In this paper, we introduce the concept of the weighted generalized Atangana-Baleanu fractional derivative. We prove the existence of the stability of solutions of non-local differential equations and non-local differential inclusions, in Banach spaces, with this new fractional derivative in the presence of instantaneous and non-instantaneous impulses. We considered the case in which the lower limit of the fractional derivative was kept at the initial point and where it was changed to the impulsive points. To prove our results, we established the relationship between solutions to each of the four studied problems and those of the corresponding fractional integral equation. There has been no previous study of the weighted generalized Atangana-Baleanu fractional derivative, and so, our findings are new and interesting. The technique we used based on the properties of this new fractional differential operator and suitable fixed point theorems for single valued and set valued functions. Examples are given to illustrate the theoretical results.
Citation: Muneerah AL Nuwairan, Ahmed Gamal Ibrahim. The weighted generalized Atangana-Baleanu fractional derivative in banach spaces- definition and applications[J]. AIMS Mathematics, 2024, 9(12): 36293-36335. doi: 10.3934/math.20241722
[1] | Muneerah Al Nuwairan, Ahmed Gamal Ibrahim . Nonlocal impulsive differential equations and inclusions involving Atangana-Baleanu fractional derivative in infinite dimensional spaces. AIMS Mathematics, 2023, 8(5): 11752-11780. doi: 10.3934/math.2023595 |
[2] | Velusamy Kavitha, Mani Mallika Arjunan, Dumitru Baleanu . Non-instantaneous impulsive fractional-order delay differential systems with Mittag-Leffler kernel. AIMS Mathematics, 2022, 7(5): 9353-9372. doi: 10.3934/math.2022519 |
[3] | Saïd Abbas, Mouffak Benchohra, Juan J. Nieto . Caputo-Fabrizio fractional differential equations with instantaneous impulses. AIMS Mathematics, 2021, 6(3): 2932-2946. doi: 10.3934/math.2021177 |
[4] | Mohamed I. Abbas, Maria Alessandra Ragusa . Nonlinear fractional differential inclusions with non-singular Mittag-Leffler kernel. AIMS Mathematics, 2022, 7(11): 20328-20340. doi: 10.3934/math.20221113 |
[5] | A.G. Ibrahim, A.A. Elmandouh . Existence and stability of solutions of $ \psi $-Hilfer fractional functional differential inclusions with non-instantaneous impulses. AIMS Mathematics, 2021, 6(10): 10802-10832. doi: 10.3934/math.2021628 |
[6] | Thabet Abdeljawad, Pshtiwan Othman Mohammed, Hari Mohan Srivastava, Eman Al-Sarairah, Artion Kashuri, Kamsing Nonlaopon . Some novel existence and uniqueness results for the Hilfer fractional integro-differential equations with non-instantaneous impulsive multi-point boundary conditions and their application. AIMS Mathematics, 2023, 8(2): 3469-3483. doi: 10.3934/math.2023177 |
[7] | Mohammed A. Almalahi, Satish K. Panchal, Fahd Jarad, Mohammed S. Abdo, Kamal Shah, Thabet Abdeljawad . Qualitative analysis of a fuzzy Volterra-Fredholm integrodifferential equation with an Atangana-Baleanu fractional derivative. AIMS Mathematics, 2022, 7(9): 15994-16016. doi: 10.3934/math.2022876 |
[8] | Zainab Alsheekhhussain, Ahmed Gamal Ibrahim, Rabie A. Ramadan . Existence of $ S $-asymptotically $ \omega $-periodic solutions for non-instantaneous impulsive semilinear differential equations and inclusions of fractional order $ 1 < \alpha < 2 $. AIMS Mathematics, 2023, 8(1): 76-101. doi: 10.3934/math.2023004 |
[9] | Abdelatif Boutiara, Mohammed M. Matar, Jehad Alzabut, Mohammad Esmael Samei, Hasib Khan . On $ \mathcal{A B C} $ coupled Langevin fractional differential equations constrained by Perov's fixed point in generalized Banach spaces. AIMS Mathematics, 2023, 8(5): 12109-12132. doi: 10.3934/math.2023610 |
[10] | Mohamed Adel, M. Elsaid Ramadan, Hijaz Ahmad, Thongchai Botmart . Sobolev-type nonlinear Hilfer fractional stochastic differential equations with noninstantaneous impulsive. AIMS Mathematics, 2022, 7(11): 20105-20125. doi: 10.3934/math.20221100 |
In this paper, we introduce the concept of the weighted generalized Atangana-Baleanu fractional derivative. We prove the existence of the stability of solutions of non-local differential equations and non-local differential inclusions, in Banach spaces, with this new fractional derivative in the presence of instantaneous and non-instantaneous impulses. We considered the case in which the lower limit of the fractional derivative was kept at the initial point and where it was changed to the impulsive points. To prove our results, we established the relationship between solutions to each of the four studied problems and those of the corresponding fractional integral equation. There has been no previous study of the weighted generalized Atangana-Baleanu fractional derivative, and so, our findings are new and interesting. The technique we used based on the properties of this new fractional differential operator and suitable fixed point theorems for single valued and set valued functions. Examples are given to illustrate the theoretical results.
Fractional calculus has applications to numerous real-world problems in different branches of science, like physics [1], engineering and Social Sciences [2], and many other branches [3,4,5]. To overcome the problems arising from the presence of singular kernel in many well-known fractional integral and differential operators, Caputo and Fabrizio [6] proposed a definition based on the exponential function, and then, Atangana-Baleanu [7] generalized the Caputo- Fabrizio definition and introduced a new fractional derivative and integral with kernel based on the Mittag-Leffler function. Several studies on differential equations involving Atangana-Baleanu fractional derivative in the Caputo sense (ABCD) were carried out [8,9,10], and many applications of this fractional derivative were investigated [11,12,13].
Impulsive differential equations and impulsive differential inclusions are used to model sudden changes in several real life problems. Some model changes occur instantaneously using instantaneous impulse differential equations or instantaneous impulse differential inclusions. For examples of the applications of such equations in studying diseases and population growth, see [14,15,16]. Other changes remain active over a certain period of time. These types of changes are modeled using non-instantaneous impulse differential equations and non-instantaneous impulsive differential inclusions. In [17,18,19], the authors provided an extensive study of impulsive fractional differential equations and impulsive differential inclusions. See also the recent research on non-instantaneous impulsive differential inclusions [20,21,22]. It should be noted that there are two approaches in the literature to problems containing impulses; one by keeping the lower limit of the fractional derivative at zero and the other by changing it to the impulsive points.
In [23], the authors studied non-local impulsive differential equations and inclusions with the differential operator ABCD of order γ∈(0,1) in spaces with infinite dimensions, and in more recent research [24], the authors investigated the existence of solutions and anti-periodic solutions for impulsive differential equations and inclusions containing ABCD of order α∈(1,2) in infinite dimensional Banach spaces. Many researchers introduced new concepts of fractional differential operators, which contributed to the development of fractional calculus and its increased application in more fields.
Sousa et al.[25] introduced the concept of the φ-Hilfer fractional derivative, which generalizes the φ-Caputo fractional derivative presented by Almeida [26] where φ:L=[0,T]→R is a strictly increasing and continuously differentiable function with φ′(υ)≠0,∀υ∈L. Vu et al.[27] introduced the φ-Atangana-Baleanu fractional derivative, and studied the existence and uniqueness of solutions for initial value problems of fuzzy differential equations involving these derivatives. Since weighted fractional derivatives can be used in the solution of several types of integral equations, differential equations and differential inclusions containing these derivatives have been studied by several authors. For example, in [20], the authors investigated the existence of solutions for a differential inclusion involving w-weighted φ-Hilfer fractional derivative. For more studies on weighted fractional differential equations and inclusions, see [28,29,30]. In [31], Al-Refai presented the concept of g-weighted Atangana-Baleanu fractional derivative and proved some of their properties, where g:L→(0,∞) is continuously differentiable.
Motivated by the research mentioned above, especially [20,27,31], and the authors previous work [23,24], we introduce the concept of w-weighted φ-Atangana-Baleanu fractional derivative with lower limit at a∈[0,T] for some T∈R+, and then establish the existence of solutions for non-local differential equations and non-local differential inclusions involving this new fractional differential operator, in the presence of instantaneous and non-instantaneous impulses. We consider the case in which the lower limit of the fractional derivative is kept at the initial point and where it is changed to the impulsive points.
The key contributions of this work is as follows:
− A new concept of the fractional differential operator is introduced (Definition 1). This new differential operator generalizes both the Atangana-Baleanu [7], the φ-Atangana-Baleanu derivative introduced by HoVu, Behzad Ghanbari [27], and the g-weighted Atangana-Baleanu derivative defined by Al-Refai[31]. Some properties for the new differential operator are obtained (Lemmas 1– 3).
− Using the new differential operator, we form a list of initial value problems (Problems (2.1)–(2.4), in Section 2). The formulas of their solutions are also given (relations (4.6), (5.7), (6.3) and (7.3)).
− The relationship between solution to Problems (2.1)–(2.4) and the corresponding fractional integral equations are derived (Lemmas 4, 5, 8, 9).
− Two existence/uniqueness of solutions to Problem (2.1) are proven (Theorems 4.1 and 4.2), and three existence results of solutions to Problems (2.2)–(2.4) are proven (Theorems 5.1–7.1).
− The stability of the solution to Problem (2.1) is analyzed (Theorem 8.1), and in the same manner, the stability of solutions to the other considered problems can be studied.
To clarify the importance of this work and its relationship to other results, we mention the following points:
(⋆) The introduction of new fractional differential operators contributes to the development of fractional calculus and its increasing applications. The obtained results about this new fractional generalizes many other ones such as:
- Theorems 4.3 and 5.1, in [23], if one substitutes g(υ)=1 and φ(υ)=υ;υ∈L in Theorems 4.1 and 7.1
- Theorem 3.1 in [31], if one substitutes φ(υ)=υ;υ∈L in Lemma 3.
- Theorem 2.3 in [27], if one substitutes g(υ)=1;υ∈L in Lemma 3
- Problem (2.1) is studied in Theorem 3.1 in [32], Theorem 3.2 in [33], and Theorem 2.2 in [34] in the special cases: g(υ)=1, φ(υ)=υ;υ∈L, ℜ(x)=ℑ0,∀x∈PCg(L,Φ), Φ=R and Ii(x)=0∀x∈Φ.
(⋆) The methods used in this work can generalize many of the above mentioned results when the fractional derivative in these results is replaced by the g-weighted φ-Atangana-Baleanu fractional derivative and where the right hand side represents a set-valued function, instead of function in infinite dimensional Banach spaces.
The paper is structured as follows. In Section 2, we introduce the notion of the g-weighted φ-Atangana-Baleanu fractional derivative in the Caputo sense of order γ and with lower limit at a, denoted by ABCDγ,φ,ga,υ. We also formulate the problems that will be considered. In Section 3, we present some properties of the new fractional derivative. Section 4 to Section 7 are concerned with the existence and uniqueness of solutions to these problems. The stability of such solutions are discussed in Section 8. Four examples are given in the last section for illustration.
In this section, we introduce the definition of ABCDγ,φ,ga,υ, and present the related initial value problems. The following notations will be used in the rest of the paper.
Notation 1.
− For each r∈N, let N0,r={0,1,2,..,r}, N1,r={1,2,..,r}.
− γ∈(0,1), L=[0,T], where T∈R+, 0=θ0≤θ1≤...≤θr+1=T, and 0=τ0<b1≤τ1<b2≤τ2<...<τr<br+1=T are two partitions of L, Li=(τi,bi+1];i∈N0,r, and Mi=(bi,τi]; i∈N1,r,
− Φ is a Banach space, ℑ0∈Φ is a fixed point, and z:L×Φ→Φ
− φ:L→R is a strictly increasing and continuously differentiable function with φ′(υ)≠0,∀υ∈L.
− g:L→(0,∞) is a continuously differentiable function and g−1(υ)=1g(υ);υ∈L.
− Lq,φg((0,T),Φ),q∈[1,∞) is the Banach space of all Lebesgue measurable functions z such that zg(φ′)1q∈Lq((0,T),Φ), where ||z||Lq,φg((0,T),Φ)=(∫T0||z(υ)g(υ)||qφ′(υ)dυ)1q.
− ϱ1=supυ∈L|g(υ)|, and ϱ2=supυ∈L|ψ(υ)|,
− M denote a normalizing function satisfying M(0)=M(1)=1, and Eγ=Eγ,1,
where Eγ,β is the well known Mittag-Leffler function described by:
Eγ,β(μ)=∞∑k=0μkΓ(γk+β),β∈R, μ∈C. |
We also fix the notation for the following sets
Pb(Φ):={Z⊆Φ:Zis not empty, and bounded},
Pck(Φ)={z⊆Φ:z is not empty, convex and compact},
Pcc(Φ):={Z⊆Φ:Z is not empty, convex and closed }.
H1((0,T),Φ):={ℑ∈L2((0,T),Φ):ℑ(1)∈L2((0,T),Φ)},
C(L,Φ) is the Banach space of continuous functions from L to Φ.
Cg(L,Φ):={x:L→Φ:gx∈C(L,Φ)},
PCg(L,Φ):={ℑ:L→Φ:ℑgis continuous except atθi, i∈N0,r,ℑ(θ+i) andℑ(θ−i)exist withℑ(θi)=ℑ(θ−i);∀i∈N0,r},
PCgH1(L,Φ):={ℑ:L→Φ,gℑ|(θi,θi+1)∈H1((θi,θi+1),Φ),ℑ(θ+i) andℑ(θ−i)exist withℑ(θi)=ℑ(θ−i);∀i∈N1,r},
PC∗g(L,Φ)={ℑ:L→Φ:gℑis continuous on(τi,bi+1), i∈N0,r,ℑ is continuous on
(bi,τi), ℑ(τ+i)=ℑ(τ−i),ℑ(b+i)andℑ(b−i)exist withℑ(bi)=ℑ(b−i);∀i∈N1,r}.
PCgH1,∗(L,Φ):={ℑ:L→Φ:gℑ|(τi,bi+1)∈H1((τi,bi+1),Φ);∀i∈N0,r
ℑ|(bi,τi)∈C((bi,τi),Φ), ℑ(τ+i)=ℑ(τ−i),∀i∈N1,r}.
The spaces Cg(L,Φ),PCg(L,Φ),PCgH1(L,Φ),PC∗g(L,Φ), and PCgH1,∗(L,Φ) are Banach spaces, where the norms function on them are given by
− ||x||Cg(L,Φ):=max‖|g(θ)x(θ)||:θ∈L}.
− ||x||PC(L,Φ):=max‖|g(θ)x(θ)||:θ∈L}.
− ||x||PCgH1(L,Φ):=max{||g(θ)x(θ)||:θ∈L}.
− ||ℑ||PC∗g(L,Φ))=max{maxυ∈[τi,bi+1]i∈N0,r||g(υ)ℑ(υ)||,maxυ∈[bi,τi]i∈N1,r||ℑ(υ)||}.
− ||ℑ||PCgH1,∗(L,Φ)=max{maxm∈N0,r||g ℑ|Lm||H1(Lm,Φ),maxυ∈[bm,τm]m∈N1,r||ℑ(υ)||}.
where for any function z∈H1((0,T),Φ),
D1,φ,gυz(υ):=g−1(υ)[1φ′(υ)ddυg(υ)z(υ)], |
and for any k=N−{1}
Dk,φ,gυz(υ):=D1,φ,gυDk−1,φ,gυz(υ)=g−1(υ)[1φ′(υ)ddυ]k(z(υ)g(υ)),k=N−{1}. |
We also fix the notations for Ψ,ℜ, and ℜi to be the maps Ψ:L×Φ→Pck(Φ), ℜ:PCg(L,Φ)→Φ, and ℜi:[bi,τi]×Φ→Φ. For more on the definition of H1((0,T),Φ), see [20].
In the following, we introduce the main definitions that will be used to formulate the problems studied in this work.
Definition 1. Let a∈(0,T), and ℑ:[a,T]→Φ such that ℑ∈H1((a,T),Φ).
(1) The g-weighted φ-Atangana-Baleanu fractional integral for ℑ of order γ and with lower limit at a is defined by
ABIγ,φ,ga,υℑ(υ):=1−γM(γ)ℑ(υ)+γM(γ)Iγ,φ,ga,υℑ(υ), υ∈L, |
where
Iγ,φ,ga,υℑ(υ)=1g(υ)Γ(γ)∫υa(φ(υ)−φ(s))γ−1g(s)φ′(s)ℑ(s)ds. |
(2) The g-weighted φ-Atangana-Baleanu fractional derivative for ℑ of order γ in the Caputo sense, with lower limit at a is defined by
ABCDγ,φ,ga,υℑ(υ):=M(γ)(1−γ)g(υ)∫υaEγ(ηγ(φ(υ)−φ(s))γ)φ′(s)g(s)D1,φ,gsℑ(s)ds=M(γ)(1−γ)g(υ)∫υaEγ(ηγ(φ(υ)−φ(s))γ)(gℑ)′(s)ds, |
where ηγ=−γ1−γ
The above definition can be generalize for an order in (n,n+1) foe any n∈N as follows.
Definition 2. Let a∈(0,T), and ℑ:[a,T]→Φ with ℑ(n)∈H1((a,T),Φ).
(1) The g-weighted φ-Atangana-Baleanu fractional integral for a function of order σ∈(n,n+1);n∈N with lower limit at a is defined by
ABIσ,φ,ga,υℑ(υ):=In,φ,ga,υABIσ−n,g,φa,υℑ(υ), |
where
I1,φ,ga,υℑ(υ)=g−1(υ)∫υag(s)φ′(s)ℑ(s)ds, |
and In,φ,ga,υ=I1,φ,ga,υIn−1,φ,ga,υif n ≥2.
(2) The g-weighted φ-Atangana-Baleanu fractional derivative for ℑ of order σ∈(n,n+1);n∈N in the Caputo sense, with lower limit at a is defined by
ABCDσ,φ,ga,υℑ(υ):=ABCDσ−n,φ,ga,υDn,φ,gυℑ(υ). |
Remark 1.
● If g(υ)=1 and φ(υ)=υ;υ∈[a,T], then Part 2 in Definitions 1, 2 coincide with definitions of the Atangana-Baleanu fractional derivative given by [7].
● If φ(υ)=υ;υ∈[a,T], then Part 2 in Definitions 1, 2 coincide with Definitions 2.1 and 2.2 in [31].
● g(υ)=1,;υ∈[a,T], then Definitions 1, 2 coincide with Definitions 2.1, 2.2 in [27]
Using the above definitions and notations, we form the following initial value problems:
P1. A fractional differential equation containing ABCDγ,φ,g0,υ in the presence of instantaneous impulses with the lower limit at the initial point 0:
{ABCDγ,φ,g0,υℑ(υ)=z(υ,ℑ(υ)),υ∈(θi,θi+1),i∈N0,rℑ(0)=ℑ0g−1(0)−g−1(0)ℜ(ℑ),ℑ(θ+i)=ℑ(θ−i)+g−1(θ−i)Ii(ℑ(θ−i)),i∈N1,r, | (2.1) |
where Ii:Φ→Φ;i∈N1,r.
P2. A fractional differential inclusion involving ABCDγ,φ,gθi,υ in the presence of instantaneous impulses with changing the lower limit at the impulsive points θi,i∈N0,r:
{ABCDγ,φ,gθi,υℑ(υ)∈∫υθiΨ(s,ℑ(s))ds,υ∈(θi,θi+1),i∈N0,r,ℑ(0)=ℑ0g−1(0)−g−1(0)ℜ(ℑ),ℑ(θ+i)=ℑ(θ−i)+g−1(θ−i)Ii(ℑ(θ−i)), i∈N1,r. | (2.2) |
P3. A fractional differential fractional equation containing ABCDγ,φ,g0,υ in the presence of non-instantaneous impulses with the lower limit at the initial point 0:
{ABCDγ,φ,g0,υℑ(υ)=z(υ,ℑ(υ)),υ∈∪i=ri=0Li,ℑ(υ)=ℜi(υ,ℑ(b−i)),υ∈[bi,τi]; i∈N1,r,ℑ(0)=ℑ0g−1(0)−g−1(0)ℜ(ℑ). | (2.3) |
P4. A fractional differential inclusion containing ABCDγ,φ,gτi,υ in the presence of non-instantaneous impulses with changing the lower limit at the impulsive points τi,i∈N0,r:
{ABCDγ,φ,gτi,υℑ(υ)∈∫υτiΨ(s,ℑ(s))ds,υ∈∪i=ri=0Li,ℑ(υ)=ℜi(υ,ℑ(b−i)),υ∈[bi,τi]; i∈N1,r,ℑ(0)=ℑ0g−1(0)−g−1(0)ℜ(ℑ), | (2.4) |
Note that Problems (2.1)–(2.4) are distinct. In fact, the impulses in problems (2.1) and (2.2) are instantaneous while those in problems (2.3) and (2.4) are non-instantaneous. Furthermore, the lower limit of the differential operator g− weighted φ-Atangana-Baleanu fractional derivative in Problems (2.1) and (2.3) are zero while those in problems (2.2) and (2.4) are the impulsive points θi,i∈N0,r and τi,i∈N0,r. In addition, the right hand side in both of (2.1) and (2.3) is a single-valued function, while in problems (2.2) and (2.4) is a multivalued function.
In order to obtain some properties for ABCDγ,φ,ga,υℑ(υ), we present it as an infinite series. Note that
Eγ(υ)=∞∑k=0υkΓ(γk+1), γ>0, |
is convergent series for all values of υ.
Lemma 1. Let ℑ∈H1((0,T),Φ). For any υ∈[0,T],
(i) I1,φ,ga,υ(D1,φ,gυℑ(υ))=g−1(υ)[g(υ)ℑ(υ)−g(a)ℑ(a)],
(ii) D1,φ,gυ(I1,φ,ga,υℑ(υ))=ℑ(υ).
Proof.
