific Research at King Faisal University for the financial support under Nasher Track (Grant No.186042).
The authors declare that they have no conflicts of interest.
All authors contributed equality and read and approved the final version of the manuscript.
[1] | E. Hernandez, D. O'Regan, On a new class of abstract impulsive differential equation, Proc. Amer. Math. Soc., 141 (2013), 1641–1649. |
[2] | R. Hilfer, Applications of Fractional Calculus in Physics, World Scientific, Singapore, 1999. |
[3] |
S. Saravanakumar, P. Balasubramaniam, Non-instantaneous impulsive Hilfer fractional stochastic differential equations driven by fractional Brownian motion, Stoch. Anal. Appl., 39 (2021), 549–566. doi: 10.1080/07362994.2020.1815545
![]() |
[4] | X. B. Shu, Y. Shi, A study on the mild solution of impulsive fractional evolution equations, Appl. Math. Comput., 273 (2016), 465–470. |
[5] | J. R. Wang, A. G. Ibrahim, D. O'Regan, Global Attracting Solutions to Hilfer fractional non-instantaneous impulsive semilinear differential inclusions of Sobolev type and with nonlocal conditions, Nonl. Anal.: Model. Control, 24 (2019), 775–803. |
[6] |
V. H. Ngo, D. O'Regan, A remark on \psi -Hilfer fractional differential equations with non-instantaneous impulses, Math. Meth. Appl. Sci., 43 (2020), 1–15. doi: 10.1002/mma.5729
![]() |
[7] | H. M. Ahmed, M. M. El-Borai, H. M. El-Owaidy, A. S. Ghanem, Impulsive Hilfer fractional differential equations, Adv. Difference Equations, 226 (2018). |
[8] |
K. M. Furati, M. D. Kassim, N. E. Tatar, Existence and uniqueness for a problem involving Hilfer fractional derivative, Computers Math Appl., 64 (2012), 1616–1628. doi: 10.1016/j.camwa.2012.01.009
![]() |
[9] |
A. G. Ibrahim, A. A. Elmandouh, Euler-Lagrange equations for variational problems involving the Riesz-Hilfer fractional derivative, J. Taibah University Sci., 14 (2020), 678–696. doi: 10.1080/16583655.2020.1764245
![]() |
[10] |
J. R. Wang, A. G. Ibrahim, D. O'Regan, Hilfer type fractional differential switched inclusions with non-instantaneous impulsive and nonlocal conditions, Nonlinear Anal.: Model. Control, 23 (2018), 921–941. doi: 10.15388/NA.2018.6.7
![]() |
[11] |
J. R. Wang, A. G. Ibrahim, D. O'Regan, A general class of non-instantaneous impulsive semilinear differential inclusions in Banach spaces, Adv. Difference Equations, 2017 (2017), 287. Doi: 10.1186/s13662-017-1342-8. doi: 10.1186/s13662-017-1342-8
![]() |
[12] | J. R. Wang, M. Fečkan, A general class of impulsive evolution equations, Topol. Methods Nonlinear Anal., 46 (2015), 915–933. |
[13] |
J. R. Wang, M. Li, D. O'Regan, Robustness for nonlinear evolution equation with non-instantaneous effects, Bull. des Sci. Math., 159 (2020), 102827. doi: 10.1016/j.bulsci.2019.102827
![]() |
[14] | S. M. Ulam, A collection of Mathematical Problems, Interscience Publishers, New York, 1968. |
[15] |
Y. Guo, X. B. Shu, Y. Li, F. Xu, The existence and Hyers-Ulam stability of solution for an impulsive Riemann-Liouville fractional neutral functional stochastic differential equation with infinite delay of order \alpha \in (1, 2), Boundary Value Probl., 2019 (2019), 59. doi: 10.1186/s13661-019-1172-6
![]() |
[16] | Y. Guo, M. Chen, X. B. Shu, F. Xu, The existence and Hyers-Ulam stability of solution for almost periodical fractional stochastic differential equation with fBm, Stoch. Anal. Appl., 39 (2020), 1–24. |
[17] |
J. Vanterler da Sousa, Kishor D. kucche, E. Capelas de Oliveira, Stability of \psi -Hilfer fractional differential equations, Appl. Math. Lett., 88 (2019), 73–80. doi: 10.1016/j.aml.2018.08.013