To see (ⅰ), note that
I1,φ,ga,υ(D1,φ,gυℑ(υ))=g−1(υ)∫υadds(g(s)ℑ(s)]ds=g−1(υ)[g(υ)ℑ(υ)−g(a)ℑ(a). |
For (ⅱ)
D1,φ,gυ(I1,φ,ga,υ(ℑ(υ))=g−1(υ)1φ′(υ)ddυ∫υag(s)φ(s)ℑ(s)ds=ℑ(υ). |
Lemma 2. Let ℑ∈H1((0,T),Φ) and a∈(0,T). For any υ∈[a,T],
ABCDγ,φ,ga,υℑ(υ)=M(γ)1−γ∞∑k=0ηkγ(Iγk+1,g,φa,υD1,φ,gsℑ(s))(υ). |
Proof. According to Definition 1, we have
ABCDγ,φ,ga,υℑ(υ)=M(γ)(1−γ)g(υ)∫υaEγ(ηγ(φ(υ)−φ(s))γ)φ′(s)g(s)D1,φ,gsℑ(s)ds=M(γ)(1−γ)g(υ)∫υa∞∑k=0ηkγ(φ(υ)−φ(s))kγΓ(γk+1)φ′(s)g(s)D1,φ,gsℑ(s)ds=M(γ)(1−γ)∞∑k=0ηkγ1Γ(γk+1)g(υ)∫υa(φ(υ)−φ(s))kγφ′(s)g(s)D1,φ,gsℑ(s)ds=M(γ)(1−γ)∞∑k=0ηkγ(Iγk+1,,g,φa,υD1,φ,gsℑ(s))(υ). |
Since gℑ∈C1(L,Φ), this series is convergent for all υ∈[a,T].
Lemma 3. If ℑ∈H1((a,T),Φ) and g∈C1(L,(0,∞)), then
(i) ABIγ,φ,ga,υ(ABCDγ,φ,ga,υℑ(υ))=ℑ(υ)−g−1(υ)g(a)ℑ(a).
(ii) ABCDγa,υ(ABIγa,υℑ(υ))=ℑ(υ)−g−1(υ)g(a)ℑ(a).
Proof.
(i) Let υ∈L be fixed. It follows from Lemma 2 that
ABIγ,φ,ga,υ(ABCDγ,φ,ga,υℑ(υ))=1−γM(γ) ABCDγ,φ,ga,υℑ(υ)+γM(γ)Iγ,φ,ga,υ(ABCDγ,φ,ga,υℑ(υ))=∞∑k=0ηkγ(Iγk+1,,φ,ga,υD1,φ,gsℑ(s))(υ)+γ1−γ∞∑k=0ηkγIγ,φ,ga,υIγk+1,g,φa,υD1,φ,gsℑ(s))(υ)=∞∑k=0ηkγ(Iγk+1,φ,ga,υD1,φ,gsℑ(s))(υ)−ηγ∞∑k=0ηkγIγ(k+1)+1,g,φa,υD1,g,φsℑ(s))(υ)=∞∑k=0ηkγ(Iγk+1,,g,φa,υD1,g,φsℑ(s))(υ)−∞∑k=0ηk+1γIγ(k+1)+1,g,φa,υD1,g,φsℑ(s))(t)=∞∑k=0ηkγ(Iγk+1,,g,φa,tD1,g,φsℑ(s))(t)−∞∑k=1ηkγ(Iγk+1,,g,φa,tD1,g,φsℑ(s))(t)=I1,g,φa,tD1,g,φsℑ(s))(t)=g−1(t)∫tag(s)ℑ(s)ds=g−1(t)(g(t)ℑ(t)−g(0)ℑ(0)). |
(ii) follows since
ABCDγ,φ,ga,υ(ABCIγ,φ,ga,υℑ(υ))=M(γ)(1−γ)∞∑k=0ηkγ Iγk+1,φ,ga,υ(D1,g,φs(ABIγ,φ,ga,sℑ(s)))(υ)=M(γ)(1−γ)∞∑k=0ηk γIγk+1,φ,ga,υ(D1,g,φs[1−γM(γ)ℑ(s)+γM(γ)Iγ,φ,ga,sℑ(s)](υ))=∞∑k=0ηkγ Iγk+1,φ,ga,υ(D1,φ,gsℑ(s))(υ)−ηγ∞∑k=0ηkγ Iγk+1,φ,ga,υ(D1,g,φsIγ,φ,ga,sℑ(s))(υ)=∞∑k=0ηkγ Iγk,φ,ga,υI1,φ,ga,υ(D1,φ,gsℑ(s))(υ)−ηγ∞∑k=0ηkγ Iγk,φ,ga,υI1,φ,ga,υ(D1,φ,gsIγ,φ,ga,sℑ(s))(υ)=∞∑k=0ηkγ Iγk,φ,ga,υ((gℑ)(t)−g(a)ℑ(a))−ηγ∞∑k=0ηkγ Iγk,φ,ga,υ[Iγ,g,φa,υ(ℑg)(υ)−Iγ,φ,ga,υ(ℑg)(a)]=∞∑k=0ηkγ Iγk,φ,ga,υ((gℑ)(υ)−g(a)ℑ(a))−ηγ∞∑k=0ηk+1γ Iγ(k+1),φ,ga,υ[(ℑg)(υ)−(ℑg)(a)]=∞∑k=0ηkγ Iγk,φ,ga,υ((gℑ)(υ)−g(a)ℑ(a))−∞∑k=1ηkγ Iγk,φ,ga,υ[(ℑg)(υ)−(ℑg)(a)]=g−1(υ)((gℑ)(υ)−g(a)ℑ(a))=ℑ(υ)−g(a)ℑ(a)g−1(υ). |
To improve the readability of the results in the following sections, we list the following hypothesis.
Hypothesis 1.
⋄ (HΨ) The map Ψ:L×Φ→Pck(Φ) satisfies
(i) For every x∈Φ, θ→ Ψ(θ,x) is measurable.
(ii) For almost θ∈L,x→Ψ(θ,x) is upper semi-continuous.
(iii) There is a function τ∈L2(J,R+) with for any x∈Φ,
supy∈Ψ(υ,x)||y||≤τ(υ)(1+||x||), a.e., forυ∈L. | (3.1) |
(iv) There is a function η∈L1(L,R+) such that for any bounded subset B⊂Φ,
ϰ(Ψ(υ,B))≤g(υ)η(υ)ϰ(B), for υ∈L, | (3.2) |
and
4ρ1ρ3(1−γM(γ)+6φ(T)γM(γ)Γ(γ))<1, | (3.3) |
where ϰ is the measure of noncompactness on Φ, ρ1=supυ∈Lg(υ), and ρ3=||η||L1(L,R+).
The norm of the function τ will be denoted by ρ2, i.e., ρ2=||τ||L1(L,R+).
⋄ (Hz) The map z:L×Φ→Φ is a function such that
(i) For any ℑ∈PCg(L,Φ), the function v(υ)=z(υ,ℑ(υ))∈PCH1((0,T),Φ) and z(0,ℑ(0))=0.
(ii) For any υ∈L,x→z(υ,x) is uniformly continuous on bounded sets.
(iii) There is a continuous function ψ such that
||z(υ,x)||≤ψ(υ)(1+||x||), ∀(υ,x)∈L×Φ. | (3.4) |
(iv) There is a continuous function η:L→R+ such that for any B∈Pb(Φ),
ϰ(z(υ,B))≤η(υ)ϰ(B),forυ∈L, | (3.5) |
and
κ+2κφ(T)γM(γ)Γ(γ)<1, | (3.6) |
Here κ=supυ∈Lη(υ)
⋄ (Hz)∗ The following are satisfied
(i) For any ℑ∈PCg(L,Φ), the function W(υ)=z(υ,ℑ(υ)) is in PCH1((0,T),Φ) and W(0)=0.
(ii) There is ξ1>0 such that, for any υ∈L, and any ℑ,ς∈PCg(L,Φ),
||z(υ,ℑ(υ))−z(υ,ς(υ)||≤ξ1||ℑ−ς||PCg(L,Φ). |
⋄ (Hz)∗∗ The following hold
(i) For any ℑ∈PC∗g(L,Φ), the function W(υ)=z(υ,ℑ(υ)) is in PCH1,∗((0,T),Φ) and W(0)=0
(ii) There is ξ1>0 such that, for any υ∈L, and any ℑ,ς∈PC∗g(L,Φ),
||z(υ,ℑ(υ))−z(υ,ς(υ)||≤ξ1||ℑ(υ)−ς(υ)||Φ. |
⋄ (Hℜ) The function ℜ:PCg(L,Φ)→Φ is continuous, compact and there are two positive real numbers c,d such that
||ℜ(x)|≤c||x||PCg(L,Φ)+d,∀x∈PCg(L,Φ). | (3.7) |
⋄ (Hℜ)∗ There is ξ2>0 such that for any ℑ,ς∈PCg(L,Φ),
||ℜ(ℑ)−ℜ(ς)||≤ξ2||ℑ−ς||PCg(L,Φ). |
⋄ (Hℜ)∗∗ The function ℜ:PC∗g(L,Φ)→Φ is continuous, compact and there two positive real numbers c,d such that
||ℜ(x)|≤c||x||PC∗g(L,Φ)+d,∀x∈PCg(L,Φ). |
⋄ (HI) For every i=1,2,..,r, Ii:Φ→Φ is continuous and compact on bounded subsets, and there is λ>0 with
||Ii(ℑ(υ))||≤λg(υ)||ℑ(υ)||;υ∈L. | (3.8) |
⋄ (HI)∗ There is ξ3>0 such that for any ℑ,ς∈PCg(L,Φ), and any i∈N1,r
‖Ii(ℑ(θi)−Ii(ς(θi))‖≤ξ3||ℑ−ς||PCg(L,Φ). |
⋄ (Hℜi) There is ξ4>0 such that for any ℑ,ς∈PC∗g(L,Φ) and any i∈N1,r,
||ℜi(υ,ℑ(b−i))−ℜi(υ,ς(b−i))||≤ξ4||ℑ−ς||PCg(L,Φ). | (3.9) |
⋄ (Hℜi)∗ For every i∈N1,r ℜi:[bi,τi]×Φ→Φ is such that, for any υ∈[bi,τi], the function x→ℜi(υ,x) is uniformly continuous and compact on bounded subsets.
In the following Lemma, we state and prove the relationship between solutions of Problem (2.1) and those of the corresponding fractional integral equation.
Lemma 4. Let W:L→Φ be continuous with W(0)=0 and g∈C1(L,(0,∞)).
(1) If ℑ∈PCH1((0,T),Φ) is a solution for the following nonlocal impulsive g-weighted φ-Attangana- Baleanu:
{ABCDγ,φ,g0,υℑ(υ)=W(υ),υ∈(θi,θi+1),i∈N0,r,ℑ(0)=ℑ0g−1(0)−g−1(0)ℜ(ℑ),ℑ(θ+i)=ℑ(θ−i)+g−1(θ−i)Ii(ℑ(θ−i)), i∈N1,r, | (4.1) |
then, for any υ∈L
ℑ(υ)={ℑ0g−1(υ)−g−1(υ)ℜ(ℑ)+ABIγ,φ,g0,υv(υ),υ∈[0,θ1],g−1(υ)ℑ0−g−1(υ)ℜ(ℑ))+g−1(υ)∑k=ik=1Ik(ℑ(θ−k))+ABIγ,φ,g0,υv(υ),υ∈(θi,θi+1], i∈N1,r. | (4.2) |
(2) If W∈PCH1((0,T),Φ) and ℑ is defined by (4.2), then ℑ∈PCH1((0,T),Φ) and ℑ is a solution for (4.1).
Proof.
(1) Suppose that ℑ∈H1((0,T),Φ) is the solution of (4.1) and let υ∈(θ0,θ1), then
{ABCDγ,φ,g0,υℑ(υ)=W(υ),υ∈(0,θ1], ℑ(0)=ℑ0g−1(0)−g−1(0)ℜ(ℑ). | (4.3) |
Applying ABIγ,g,φ0,υ on both sides of (4.3), we get by Lemma (3),
ℑ(υ)=ℑ(0)g(0)g−1(υ)+ABIγ,φ,g0,υW(υ)=g(0)g−1(υ)(ℑ0g−1(0)−g−1(0)ℜ(ℑ))+ABIγ,φ,g0,υW(υ)=ℑ0g−1(υ)−g−1(υ)ℜ(ℑ)+ABIγ,φ,g0,υW(υ);∀υ∈[0,θ1]. |
Let υ∈(θ1,θ2]. The equations in (4.1) gives,
{ABCDγ,φ,g0,υℑ(υ)=W(υ),υ∈(θ1,θ2], ℑ(θ1)=ℑ(θ−1)+g−1(θ1)I1(ℑ(θ−1)). |
Applying ABIγ,g,φ0,υ on both sides of ABCDγ,φ,g0,υℑ(υ)=W(υ) and using Lemma (3), we get
ℑ(υ)=c1g−1(υ)+ABIγ,φ,g0,υW(υ);∀υ∈(θ1,θ2]. | (4.4) |
To find c1, we use the boundary condition ℑ(θ1)=ℑ(θ−1)+g−1(θ1)I1(ℑ(θ−1)), to obtain,
c1g−1(θ1)+ABIγ,φ,g0,θ1W(υ)=ℑ0g−1(θ1)−g−1(θ1)ℜ(ℑ)+ABIγ,φ,g0,θ1W(υ)+g−1(θ1)I1(ℑ(θ−1)), |
where
c1=ℑ0−ℜ(ℑ)+I1(ℑ(θ−1)). |
Substitution the value of c1 into (4.4) gives
ℑ(υ)=ℑ0g−1(υ)−g−1(υ)ℜ(ℑ)+g−1(υ)I1(ℑ(θ−1))+Iγ,φ,g0,υW(υ);∀υ∈(θ1,θ2]. |
Next, let υ∈(θ2,θ3]. Applying ABIγ,g,φ0,υ on both sides of ABCDγ,φ,g0,υℑ(υ)=W(υ) and using Lemma (3), to get
ℑ(υ)=c2g−1(υ)+ABIγ,φ,g0,υ(υ);∀υ∈(θ2,θ3]. | (4.5) |
Using the boundary condition ℑ(θ+2)=ℑ(θ−2)+g−1(θ2)I2(ℑ(θ−2)), we obtain
c2g−1(θ2)+ABIγ,φ,g0,θ2(υ)=ℑ0g−1(θ2)−g−1(θ2)ℜ(ℑ)+g−1(θ2)I1(ℑ(θ−1))+ABIγ,φ,g0,θ2(υ)+g−1(θ2)I2(ℑ(θ−2)), |
and therefore,
c2=ℑ0−ℜ(ℑ)+I1(ℑ(θ−1))+I2(ℑ(θ−2)). |
Substitution the value of c1 into (4.5) gives
ℑ(υ)=g−1(υ)ℑ0−g−1(υ)ℜ(ℑ)+g−1(υ)I1(ℑ(θ−1))+g−1(υ)I2(ℑ(θ−2))+ABIγ,g,φ0,υW(υ);∀υ∈(θ2,θ3]. |
The same arguments leads to relation (4.2) for i≥2.
(2) Let ℑ given by (4.2) and W(0)=0. Clearly, ℑ∈PCH1(L,Φ). If υ∈[0,θ1], then
ℑ(υ)=ℑ0g−1(υ)−g−1(υ)ℜ(ℑ)+ABIγ,φ,g0,υW(υ). |
By applying Lemma 3, and since W∈PCH1(L,Φ) and W(0)=0, we obtain
ABCDγ,φ,g0,υℑ(υ)=ABCDγ,φ,g0,υ(ℑ0g−1(υ)−g−1(υ)ℜ(ℑ)+ABIγ,φ,g0,υW(υ)=ABCDγ,φ,gAB0,υIγ,φ,g0,υW(υ)=g−1(υ)g(0)W(0)+W(υ)=W(υ),∀υ∈(0,θ1]. |
Moreover, ℑ(0)=ℑ0g−1(0)−g−1(0)ℜ(ℑ).
Similarly, ABCDγ,φ,g0,υℑ(υ)=W(υ),υ∈(θi,θi+1],i∈N1,r. Note that
ℑ(θ+i)=ℑ(θ+i)=ℑ(θ−i)+g−1(θ−i)Ii(ℑ(θ−i)), i∈N1,r, |
which completes the proof.
Remark 2. When g(υ)=1 and φ(υ)=υ,∀υ∈L, the formula of solution function (4.3) coincides with the formula (2.8) in [23].
Based on Lemma 4, we have the following corollary
Corollary 1. A function ℑ∈PCH1((0,T),Φ) is a solution of Problem (2.1) if z(0,ℑ(0))=0 and ℑ satisfies the fractional integral equation:
ℑ(υ)={ℑ0g−1(υ)−g−1(υ)ℜ(ℑ)+1−γM(γ)z(υ,ℑ(υ))+γM(γ)1g(υ)Γ(γ)∫υ0(φ(υ)−φ(s))γ−1g(s)φ′(s)z(s,ℑ(s))ds,υ∈[0,θ1]g−1(υ)ℑ0−g−1(υ)ℜ(ℑ))+g−1(υ)∑k=ik=1Ik(ℑ(θ−k))+1−γM(γ)z(υ,ℑ(υ))+γM(γ)1g(υ)Γ(γ)∫υ0(φ(υ)−φ(s))γ−1g(s)φ′(s)z(s,ℑ(s))ds ,υ∈(θi,θi+1], i∈N1,r, | (4.6) |
Theorem 1. If (Hz),(Hℜ) and (HI) hold, then Problem (2.1) has a solution provided that
c+1−γM(γ)ϱ1ϱ2+λr+ϱ2ϱ1φ(T)γM(γ)Γ(γ)<1, | (4.7) |
Proof. Let Υ:PCg(L,Φ)→PCg(L,Φ) defined by:
Υ(ℑ)(υ)={ℑ0g−1(υ)−g−1(υ)ℜ(ℑ)+1−γM(γ)z(υ,ℑ(υ))+γM(γ)1g(υ)Γ(γ)∫υ0(φ(υ)−φ(s))γ−1g(s)φ′(s)z(s,ℑ(s))ds,υ∈[0,θ1] g−1(υ)ℑ0−g−1(υ)ℜ(ℑ))+g−1(υ)∑k=ik=1Ik(ℑ(θ−k))+1−γM(γ)z(υ,ℑ(υ))+γM(γ)1g(υ)Γ(γ)∫υ0(φ(υ)−φ(s))γ−1g(s)φ′(s)z(s,ℑ(s))ds,υ∈(θi,θi+1], i∈N1,r. | (4.8) |
Note that, if ℑ is a fixed point for Υ, then it will be in the form of (4.6). If we define W:L→Φ;W(υ)=z(υ,ℑ(υ)), then
ℑ(υ)={ℑ0g−1(υ)−g−1(υ)ℜ(ℑ)+ABIγ,φ,g0,υW(υ),υ∈[0,θ1] g−1(υ)ℑ0−g−1(υ)ℜ(ℑ))+g−1(υ)∑k=ik=1Ik(ℑ(θ−k))+ABIγ,φ,g0,υW(υ),υ∈(θi,θi+1], i∈{1,3,...,r}. | (4.9) |
But, assumption (Hz)(i) gives that W∈PCH1((0,T),Φ) and W(0)=0. Therefore, by the second part of Lemmas (4) and (4.9), ℑ will be a solution of Problem (2.1). We will use Schauder's fixed point, after establishing the following claims, to prove that Υ has a fixed point.
Claim 1. There is a natural number k0 such that Υ(Δk0)⊆Δk0, where Δk0={u∈PCg(L,Φ):‖gu‖PCg(L,Φ)≤k0}.
Pf: If this is not true, then for every natural number n there is ℑn with ||ℑn||PCg(L,Φ)≤n, but ||Υ(ℑn)||PCg(L,Φ)>n. Let υ∈[0,θ1]. Using (3.4), (3.7) and (4.9), we obtain
||g(υ)Υ(ℑn)(υ)||≤||ℑ0||+ c n+d+1−γM(γ)ϱ1ϱ2(1+n)+γϱ2ϱ1(1+n)M(γ)Γ(γ)∫υ0(φ(υ)−φ(s))γ−1φ′(s)ds≤||ℑ0||+ cn+d+1−γM(γ)ϱ1ϱ2(1+n)+ϱ2ϱ1(1+n)φ(T)γM(γ)Γ(γ). | (4.10) |
Let υ∈(θi,θi+1], i∈N1,r. It follows from (3.4), (3.7), (3.8) and (4.8) that
||g(υ)Υ(ℑn)(υ)||≤||ℑ0||+ cn+d+1−γM(γ)ϱ1ϱ2(1+n)+λrn+ϱ2ϱ1(1+n)φ(T)γM(γ)g(υ)Γ(γ). | (4.11) |
From (4.10) and (4.11), we get
n<||Υ(x)||PCg(L,Φ)≤||ℑ0||+cn+d+1−γM(γ)ϱ1ϱ2(1+n)+λrn+ϱ2ϱ1(1+n)φ(T)γM(γ)Γ(γ). | (4.12) |
By dividing both sides of (4.12) by n and then, taking the limit when n→∞, we get
1<c+1−γM(γ)ϱ1ϱ2+λr+ϱ2ϱ1φ(T)γM(γ)Γ(γ), | (4.13) |
which contradicts (4.7). ¶
Claim 2. Υ :Δk0→Δk0 is continuous.
Pf: Suppose that ℑm∈Bk0,ℑm→ℑ. By definition of Υ,
Υ(ℑm)(υ)={ℑ0g−1(υ)−g−1(υ)ℜ(ℑm)+1−γM(γ)z(υ,ℑm(υ))+γM(γ)1g(υ)Γ(γ)∫υ0(φ(υ)−φ(s))γ−1g(s)φ′(s)z(s,ℑm(s))ds,υ∈[0,θ1] g−1(υ)ℑ0−g−1(υ)ℜ(ℑm))+g−1(υ)∑k=ik=1Ik(ℑm(θ−k))+1−γM(γ)z(υ,ℑm(υ))+γM(γ)1g(υ)Γ(γ)∫υ0(φ(υ)−φ(s))γ−1g(s)φ′(s)z(s,ℑm(s))ds,υ∈(θi,θi+1], i∈N1,r. | (4.14) |
By the continuity of z, ℜ and Ik,k∈N1,r, we obtain from Lebesgue dominated convergence theorem that limm→∞Υ(ℑm)=Υ(ℑ) in PCg(L,Φ).¶
Claim 3. The sets Δ1|¯Lifor anyi∈N0,r,whereΔ1=Υ(Δk0) and
Δ1|¯Li={ℑ∗∈(¯Li,Φ):ℑ∗(υ)=g(υ)ℑ(υ),υ∈(υi,υi+1],ℑ∗(υi)=limυ→υ+ig(υ)ℑ(υ),ℑ∈Δ1}. |
are equicontinuous.
Pf: Let ℑ=Υ(W); W∈Δk0. Then
ℑ(υ)={ℑ0g−1(υ)−g−1(υ)ℜ(W)+1−γM(γ)z(υ,W(υ))+γM(γ)1g(υ)Γ(γ)∫υ0(φ(υ)−φ(s))γ−1g(s)φ′(s)z(s,ℑ(s))ds,υ∈[0,θ1] g−1(υ)ℑ0−g−1(υ)ℜ(ℑ))+g−1(υ)∑k=ik=1Ik(ℑ(θ−k))+1−γM(γ)z(υ,ℑ(υ))+γM(γ)1g(υ)Γ(γ)∫υ0(φ(υ)−φ(s))γ−1g(s)φ′(s)z(s,ℑ(s))ds,υ∈(θi,θi+1], i∈N1,r. |
and so,
ℑ∗(υ)={ℑ0−ℜ(W)+1−γM(γ)g(υ)z(υ,W(υ))+γM(γ)Γ(γ)∫υ0(φ(υ)−φ(s))γ−1g(s)φ′(s)z(s,ℑ(s))ds,υ∈[0,θ1] ℑ0−ℜ(ℑ))+∑k=ik=1Ik(ℑ(θ−k))+1−γM(γ)g(υ)z(υ,ℑ(υ))+γM(γ)Γ(γ)∫υ0(φ(υ)−φ(s))γ−1g(s)φ′(s)z(s,ℑ(s))ds,υ∈(θi,θi+1], i∈N1,r. | (4.15) |
Case 1. i=0. Let υ,υ+δ be two points in ¯L0=[0,θ1]. From (4.15) and the uniform continuity of z on bounded sets, we obtain
limδ→0||ℑ∗(υ+δ)−ℑ∗(υ)||≤1−γM(γ)limδ→0[g(υ+δ)z(υ+δ,W(υ+δ))−g(υ)z(υ,W(υ))]+limδ→0γM(γ)Γ(γ)||∫υ+δ0(φ(υ+δ)−φ(s))γ−1g(s)φ′(s)z(s,ℑ(s))ds−∫υ0(φ(υ)−φ(s))γ−1g(s)φ′(s)z(s,ℑ(s))||=γM(γ)Γ(γ)limδ→0∫υ0|((φ(υ+δ)−φ(s))γ−1φ′(s)−(φ(υ)−φ(s))γ−1)φ′(s)| ||g(s)z(s,ℑ(s))||ds+γM(γ)Γ(γ)limδ→0∫υ+δυ|((φ(υ+δ)−φ(s))γ−1φ′(s)| ||g(s)z(s,ℑ(s))||ds≤ϱ1ϱ2γ(1+k0)M(γ)Γ(γ)limδ→0∫υ0|((φ(υ+δ)−φ(s))γ−1φ′(s)−(φ(υ)−φ(s))γ−1)φ′(s)ds|+ϱ1ϱ2γ(1+k0)M(γ)Γ(γ)limδ→0∫υ+δυ|((φ(υ+δ)−φ(s))γ−1φ′(s)|ds=0, |
independently of ℑ.
Case 2. i∈N1,r. Let υ,υ+δ be two points in (θi,θi+1]. Using the same arguments as in Case 1, we have,
limδ→0||ℑ∗(υ+δ)−ℑ∗(υ)||≤1−γM(γ)limδ→0[g(υ+δ)z(υ+δ,W(υ+δ))−g(υ)z(υ,W(υ))]+limδ→0[g−1(υ+δ)−g−1(υ+δ)]k=i∑k=1Ik(ℑ(θ−k))+limδ→0γM(γ)Γ(γ)||∫υ+δ0(φ(υ+δ)−φ(s))γ−1g(s)φ′(s)z(s,ℑ(s))ds−∫υ0(φ(υ)−φ(s))γ−1g(s)φ′(s)z(s,ℑ(s))||=0, |
independently of ℑ, and the claim is proved. ¶
Claim 4. The set Δ=∩k=1Δk is compact, where Δ0=Δk0 and Δk=Υ(Δk−1),k≥1.
Pf: From Claim 1 and Claim 2, Δk;k≥1 is a non-empty, convex, bounded, and closed set; thus, Δ is bounded and closed. Moreover, Δ2=Υ(Δ1)=Υ(Υ(Δk0))⊆Υ(Δk0)=Δ1. So, by induction, (Δk) is a non-increasing sequence. We show that Δ is relatively compact, and hence it is compact. By the Generalized Cantor's intersection property [35], it is enough to prove that
limn→∞ϰPCg(Δn)=0, | (4.16) |
where ϰPCg is the Hausdorff measure of noncompactness in PCg(L,Φ) which is defined by: χPCg(L,Φ)):Pb(PCg(L,Φ))→[0,∞),
χPCg(L,Φ)(D):=maxi∈N0,rχi(D||[θi,θi+1]), | (4.17) |
where
D||[θi,θi+1]:={h∗∈C([θi,θi+1],Φ):h∗(ϱ)=g(ϱ)h(ϱ),ϱ∈(θi,θi+1],h∗(θi)=limϱ→θ+ih∗(ϱ),h∈D}. | (4.18) |
and χi is the Hausdorff measure of noncompactness on C([θi,θi+1],Φ). To prove (4.16), let ϵ>0, and n≥1 be fixed. Then, (see [36]) there is a sequence (ℑk) in Δn such that
χPCg(L,Φ)(Δn)≤2χPCg(L,Φ){ℑm:m≥1}+ϵ. | (4.19) |
Set Π={ℑm:m≥1}. It follows from (4.17) and (4.19) that
χPCg(L,Φ)(Δn)≤2maxi∈N0,rχi(Π||[θi,θi+1])+ϵ, | (4.20) |
but, from Claim 3, the sets Π||[θi,θi+1]; i∈N0,r are equicontinuous, and consequently, inequality (4.20) becomes
χPCg(L,Φ)(Δn)≤2maxi∈N0,rmaxυ∈[θi,θi+1]χ{g(υ)ℑm(υ):m≥1}+ϵ≤2maxυ∈Lχ{g(υ)ℑm(υ):m≥1}+ϵ. | (4.21) |
To evaluate the quantity χ{g(υ)ℑm(υ):m≥1};υ∈L, we note that, since ℑm∈Δn=Υ(Δn−1), there is Wm∈Δn−1 with ℑm=Υ(Wm), and hence, for any m≥1,
g(υ)ℑm(υ)={ℑ0−ℜ(Wm)+1−γM(γ)g(υ)z(υ,Wm(υ))+γM(γ)Γ(γ)∫υ0(φ(υ)−φ(s))γ−1g(s)φ′(s)z(s,Wm(s))ds,υ∈[0,θ1] ℑ0−ℜ(Wm)+∑k=ik=1Ik(Wm(θ−k))+1−γM(γ)g(υ)z(υ,Wm(υ))+γM(γ)Γ(γ)∫υ0(φ(υ)−φ(s))γ−1g(s)φ′(s)z(s,Wm(s))ds,υ∈(θi,θi+1], i∈N1,r. | (4.22) |
In view of (3.5), for υ∈L,
χ{g(υ)z(υ,Wm(υ)):m≥1}≤η(υ)χ{g(υ)Wm(υ):m≥1≤κχPCg(L,Φ)(Δn−1), | (4.23) |
where κ=supυ∈Lη(υ). However,
Λ(υ)=χ{∫υ0(φ(υ)−φ(s))γ−1g(s)φ′(s)z(s,Wm(s))ds:k≥1}. |
From the properties of χ and (4.23), it follows that for υ∈(θi,θi+1], i∈N0,r,
Λ(υ)≤2∫υ0(φ(υ)−φ(s))γ−1φ′(s)χ{g(s)z(s,Wm(s)):m≥1}ds≤2κχPCg(L,Φ)(Δn−1)∫υ0(φ(υ)−φ(s))γ−1φ′(s)ds≤2κχPCg(L,Φ)(Δn−1)φ(T)γγ. | (4.24) |
From the compactness of both ℜ and Ii; i∈N1,r, we have
χ{ℜ(Wm):m≥1}=0 and χ{k=i∑k=1Ik(Wm(θ−k)):m≥1}=0. |
Thus, from (4.21-4.24) it follows that
χPCg(L,Φ)(Δn)≤κχPCg(L,Φ)(Δn−1)+2κχPCg(L,Φ)(Δn−1)φ(T)γM(γ)Γ(γ)+ϵ=χPCg(L,Φ)(Δn−1)[κ+2κφ(T)γM(γ)Γ(γ)]+ϵ. |
Since ϵ is arbitrary, we get
χPCg(L,Φ)(Δn)≤χPCg(L,Φ)(Δn−1)[κ+2κφ(T)γM(γ)Γ(γ)]. |
Since this relation is true for each n, we get
χPCg(L,Φ)(Δn)≤χPCg(L,Φ)(Δ1)[κ+2κφ(T)γM(γ)Γ(γ)]n−1. |
But, (3.6) gives that κ+2κφ(T)γM(γ)Γ(γ)<1, so the relationship (4.16) is achieved, and Δ is compact. ¶
Applying Schauder's fixed point theorem to the mapping Υ:Δ→Δ, we conclude that Υ has a fixed point, which will be the solution for Problem (2.1).
Remark 3. If g(υ)=1 and φ(υ)=υυ∈L, ℜ(ℑ)=0,∀ℑ∈PCg(L,Φ) and there are no impulses (Ii(x)=0,∀x∈Φ, and ∀i∈N1,r), then Conditions (4.7) reduces to
1−γM(γ)ϱ2+ϱ2TγM(γ)Γ(γ)<1, |
This inequality appears in the literature, see for example, Theorem 3.1 in [29].
In the following, we give another existence result for Problem (2.1).
Theorem 2. If (Hz)∗,(Hℜ)∗, and (HI)∗ are satisfied, then Problem (2.1) has a unique solution under the condition that
[ξ2+rξ3+ξ1((1−γ)ρ1M(γ)+ρ1φ(T)γM(γ)Γ(γ))]<1. | (4.25) |
Proof. We are going to show that the function Υ:PCg(L,Φ)→PCg(L,Φ), defined by (4.8), is a contraction. Let ℑ,ς∈PCg(L,Φ). For any υ∈[0,θ1], we have
||g(υ)Υ(ℑ)(υ)−g(υ)Υ(ς)(υ)||≤||ℜ(ℑ)−ℜ(ς)||+(1−γ)ρ1M(γ)ξ1||ℑ−ς||PCg(L,Φ)+γM(γ)Γ(γ)∫υ0(φ(υ)−φ(s))γ−1φ′(s)g(s)||z(s,ℑ(s))−z(s,ς(s)||ds≤ξ2||ℑ−ς||PCg(L,Φ)+(1−γ)ρ1M(γ)ξ1||ℑ−ς||PCg(L,Φ)+||ℑ−ς||PCg(L,Φ)ρ1ξ1φ(υ)γM(γ)Γ(γ)=||ℑ−ς||PCg(L,Φ)[ξ2+(1−γ)ρ1M(γ)ξ1+ρ1ξ1φ(T)γM(γ)Γ(γ)]. |
Let υ∈(θi,θi+1], i∈N1,r. In view (HI)∗
k=i∑k=1||Ik(ℑ(θ−k)−Ikς(θ−k)||≤rξ3||ℑ−ς||PCg(L,Φ). |
But
||g(υ)Υ(ℑ)(υ)−g(υ)Υ(ς)(υ)||=||ℑ−ς||PCg(L,Φ).[ξ2+rξ3+(1−γ)ρ1M(γ)ξ1+ξ1φ(T)γM(γ)Γ(γ)]. |
Therefore,
||Υ(ℑ)−Υ(ς)||PCg(L,Φ)≤||ℑ−ς||PCg(L,Φ)[ξ2+rξ3+ξ1((1−γ)ρ1M(γ)+ρ1φ(T)γM(γ)Γ(γ))] |
By (4.25), Υ is a contraction. By Banach fixed-point theorem, it has a unique fixed point that gives a solution to Problem (2.1).
Lemma 5. Let ℑ:L→Φ, W:L→Φ continuous with W(θi)=0,∀i∈N0,r.
(1) If ℑ∈PCH1((0,T),Φ) is a solution for the following initial problem:
{ABCDγ,φ,gθi,υℑ(υ)=W(υ),υ∈(θi,θi+1),i∈N0,r,ℑ(0)=ℑ0g−1(0)−g−1(0)ℜ(ℑ),ℑ(θ+i)=ℑ(θ−i)+g−1(θ−i)Ii(ℑ(θ−i)), i∈N1,r, | (5.1) |
then, for any υ∈L
ℑ(υ)={ℑ0g−1(υ)−g−1(υ)ℜ(ℑ)+ABIγ,φ,g0,υW(υ),υ∈[0,θ1]g−1(υ)ℑ0−g−1(υ)ℜ(ℑ))+g−1(υ)∑k=ik=1g(θk) ABIγ,g,φθk−1,θkW(υ)+g−1(υ)∑k=ik=1Ik(ℑ(θ−k))+ABIγ,g,φθi,υW(υ),υ∈(θi,θi+1], i∈N1,r. | (5.2) |
(2) If W∈PCH1(L,Φ) and ℑ satisfies (5.2), then ℑ∈PCH1(L,Φ) and ℑ is a solution for (5.1)
Proof.
(1) Let υ∈(0,θ1). Then,
{ABCDγ,φ,g0,υℑ(υ)=W(υ),υ∈(0,θ1], ℑ(0)=ℑ0g−1(0)−g−1(0)ℜ(ℑ), |
As in the proof of Lemma (4), we get that for υ∈(0,θ1]
ℑ(υ)=ℑ0g−1(υ)−g−1(υ)ℜ(ℑ)+ABIγ,φ,g0,υW(υ). | (5.3) |
Next, consider the fractional differential equation:
{ABCDγ,φ,gθ1,υℑ(υ)=W(υ),υ∈(θ1,θ2], ℑ(θ+1)=ℑ(θ−1)+g−1(θ1)I1(ℑ(θ−1)). |
Applying ABIγ,φ,gθ1,υ on both sides of ABCDγ,φ,gθ1,υℑ(υ)=W(υ) and using Lemma 3, we obtain
ℑ(υ)=c1g−1(υ)+ABIγ,φ,gθ1,υW(υ),υ∈(θ1,θ2]. | (5.4) |
Using the boundary condition ℑ(θ+1)=ℑ(θ−1)+g−1(θ1)I1(ℑ(θ−1)), we get
c1g−1(θ1)=ℑ0g−1(θ1)−g−1(θ1)ℜ(ℑ)+ABIγ,φ,g0,θ1W(υ)+g−1(θ1)I1(ℑ(θ−1)), |
which gives that
c1=ℑ0−ℜ(ℑ)+g(θ1)ABIγ,φ,g0,θ1W(υ)+I1(ℑ(θ−1)), |
Substituting the value of c1 in (5.3), we obtain for υ∈(θ1,θ2],
ℑ(υ)=ℑ0g−1(υ)−g−1(υ)ℜ(ℑ)+g−1(υ)g(θ1)ABIγ,φ,g0,θ1W(υ)+g−1(υ)I1(ℑ(θ−1))+ABIγ,φ,gθ1,υW(υ). | (5.5) |
Next, consider the fractional differential equation:
{ABCDγ,φ,gθ2,υℑ(υ)=W(υ),υ∈(θ2,θ3], ℑ(θ+1)=ℑ(θ−1)+g−1(θ1)I1(ℑ(θ−1)). |
Applying ABIγ,φ,gθ2,υ to both sides of ABCDγ,φ,gθ2,υℑ(υ)=W(υ) and using Lemma 3, we obtain
ℑ(υ)=c2g−1(υ)+ABIγ,φ,gθ2,υW(υ),υ∈(θ1,θ2]. | (5.6) |
Using the boundary condition ℑ(θ+2)=ℑ(θ−2)+g−1(θ2)I2(ℑ(θ−2)), we get
c2g−1(θ2)=ℑ0g−1(θ2)−g−1(θ2)ℜ(ℑ)+g−1(θ2)g(θ1)ABIγ,φ,g0,θ1W(υ)+g−1(θ2)I1(ℑ(θ−1))+ABIγ,φ,gθ1,θ2W(υ)+g−1(θ2)I2(ℑ(θ−2)), |
which gives us
c2=ℑ0−ℜ(ℑ)+g(θ1)ABIγ,φ,g0,θ1W(υ)+I1(ℑ(θ−1))+g(θ2)ABIγ,φ,gθ1,θ2W(υ)+I2(ℑ(θ−2)), |
Substituting the value of c2 in (5.6), yields for υ∈(θ1,θ2]
ℑ(υ)=ℑ0g−1(υ)−g−1(υ)ℜ(ℑ)+g−1(υ)g(θ1)ABIγ,φ,g0,θ1W(υ)+g−1(υ)I1(ℑ(θ−1))+g−1(υ)g(θ2)ABIγ,φ,gθ1,θ2W(υ)+g−1(υ)I2(ℑ(θ−2))+ABIγ,φ,gθ2,υW(υ). |
By repeating the same procedures, we get Eq (5.2).
(2) Suppose that ℑ is defined by (5.2) and W(0)=0. Let υ∈(0,θ1). Then,
ℑ(υ)=ℑ0g−1(υ)−g−1(υ)ℜ(ℑ)+ABIγ,φ,g0,υW(υ). |
Applying Lemma 3 and noting that ABCDγ,φ,g0,υ g−1(υ)=0, we obtain ABCDγ,φ,g0,υℑ(υ)=W(υ). Similarly, if υ∈(θi,θi+1);i∈i∈N1,r, then
ℑ(υ)=g−1(υ)ℑ0−g−1(υ)ℜ(ℑ))+g−1(υ)k=i∑k=1g(θk) ABIγ,g,φθk−1,θkW(υ)+g−1(υ)k=i∑k=1Ik(ℑ(θ−k))+ABIγ,g,φθi,υW(υ). |
Again, since W∈PCH1(L,Φ), W(θi)=0 and ABCDγ,φ,g0,υ g−1(υ)=0, it follows by Lemma 3,
ABCDγ,φ,gθi,υℑ(υ)=W(υ), |
giving us ℑ∈H1((0,T),Φ). In addition, it is easy to check that
ℑ(θ+i)=ℑ(θ−i)+g−1(θ−i)Ii(ℑ(θ−i)), i∈N1,r |
Therefore, ℑ is a solution for (5.1).
Remark 4.
- We can't omit the assumption W(0)=0, in the second assertion of Lemma 3, since ABCDγ0,υ ABIγ0,υW(υ)=W(υ)−g(0)W(0)g−1(υ)≠W(υ).
- If W is continuous and not in H1((0,T),Φ), then Eq (4.6) does not lead to the existence of ABCDγ0,υℑ(υ). Thus, without the assumption W∈H1((0,T),Φ), we can not conclude that ABCDγ0,υℑ(υ) exists.
Using Lemma (5), we give the formula for a solution to Problem (2.2).
Corollary 2. For any x∈PCg(L,Φ), let
S2Ψ(.,x(.))={z∈L2(J,Φ):z(s)∈Ψ(s,x(s)),a,e.}. |
A function ℑ∈PCH1((0,T),Φ) is a solution of Problem (2.2) if it satisfies the fractional integral equation:
ℑ(υ)={ℑ0g−1(υ)−g−1(υ)ℜ(x)+1−γM(γ)W0(υ)+γM(γ)Γ(γ)g(υ)∫υ0(φ(υ)−φ(s))γ−1g(s)φ′(s)W0(s)ds,υ∈[0,θ1]g−1(υ)ℑ0−g−1(υ)ℜ(x)+g−1(υ)∑k=ik=1g(θk) ABIγ,g,φθk−1,θkWi(υ)+g−1(υ)∑k=ik=1Ik(ℑ(θ−k))+ABIγ,g,φθi,υWi(υ),υ∈(θi,θi+1], i∈N1,r. | (5.7) |
where Wi(υ)=∫υθiz(s)ds,z∈S2Ψ(.,x(.)),υ∈(θi,θi+1],i∈N0,r.
We need to the following fixed points theorems for multivalued functions.
Let U∈Pcc(Φ), ρ a non-singular measure of noncompactness defined on subsets of ℑ, Π:U→Pck(ℑ) a closed multifunction and Fix(Π)={x∈ℑ:x∈Π(x)}.
Lemma 6. [[37], Corollary 3.3.1]. If Π:U→Pck(U) is ρ−condensing then Fix(Π) is not empty.
Lemma 7. [[37], Proposition.3.5.1]]. In addition to the assumptions of Lemma (6), if ρ is a monotone measure of noncompactness defined on U and Fix(Π) is a bounded, then it is compact.
For more information about multi-valued functions, we refer the reader to [38].
Theorem 3. If (HΨ),(Hℜ) and (HI) hold, then the solution set for Problem (2.2) is non-empty and compact, provided that
c+ρ1ρ2(1−γ)M(γ)+2ρ1ρ2φ(T)γM(γ)Γ(γ)+λr+ρ1ρ3φ(T)γM(γ)Γ(γ)<1, | (5.8) |
Proof. Due to (ⅰ), (ⅱ) and (ⅲ) of (HΨ), the set S2Ψ(.,x(.)) is not empty, and so, a multivalued function Ξ:PCg(L,Φ)→2PCg(L,Φ)−{ϕ}, where ϕ is the empty set, can be defined by: ℑ∈ R(x) if and only if
ℑ(υ)={ℑ0g−1(υ)−g−1(υ)ℜ(x)+ABIγ,φ,g0,υW0(υ),υ∈[0,θ1] g−1(υ)ℑ0−g−1(υ)ℜ(x)+g−1(υ)∑k=ik=1g(θk) ABIγ,g,φθk−1,θkWi(υ)+g−1(υ)∑k=ik=1Ik(ℑ(θ−k))+ABIγ,g,φθi,υWi(υ),υ∈(θi,θi+1], i∈N1,r. | (5.9) |
where Wi(υ)=∫υθiz(s)ds, z∈S2Ψ(.,x(.)),υ∈(θi,θi+1],i∈N0,r. Note that, if ℑ is a fixed point for R, then
ℑ(υ)={ℑ0g−1(υ)−g−1(υ)ℜ(ℑ)+ABIγ,φ,g0,υW0(υ),υ∈[0,θ1] g−1(υ)ℑ0−g−1(υ)ℜ(ℑ))+g−1(υ)∑k=ik=1g(θk) ABIγ,g,φθk−1,θkWi(υ)+g−1(υ)∑k=ik=1Ik(ℑ(θ−k))+ABIγ,g,φθi,υWi(υ),υ∈(θi,θi+1], i∈N1,r. |
where Wi(υ)=∫υθiz(s)ds,z(s)∈Ψ(s,ℑ(s)),a.e.;υ∈(θi,θi+1],i∈N0,r, which gives that Wi(υ)∈∫υθiΨ(s,ℑ(s))ds;υ∈(θi,θi+1],i∈N0,r and W(θi)=0,∀i∈N0,r, and therefore, by the second statement of Lemma (5), ℑ is a solution for Problem (2.2). So, our aim is using Lemma (5), to show that Ξ has a fixed point. The proof will divided into several claims.