![]() |
[18] |
J. Vanterler da C. Sousa, E. Capelas de Oliveira, Ulam-Hyers stability of nonlinear fractional integro-differential equation, Appl. Math. Lett., 81 (2018), 50–55. doi: 10.1016/j.aml.2018.01.016
![]() |
[19] |
M. Benchohra, S. Bouriah, J. J. Nieto, Existence and Ulam stability for nonlinear implicit differential equations with Riemann-Liouville fractional derivative, Demonstr. Math., 52 (2019), 437–450. doi: 10.1515/dema-2019-0032
![]() |
[20] | V. Kumar, M. Malik, Existence and stability of fractional integro differential equation with nonimstantaneous integrable impulses and periodic boundary condition on time scales, J. King Saud University-Science, 13 (2019), 1311–1317. |
[21] |
A. Ben Makhlouf, D. Boucenna, A. Hammani, Existence and stability results for generalized fractional differential equations, Acta Mathematica Scientia, 40 (2020), 141–154. doi: 10.1007/s10473-020-0110-3
![]() |
[22] |
A. M. Elsayed, S. Harikrishnan, K. Kanagarajan, On the existence and stability of boundary value problem for differential equation with Hilfer-Katugampola fractional derivative, Acta Mathematica Scientia, 39 (2019), 1568–1578. doi: 10.1007/s10473-019-0608-5
![]() |
[23] | P. Gavruta, S. M. Jung, Y. Li, Hyers-Ulam stability for second-order linear differential equations with boundary conditions, Electron. J. Differ. Eq., 80 (2011), 1–5. |
[24] | D. H. Hyers, G. Isac, Th. M. Rassias, Stability of functional equations in several variables, Birkräuser, 1998. |
[25] | X. Li, J. Wang, Ulam-Hyers-Rassias stability of semilinear differential equations with impulses, Electron. J. Differ. Eq., 172 (2013), 1–8. |
[26] |
N. Lungu, D. Popa, Hyers-Ulam stability of a first order partial differential equation, J. Math. Anal. Appl., 385 (2012), 86–91. doi: 10.1016/j.jmaa.2011.06.025
![]() |
[27] | C. Parthasarathy, Existence and Hyers-Ulam stability of nonlinear impulsive differential equations with nonlocal condotions, Electron. J. Math. Anal. Appl., 4 (2016), 106–115. |
[28] | M. Rassias, On the stability of linear mappings in Banach spaces, Proc. Amer. Math. Soc., 72 (1987), 297–300. |
[29] |
J. R. Wang, Y. Zhou, On the stability of new impulsive ordinary differential equations, Topol. Methods Nonlinear Anal., 46 (2015), 303–314. doi: 10.12775/TMNA.2015.048
![]() |
[30] | J. R. Wang, Y. Zhou, Existence and stability of solutions to nonlinear impulsive differential equations in \nu -normed spaces, Electron J. Differential Equation, 38 (2014), 1–10. |
[31] |
S. Abbas, M. Benchohra, J. E. Lagreg, A. Alsaedi, Y. Zhou, Existence and Ulam stability for fractional differential equation of Hilfer-Hadamard type, Adv. Difference Equation, 2017 (2017), 180. Doi: 10.1186/s13662-017-1231-1. doi: 10.1186/s13662-017-1231-1
![]() |
[32] | A. A. Kilbas, H. M. Srivastava, J. J. Trujillo, Theory and Applications of Fractional Differential Equations, In: North Holland Mathematics Studies, 204. Elsevier Science. Publishers BV, Amsterdam, 2006. |
[33] |
R. Almeida, A Caputo fractional derivative of a function with respect to another function, Commun Nonlinear Sci. Numer. Simul., 44 (2017), 460–481. doi: 10.1016/j.cnsns.2016.09.006
![]() |
[34] |
R. Almeida, A. B. malinowska, M. T. T. Monteiro, Fractional differential equations with a Caputo derivative with respect to a kernel function and their applications, Math. Meth. Appl. Sci., 41 (2018), 336–532. doi: 10.1002/mma.4617
![]() |