Claim 5. There is a natural number ζ0 such that Ξ(Δζ0)⊆Δζ0.
Pf: If this was not true, then for every natural number n there are xn,ℑn with ||ℑn||PCg(L,Φ)>n, ||xn||PCg(L,Φ)≤n and ℑn∈ Ξ(xn). By definition of Ξ,
ℑn(υ)={ℑ0g−1(υ)−g−1(υ)ℜ(xn)+ABIγ,φ,g0,υW0,n(υ),υ∈[0,θ1] g−1(υ)ℑ0−g−1(υ)ℜ(xn)+g−1(υ)∑k=ik=1g(θk) ABIγ,g,φθk−1,θkWi,n(υ)+g−1(υ)∑k=ik=1Ik(ℑn(θ−k))+ABIγ,g,φθi,υWi,n(υ),υ∈(θi,θi+1], i∈N1,r. | (5.10) |
where Wi,n(υ)=∫υθizn(s)ds,zn∈S2Ψ(.,xn.)),υ∈(θi,θi+1],i∈N0,r. Using (iii) of (HΨ), we get for any υ∈L,
||Wi,n(υ)||≤∫υθi||zn(s)||ds≤(1+n)∫υθiτ(s)ds≤(1+n)||τ||L2(L,R+)≤(1+n)ρ2. | (5.11) |
Let υ∈[0,θ1]. Making use of (5.9), (5.10) and (Hℜ), we obtain
||g(υ)ℑn(υ)||≤||ℑ0||+ cn+d+1−γM(γ)ρ1ρ2(1+n)+γρ1ρ2(1+n)M(γ)Γ(γ)∫υ0(φ(υ)−φ(s))γ−1φ′(s)ds≤||ℑ0||+ cn+d+1−γM(γ)ρ1ρ3(1+n)+ρ1ρ2(1+n)φ(T)γM(γ)Γ(γ). | (5.12) |
Let υ∈(θi θi+1],i∈N1,r. By (5.9), (5.10), (Hℜ) and (HI), we obtain
||g(υ)ℑn(υ)||≤||ℑ0||+ cn+d+ρ1(1−γM(γ)(1+n)ρ2+γM(γ)Γ(γ)∫θkθk−1(φ(υ)−φ(s))γ−1φ′(s)g(s)W(s)ds)+λrζ+γM(γ)Γ(γ)∫υθi(φ(υ)−φ(s))γ−1φ′(s)g(s)W(s)ds≤||ℑ0||+ cn+d+ρ1ρ2(1−γ)(1+n)M(γ)+ρ1ρ22(1+n)φ(υ)γM(γ)Γ(γ)+λrn+ρ1ρ2(1+n)φ(υ)γM(γ)Γ(γ). | (5.13) |
From (5.12) and (5.13), it follows that
n<‖ℑn‖PCg(J,Φ)≤||ℑ0||+ cn+d+ρ1ρ2(1−γ)(1+n)M(γ)+2ρ1ρ2(1+n)φ(T)γM(γ)Γ(γ)+λrn+ρ1ρ2(1+n)φ(T)γM(γ)Γ(γ). |
Dividing both sides of this relation by n and then letting n→∞, we get
1<c+ρ1ρ2(1−γ)M(γ)+2ρ1ρ3φ(T)γM(γ)Γ(γ)+λr+ρ1ρ2φ(T)γM(γ)Γ(γ), |
which contradicts (5.8). ¶
Claim 6. If xk∈Δζ0,ℑn∈Ξ(xn),xn→x and ℑn→ℑ, in PCg(L,Φ), then ℑ∈Ξ(x).
Pf: From the definition of Ξ,
ℑn(υ)={ℑ0g−1(υ)−g−1(υ)ℜ(xn)+ABIγ,φ,g0,υW0,n(υ),υ∈[0,θ1] g−1(υ)ℑ0−g−1(υ)ℜ(xn)+g−1(υ)∑k=ik=1g(θk) ABIγ,g,φθk−1,θkWi,n(υ)+g−1(υ)∑k=ik=1Ik(ℑn(θ−k))+ABIγ,g,φθi,υWi,n(υ),υ∈(θi,θi+1], i∈N1,r, |
where Wi,n(υ)=∫υθizn(s)ds,zn∈S2Ψ(.,xn(.)),υ∈(θi,θi+1],i∈N0,r.
It follows from (ⅲ) in (HΨ), that ||zn(υ)||≤τ(υ)(1+ζ0),a.e,. Thus, {zn:n≥1} is weakly compact in L2(L,Φ). By Mazure's lemma, we can find a subsequence (z∗n),n≥1 of convex combinations of (zn) and converging almost everywhere to a function z ∈L2(L,Φ). By the upper semicontinuity of Ψ(υ,.),a,e., it follows that z∈S2Ψ(,.x(.)). Set W∗i,n(υ)=∫υθiz∗n(s)ds;υ∈(θi,θi+1]. Then, W∗i,n(υ)→Wi(υ)=∫υθiz(s)ds∈∫υθiΨ(s,x(s))ds. From the continuity of both ℜ and Ii, we have
ℑ(υ)={ℑ0g−1(υ)−g−1(υ)ℜ(x)+ABIγ,φ,g0,υW0(υ),υ∈[0,θ1] g−1(υ)ℑ0−g−1(υ)ℜ(x)+g−1(υ)∑k=ik=1g(θk) ABIγ,g,φθk−1,θkW(υ)+g−1(υ)∑k=ik=1Ik(ℑ(θ−k))+ABIγ,g,φθi,υWi(υ),υ∈(θi,θi+1], i∈N1,r, |
which implies to ℑ∈Ξ(x).¶
Claim 7. Ξ(x); x∈ \Delta_{\zeta_{0}} is compact.
Pf: Suppose that (\Im_{k}) is a sequence in \Xi(x):x\in\Delta_{\zeta_{0}}. By arguing as in Claim 2, there is a subsequence of (\Im_{k}) converging to \overline{\Im}\in\Xi(x) .¶
Claim 8. The set D_{1}|_{[\theta_{i}, \theta_{i+1}]} is equicontinuous for any i\in\mathbb{N}_{0, r} , where
\begin{align} D_{1}|_{[\theta_{i}, \theta_{i+1}]} & = \{\Im^{\ast}\in C([\theta_{i} , \theta_{i+1}], \Phi):\Im^{\ast}(\upsilon) = g(\upsilon)\Im(\upsilon), \upsilon \in(\theta_{i}, \theta_{i+1}], \\ \Im^{\ast}(\theta_{i}) & = \lim\limits_{\upsilon\rightarrow \theta_{i}^{+}} g(\upsilon)\Im(\upsilon), \Im\in D_{1}\}. \end{align} | (5.14) |
Pf: Let \Im\in\Xi(x); \ x\in\Delta_{\zeta} . Then
\Im(\upsilon) = \left\{ \begin{array} [c]{l} \Im_{0}g^{-1}(\upsilon)-g^{-1}(\upsilon)\Re(x)+^{AB}I_{0, \upsilon} ^{\gamma, \varphi, g}W_{0}(\upsilon), \upsilon\in [0, \theta_{1}]\\ \text{ }\\ g^{-1}(\upsilon)\Im_{0}-g^{-1}(\upsilon)\Re(x)+g^{-1}(\upsilon)\sum _{k = 1}^{k = i}g(\theta_{k})\ ^{AB}I_{\theta_{k-1}, \theta_{k}}^{\gamma, g, \varphi }W(\upsilon)\\ +g^{-1}(\upsilon)\sum\nolimits_{k = 1}^{k = i}I_{k}(\Im(\theta_{k}^{-}))+^{AB}I_{\theta _{i}, \upsilon}^{\gamma, g, \varphi}W_{i}(\upsilon), \upsilon\in(\theta_{i} , \theta_{i+1}], \ i\in\mathbb{N}_{1, r}. \end{array} \right. |
where W_{i}(\upsilon) = \int_{\theta_{i}}^{\upsilon}z(s)ds, \ z\in S_{\Psi(., x(.))}^{2}, \upsilon\in(\theta_{i}, \theta_{i+1}], i\in \mathbb{N}_{0, r}. So,
\begin{equation} \Im^{\ast}(\upsilon) = g(\upsilon)\Im(\upsilon) = \left\{ \begin{array} [c]{l} \Im_{0}-\Re(x)+g(\upsilon)^{AB}I_{0, \upsilon}^{\gamma, \varphi, g}W_{0} (\upsilon), \upsilon\in [0, \theta_{1}]\\ \text{ }\\ \Im_{0}-\Re(x))+\sum\nolimits_{k = 1}^{k = i}g(\theta_{k}) ^{AB}I_{\theta_{k-1}, \theta_{k}} ^{\gamma, g, \varphi}W_{i}(\upsilon)\\ +\sum\nolimits_{k = 1}^{k = i}I_{k}(W_{i}(\theta_{k}^{-})) +g(\upsilon)^{AB}I_{\theta_{i}, \upsilon}^{\gamma, g, \varphi}W_{i} (\upsilon), \upsilon\in(\theta_{i}, \theta_{i+1}], i\in\mathbb{N}_{1, r}. \end{array} \right. \end{equation} | (5.15) |
and \Im^{\ast}(\theta_{i}) = \lim_{\upsilon\rightarrow \theta_{i}^{+}} g(\upsilon)\Im(\upsilon). From (3.1), for any \upsilon \in(\theta_{i}, \theta_{i+1}], \ i\in \mathbb{N}_{0, r} we have
\begin{align} ||g(\upsilon)W_{i}(\upsilon)|| & \leq\rho_{1}\int_{\theta_{i}}^{\upsilon }||z(s)||ds \leq\rho_{1}(1+\zeta_{0})\int_{\theta_{i}}^{\upsilon}\tau(s)ds\leq\rho _{1}(1+\zeta_{0})||\tau||_{L^{1}(L, \mathbb{R}^{+})}\leq\rho_{1}\rho_{2}(1+\zeta_{0}). \end{align} | (5.16) |
Case 1. i = 0 . Let \upsilon, \upsilon+\delta be two points in [0, \theta_{1}] . From the continuity of W_{0} and the previous inequality, we get
\begin{align} \lim\limits_{\delta\rightarrow0}||\Im^{\ast}(\upsilon+\delta)-\Im^{\ast} (\upsilon)|| & \leq\frac{1-\gamma}{M(\gamma)}\lim\limits_{\delta\rightarrow0}[g(\upsilon )||W_{0}(\upsilon+\delta)-W_{0}(\upsilon)||+||W_{0}(\upsilon+\delta )|||g(\upsilon+\delta)-g(\upsilon)|]\\ & +\lim\limits_{\delta\rightarrow0}\frac{\gamma}{M(\gamma)\Gamma(\gamma)}||\int _{0}^{\upsilon+\delta}(\varphi(\upsilon+\delta)-\varphi(s))^{\gamma-1} \varphi^{\prime}(s)g(s)W_{0}(s)ds\\ & -\int_{0}^{\upsilon}(\varphi(\upsilon)-\varphi(s))^{\gamma-1} \varphi^{\prime}(s)g(s)W_{0}(s)ds||\\ & \leq\frac{\gamma}{M(\gamma)\Gamma(\gamma)}\lim\limits_{\delta\rightarrow0} [\int_{0}^{\upsilon}|(\varphi(\upsilon+\delta)-\varphi(s))^{\gamma-1} \varphi^{\prime}(s)\\ & -(\varphi(\upsilon)-\varphi(s))^{\gamma-1}\varphi^{\prime}(s)|\ ||g(s)W_{0}(s)||ds]\\ & +\frac{\gamma}{M(\gamma)\Gamma(\gamma)}\lim\limits_{\delta\rightarrow0} \int_{\upsilon}^{\upsilon+\delta}(\varphi(\upsilon+\delta)-\varphi (s))^{\gamma-1}\varphi^{\prime}(s)||g(s)W(s)||ds\\ & \leq\frac{\gamma\rho_{1}\rho_{2}(1+\zeta_{0})}{M(\gamma)\Gamma(\gamma)} \lim\limits_{\delta\rightarrow0}[\int_{0}^{\upsilon}|(\varphi(\upsilon+\delta )-\varphi(s))^{\gamma-1}\varphi^{\prime}(s) -(\varphi(\upsilon)-\varphi(s))^{\gamma-1}\varphi^{\prime}(s)|ds\\ & +\frac{\gamma\rho_{1}\rho_{2}(1+\zeta_{0})}{M(\gamma)\Gamma(\gamma)} \lim\limits_{\delta\rightarrow0}\int_{\upsilon}^{\upsilon+\delta}(\varphi (\upsilon)-\varphi(s))^{\gamma-1}\varphi^{\prime}(s)ds = 0 , \end{align} | (5.17) |
independently of x.
Case 2. If \upsilon, \upsilon+\delta are in (\theta_{i}, \theta_{i+1}) , i\in\mathbb{N}_{1, r} , then by using similar arguments to those in Case 1 , we obtain \lim_{\delta\rightarrow0}||\Im^{\ast}(\upsilon+\delta)-\Im^{\ast}(\upsilon)|| = 0.
Case 3. If \upsilon = \theta_{i} , i\in\mathbb{N}_{1, r} and \delta > 0. As in Case 1 , we obtain
\begin{align*} \lim\limits_{\delta\rightarrow0}||\Im^{\ast}(\theta_{i}+\delta)-\Im^{\ast}(\theta_{i})|| & = \lim\limits_{\delta\rightarrow0}\lim\limits_{\lambda\rightarrow \theta_{i}^{+}} ||\Im(\theta_{i}+\delta)-\Im(\lambda)||\\ & \leq\lim\limits_{\delta\rightarrow0}\lim\limits_{\lambda\rightarrow \theta_{i}^{+}}||g(\theta_{i}+\delta)W_{i}((\theta_{i}+\delta))-g(\lambda)W_{i}(\lambda)||\\ & +\frac{\gamma}{M(\gamma)\Gamma(\gamma)}\lim\limits_{\delta\rightarrow0} \lim\limits_{\lambda\rightarrow \theta_{i}^{+}}||\int_{0}^{\upsilon+\delta}(\varphi(\upsilon+\delta)-\varphi(s))^{\gamma-1}\varphi^{\prime}(s)g(s)W_{i}(s)ds\\ & -\int_{0}^{\upsilon}(\varphi(\upsilon)-\varphi(s))^{\gamma-1}\varphi^{\prime}(s)g(s)W(s)ds|| = 0. \end{align*} |
Establishing the claim. ¶
Claim 9. The set D = \cap_{k = 1}D_{k} is compact, where D_{1} = \Xi(\Delta_{\zeta_{0}}) and D_{k} = \Xi(D_{k-1}), k\geq2 .
Pf: From Claims 1 and 2 , it follows that (D_{k}) is a non-increasing sequence of bounded closed convex subsets. So, by the Generalized Cantor's intersection property, D will be compact, if we prove that
\begin{equation} \lim\limits_{n\rightarrow \infty}\varkappa_{PC_{g}}(D_{n}) = 0. \end{equation} | (5.18) |
Let \epsilon > 0 and n\geq1 be fixed. As in Claim 4 , in Theorem 1,
\begin{equation} \chi_{PC_{g}(L, \Phi)}(D_{n})\leq2\max\limits_{\upsilon\in L}\chi\{g(\upsilon)\Im _{m}(\upsilon):m\geq1\}+\epsilon, \end{equation} | (5.19) |
Since \Im_{m}\in D_{n} = \Xi(D_{n-1}) , there is x_{m}\in D_{n-1} with \Im_{m}\in\Xi(x_{m}) , and hence
g(\upsilon)\Im_{m}(\upsilon) = \left\{ \begin{array} [c]{l} \Im_{0}-\Re(x_{m})+\frac{1-\gamma}{M(\gamma)}g(\upsilon)W_{0, m}(\upsilon)\\ +\frac{\gamma}{M(\gamma)\Gamma(\gamma)}\int_{0}^{\upsilon}(\varphi (\upsilon)-\varphi(s))^{\gamma-1}g(s)\varphi^{\prime}(s)W_{m}(s))ds, \upsilon \in [0, \theta_{1}], \\ \text{ }\\ \Im_{0}-\Re(x_{m})+\sum\nolimits_{k = 1}^{k = i}g(\theta_{k})\ ^{AB}I_{\theta_{k-1}, \theta_{k}} ^{\gamma, g, \varphi}W_{i, m}(\upsilon)\\ +\sum\nolimits_{k = 1}^{k = i}I_{k}(W_{i, m}(\theta_{k}^{-}))\\ +g(\upsilon)^{AB}I_{\theta_{i}, \upsilon}^{\gamma, g, \varphi}W_{i, m} (\upsilon), \upsilon\in(\theta_{i}, \theta_{i+1}], \ i\in\mathbb{N}_{1, r}. \end{array} \right. |
where W_{i, m}(\upsilon) = \int_{\theta_{i}}^{\upsilon}z_{m}(s)ds, \ z_{m}\in S_{\Psi(., x_{m}(.))}^{2}, \upsilon\in(\theta_{i}, \theta_{i+1}], i\in\mathbb{N}_{0, r}. and m\geq1. Note that, in view of (3.2), for \upsilon\in L ,
\begin{align} \chi\{g(\upsilon)W_{i, m}(\upsilon) :m\geq1\} & \leq\chi\{g(\upsilon)\int_{s_{i}}^{\upsilon}z_{m}(s)ds:m\geq1\}\\ & \leq2g(\upsilon)\int_{s_{i}}^{\upsilon}\chi\{z_{m}(s):m\geq1\}ds\\ & \leq2g(\upsilon)\int_{s_{i}}^{\upsilon}\chi\{\Psi(s, \{x_{m}(s):m\geq 1\})\}ds\\ & \leq2g(\upsilon)\int_{s_{i}}^{\upsilon}\eta(s)\chi\{g(s)x_{m} (s):m\geq1\}\\ & \leq2\rho_{1}\chi\chi_{PC_{g}(L, \Phi)}(D_{n-1})\int_{s_{i}}^{\upsilon} \eta(s)ds\\ & \leq2\rho_{1}\rho_{3}\chi_{PC_{g}(L, \Phi)}(D_{n-1}). \end{align} | (5.20) |
Now, as in (4.24), Relation (5.20) leads to
\begin{align} & \chi\{\int_{0}^{\upsilon}(\varphi(\upsilon)-\varphi(s))^{\gamma-1}g(s)\varphi^{\prime}(s)W_{0, m}(s))ds:k\geq1\} \leq4\rho_{1}\rho_{3}\chi_{PC_{g}(L, \Phi)}(D_{n-1})\frac{\varphi (\upsilon)^{\gamma}}{\gamma}, \upsilon\in\lbrack0, \theta_{1}], \end{align} | (5.21) |
\begin{align} & \chi\{\int_{\theta_{i-1}}^{\theta_{i}}(\varphi(\upsilon)-\varphi (s))^{\gamma-1}g(s)\varphi^{\prime}(s)W_{i, m}(s))ds:k\geq1\} \leq4\rho_{1}\rho_{3}\chi_{PC_{g}(L, \Phi)}(D_{n-1})\frac{\varphi(\upsilon)^{\gamma}}{\gamma}, \ i\in\mathbb{N} _{1, r}, \end{align} | (5.22) |
and
\begin{align} & \chi\{\int_{\theta_{i}}^{\upsilon}(\varphi(\upsilon)-\varphi(s))^{\gamma -1}g(s)\varphi^{\prime}(s)W_{i, m}(s))ds:k\geq1\} \leq4\rho_{1}\rho_{3}\chi_{PC_{g}(L, \Phi)}(D_{n-1})\frac{\varphi (T)^{\gamma}}{\gamma}, \upsilon\in(\theta_{i}, \theta_{i+1}], \ i\in\mathbb{N} _{0, r}. \end{align} | (5.23) |
Thus, by (5.21) it follows that for \upsilon\in\lbrack0, \theta_{1}]
\begin{align} \chi\{g(\upsilon)\Im_{m}(\upsilon):m\geq1\} & \leq\frac{1-\gamma}{M(\gamma)}2\rho_{1}\rho_{3}\chi_{PC_{g}(L, \Phi)}(D_{n-1}) +\frac{4\varphi(T)^{\gamma}}{M(\gamma)\Gamma(\gamma)}\rho_{1}\rho_{3} \chi_{PC_{g}(L, \Phi)}(D_{n-1})\\ & = \chi_{PC_{g}(L, \Phi)}(D_{n-1})\rho_{1}\rho_{3}[\frac{2(1-\gamma)} {M(\gamma)}+\frac{4\varphi(T)^{\gamma}}{M(\gamma)\Gamma(\gamma)}]. \end{align} | (5.24) |
Next, from the compactness of both \Re and I_{i} ; i\in\mathbb{N}_{1, r} it follows that
\chi\{\Re(x_{m}):m\geq1\} = 0\ \text{ and } \chi\{\sum\limits_{k = 1} ^{k = i}I_{k}(\Im_{m}(\theta_{k}^{-})):m\geq1\} = 0, |
and so, by (5.22) and (5.23), we get for \upsilon\in(\theta_{i}, \theta_{i+1}], \ i\in\mathbb{N}_{1, r},
\begin{equation} \chi\{g(\upsilon)\Im_{m}(\upsilon):m\geq1\}\leq8\rho_{1}\rho_{3}\chi _{PC_{g}(L, \Phi)}(D_{n-1})\frac{\varphi(T)^{\gamma}}{\gamma}. \end{equation} | (5.25) |
Relations (5.19), (5.24) and (5.25) give
\chi_{PC_{g}(L, \Phi)}(D_{n})\leq\chi_{PC_{g}(L, \Phi)}(D_{n-1})2\rho_{1}\rho_{3}[\frac{2(1-\gamma)}{M(\gamma)}+\frac{12\varphi(T)^{\gamma}} {M(\gamma)\Gamma(\gamma)}]+\epsilon. |
Since \epsilon is arbitrary, we get
\chi_{PC_{g}(L, \Phi)}(D_{n})\leq\chi_{PC_{g}(L, \Phi)}(D_{n-1})2\rho_{1} \rho_{3}[\frac{2(1-\gamma)}{M(\gamma)}+\frac{12\varphi(T)^{\gamma}} {M(\gamma)\Gamma(\gamma)}]. |
Since this relation is true for each n, we get
\begin{equation} \chi_{PC_{g}(L, \Phi)}(D_{n})\leq\chi_{PC_{g}(L, \Phi)}(D_{1})[2\rho_{1}\rho_{3}(\frac{2(1-\gamma)}{M(\gamma)}+\frac{12\varphi(T)^{\gamma}}{M(\gamma )\Gamma(\gamma)})]^{n-1}. \end{equation} | (5.26) |
Taking the limit as n\rightarrow \infty in (5.26), while keeping in mind (3.3), we get (5.18) and D is compact. ¶ Applying Lemma (6), it follows that there is \Im\in D such that \Im\in\Xi(\Im) and as discussed above, such \Im is a solution for Problem (2.2). In addition, by arguing as in Claim 1 , one can show that the set of fixed points of \Xi is bounded, hence, by Lemma (7), the solution set for Problem (2.2) is compact.
Lemma 8. Let \Im:L\rightarrow \Phi , \Re_{i}:[b_{i}, \tau_{i}]\times\Phi\rightarrow \Phi; i\in\mathbb{N}_{1, r}, and W:L\rightarrow \Phi be continuous with W(0) = 0 .
(1) If \Im\in PCH^{1, \ast}((0, T), \Phi) is a solution to the fractional differential equation
\begin{equation} \left\{ \begin{array} [c]{l} ^{ABC}D_{0, \upsilon}^{\gamma, \varphi, g}\Im(\upsilon) = W(\upsilon), \upsilon \in\cup_{i\in\mathbb{N}_{0, r}}L_{i}, \\ \Im(\upsilon) = \Re_{i}(\upsilon, \Im(b_{i}^{-})), \upsilon\in\lbrack b_{i} , \tau_{i}];\ i\in\mathbb{N}_{1, r}, \\ \Im(0) = \Im_{0}g^{-1}(0)-g^{-1}(0)\Re(\Im), \ \end{array} \right. \end{equation} | (6.1) |
then
\begin{equation} \Im(\upsilon) = \left\{ \begin{array} [c]{l} \Im_{0}g^{-1}(\upsilon)-g^{-1}(\upsilon)\Re(\Im)+^{AB}I_{0, \upsilon} ^{\gamma, \varphi, g}W(\upsilon), \upsilon\in\lbrack0, b_{1}], \\ \Re_{i}(\upsilon, \Im(b_{i}^{-})), \upsilon\in(b_{i}, \tau_{i}], i\in\mathbb{N}_{1, r}, \\ \Re_{i}(\tau_{i}, \Im(b_{i}^{-}))-\ ^{AB}I_{0, \tau_{i}}^{\gamma, \varphi , g}\ W(\upsilon)\\ +^{AB}I_{0, \upsilon}^{\gamma, \varphi, g}W(\upsilon), \upsilon\in(\tau _{i}, b_{i+1}], i\in\mathbb{N}_{1, r}. \end{array} \right. \end{equation} | (6.2) |
(2) If W\in PCH^{1, \ast}(L, \Phi) , and \Im is defined by (6.2), then \Im\in PCH^{1, \ast}(L, \Phi) and \Im is a solution of (6.1).
Proof.
(1) Suppose \Im is a solution of (6.1) and \upsilon\in(0, b_{1}]. Then, ^{ABC}D_{0, \upsilon}^{\gamma, \varphi, g}\Im(\upsilon) = W(\upsilon). By applying the operator ^{AB}I_{0, \upsilon}^{\gamma} to both sides of this equation and using the first statement of Lemma (3), we get
\Im(\upsilon) = c_{0}+\ ^{AB}I_{0, \upsilon}^{\gamma, \varphi, g}W(\upsilon). |
From the boundary condition, \Im(0) = \Im_{0}g^{-1}(0)-g^{-1}(0)\Re(\Im), it follows that c_{0} = \Im_{0}g^{-1}(0)-g^{-1}(0)\Re(\Im) , and hence,
\Im(\upsilon) = \Im_{0}g^{-1}(\upsilon)-g^{-1}(0)\Re(\Im)+^{AB}I_{0, \upsilon }^{\gamma, \varphi, g}W(\upsilon);\upsilon\in [0, b_{1}] |
likewise,
\Im(\upsilon) = c_{i}+^{AB}I_{0, \upsilon}^{\gamma, \varphi, g}W(\upsilon ), \upsilon\in(\tau_{i}, b_{i+1}], i\in\mathbb{N}_{1, r}. |
Since \Im is continuous at \tau_{i}; i\in\mathbb{N}_{1, r} , it follows that
\Re_{i}(\tau_{i}, \Im(b_{i}^{-})) = c_{i}+\ ^{AB}I_{0, \tau_{i}}^{\gamma , \varphi, g}W(\upsilon), |
hence, c_{i} = \Re_{i}(\tau_{i}, \Im(b_{i}^{-}))-\ ^{AB}I_{0, \tau_{i} }^{\gamma}W(\upsilon) , and thus
\Im(\upsilon) = \Re_{i}(\tau_{i}, \Im(b_{i}^{-}))-^{AB}I_{0, \tau_{i}} ^{\gamma, \varphi, g}W(\upsilon)+^{AB}I_{0, \upsilon}^{\gamma, \varphi , g}W(\upsilon), \upsilon\in(\tau_{i}, b_{i+1}), i\in\mathbb{N}_{1, r}. |
Therefore, \Im satisfies (6.2).
(2) Suppose that \Im satisfies (6.2). Then
\Im(\upsilon) = \Im_{0}g^{-1}(\upsilon)-g^{-1}(\upsilon)\Re(\Im)+^{AB} I_{0, \upsilon}^{\gamma, \varphi, g}W(\upsilon), \upsilon\in[0, b_{1}] |
Since ^{ABC}D_{0, \upsilon}^{\gamma, \varphi, g}(\Im_{0}g^{-1}(\upsilon)-g^{-1}(\upsilon)\Re(\Im)) = 0 and W(0) = 0 , it follows from the second statement of Lemma (3), that \Im\in H^{1}((0, b_{1}), \Phi) and ^{ABC} D_{0, \upsilon}^{\gamma, \varphi, g}\Im(\upsilon) = W(\upsilon); \forall\upsilon\in\lbrack0, b_{1}]. Let \upsilon\in(\tau_{i}, b_{i+1}], i\in\mathbb{N}_{1, r} . From (6.2), we have
\Im(\upsilon) = \Re_{i}(\tau_{i}, \Im(b_{i}^{-}))-\ ^{AB}I_{0, \tau_{i}}^{\gamma, \varphi, g}W(\upsilon)+^{AB}I_{0, \upsilon}^{\gamma, \varphi, g}W(\upsilon). |
Since ^{ABC}D_{0, \upsilon}^{\gamma, \varphi, g}(\Re_{i}(\tau_{i}, \Im(b_{i}^{-}))-\ ^{AB}I_{0, \tau_{i}}^{\gamma, \varphi, g}W(\upsilon)) = 0, it follows, from the second statement of Lemma (3), that \Im\in H^{1}((\tau_{i}, b_{i+1})), \Phi) and ^{ABC}D_{0, \upsilon}^{\gamma, \varphi, g}\Im(\upsilon) = W(\upsilon); \forall\upsilon\in\lbrack0, b_{1}].
Let \upsilon\in(\tau_{i}, b_{i+1}], i\in\mathbb{N}_{1, r} . From (6.2), we have ^{ABC}D_{0, \upsilon}^{\gamma, \varphi, g}\Im(\upsilon) = W(\upsilon); \forall\upsilon\in(\tau_{i}, b_{i+1}]. Since \Re_{i} are continuous for any i\in\mathbb{N} _{1, r}, \Im\in PCH^{1.\ast}(L, \Phi) . Obviously, \Im(0) = \Im_{0} g^{-1}(0)-g^{-1}(0)\Re(\Im) and for any i\in\mathbb{N}_{1, r} , thus
\Im(\tau_{i}^{+}) = \Re_{i}(\tau_{i}, \Im(b_{i}^{-})) = \Im(\tau_{i}^{-})\text{, } |
proving the continuity of \Im at \tau_{i}.
From Lemma (8), we obtain in the following corollary.
Corollary 3. A function \Im\in PCH^{1, \ast}(L, \Phi) is a solution to Problem (2.3) if z(0, \Im(0)) = 0 and \Im satisfies the fractional integral equation:
\begin{equation} \Im(\upsilon) = \left\{ \begin{array} [c]{l} \Im_{0}g^{-1}(\upsilon)-g^{-1}(\upsilon)\Re(\Im)+\frac{1-\gamma}{M(\gamma )}z(\upsilon, \Im(\upsilon))\\ +\frac{\gamma}{M(\gamma)\Gamma(\gamma)g(\upsilon)}\int_{0}^{\upsilon} (\varphi(\upsilon)-\varphi(s))^{\gamma-1}g(s)\varphi^{\prime}(s)z(s, \Im(s))ds, \upsilon\in\lbrack0, b_{1}], \\ \mathit{\text{}}\\ \Re_{i}(\upsilon, \Im(b_{i}^{-})), \upsilon\in(b_{i}, \tau_{i}], i\in \mathbb{N}_{1, r}, \\ \mathit{\text{}}\\ \Re_{i}(\tau_{i}, \Im(b_{i}^{-}))-^{AB}I_{0, \tau_{i}}^{\gamma, \varphi , g}\ z(\upsilon, \Im(\upsilon))\\ +^{AB}I_{0, \upsilon}^{\gamma, \varphi, g}z(\upsilon, \Im(\upsilon)), \upsilon \in(\tau_{i}, b_{i+1}], i\in \mathbb{N}_{1, r}. \end{array} \right. \end{equation} | (6.3) |
In the following theorem, we prove the existence and uniqueness of solutions for Problem (2.3).
Theorem 4. Assume that (H\Re_{i}) , (H\Re)^{\ast}, and (Hz)^{\ast\ast} hold. If g:L\rightarrow [1, \infty) , then Problem (2.3) has a unique solution under the condition
\begin{equation} \rho_{1}\xi_{4}+\xi_{1}(\frac{2(1-\gamma)}{M(\gamma)}+\frac{\varphi (T)^{\gamma}}{M(\gamma)g(\upsilon)\Gamma(\gamma)}+\frac{\rho_{1} \varphi(T)^{\gamma}}{M(\gamma)\Gamma(\gamma)}) < 1. \end{equation} | (6.4) |
Proof. Consider the operator \Theta:PC_{g}^{\ast}(L, \Phi)\rightarrow PC_{g}^{\ast }(L, \Phi) defined by
\begin{equation} \Theta(\Im)(\upsilon) = \left\{ \begin{array} [c]{l} \Im_{0}g^{-1}(\upsilon)-g^{-1}(\upsilon)\Re(\Im)+^{AB}I_{0, \upsilon} ^{\gamma, \varphi, g}z(\upsilon, \Im(\upsilon)), \upsilon\in [0, b_{1}], \\ \text{ }\\ \Re_{i}\upsilon, \Im(b_{i}^{-})), \upsilon\in(b_{i}, \tau_{i}], i\in\mathbb{N}_{1, r}, \\ \text{ }\\ \Re_{i}(\tau_{i}, \Im(b_{i}^{-}))- ^{AB}I_{0, \tau_{i}}^{\gamma, \varphi, g} z(\upsilon, \Im(\upsilon)) +^{AB}I_{0, \upsilon}^{\gamma, \varphi, g}z(\upsilon, \Im(\upsilon)), \upsilon \in(\tau_{i}, b_{i+1}], i\in \mathbb{N}_{1, r}. \end{array} \right. \end{equation} | (6.5) |
Note that if \Im is a fixed point for \Theta, then
\Im(\upsilon) = \left\{ \begin{array} [c]{l} \Im_{0}g^{-1}(\upsilon)-g^{-1}(\upsilon)\Re(\Im)+^{AB}I_{0, \upsilon} ^{\gamma, \varphi, g}W(\upsilon), \upsilon\in\lbrack0, b_{1}], \\ \Re_{i}(\upsilon, \Im(b_{i}^{-})), \upsilon\in(b_{i}, \tau_{i}], i\in\mathbb{N}_{1, r}, \\ \Re_{i}(\tau_{i}, \Im(b_{i}^{-}))-\ ^{AB}I_{0, \tau_{i}}^{\gamma, \varphi , g}\ W(\upsilon)\\ +^{AB}I_{0, \upsilon}^{\gamma, \varphi, g}W(\upsilon), \upsilon\in(\tau_{i}, b_{i+1}], i\in\mathbb{N}_{1, r}, \end{array} \right. |
where W(\upsilon) = z(\upsilon, \Im(\upsilon)). From (Hz)^{\ast}(i) and the second statement of Lemma 8, it follows that \Im is a solution of Problem (2.3). So, we only need to show that the the function \Theta is a contraction. Let \Im, \varsigma\in PC_{g}^{\ast}(L, \Phi). For any \upsilon\in [0, b_{1}] , from (6.3), (6.5) and (H\Re)^{\ast} , it follows that
\begin{align*} ||g(\upsilon)\Theta(\Im)(\upsilon)-g(\upsilon)\Theta(\varsigma)(\upsilon)|| & \leq||\Re(\Im)-\Re(\varsigma)|| +\frac{1-\gamma}{M(\gamma)}\xi_{1}||g(\upsilon)\Im(\upsilon)-g(\upsilon)\varsigma(\upsilon)||\\ & +\frac{\gamma}{M(\gamma)g(\upsilon)\Gamma(\gamma)}\int_{0}^{\upsilon }(\varphi(\upsilon)-\varphi(s))^{\gamma-1}\varphi^{\prime}(s)g(s)||z(s, \Im (s))-z(s, \varsigma(s)||ds\\ & \leq\xi_{2}||\Im-\varsigma||_{PC_{g}(L, \Phi)}+\xi_{1}||\Im-\varsigma ||_{PC_{g}(L, \Phi)} +||\Im-\varsigma||_{PC_{g}(L, \Phi)}\frac{\xi_{1}\varphi(T)^{\gamma} }{M(\gamma)g(\upsilon)\Gamma(\gamma)}\\ & = ||\Im-\varsigma||_{PC_{g}(L, \Phi)}[\xi_{2}+\xi_{1}+\frac{\xi_{1} \varphi(T)^{\gamma}}{M(\gamma)g(\upsilon)\Gamma(\gamma)}]. \end{align*} |
For \upsilon\in(b_{i}, \tau_{i}], from (3.9) and (6.5), we have
\begin{align*} & ||\Theta(\Im)(\upsilon)-\Theta(\varsigma)(\upsilon)|| \leq||\Re_{i}(\upsilon, \Im(b_{i}^{-}))-\Re_{i}(\upsilon, \varsigma(b_{i}^{-}))|| \leq\xi_{4}||\Im-\varsigma||_{PC_{g}(L, \Phi)}. \end{align*} |
Let \upsilon\in(\tau_{i}, b_{i+1}], i\in\mathbb{N}_{1, r} . From (H\Re)^{\ast} , (6.3), (3.9), (6.5) and from the fact that g:L\rightarrow [1, \infty) , we obtain
\begin{align*} ||g(\upsilon)\Theta(\Im)(\upsilon)-g(\upsilon)\Theta(\varsigma)(\upsilon)|| & \leq g(\upsilon)||\Re_{i}(\tau_{i}, \Im(b_{i}^{-}))-\Re_{i}(\tau_{i}, \varsigma(b_{i}^{-}))||\\ & +\frac{1-\gamma}{M(\gamma)}g(\upsilon)||z(\tau_{i}, \Im(\tau_{i} ))-|z(\tau_{i}, \varsigma(\tau_{i}))||\\ & +\frac{\gamma g(\upsilon)}{M(\gamma)\Gamma(\gamma)g(\tau_{i})}||\ \int _{0}^{\tau_{i}}(\varphi(\tau_{i})-\varphi(s))^{\gamma-1}\varphi^{\prime}(s)||g(s)||z(s, \Im(s))-(s, \varsigma(s)||ds\\ & +\frac{1-\gamma}{M(\gamma)}g(\upsilon)||z(\upsilon, \Im(\upsilon ))-|z(\upsilon, \varsigma(\upsilon))||\\ & +\frac{\gamma}{M(\gamma)\Gamma(\gamma)}\int_{0}^{\upsilon}(\varphi(\upsilon)-\varphi(s))^{\gamma-1}\varphi^{\prime}(s)||g(s)||z(s, \Im(s))-z(s, \varsigma(s)||ds\\ & \leq\rho_{1}\xi_{4}||\Im-\varsigma||_{PC_{g}(L, \Phi)} +\frac{1-\gamma}{M(\gamma)}\xi_{1}||\Im-\varsigma||_{PC_{g}(L, \Phi)} +||\Im-\varsigma||_{PC_{g}(L, \Phi)}\frac{\rho_{1}\xi_{1}\varphi (\upsilon)^{\gamma}}{M(\gamma)\Gamma(\gamma)}\\ & + \frac{1-\gamma}{M(\gamma)} \xi_{1}||\Im-\varsigma||_{PC_{g}(L, \Phi)}+||\Im-\varsigma||_{PC_{g}(L, \Phi)}\frac{\xi_{1}\varphi(\upsilon)^{\gamma} }{M(\gamma)\Gamma(\gamma)}\\ & = ||\Im-\varsigma||_{PC_{g}(L, \Phi)}[\rho_{1}\xi_{4}+\xi_{1}(\frac{2(1-\gamma)}{M(\gamma)}+\frac{\varphi(T)^{\gamma}}{M(\gamma)g(\upsilon)\Gamma(\gamma)}+\frac{\rho_{1}\varphi(T)^{\gamma}}{M(\gamma)\Gamma(\gamma)})]. \end{align*} |
This inequality and (6.4) gives that
||\Theta(\Im)-\Theta(\varsigma)||_{PC_{g}^{\ast}(L, \Phi)} < ||\Im-\varsigma ||_{PC_{g}^{\ast}(L, \Phi)}, |
which means that \Theta is a contraction, and hence, by the Banach fixed-point theorem, it has a unique fixed point which is a solution of Problem (2.3).
Lemma 9. Let \Im:L\rightarrow \Phi , \Re_{i}:L\times\Phi\rightarrow \Phi; i\in\mathbb{N}_{1, r}, be continuous and W:L\rightarrow \Phi be continuous with W(\tau_{i}) = 0, i\in N_{1, r} .
(1) If \Im\in PCH^{1, \ast}((0, T), \Phi) is a solution of the fractional differential equation:
\begin{equation} \left\{ \begin{array} [c]{l} ^{ABC}D_{\tau_{i}, \upsilon}^{\gamma, \varphi, g}\Im(\upsilon) = W(\upsilon), \upsilon\in\cup_{i = 0}^{i = r}L_{i}, \\ \Im(0) = \Im_{0}g^{-1}(0)-g^{-1}(0)\Re(\Im), \\ \Im(\upsilon) = \Re_{i}(\upsilon, \Im(b_{i}^{-})), \upsilon\in\lbrack b_{i} , \tau_{i}];\ i\in\mathbb{N}_{1, r}. \end{array} \right. \end{equation} | (7.1) |
Then,
\begin{equation} \Im(\upsilon) = \left\{ \begin{array} [c]{l} \Im_{0}g^{-1}(\upsilon)-g^{-1}(\upsilon)\Re(\Im) +^{AB}I_{0, \upsilon}^{\gamma, \varphi, g}W(\upsilon), \upsilon\in [0, b_{1}], \\ \Re_{i}(\upsilon, \Im(b_{i}^{-})), \upsilon\in M_{i}, i\in N_{1, r}, \\ \Re_{i}(\tau_{i}, \Im(b_{i}^{-})) +^{AB}I_{\tau_{i}, \upsilon}^{\gamma, \varphi, g}W(\upsilon), \upsilon\in L_{i}, \ i\in N_{1, r}. \end{array} \right. \end{equation} | (7.2) |
(2) If W\in PCH^{1, \ast}((0, T), \Phi) and \Im satisfy (7.2), then \Im\in PCH^{1, \ast}((0, T), \Phi) and \Im is a solution to Problem (2.4).
Proof.
(1) Suppose that \Im\in PCH^{1, \ast}((0, T), \Phi) is a solution for (7.1). By following the same arguments in the proof of Lemma (8), we obtain
\Im(\upsilon) = \Im_{0}g^{-1}(\upsilon)-g^{-1}(\upsilon)\Re(\Im)+^{AB} I_{0, \upsilon}^{\gamma, \varphi, g}W(\upsilon);\upsilon\in\lbrack0, b_{1}], |
and
\Im(\upsilon) = c_{i}+^{AB}I_{\tau_{i}, \upsilon}^{\gamma, \varphi, g}W(\upsilon), \upsilon\in(\tau_{i}, b_{i+1});i\in\mathbb{N}_{1, r}. |
Since \Im is continuous at \tau_{i}; i\in \mathbb{N}_{1, r} , we have
\Re_{i}(\tau_{i}, \Im(b_{i}^{-})) = \Im(\tau_{i}^{-}) = \Im(\tau_{i}^{+} ) = c_{i}+\ ^{AB}I_{\tau_{i}, \tau_{i}}^{\gamma, \varphi, g}W(\upsilon) = c_{i}, |
hence
\Im(\upsilon) = \Re_{i}(\tau_{i}, \Im(b_{i}^{-}))+^{AB}I_{\tau_{i}, \tau_{i} }^{\gamma, \varphi, g}W(\upsilon);\upsilon\in(\tau_{i}, b_{i+1}), i\in\mathbb{N}_{1, r}. |
Therefore, \Im satisfies (7.2).
(2) By following the same arguments in the proof of Lemma (8), we can show that if W\in PCH^{1, \ast}((0, T), \Phi), and \Im is defined by(7.2), then \Im\in PCH^{1, \ast}((0, T), \Phi) and \Im is a solution to Problem (7.1).
Based on Lemma (9), we obtain the following corollary.