[35] | J. Vanterler da C. Sousa, E. Capelas de Oliveira, On the \psi -fractional integral and applications, Comput. Appl. Math., (2019). Doi.org/10.1007/s40314-019-0774-z. |
[36] | D. O'Regan, R. Precup, Fixed point theorems for set-valued maps and existence principles for integral inclusions, J. math. Anal., 74 (2011), 2003–2011. |
[37] | J. P. Aubin, A. Cellina, Differential Inclusions: Set-Valued Maps and Viability Theory, Springer-Verlag, Berlin, 1984. |
[38] | A. Pertuselşel, Multivalued weakly Picard operators and applications, Sci. Math. Japan, 95 (2004), 167–202. |
[39] | I. A. Rus, Ulam stabilities of ordinary differential equations in a Banach space, Carpathian J. Math., 26 (2010), 103–107. |
[40] | I. A. Rus, Generalized Contractions and Applications, Cluj University Press, Gluuj-Napoca, 2001. |
[41] | V. L. Lazăr, Fixed point theory for multi-valued \varphi -contraction, Fixed Point Theory Appl., 50 (2011), 1–12. |
[42] | C. Castaing, M. Valadier, Convex Analysis and Measurable Multifunctions, Lect. Notes Math., 580, Springer Verlag, Berlin-New York, 1977. |
[43] |
J. R. Wang, Y. Zhou, Existence and controllability results for fractional semilinear differential inclusions, Nonlinear Anal. Real World Appl., 12 (2011), 3642–3653. doi: 10.1016/j.nonrwa.2011.06.021
![]() |
1. | Thabet Abdeljawad, Pshtiwan Othman Mohammed, Hari Mohan Srivastava, Eman Al-Sarairah, Artion Kashuri, Kamsing Nonlaopon, Some novel existence and uniqueness results for the Hilfer fractional integro-differential equations with non-instantaneous impulsive multi-point boundary conditions and their application, 2023, 8, 2473-6988, 3469, 10.3934/math.2023177 | |
2. | Zainab Alsheekhhussain, Ahmed Gamal Ibrahim, Rabie A. Ramadan, Existence of S -asymptotically \omega -periodic solutions for non-instantaneous impulsive semilinear differential equations and inclusions of fractional order 1 < \alpha < 2 , 2023, 8, 2473-6988, 76, 10.3934/math.2023004 | |
3. | Ramasamy Arul, Panjayan Karthikeyan, Kulandhaivel Karthikeyan, Palanisamy Geetha, Ymnah Alruwaily, Lamya Almaghamsi, El-sayed El-hady, On Ψ-Hilfer Fractional Integro-Differential Equations with Non-Instantaneous Impulsive Conditions, 2022, 6, 2504-3110, 732, 10.3390/fractalfract6120732 | |
4. | M. Latha Maheswari, K. S. Keerthana Shri, Karthik Muthusamy, Existence results for coupled sequential ψ-Hilfer fractional impulsive BVPs: topological degree theory approach, 2024, 2024, 1687-2770, 10.1186/s13661-024-01901-y | |
5. | Zainab Alsheekhhussain, Ahmad Gamal Ibrahim, Mohammed Mossa Al-Sawalha, Yousef Jawarneh, The Existence of Solutions for w-Weighted ψ-Hilfer Fractional Differential Inclusions of Order μ ∈ (1, 2) with Non-Instantaneous Impulses in Banach Spaces, 2024, 8, 2504-3110, 144, 10.3390/fractalfract8030144 | |
6. | Feryal Aladsani, Ahmed Gamal Ibrahim, Existence and Stability of Solutions for p-Proportional ω-Weighted κ-Hilfer Fractional Differential Inclusions in the Presence of Non-Instantaneous Impulses in Banach Spaces, 2024, 8, 2504-3110, 475, 10.3390/fractalfract8080475 | |
7. | Zainab Alsheekhhussain, Ahmed Gamal Ibrahim, M. Mossa Al-Sawalha, Khudhayr A. Rashedi, Mild Solutions for w-Weighted, Φ-Hilfer, Non-Instantaneous, Impulsive, w-Weighted, Fractional, Semilinear Differential Inclusions of Order μ ∈ (1, 2) in Banach Spaces, 2024, 8, 2504-3110, 289, 10.3390/fractalfract8050289 | |
8. | F. M. Ismaael, On a New Class of Impulsive η-Hilfer Fractional Volterra-Fredholm Integro-Differential Equations, 2023, 17, 1823-8343, 691, 10.47836/mjms.17.4.10 |