Corollary 4. A function \Im\in PCH^{1, \ast}(L, \Phi) is a solution to Problem (2.4) if it satisfies the fractional integral equation:
\begin{equation} \Im(\upsilon) = \left\{ \begin{array} [c]{l} \Im_{0}g^{-1}(\upsilon)-g^{-1}(0)\Re(x)+\frac{1-\gamma}{M(\gamma)} W_{0}(\upsilon)\\ +\frac{\gamma}{M(\gamma)\Gamma(\gamma)g(\upsilon)}\int_{0}^{\upsilon} (\varphi(\upsilon)-\varphi(s))^{\gamma-1}g(s)\varphi^{\prime}(s)W_{0}(s)ds, \upsilon\in [0, b_{1}], \\ \Re_{i}(\upsilon, x(b_{i}^{-})), \upsilon\in M_{i}, i\in N_{1, r}, \\ \Re_{i}(\tau_{i}, x(b_{i}^{-}))+^{AB}I_{\tau_{i}, \upsilon}^{\gamma, \varphi, g}W_{i}(\upsilon), \upsilon\in L_{i}, i\in N_{1, r}, \end{array} \right. \end{equation} | (7.3) |
where W_{i}(\upsilon) = \int_{\tau_{i}}^{\upsilon}z(s)ds, \ z\in S_{\Psi (., x(.))}^{2}, \upsilon\in(\tau_{i}, b_{i+1}], i\in\mathbb{N}_{0, r}.
In the following theorem, we give an existence result of solutions to Problem(2.4).
Theorem 5. Assume that (H\Psi) holds after replacing (3.3) with
\begin{equation} 2\rho_{1}\rho_{2}[\frac{1-\gamma}{M(\gamma)}+\frac{2\varphi(T)^{\gamma} }{M(\gamma)\Gamma(\gamma)}] < 1. \end{equation} | (7.4) |
and suppose that (H\Re)^{\ast\ast} , (H\Re_{i})^{\ast} hold. If there is \xi_{5} > 0 such that for any x\in PC_{g}(L, \Phi),
||\Re_{i}(\upsilon, x(b_{i}^{-}))||\leq\xi_{5}||x||_{PC_{g}(L, \Phi)} , \ \forall\upsilon\in\cup_{i = 1}^{r}[b_{i}, \tau_{i}]\mathit{\text{, }} |
then the solution set to Problem (2.4) is non-empty and compact provided that
\begin{equation} c+\frac{\rho_{1}\rho_{2}(1-\gamma)}{M(\gamma)}+\xi_{5}+\frac{\rho_{1}\rho _{3}\varphi(T)^{\gamma}}{M(\gamma)\Gamma(\gamma)} < 1, \end{equation} | (7.5) |
where \rho_{2} = ||\tau||_{L^{1}(L, \mathbb{R}^{+})}.
Proof. As in the proof of Theorem 3, we define a set-valued function \Omega:PC_{g}^{\ast}(L, \Phi)\rightarrow2^{PC_{g}^{\ast}(L, \Phi)}-\{\phi\} , where \phi is the empty set, as follows: \Im\in \Omega(x) if and only if
\Im(\upsilon) = \left\{ \begin{array} [c]{l} \Im_{0}g^{-1}(\upsilon)-g^{-1}(0)\Re(x) +^{AB}I_{0, \upsilon}^{\gamma, \varphi, g}W_{0}(\upsilon), \upsilon\in \lbrack0, b_{1}], \\ \Re_{i}(\upsilon, x(b_{i}^{-})), \upsilon\in M_{i}, i\in N_{1, r}, \\ \Re_{i}(\tau_{i}, x(b_{i}^{-})) +^{AB}I_{\tau_{i}, \upsilon}^{\gamma, \varphi, g}W_{i}(\upsilon), \upsilon\in L_{i} , i\in N_{1, r}, \end{array} \right. |
where W_{i}(\upsilon) = \int_{\tau_{i}}^{\upsilon}z(s)ds, \ z\in S_{\Psi (., x(.))}^{2}, \upsilon\in(\tau_{i}, b_{i+1}], i\in\mathbb{N} _{0, r}.
Note that if \Im is a fixed point for \Omega , then
\Im(\upsilon) = \left\{ \begin{array} [c]{l} \Im_{0}g^{-1}(\upsilon)-g^{-1}(0)\Re(\Im) +^{AB}I_{0, \upsilon}^{\gamma, \varphi, g}W_{0}(\upsilon), \upsilon\in [[0, b_{1}], \\ \Re_{i}(\upsilon, \Im(b_{i}^{-})), \upsilon\in M_{i}, i\in N_{1, r}, \\ \Re_{i}(\tau_{i}, \Im(b_{i}^{-})) +^{AB}I_{\tau_{i}, \upsilon}^{\gamma, \varphi, g}W_{i}(\upsilon), \upsilon\in L_{i}, i\in N_{1, r}. \end{array} \right. |
where W_{i}(\upsilon) = \int_{\tau_{i}}^{\upsilon}z(s)ds, z(s)\in\Psi (s, \Im(s)), a.e . Let W:L\rightarrow \Phi be the function defined by
W(\upsilon) = \left\{ \begin{array} [c]{l} \int_{0}^{\upsilon}z(s)ds, \upsilon\in\lbrack0, b_{1}], \\ 0, \upsilon\in(b_{i}, \tau_{i}], i\in N_{1, r}, \\ \int_{\tau_{i}}^{\upsilon}z(s)ds, \upsilon\in(\tau_{i}, b_{i+1}], i\in N_{1, r}, \end{array} \right. |
then W\in PCH^{1, \ast}((0, T), \Phi), W(\upsilon)\in\int_{\tau_{i}}^{\upsilon}\Psi(s, \Im(s))ds and W(\tau_{i}) = 0, \forall i\in\mathbb{N}_{0, r} , and therefore, by the second statement of Lemma (9), \Im is a solution for Problem (2.4). We will use Lemma (5), to show that \Omega has a fixed point. Since we will follow the same method as in proving Theorem 2, we omit some details and focus on the differences with that proof.
Claim 10. There is a natural number \zeta_{0}^{\ast} such that R(\Delta_{\zeta_{0}^{\ast}})\subseteq\Delta_{\zeta _{0}^{\ast}}.
Pf: If this is not true, then for every natural number n there are x_{n}, \Im_{n} with ||\Im_{n}||_{PC_{g}(L, \Phi)} > n , ||x_{n} ||_{PC_{g}(L, \Phi)}\leq n and \Im_{n}\in R(x_{n}). By the definition of R ,
\begin{equation} \Im_{n}(\upsilon) = \left\{ \begin{array} [c]{l} \Im_{0}g^{-1}(\upsilon)-g^{-1}(0)\Re(x_{n}) +^{AB}I_{0, \upsilon}^{\gamma, \varphi, g}W_{0, n}(\upsilon), \upsilon\in [0, b_{1}], \\ \Re_{i}(\upsilon, x_{n}(b_{i}^{-})), \upsilon\in M_{i}, i\in N_{1, r}, \\ \Re_{i}(\tau_{i}, x_{n}(b_{i}^{-})) +^{AB}I_{\tau_{i}, \upsilon}^{\gamma, \varphi, g}W_{i, n}(\upsilon), \upsilon\in L_{i}, i\in N_{1, r}. \end{array} \right. \end{equation} | (7.6) |
where W_{i, n}(\upsilon) = \int_{\tau_{i}}^{\upsilon}z_{n}(s)ds, z_{n}\in S_{\Psi(., x_{n}(.))}^{2}, \upsilon\in(\tau_{i}, b_{i+1}], i\in\mathbb{N}_{0, r}. Using (iii) of (H\Psi) , we get for any \upsilon\in L , and any i\in N_{0, r}.
\begin{equation} ||W_{i, n}(\upsilon)||\leq\int_{\tau_{i}}^{\upsilon}||z_{n}(s)||ds\leq (1+n)\int_{\tau_{i}}^{\upsilon}\tau(s)ds\leq(1+n)||\tau||_{L^{2}(L, \mathbb{R}^{+})}\leq(1+n)\rho_{2}. \end{equation} | (7.7) |
As in (5.12), we obtain
\begin{align} ||g(\upsilon)\Im_{n}(\upsilon)|| \leq||\Im_{0}||+\ cn+d & +\frac{1-\gamma }{M(\gamma)}\rho_{1}\rho_{2}(1+n) +\frac{\rho_{1}\rho_{2}(1+n)\varphi(T)^{\gamma}}{M(\gamma)\Gamma(\gamma )}, \forall\upsilon\in\lbrack0, b_{1}]. \end{align} | (7.8) |
If \upsilon\in(b_{i}, \tau_{i}] , then by (H\Re_{i})^{\ast} ,
\begin{equation} ||\Im_{n}(\upsilon)|| = ||\Re_{i}(\upsilon, x_{n}(b_{i}^{-}))||\leq\xi_{5} ||x_{n}||_{PC_{g}(L, \Phi)}. \end{equation} | (7.9) |
Let \upsilon\in(\tau_{i} b_{i+1}], i\in\mathbb{N}_{1, r} . Then, from (7.3), (7.6), (7.7) and (H\Re) , we obtain that
\begin{align} ||g(\upsilon)\Im_{n}(\upsilon)|| & \leq\xi_{5}||x_{n}||_{PC_{g}(L, \Phi )}+\rho_{1}(\frac{1-\gamma}{M(\gamma)}(1+n)\rho_{2} +\frac{\rho_{1}\rho_{2}(1+n)\varphi(T)^{\gamma}}{M(\gamma)\Gamma(\gamma)}. \end{align} | (7.10) |
Inequalities (7.6) and (7.8–7.10) gives
\begin{align*} n & < \left\Vert \Im_{n}\right\Vert _{PC_{g}(J, \Phi)}\leq||\Im_{0} ||+\ cn+d+\frac{1-\gamma}{M(\gamma)}\rho_{1}\rho_{2}(1+n) +\xi_{5}n+\frac{\rho_{1}\rho_{2}(1+n)\varphi(T)^{\gamma}}{M(\gamma)\Gamma(\gamma)}, \end{align*} |
thus
1 < c+\frac{\rho_{1}\rho_{2}(1-\gamma)}{M(\gamma)}+\xi_{5}+\frac{\rho_{1} \rho_{2}\varphi(T)^{\gamma}}{M(\gamma)\Gamma(\gamma)}, |
which contradicts (5.8). ¶
Claim 11. If x_{k}\in\Delta_{\zeta_{0}^{\ast}}, \Im_{n}\in\Omega(x_{n}), x_{n}\rightarrow x and \Im_{n}\rightarrow \Im , in PC_{g}(L, \Phi), then \Im\in\Omega(x) .
Pf:
From the definition of \Omega ,
\Im_{n}(\upsilon) = \left\{ \begin{array} [c]{l} \Im_{0}g^{-1}(\upsilon)-g^{-1}(0)\Re(x_{n}) +^{AB}I_{0, \upsilon}^{\gamma, \varphi, g}W_{0, n}(\upsilon), \upsilon\in [0, b_{1}], \\ \Re_{i}(\upsilon, x_{n}(b_{i}^{-})), \upsilon\in M_{i}, i\in N_{1, r}, \\ \Re_{i}(\tau_{i}, x_{n}(b_{i}^{-})) +^{AB}I_{\tau_{i}, \upsilon}^{\gamma, \varphi, g}W_{i, n}(\upsilon), \upsilon\in L_{i}, i\in N_{1, r}, \end{array} \right. |
where W_{i, n}(\upsilon) = \int_{\tau_{i}}^{\upsilon}z_{n}(s)ds; \upsilon \in(\tau_{i}, b_{i+1}] , i\in\mathbb{N}_{0, r}, \ z_{n}\in S_{\Psi(., x_{n}(.))}^{2}. It follows by (iii) in (H\Psi), that ||z_{n}(\upsilon)||\leq\tau(\upsilon)(1+\zeta_{0}^{\ast}), a.e, . Thus, \{z_{n}:n\geq1\} is weakly compact in L^{2}(L, \Phi) . By Mazure's lemma, we can find, without loss of generality, a sub sequence (z_{n}^{\ast}), n\geq1 of convex combinations of (z_{n}) converging almost everywhere to a function z\ \in L^{2}(L, \Phi). By the upper semicontinuity of \Psi(\upsilon, .), a, e. , it follows that z\in S_{\Psi(, .x(.))}^{2}. Set W_{i, n}^{\ast}(\upsilon) = \int_{\tau_{i}} ^{\upsilon}z_{n}^{\ast}(s)ds; \upsilon\in(\tau_{i}, b_{i+1}] Then, W_{i, n}^{\ast}(\upsilon)\rightarrow W_{i}(\upsilon) = \int_{\tau_{i}} ^{\upsilon}z(s)ds\in\int_{\tau_{i}}^{\upsilon}\Psi(s, x(s))ds.
In addition, from the continuity of both \Re and \Re_{i}(\upsilon, .);\upsilon\in L , it follows that
\Im(\upsilon) = \left\{ \begin{array} [c]{l} \Im_{0}g^{-1}(\upsilon)-g^{-1}(0)\Re(x) +^{AB}I_{0, \upsilon}^{\gamma, \varphi, g}W_{0}(\upsilon), \upsilon\in [0, b_{1}], \\ \Re_{i}(\upsilon, x(b_{i}^{-})), \upsilon\in M_{i}, i\in N_{1, r}, \\ \Re_{i}(\tau_{i}, x(b_{i}^{-})) +^{AB}I_{\tau_{i}, \upsilon}^{\gamma, \varphi, g}W_{i}(\upsilon), \upsilon\in L_{i}, i\in N_{1, r}. \end{array} \right. |
which implies \Im\in\Omega(x). ¶
Claim 12. For any x\in\Delta_{\zeta_{0}^{\ast}}, the set \Omega (x) is compact.
The proof is exactly as the proof of Claim 3, in the prrof of Theorem 3.
Claim 13. Let \Lambda_{1} = \Omega(\Delta_{\zeta_{0}^{\ast}}) . The set of functions
\begin{align*} \Lambda_{1}|_{[\tau_{i}, b_{i+1}]} & = \{\Im^{\ast}\in C([\tau_{i} , b_{i+1}], \Phi):\Im^{\ast}(\upsilon) = g(\upsilon)\Im(\upsilon), \upsilon\in (\tau_{i}, b_{i+1}], \\ \Im^{\ast}(\tau_{i}) & = \lim\limits_{\upsilon\rightarrow \tau_{i}^{+}}g(\upsilon )\Im(\upsilon), \Im\in\Lambda_{1}\}, i\in\mathbb{N}_{0, r}, \end{align*} |
and
\begin{align*} \Lambda_{1}|_{[b_{i}, \tau_{i}]} & = \{\Im^{\ast}\in C([b_{i}, \tau_{i} ], \Phi):\Im^{\ast}(\upsilon) = \Im(\upsilon), \upsilon\in(b_{i}, \tau_{i}], \\ \Im^{\ast}(b_{i}) & = \lim\limits_{\upsilon\rightarrow b_{i}^{+}}\Im(\upsilon ), \Im\in\Lambda_{1}\}, i\in\mathbb{N}_{1, r}. \end{align*} |
are equicontinuous in C([\tau_{i}, b_{i+1}], \Phi) and C([b_{i}, \tau_{i}], \Phi) respectively.
Pf: From the definition of \Omega and from the assumption that for any i\in\mathbb{N}_{1, r} and any \upsilon\in L, the function x\rightarrow \Re_{i} (\upsilon, x) is uniformly continuous, we obtain the equicontinuity of \Lambda_{1}|_{[b_{i}, \tau_{i}]} .
Now, let \Im^{\ast}\in\Lambda_{1} |_{[\tau_{i}, b_{i+1}]} . Then
\begin{equation} \Im^{\ast}(\upsilon) = \left\{ \begin{array} [c]{l} \Im_{0}-\Re(x)+g(\upsilon)^{AB}I_{0, \upsilon}^{\gamma, \varphi, g}W_{0} (\upsilon), \upsilon\in [0, b_{1}], \text{if }\ i = 0, \\ g(\upsilon)\Re_{i}(\tau_{i}, x(b_{i}^{-}))+^{AB}I_{\tau_{i}, \upsilon} ^{\gamma, \varphi, g}W_{i}(\upsilon), \upsilon\in(\tau_{i}, b_{i+1}], i\in N_{1, r}, \end{array} \right. \end{equation} | (7.11) |
and \Im^{\ast}(\tau_{i}) = \lim_{\upsilon\rightarrow \tau_{i}^{+}}\Im^{\ast }(\upsilon), where W_{i}(\upsilon) = \int_{\tau_{i}}^{\upsilon}z(s)ds, \ z\in S_{\Psi(., x(.))}^{2}, \upsilon\in(\tau_{i}, b_{i+1}], i\in \mathbb{N}_{0, r} . From (7.7), for any \upsilon\in(\tau_{i}, b_{i+1}], \ i\in\mathbb{N}_{0, r} , we have
\begin{align} ||g(\upsilon)W_{i}(\upsilon)|| & \leq\rho_{1}\int_{\tau_{i}}^{\upsilon }||z(s)||ds \leq\rho_{1}(1+\zeta_{0})\int_{\theta_{i}}^{\upsilon}\tau(s)ds \\ &\leq\rho _{1}(1+\zeta_{0})||\tau||_{L^{1}(L, \mathbb{R}^{+})}\leq\rho_{1}\rho_{2}(1+\zeta_{0}^{\ast}). \end{align} | (7.12) |
Using this inequality and the same arguments as in (5.17), we get
\lim\limits_{\delta\rightarrow0}||\Im^{\ast}(\upsilon+\delta)-\Im^{\ast} (\upsilon)|| = 0, \forall\upsilon\in(\tau_{i}, b_{i+1}], \ i\in\mathbb{N}_{0, r}. |
If \upsilon = \tau_{i}, \ i\in\mathbb{N}_{1, r} and \delta > 0, then \lim_{\delta\rightarrow0}||\Im^{\ast}(\tau_{i}+\delta)-\Im^{\ast}(\tau _{i})|| = \lim_{\delta\rightarrow0}\lim_{\lambda\rightarrow \theta_{i}^{+}}||\Im (\tau_{i}+\delta)-\Im(\lambda)|| = 0.
establishing the claim. ¶
Claim 14. The set \Lambda = \cap_{n = 1}\Lambda_{n} is compact, where \Lambda_{k+1} = R(\Lambda_{k}), k\geq1 .
Pf: As in the proof of the theorem 5.1, it is sufficient to prove that,
\begin{equation} \lim\limits_{n\rightarrow \infty}\varkappa_{PC_{g}}(\Lambda_{n}) = 0. \end{equation} | (7.13) |
To prove (7.13), let \epsilon > 0 , and n\geq1 be fixed. Since the sets \Lambda_{1}|_{[\tau_{i}, b_{i+1}]}, i\in\mathbb{N}_{0, r} and \Lambda_{1}|_{[b_{i}, \tau_{i}]} are equicontinuous, it follows as in Claim 4, in Theorem 1, that
\begin{equation} \chi_{PC_{g}(L, \Phi)}(\Lambda_{n})\leq2\max\limits_{\upsilon\in L}\chi\{g(\upsilon )\Im_{m}(\upsilon):m\geq1\}+\epsilon, \end{equation} | (7.14) |
Since \Im_{m}\in\Lambda_{n} = \Omega(\Lambda_{n-1}) , there is x_{m}\in\Lambda_{n-1} with \Im_{m}\in\Omega(x_{m}) , and hence
\begin{equation} g(\upsilon)\Im_{m}(\upsilon) = \left\{ \begin{array} [c]{l} \Im_{0}g^{-1}(\upsilon)-g^{-1}(0)\Re(x_{m}) +^{AB}I_{0, \upsilon}^{\gamma, \varphi, g}W_{0, m}(\upsilon), \upsilon\in [0, b_{1}], \\ \Re_{i}(\upsilon, x_{m}(b_{i}^{-})), \upsilon\in M_{i}, i\in N_{1, r}, \\ \Re_{i}(\tau_{i}, x_{m}(b_{i}^{-})) +^{AB}I_{\tau_{i}, \upsilon}^{\gamma, \varphi, g}W_{i, m}(\upsilon), \upsilon\in L_{i}, i\in N_{1, r}. \end{array} \right. \end{equation} | (7.15) |
where W_{i, m}(\upsilon) = \int_{\tau_{i}}^{\upsilon}z_{m}(s)ds, \ z_{m}\in S_{\Psi(., x_{m}(.))}^{2}, \upsilon\in(\tau_{i}, b_{i+1}], i\in\mathbb{N} _{0, r} and m\geq1.
Let \upsilon\in(\tau_{i}, b_{i+1}] , i\in \mathbb{N}_{0, r} be fixed. Using (3.2), we get
\begin{align} \chi\{g(\upsilon)W_{i, m}(\upsilon) :m\geq1\} & \leq\chi\{g(\upsilon)\int_{\tau_{i}}^{\upsilon}z_{m}(s)ds:m\geq 1\} \leq 2g(\upsilon)\int_{\tau_{i}}^{\upsilon}\chi\{z_{m}(s):m\geq 1\}ds\\ & \leq2g(\upsilon)\int_{\tau_{i}}^{\upsilon}\chi\{\Psi(s, \{x_{m} (s):m\geq1\})\}ds \leq2g(\upsilon)\int_{\tau_{i}}^{\upsilon}\tau(s)\chi\{g(s)x_{m} (s):m\geq1\}\\ & \leq2\rho_{1}\chi\chi_{PC_{g}(L, \Phi)}(\Lambda_{n-1})\int_{s_{i}} ^{\upsilon}\tau(s)ds \leq2\rho_{1}\rho_{2}\chi_{PC_{g}(L, \Phi)}(\Lambda_{n-1}). \end{align} | (7.16) |
Thus
\begin{align} & \chi\{\int_{\tau_{i}}^{\upsilon}(\varphi(\upsilon)-\varphi(s))^{\gamma -1}g(s)\varphi^{\prime}(s)W_{i, m}(s))ds:m\geq1\}\\ & \leq2\int_{\tau_{i}}^{\upsilon}(\varphi(\upsilon)-\varphi(s))^{\gamma -1}\varphi^{\prime}(s)\chi\{g(s)W_{i, m}(s):m\geq1\}ds\\ & \leq4\rho_{1}\rho_{2}\chi_{PC_{g}(L, \Phi)}(\Lambda_{n-1})\frac {\varphi(T)^{\gamma}}{\gamma}, \upsilon\in(\tau_{i}, b_{i+1}], \ i\in\mathbb{N}_{0, r}. \end{align} | (7.17) |
By (7.15) and (7.17), it follows that for \upsilon\in [0, \theta_{1}]
\begin{align} \chi\{g(\upsilon)^{AB}I_{\tau_{i}, \upsilon}^{\gamma, \varphi, g} W_{i, m}(\upsilon):m\geq1\} & \leq\frac{1-\gamma}{M(\gamma)}2\rho_{1}\rho_{2}\chi_{PC_{g}(L, \Phi)}(\Lambda_{n-1}) +\frac{4\varphi(b)^{\gamma}}{M(\gamma)\Gamma(\gamma)}\rho_{1}\rho_{2} \chi_{PC_{g}(L, \Phi)}(\Lambda_{n-1})\\ & = \chi_{PC_{g}(L, \Phi)}(\Lambda_{n-1})\rho_{1}\rho_{2}[\frac{2(1-\gamma )}{M(\gamma)}+\frac{4\varphi(T)^{\gamma}}{M(\gamma)\Gamma(\gamma)}]. \end{align} | (7.18) |
From the compactness of both \Re and \Re_{i}(\upsilon, .) , it follows from (7.14), (7.15) and (7.18) that
\chi_{PC_{g}(L, \Phi)}(D_{n})\leq\chi_{PC_{g}(L, \Phi)}(\Lambda_{n-1})\rho _{1}\rho_{2}[\frac{2(1-\gamma)}{M(\gamma)}+\frac{4\varphi(T)^{\gamma} }{M(\gamma)\Gamma(\gamma)}]+\epsilon. |
Since \epsilon is arbitrary, we get
\chi_{PC_{g}(L, \Phi)}(D_{n})\leq\chi_{PC_{g}(L, \Phi)}(D_{n-1})2\rho_{1} \rho_{2}[\frac{1-\gamma}{M(\gamma)}+\frac{2\varphi(T)^{\gamma}}{M(\gamma )\Gamma(\gamma)}]. |
Since this relation is true for each n, we get
\chi_{PC_{g}(L, \Phi)}(\Delta_{n})\leq\chi_{PC_{g}(L, \Phi)}(\Delta_{1} )[4\rho_{1}\rho_{2}(\frac{1-\gamma}{M(\gamma)}+\frac{2\varphi(T)^{\gamma} }{M(\gamma)\Gamma(\gamma)})]^{n-1}. |
Taking the limit as n\rightarrow \infty while keeping in mind (7.3), we obtain (7.13) and \Lambda is compact. ¶
Applying Lemma (6), we have that there is \Im\in\Lambda such that \Im\in\Omega(\Im) and as we pointed out above, such \Im is a solution for Problem (2.4). In addition, by arguing as in Claim 1 , one can show that the set of fixed points of \Omega is bounded, and hence by Lemma (7), the set of solutions of Problem (2.4) is compact.
Definition 3. [39] Problem(2.1) is Ulam-Hyers stable if there is a C > 0 such that for each \epsilon > 0 and each solution y\in PCH^{1}((0, T), \Phi) of the inequality
\begin{equation} \left\{ \begin{array} [c]{l} ||y(v)-\Im_{0}g^{-1}(\upsilon)+g^{-1}(\upsilon)\Re(y)-\frac{1-\gamma} {M(\gamma)}z(\upsilon, y(\upsilon))\\ -\frac{\gamma}{M(\gamma)}\frac{1}{g(\upsilon)\Gamma(\gamma)}\int_{0} ^{\upsilon}(\varphi(\upsilon)-\varphi(s))^{\gamma-1}g(s)\varphi^{\prime }(s)z(s, y(s))ds||\leq\epsilon, \upsilon\in\lbrack0, \theta_{1}]\\ ||y(v)-g^{-1}(\upsilon)\Im_{0}+g^{-1}(\upsilon)\Re(y))+g^{-1}(\upsilon)\sum\nolimits_{k = 1}^{k = i}I_{k}(y(\theta_{k}^{-}))\\ +\frac{1-\gamma}{M(\gamma)}z(\upsilon, y(\upsilon))\\ +\frac{\gamma}{M(\gamma)}\frac{1}{g(\upsilon)\Gamma(\gamma)}\int_{0} ^{\upsilon}(\varphi(\upsilon)-\varphi(s))^{\gamma-1}g(s)\varphi^{\prime }(s)z(s, y(s))ds||\leq\epsilon, \\ \upsilon\in(\theta_{i}, \theta_{i+1}], \ i\in\mathbb{N}_{1, r}, \end{array} \right. \end{equation} | (8.1) |
there is a solution x\in PCH^{1}((0, T), \Phi) to Problem (2.1) such that
\begin{equation} ||x-y||_{_{PC_{g}(L, \Phi)}}\leq C\epsilon. \end{equation} | (8.2) |
Theorem 6. Under the assumptions of Theorem (2), Problem (2.1) is Ulam-Hyers stable.
Proof. Let
\begin{equation} C = \frac{\rho_{1}}{1-[\xi_{2}+r\xi_{3}+\frac{(1-\gamma)\rho_{1}}{M(\gamma)} \xi_{1}+\frac{\rho_{1}\xi_{1}\varphi(T)^{\gamma}}{M(\gamma)\Gamma(\gamma)}]}. \end{equation} | (8.3) |
From the relation (4.25), we obtain that C is well defined. Suppose that y\in PCH^{1}((0, T), \Phi) is a solution to the inequality (9.1) and define x:[0, T]\rightarrow \Phi by
\begin{equation} x(\upsilon) = \left\{ \begin{array} [c]{l} \Im_{0}g^{-1}(\upsilon)-g^{-1}(\upsilon)\Re(x)\\ +\frac{1-\gamma}{M(\gamma)}z(\upsilon, x(\upsilon))\\ +\frac{\gamma}{M(\gamma)}\frac{1}{g(\upsilon)\Gamma(\gamma)}\int_{0} ^{\upsilon}(\varphi(\upsilon)-\varphi(s))^{\gamma-1}g(s)\varphi^{\prime }(s)z(s, x(s))ds, \upsilon\in\lbrack0, \theta_{1}]\\ g^{-1}(\upsilon)\Im_{0}-g^{-1}(\upsilon)\Re(x))\\ +g^{-1}(\upsilon)\sum\nolimits_{k = 1}^{k = i}I_{k}(x(\theta_{k}^{-}))\\ +\frac{1-\gamma}{M(\gamma)}z(\upsilon, x(\upsilon))\\ +\frac{\gamma}{M(\gamma)}\frac{1}{g(\upsilon)\Gamma(\gamma)}\int_{0} ^{\upsilon}(\varphi(\upsilon)-\varphi(s))^{\gamma-1}g(s)\varphi^{\prime }(s)z(s, x(s))ds, \\ \upsilon\in(\theta_{i}, \theta_{i+1}], \ i\in\mathbb{N}_{1, r}. \end{array} \right. \end{equation} | (8.4) |
By Corollary (1), x\in PCH^{1}((0, T), \Phi) and is a solution to Problem (2.1). We show the existence of C > 0 such that (8.2) hold. For \upsilon\in [0, \theta_{1}] , we have
\begin{align} ||g(\upsilon)y(v)-g(\upsilon)x(v)|| & \leq g(\upsilon)||y(v)-x(v)||\nonumber\\ & \leq g(\upsilon)\epsilon+||\Re(y)-\Re(x)||+\frac{(1-\gamma)g(v)}{M(\gamma )}|z(\upsilon, y(\upsilon))-z(\upsilon, x(\upsilon))||\\ & +\frac{\gamma}{M(\gamma)}\frac{1}{\Gamma(\gamma)}\int_{0}^{\upsilon }(\varphi(\upsilon)-\varphi(s))^{\gamma-1}g(s)\varphi^{\prime} (s)||z(s, y(s))-z(s, y(s))|ds\\ & \leq\rho_{1}\epsilon+||y-x||_{PC_{g}(L, \Phi)}[\xi_{2}+\frac{(1-\gamma )\rho_{1}}{M(\gamma)}\xi_{1}+\frac{\rho_{1}\xi_{1}\varphi(T)^{\gamma} }{M(\gamma)\Gamma(\gamma)}]. \end{align} | (8.5) |
For \upsilon\in(\theta_{i}, \theta_{i+1}], \ i\in\mathbb{N}_{1, r}. In view (HI)^{\ast}
\sum\limits_{k = 1}^{k = i}||I_{k}(y(\theta_{k}^{-})-I_{k}x(\theta_{k}^{-})||\leq r\xi_{3}||\Im-\varsigma||_{PC_{g}(L, \Phi)}. |
Therefore,
\begin{align} ||g(\upsilon)y(v)-g(\upsilon)x(v)|| & \leq g(\upsilon)||y(v)-x(v)||\nonumber\\ & \leq g(\upsilon)\epsilon+||\Re(y)-\Re(x)||+\frac{(1-\gamma)g(v)}{M(\gamma )}|z(\upsilon, y(\upsilon))-z(\upsilon, x(\upsilon))||\\ & +\frac{\gamma}{M(\gamma)}\frac{1}{\Gamma(\gamma)}\int_{0}^{\upsilon }(\varphi(\upsilon)-\varphi(s))^{\gamma-1}g(s)\varphi^{\prime} (s)||z(s, y(s))-z(s, y(s))|ds\\ & \leq\rho_{1}\epsilon+||y-x||_{PC_{g}(L, \Phi)}[\xi_{2}+r\xi_{3} +\frac{(1-\gamma)\rho_{1}}{M(\gamma)}\xi_{1}+\frac{\rho_{1}\xi_{1} \varphi(T)^{\gamma}}{M(\gamma)\Gamma(\gamma)}]. \end{align} | (8.6) |
From (8.5) and (8.6), it follows that
||x-y||_{_{PC_{g}(L, \Phi)}}\leq\rho_{1}\epsilon+||y-x||_{PC_{g}(L, \Phi)} [\xi_{2}+r\xi_{3}+\frac{(1-\gamma)\rho_{1}}{M(\gamma)}\xi_{1}+\frac{\rho _{1}\xi_{1}\varphi(T)^{\gamma}}{M(\gamma)\Gamma(\gamma)}]. |
So,
||x-y||_{_{PC_{g}(L, \Phi)}}\leq\frac{\rho_{1}\epsilon}{1-[\xi_{2}+r\xi _{3}+\frac{(1-\gamma)\rho_{1}}{M(\gamma)}\xi_{1}+\frac{\rho_{1}\xi_{1} \varphi(T)^{\gamma}}{M(\gamma)\Gamma(\gamma)}]} = C\epsilon, |
which shows that Problem (2.1) is stable in the sense of Ulan-Hyers.
Similarly, we can study the stability of solutions for the other problems.
Example 1. Let \Phi be a Hilbert space, L = [0, 1], and \theta_{0} = 0, \theta_{1} = \frac{1}{4}, \theta_{2} = \frac{1}{2}, \theta_{3} = \frac{3}{4}, \theta_{4} = 1, r = 3 . Suppose that g:L\rightarrow (0, \infty) is continuously differentiable with g^{-1}(\upsilon) = \frac {1}{g(\upsilon)}; \upsilon\in L and \varphi:L\rightarrow R is a strictly increasing and continuously differentiable function with \varphi^{\prime}(\upsilon)\neq0, \forall\upsilon\in L. If \Psi:L\times\Phi\rightarrow \Phi, \Re : PC_{g}(L, \Phi)\rightarrow \Phi , and I_{i}:\Phi\rightarrow \Phi are such that for any \Im\in PC_{g}(L, \Phi),
\begin{equation} z(\upsilon, \Im(\upsilon)) = £ _{1}\int_{0}^{\upsilon}g(s)\Im(s)\sin s\ ds;\upsilon\in L, \end{equation} | (9.1) |
\begin{equation} \Re(\Im) = \sum\limits_{i = 1}^{i = 4}c_{i}g(\theta_{i})\Im(\theta_{i}), \end{equation} | (9.2) |
and
\begin{equation} I_{i}(\Im(\upsilon)) = \xi_{3}g(\upsilon)\Im(\upsilon), \end{equation} | (9.3) |
where, c_{i}, £ _{1} and \xi_{3} are positive real numbers. We have
(i) If \Im\in PC_{g}(L, \Phi) and W(\upsilon) = z(\upsilon, \Im(\upsilon)); \upsilon\in L , then W(0) = 0 and W^{\prime}(\upsilon) = £ _{1} g(\upsilon)\Im(\upsilon)\sin\upsilon; \upsilon\in L .
Since g and \Im are bounded on L , then W\in PCH^{1}(L, \Phi) .
(ii) For any \upsilon\in L, and any \Im, \varsigma\in PC_{g}(L, \Phi), we have
\begin{align*} ||z(\upsilon, \Im(\upsilon))-z(\upsilon, \varsigma(\upsilon)|| & \leq£ _{1}\int_{0}^{\upsilon}||g(s)\Im(s)\sin s-g(s)\varsigma(s)\sin s||ds \leq\upsilon£ _{1}||\Im-\varsigma||_{PC_{g}(L, \Phi)}, \end{align*} |
\begin{align*} ||\Re(\Im)-\Re(\varsigma)|| & \leq\sum\limits_{i = 1}^{i = 4}c_{i}g(\theta_{i} )||\Im(\theta_{i})-\varsigma(\theta_{i})|| \leq\sum\limits_{i = 1}^{i = 4}c_{i}g(\theta_{i})||\Im(\theta_{i})-\varsigma (\theta_{i})||\\ & \leq c|\sum\limits_{i = 1}^{i = 4}g(\theta_{i})||\Im(\theta_{i})-\varsigma(\theta _{i})|| | \leq c\ ||\Im-\varsigma||_{PC_{g}(L, \Phi)}, \end{align*} |
and for any i = 1, 2, 3, 4,
\begin{align*} \left\Vert I_{i}(\Im(\theta_{i})-I_{i}(\varsigma(\theta_{i}))\right\Vert & \leq\xi_{3}g((\theta_{i})||\Im(\theta_{i})-\varsigma(\theta_{i})|| \leq\xi_{3}||\Im-\varsigma||_{PC_{g}(L, \Phi)}. \end{align*} |
where c = \sum_{i = 1}^{i = 4}c_{i} . So, (H\Psi)^{\ast} (H\Re)^{\ast} and (HI)^{\ast} are satisfied with \xi_{1} = £ _{1} and \xi_{2} = c .
By applying Theorem 2, with \Im_{0} = 0, there is a unique solution for the problem:
\begin{equation} \left\{ \begin{array} [c]{l} ^{ABC}D_{0, \upsilon}^{\gamma, \varphi, g}\Im(\upsilon) = £ _{1}\int_{0}^{\upsilon}g(s)\Im(s)\sin s\ ds, \upsilon\in(\theta_{i}, \theta_{i+1}), i\in\mathbb{N}_{0, r}, \\ \Im(0) = g^{-1}(0)\Im_{0}-g^{-1}(0)\sum\nolimits_{i = 1}^{i = 4}c_{i}g(\theta_{i})\Im (\theta_{i}), \\ \Im(\theta_{i}^{+}) = \Im(\theta_{i}^{-})+\xi_{3}g(\theta_{i}^{-})\Im(\theta_{i}^{-}), \ i\in\mathbb{N}_{1, r}, \end{array} \right. \end{equation} | (9.4) |
provided that
\begin{equation} c+3\xi_{3}+£ _{1}(1+\frac{\rho_{1}\varphi(1)^{\gamma}}{M(\gamma)g(\upsilon)\Gamma(\gamma)}) < 1. \end{equation} | (9.5) |
where \Psi, \Re, I_{i}; i = 1, 2, 3, 4 are defined by (9.1- 9.3). By choosing \varphi, g, c, \xi_{3} and £ _{1} appropriately, we obtain (9.4).
Remark 5. If g(\upsilon) = \upsilon+1;\upsilon\in L = [0, 1] , then g\in H^{1}(L, \mathbb{R}), g(\upsilon)\leq2 and \frac{1}{g(1)}\leq1;\upsilon\in L.
Example 2. Let \Phi , L , \theta_{i}; i = 1, 2, 3, 4 , r = 3 , \gamma , \Im_{0}\in\Phi , K , g , \varphi be as in Example 1. Suppose that K:\Phi\rightarrow \Phi is a linear bounded compact operator and Z is a convex compact subset of \Phi with 0\in K . Define \Psi:J\times\Phi\rightarrow P_{ck}(\Phi) , \Re : PC_{g}(L, \Phi)\rightarrow \Phi , and I_{i}:\Phi\rightarrow \Phi such that for any \Im\in PC_{g}(L, \Phi),
\begin{equation} \Psi(\upsilon, x) = \frac{g(\upsilon)\rho\ ||x||\sin\upsilon\ }{\sigma(1+||x||)} Z ;(\upsilon, x)\in L\times\Phi, \end{equation} | (9.6) |
\begin{equation} \Re(\Im) = \sum\limits_{i = 1}^{i = 4}c_{i}g(\theta_{i})K(\Im(\theta_{i})), \end{equation} | (9.7) |
and
\begin{equation} I_{i}(\Im(\upsilon)) = \xi_{3}g(\upsilon)K(\Im(\upsilon)), \end{equation} | (9.8) |
where, \rho > 0, \sigma = Sup\{ ||z|| : z \in Z \}. Note that for any \Im\in PC_{g}(L, \Phi) , the function z(\upsilon) = \frac{g(\upsilon)\varrho\ \Im(\upsilon)\sin\upsilon\ }{\sigma\ (1+||\Im||)}z_{0}; z_{0}\in Z is an element of S_{\Psi(., \Im(.))}^{2} and z(\upsilon)\in \Psi(\upsilon, \Im(\upsilon)); \upsilon\in J , and hence S_{\Psi(., \Im(.))}^{2} is not empty. Moreover, for any \upsilon\in L and any x, y\in\Phi , we have
\sup\limits_{y\in\Psi(\upsilon, x)}||y||\leq\frac{g(\upsilon)\rho\ ||x||\ |\sin \upsilon|\ }{\ (1+||x||)}\leq\rho g(\upsilon)|\sin\upsilon|. |
and
\begin{align*} H(\Psi(\upsilon, x), \Psi(\upsilon, y)) & \leq g(\upsilon)\rho|\sin \upsilon|\ |\frac{||x||}{(1+||x||)}-\frac{||y||}{(1+||y||)}| \leq\rho g(\upsilon)|\sin\upsilon|\ ||x-y||, \end{align*} |
Thus \Psi(\upsilon, .) is upper semicontinuous and for any bounded subset B\subseteq\Phi ,
\varkappa(\Psi(\upsilon, B))\leq g(\upsilon)\eta(\upsilon)\varkappa (B), \ {for\ }\upsilon\in L, |
where \eta(\upsilon) = \rho . The assumption (H\Psi) is satisfied with \tau(\upsilon) = \rho g(\upsilon)|\sin(\upsilon)|, for \upsilon\in L. Moreover,
\begin{align*} ||\Re(\Im)|| & \leq\sum\limits_{i = 1}^{i = 4}c_{i}g(\theta_{i})||K(\Im(\theta _{i}))||\leq\sum\limits_{i = 1}^{i = 4}c_{i}g(\theta_{i})||K||||\Im(\theta_{i})|| \leq c||\Im||_{PC_{g}(L, \Phi)}, \end{align*} |
and
||I_{i}(\Im(\upsilon)||\leq\lambda g(\upsilon)||\Im(\upsilon)||, |
where c = ||K||\ \sum_{i = 1}^{i = 4}c_{i} and \lambda = \xi_{3}||K|| . By applying Theorem (3), we have that the set of solutions of following problem:
\begin{equation} \left\{ \begin{array} [c]{l} ^{ABC}D_{\theta_{i}, \upsilon}^{\gamma, \varphi, g}\Im(\upsilon)\in\int _{\theta_{i}}^{\upsilon}\frac{g(s)\rho\ ||\Im(s)||\sin s\ }{\sigma \ (1+||\Im(s)||)}Zds, \upsilon\in(\theta_{i}, \theta_{i+1}), i\in \mathbb{N}_{0, r}, \\ \Im(0) = g^{-1}(0)\Im_{0}-g^{-1}(0)\sum\nolimits_{i = 1}^{i = 4}c_{i}g(\theta_{i} )(K(\Im(\theta_{i})), \\ \Im(\theta_{i}^{+}) = \Im(\theta_{i}^{-})+\xi_{3}g(\theta_{i}^{-})K(\Im(\theta_{i}^{-})), \ i\in\mathbb{N}_{1, r}, \end{array} \right. \end{equation} | (9.9) |
where \Psi is defined by (9.6) is not empty and compact provided that
\begin{equation} ||K||\ \sum\limits_{i = 1}^{i = 4}c_{i}+\frac{\rho_{1}\rho_{2}(1-\gamma)}{M(\gamma )}+\frac{2\rho_{1}\rho_{2}\varphi(1)^{\gamma}}{M(\gamma)\Gamma(\gamma)} +3\xi_{3}||K||+\frac{\rho_{1}\rho_{2}\varphi(1)^{\gamma}}{M(\gamma )\Gamma(\gamma)} < 1, \end{equation} | (9.10) |
and
\begin{equation} 4\rho_{1}\rho_{3}(\frac{1-\gamma}{M(\gamma)}+\frac{6\varphi(1)^{\gamma} }{M(\gamma)\Gamma(\gamma)}) < 1, \end{equation} | (9.11) |
By choosing \rho, \varphi, g, c_{i}, \xi_{3} and K appropriately, we obtain 9.10 and (9.11).
Example 3. Let L = [0, 1], r = 4 . Consider the following partition of L: 0 = \tau_{0} < b_{1} = \frac{1}{8} < \tau_{1} = \frac{1} {4} < b_{2} = \frac{3}{8} < \tau_{2} = \frac{1}{2} < b_{3} = \frac{5}{8} < \tau_{3} = \frac {6}{8} < b_{4} = \frac{7}{8} < \tau_{4} = \frac{15}{16} < b_{5} = 1.
Assumes that \Im_{0}, g , \varphi, z and \Re are be as in Example (1). For any i\in\mathbb{N} , let \Re_{i}:[b_{i}, \tau_{i}]\times\Phi\rightarrow \Phi , be defined as:
\begin{equation} \Re_{i}(\upsilon, x): = i\upsilon pg(b_{i})x ;\ (\upsilon , x)\in\lbrack b_{i}, \tau_{i}]\times\Phi, i = 1, 2, 3, 4. \end{equation} | (9.12) |
where, p is a positive real number. For any \upsilon \in\lbrack b_{i}, \tau_{i}], i = 1, 2, 3, 4 and any \Im, \varsigma\in PC_{g}^{\ast}(L, \Phi) , we have
\begin{align*} ||\Re_{i}(\upsilon, \Im(b_{i}^{-}))-\Re_{i}(\upsilon, \varsigma(b_{i}^{-}))|| & \leq4 p||g(b_{i})\Im(b_{i}^{-})-g(b_{i})\varsigma(b_{i}^{-})||\\ & \leq4 p||\Im-\varsigma||_{PC_{g}(L, \Phi)}, \end{align*} |
thus, (H\Re_{i}) holds with \xi_{4} = 4p . By Applying Theorem (4), the following fractional differential equation
\begin{equation} \left\{ \begin{array} [c]{l} ^{ABC}D_{0, \upsilon}^{\gamma, \varphi, g}\Im(\upsilon) = £ _{1}\int _{0}^{\upsilon}g(s)\Im(s)\sin s\ ds, \upsilon\in(\theta_{i}, \theta_{i+1}), i\in\mathbb{N} _{0, r}, \\ \Im(\upsilon) = \Re_{i}(\upsilon, \Im(b_{i}^{-})), \upsilon\in\lbrack b_{i} , \tau_{i}];\ i\in\mathbb{N}_{1, r}, \\ \Im(0) = g^{-1}(0)\Im_{0}-g^{-1}(0)\sum\nolimits_{i = 1}^{i = 4}c_{i}g(\theta_{i})\Im (\theta_{i}), \end{array} \right. \end{equation} | (9.13) |
has a solution under the condition that
\begin{equation} \rho_{1}4 p+£ _{1}(\frac{2(1-\gamma)}{M(\gamma)} +\frac{\varphi(1)^{\gamma}}{M(\gamma)g(\upsilon)\Gamma(\gamma)}+\frac{\rho _{1}\varphi(1)^{\gamma}}{M(\gamma)\Gamma(\gamma)}) < 1. \end{equation} | (9.14) |
By choosing \varphi, g, p and £ _{1} appropriately, we can have (9.14) hold.
Example 4. Let \gamma, \Phi , L, r, \tau_{i}, b_{i}, L_{i} , M_{i}(i = 1, 2, 3, 4) , \Im_{0}, \ g , \varphi and \Psi be as in Example (2.2). Let \Re be a non-empty convex and compact subset of \Phi and K:\Phi\rightarrow \Phi be a linear bounded compact operator. Define \Re:PC_{g}^{\ast}(L, \Phi)\rightarrow \Phi by:
\begin{equation} \Re(\Im) = \sum\limits_{i = 0}^{i = 4}c_{i}g(\tau_{i})K(\Im(\tau_{i})), \end{equation} | (9.15) |
where c_{i} > 0 . Obviously, \Re is continuous, compact and ||\Re(x)||\leq c||x||_{PC_{g}^{\ast}(L, \Phi)} , where c = \sum_{i = 0}^{i = 4}c_{i} , and hence (H\Re)^{\ast\ast} holds with c = \sum_{i = 0}^{i = 4}c_{i} and d = 0 .
For i = 1, 2, 3, 4, define \Re_{i}:[b_{i}, \tau_{i}]\times\Phi\rightarrow \Phi as:
\begin{equation} \Re_{i}(\upsilon, x): = i\upsilon\ qproj\ _{\Re}x\ , \end{equation} | (9.16) |
where, q is a positive real number and proj\ _{\Re}x is the projection of the point x on \Re . Then, for any i = 1, 2, 3, 4, \Re _{i}(\upsilon, .), \upsilon\in\lbrack b_{i}, \tau_{i}] is continuous and compact, and ||\Re_{i}(\upsilon, x)||\leq4q||x|| , and hence (H\Re_{i})^{\ast} holds with \xi_{5} = 4q . By applying Theorem (5), the set of solutions of following problem:
\begin{equation} \left\{ \begin{array} [c]{l} ^{ABC}D_{\tau_{i}, \upsilon}^{\gamma, \varphi, g}\Im(\upsilon)\in\int_{\tau_{i} }^{\upsilon}\frac{g(\upsilon)\rho\ ||\Im(s)||\sin\upsilon\ }{\sigma \ (1+||\Im(s)||)}Zds, \upsilon\in\cup_{i = 0}^{i = r}L_{i}, \\ \Im(\upsilon) = i\upsilon\ q proj\ _{\Re}\Im(b_{i}^{-}), \upsilon \in\lbrack b_{i}, \tau_{i}];\ i\in\mathbb{N}_{1, r}, \\ \Im(0) = \Im_{0}g^{-1}(0)-g^{-1}(0)\sum\nolimits_{i = 0}^{i = 4}c_{i}g(\tau_{i})K(\Im (\tau_{i})), \ \end{array} \right. \end{equation} | (9.17) |
is not empty and compact provided that
\begin{equation} 2\rho_{1}\rho_{2}[\frac{1-\gamma}{M(\gamma)}+\frac{2\varphi(1)^{\gamma} }{M(\gamma)\Gamma(\gamma)}] < 1. \end{equation} | (9.18) |
and
\begin{equation} \sum\limits_{i = 0}^{i = 4}c_{i}+\frac{\rho_{1}\rho_{2}(1-\gamma)}{M(\gamma)} +4q+\frac{\rho_{1}\rho_{2}\varphi(1)^{\gamma}}{M(\gamma )\Gamma(\gamma)} < 1, \end{equation} | (9.19) |
where \rho_{1} = Sup_{\upsilon\in L}g(\upsilon), \rho_{2} = ||\tau ||_{L^{1}(L, \mathbb{R}^{+})} and q is as in (9.16). By choosing \varphi, g, \tau and q appropriately, we can have (9.19) hold.
There are many definitions of fractional differentiations of order \gamma\in(0, 1) , and all these definitions are reduced to the first derivative when \gamma\rightarrow1 . The existence of such variety contributed to the development of fractional calculus and increased its application in many fields. Researchers continue to be interested in introducing new definitions of fractional differentiation, and this is one of our goals in this work. The notion of the g -weighted \varphi -Atangana-Baleanu fractional derivative is introduced, which generalizes both the Atangana-Baleanu derivative proposed by Atangana- Baleanu [7], the \varphi Atangana-Baleanu derivative (generalized Atangana-Baleanu derivative) introduced by HoVu, Behzad Ghanbari [27] and the g -weighted Atangana-Baleanu derivative defined by Al-Refai [31]. Some properties of the introduced derivative are obtained. The existence and stability of solutions for non-local fractional differential equations and inclusions, in infinite dimensional Banach spaces, containing this new fractional derivative in the presence of instantaneous and non-instantaneous impulses are studied. The case in which the lower limit of the fractional derivative is kept at the initial point and where it is changed to the impulsive points are considered. To achieve the results, we establish the relationship between any solution to each of the four studied problems and those of its corresponding fractional integral equation. To our knowledge, there has been no previous study of the g -weighted \varphi -Atangana-Baleanu fractional derivative, and so, theses results are new and interesting. The used technique are based on the properties of this new fractional differential operator and appropriate fixed point theorems for single-valued functions and set-valued functions. As is pointed out in the introduction, the following results that appear in the literature are particular cases of these obtained in this study: Theorem 4.3 and Theorem 5.1 in [23], Theorem 3.1 in [31], Theorem 2.3 in [27], Theorem 3.1 in [32], Theorem 3.2 in [33], and Theorem 2.2 in [34].
As to the directions for further research related to this paper, we suggest the following:
- Using the same technique in this paper and the arguments and methods in [28], to study the existence of solutions for Problems (2.1)–(2.4), when \gamma\in(0, 1) is replaced with \gamma( \upsilon) , where \gamma:L\rightarrow (0, 1) .
- Using our technique and the arguments and methods in [40] to study the existence of solutions for Problems (2.1)–(2.4) in the presence of delay.
- Study the controllability of Problems (2.2) and (2.4).
- Study the stability of solutions for the Problems (2.2)–(2.4) and the controllability of Problems (2.1)–(2.4).
- Extending the obtained results in [41,42,43] when the fractional derivative operator in these results is replaced with the weighted generalized Atangana-Baleanu fractional derivative and the dimension of the setting space is infinite.
- Studying the numerical solutions of the considered problems.
- Study of how fractional arithmetic can be applied to the topic of uncertain semi-Markovian jump stabilization. For uncertain semi-Markovian jump stabilization, see [44].
M. A and A. G. I.: Conceptualization; M. A. and A. G. I.: Methodology; M. A. and A. G. I.: Validation; M. A.and A. G. I.: Investigation; M. S. A. and A.G.I.: Resources; M. A. and A. G. I.: Writing original draft preparation; M. A. and A. G. I.: Writing review and editing; M. A.: Project administration; M. A. and A. G. I.: Funding acquisition. All authors have read and approved the final version of the manuscript for publication.
The authors declare they have not used Artificial Intelligence (AI) tools in the creation of this article.
The authors declare no conflict of interest.
[1] | V. E. Tarasov, Handbook of fractional calculus with applications, Berlin: De Gruyter, 2019. https://doi.org/10.1515/9783110571660 |
[2] | D. Baleanu, A. M. Lopes, Applications in engineering, life and social sciences, part B, 1 Eds, Walter de Gruyter, Berlin, 2019. Available from: https://www.amazon.com/Applications-Engineering-Sciences-Gruyter-Reference/dp/3110570920 |
[3] |
F. Benito, M. Salgado, R Sampayo, A. Torres, C. Fuentes, Application of fractional calculus to oil industry, Frac. Anal. Appl. Phys. Eng. Tech., 2017. https://doi.org/10.5772/intechopen.68571 doi: 10.5772/intechopen.68571
![]() |
[4] |
M. Al Nuwairan, Bifurcation and analytical solutions of the space-fractional stochastic Schrődinger, Fractal Fract., 7 (2023), 157. https://doi.org/10.3390/fractalfract7020157 doi: 10.3390/fractalfract7020157
![]() |
[5] |
M. Almulhim, M. Al Nuwairan, Bifurcation of traveling wave solution of sakovich equation with beta fractional derivative, Fractal Fract., 7, (2023), 372. https://doi.org/10.3390/fractalfract7050372 doi: 10.3390/fractalfract7050372
![]() |
[6] | M. Caputo, M. Fabrizio, A new definition of fractional derivative without singular kernel, Progr. Fract. Differ. Appl., 1 (2015), 73–85. Available from: https://www.researchgate.net/publication/290484465 |
[7] |
A. Atangana, D. Baleanu, New fractional derivative with non-local and non-singular kernel: Theory and application to heat transfer model, Therm. Sci., 20 (2016), 763–769. https://doi.org/10.48550/arXiv.1602.03408 doi: 10.48550/arXiv.1602.03408
![]() |
[8] |
S. Asma, S. Shabbir, K. Shah, T. Abdeljawad, Stability analysis for a class of implicit fractional differential equations involving Atangana–Baleanu fractional derivative, Adv. Differ. Equ., 2021 (2021), 395. https://doi.org/10.1186/s13662-021-03551-1 doi: 10.1186/s13662-021-03551-1
![]() |
[9] |
A. Devi, A. Kumar, Existence and uniqueness results for integro fractional differential equations with atangana-baleanu fractional derivative, J. Math. Exten., 15 (2021), 1–24. https://doi.org/10.30495/JME.SI.2021.2128 doi: 10.30495/JME.SI.2021.2128
![]() |
[10] |
S. T. Sutar, K. D. Kucche, Existence and data dependence results for fractional differential equations involving Atangana-Baleanu derivative, Rend. Circ. Mat. Palermo, Ⅱ (2022), 647–663. https://doi.org/10.1007/s12215-021-00622-w doi: 10.1007/s12215-021-00622-w
![]() |
[11] |
K. A. Abro, A. Atangana, A comparative analysis of electromechanical model of piezoelectric actuator through Caputo-Fabrizio and Atangana-Baleanu fractional derivatives, Math. Methods Appl. Sci., 43 (2020), 9681–9691. https://doi.org/10.1002/mma.6638 doi: 10.1002/mma.6638
![]() |
[12] |
B. Ghanbari, A. Atangana, A new application of fractional Atangana-Baleanu derivatives: Designing ABC-fractional masks in image processing, Physica A Stat. Mech. Appl., 542 (2020), 123516. https://doi.org/10.1016/j.physa.2019.123516 doi: 10.1016/j.physa.2019.123516
![]() |
[13] |
M. A. Khan, A. Atangana, Modeling the dynamics of novel coronavirus (2019-Cov) with fractional derivative, Alex. Eng. J., 59 (2020), 2379–2389. https://doi.org/10.1016/j.aej.2020.02.033 doi: 10.1016/j.aej.2020.02.033
![]() |
[14] | K. Dishlieva, Impulsive differential equations and applications, J. Appl. Computat. Math., 1 (2012). Available from: https://www.hilarispublisher.com/archive/jacm-volume-1-issue-6-year-2012.html |
[15] |
K. Church, Applications of impulsive differential equations to the control of malaria outbreaks and introduction to impulse extension equations: A general framework to study the validity of ordinary differential equation models with discontinuities in state, Université d'Ottawa/Univ. Ottawa, 2014, 125227011. https://doi.org/10.20381/RUOR-6771 doi: 10.20381/RUOR-6771
![]() |
[16] |
X. Liu, G. Ballinger, Boundedness for impulsive delay differential equations and applications in populations growth models, Nonlinear Anal. T. M. A., 53 (2003), 1041–1062. https://doi.org/10.1016/S0362-546X(03)00041-5 doi: 10.1016/S0362-546X(03)00041-5
![]() |
[17] |
M. Benchohra, E. Karapınar, J. E. Lazreg, A. Salim, Fractional differential equations with instantaneous impulses, Adv. Top. Fract. Diff. Equ., 2023, 77–116. https://doi.org/10.1007/978-3-031-26928-8_4 doi: 10.1007/978-3-031-26928-8_4
![]() |
[18] | J. R. Wang, M. Fečkan, Non-instantaneous impulsive differential equations, Iop Publishing Ltd, 2018. https://doi.org/10.1088/2053-2563/aada21 |
[19] | R. Agarwal, S. Hristova, D. O'Regan, Non-instantaneous impulses in differential equations, Springer, 2017. Available from: https://link.springer.com/book/10.1007/978-3-319-66384-5 |
[20] |
Z. Alsheekhhussain, A. G. Ibrahim, M. M. Al-Sawalha. Y. Jawarneh, The existence of solutions for g-weighted \varphi -Hilfer fractional differential inclusions of order \alpha \in(1, 2) with non-instantaneous impulses in Banach spaces, Fractal Fract., 8 (2024) 144. https://doi.org/10.3390/fractalfract8030144 doi: 10.3390/fractalfract8030144
![]() |
[21] |
Z. Alsheekhhussain, A. G. Ibrahim, M. M.Al-Sawalha, K. A. Rashedi, Mild solutions for g-weighted, \varphi -Hilfer, non-instantaneous impulsive semilinear differential inclusions of order \alpha\in(1, 2) in Banach Spaces, Fractal Fract., 8 (2024), 289. https://doi.org/10.3390/fractalfract8050289 doi: 10.3390/fractalfract8050289
![]() |
[22] |
Z. Alsheekhhussain, A. G. Ibrahim, M. M. Al-Sawalha, O. U. Ababneh, Antiperiodic solutions for impulsive w -weighted \varphi–Hilfer fractional differential inclusions in Banach Spaces, Fractal Fract., 8 (2024), 376. https://doi.org/10.3390/fractalfract8070376 doi: 10.3390/fractalfract8070376
![]() |
[23] |
M. Al Nuwairan, A. G. Ibrahim, Nonlocal impulsive differential equations and inclusions involving Atangana-Baleanu fractional derivative in infinite dimensional spaces, AIMS Math., 8 (2023), 11752–11780. https://doi.org/10.3934/math.2023595 doi: 10.3934/math.2023595
![]() |
[24] |
M. Al Nuwairan, A. G. Ibrahim, Solutions and anti-periodic solutions for impulsive differential equations and inclusions containing Atangana-Baleanu fractional derivative of order \alpha\in(1, 2) in infinite dimensional Banach spaces, AIMS Math., 9 (2024), 10386–10415. https://doi.org/10.3934/math.2024508 doi: 10.3934/math.2024508
![]() |
[25] |
J. V. da C. Sousa, E. C. de Oliveira, On the \psi -Hilfer fractional derivative, Commun. Nonlinear Sci. Numer. Simulat., 60 (2018), 72–91. https://doi.org/10.1016/j.cnsns.2018.01.005 doi: 10.1016/j.cnsns.2018.01.005
![]() |
[26] |
R. Almeida, A Caputo fractional derivative of a function with respect to another function, Commun. Nonlinear Sci. Numer. Simulat., 44 (2017), 460–481. https://doi.org/10.1016/j.cnsns.2016.09.006 doi: 10.1016/j.cnsns.2016.09.006
![]() |
[27] |
H. Vu., B. Ghanbari, N. Van Hoa, Fuzzy fractional differential equations with the generalized Atangana-Baleanu fractional derivative, Fuzzy Sets Syst., 429 (2022), 1–27. https://doi.org/10.1016/j.fss.2020.11.017 doi: 10.1016/j.fss.2020.11.017
![]() |
[28] |
K. Benia, M. S. Souid, F. Jarad, M. A. Alqudah, T. Abdeljawad, Boundary value problem of weighted fractional derivative of a function with a respect to another function of variable order, J. Inequal. Appl., 2023 (2023), 127. https://doi.org/10.1186/s13660-023-03042-9 doi: 10.1186/s13660-023-03042-9
![]() |
[29] |
F. Jarad, T. Abdeljawad, K. Shah, On the weighted fractional operators of a function with respect to another function, Fractals, 28 (2020), 2040011. https://doi.org/ 10.1142/S0218348X20400113 doi: 10.1142/S0218348X20400113
![]() |
[30] |
M. Alshammari, S. Alshammari, M. S. Abdo, Existence theorems for hybrid fractional differential equations with w-weighted Caputo-Fabrizio derivatives, J. Math., 2023 (2023), 13. https://doi.org/10.1155/2023/8843470 doi: 10.1155/2023/8843470
![]() |
[31] |
M. Al-Refai, On weighted Atangana-Baleanu fractional operators, Adv. Differ. Equ., 2020 (2020), 3. https://doi.org/10.1186/s13662-019-2471-z doi: 10.1186/s13662-019-2471-z
![]() |
[32] |
F. Jarad, T. Abdeljawad, Z. Hammouch, On a class of ordinary differential equations in the frame of Atangana-Baleanu fractional derivative, Chaos Solit. Fract., 117 (2018), 6–20. https://doi.org/10.1016/j.chaos.2018.10.006 doi: 10.1016/j.chaos.2018.10.006
![]() |
[33] |
M. I. Syam, M. Al-Refai, Fractional differential equations with Atangana-Baleanu fractional derivative: Analysis and applications, Chaos Solit. Fract., 2 (2019), 100013. https://doi.org/10.1016/j.csfx.2019.100013 doi: 10.1016/j.csfx.2019.100013
![]() |
[34] | H. Afsharia, V. Roomib, M. Nosratia, Existence and uniqueness for a fractional differential equation involving Atangana-Baleanu derivative by using a new contraction, Lett. Nonlinear Anal. Appl., 1 (2023), 52–56. Available from: https://www.lettersinnonlinearanalysis.com/index.php/lnaa/article/view/v1n2a06/v1n2a06 |
[35] |
T. Cardinali, P. Rubbioni, Impulsive mild solution for semilinear differential inclusions with nonlocal conditions in Banach spaces, Nonlinear Anal. T. M. A., 75 (2012), 871–879. https://doi.org/10.1016/j.na.2011.09.023 doi: 10.1016/j.na.2011.09.023
![]() |
[36] |
D. Bothe, Multivalued perturbation of m-accerative differential inclusions, Isr. J. Math., 108 (1998), 109–138. https://doi.org/10.1007/BF02783044 doi: 10.1007/BF02783044
![]() |
[37] | M. Kamenskii, V. Obukhowskii, P. Zecca, Condensing multivalued maps and semilinear differential inclusions in Banach spaces, Walter de Gruyter, 2001. https://doi.org/10.1515/9783110870893 |
[38] | S. Hu, N. S. Papageorgiou, Handbook of multi-valued Analysis, Latest Edition, Springer, 1979. Available from: https://link.springer.com/book/9780792346821 |
[39] |
R. Agarwal, S. Hristova, D. O'Regan, Generalized proportional Caputo fractional differential equations with noninstantaneous impulses: Concepts, integral representations and Ulam-type stability, Mathematics, 10 (2022), 2315. https://doi.org/10.3390/math10132315 doi: 10.3390/math10132315
![]() |
[40] |
D. Filali, A. Ali, Zeeshan Ali, M. Akram, M. Dilshad, Atangana-Baleanu-Caputo differential equations with mixed delay terms and integral boundary conditions, Math. Method. Appl. Sci., 46 (2023), 10435–10449. https://doi.org/10.1002/mma.9131 doi: 10.1002/mma.9131
![]() |
[41] |
A. Samadi, S. K. Ntouyas, A. Cuntavepaint, J. Tariboon, Hilfer proportional nonlocal fractional integro-multipoint boundary value problems, Open Math., 21 (2023), 20230137. https://doi.org/10.1515/math-2023-0137 doi: 10.1515/math-2023-0137
![]() |
[42] |
H. Zhu, Y. Ru, F. Wang, Analysis of solutions for the fractional differential equations with Hadamard-type, Open Math., 21 (2023), 20230131. https://doi.org/10.1515/math-2023-0131 doi: 10.1515/math-2023-0131
![]() |
[43] |
W. Al-Sadi, Z. Wei, I. Moroz. A.W. Alkhazzan, Existence and stability of solutions in Banach space for an impulsive system for involving Atangana–Baleanu and Caputo Fabrizio drivatives, Fractals, 31 (2023), 2340085. https://doi.org/10.1142/S0218348X23400856 doi: 10.1142/S0218348X23400856
![]() |
[44] |
Q. Li, H. Wei, D. Hua, J. Wang, J. Yang, Stabilization of semi-Markovian jumping uncertain complex-valued networks with time-varying delay: A sliding-mode control approach, Neural Process. Lett., 56 (2024), 56–111. https://doi.org/10.1007/s11063-024-11585-1 doi: 10.1007/s11063-024-11585-1
![]() |
1. | Faryal Abdullah Al-Adsani, Ahmed Gamal Ibrahim, Nonlocal Conformable Differential Inclusions Generated by Semigroups of Linear Bounded Operators or by Sectorial Operators with Impulses in Banach Spaces, 2025, 14, 2075-1680, 230, 10.3390/axioms14040230 |