
This article adopts a class of nonlinear fractional differential equation associating Hilfer generalized proportional fractional (GPF) derivative with having boundary conditions, which amalgamates the Riemann-Liouville (RL) and Caputo-GPF derivative. Taking into consideration the weighted space continuous mappings, we first derive a corresponding integral for the specified boundary value problem. Also, we investigate the existence consequences for a certain problem with a new unified formulation considering the minimal suppositions on nonlinear mapping. Detailed developments hold in the analysis and are dependent on diverse tools involving Schauder's, Schaefer's and Kransnoselskii's fixed point theorems. Finally, we deliver two examples to check the efficiency of the proposed scheme.
Citation: Saima Rashid, Abdulaziz Garba Ahmad, Fahd Jarad, Ateq Alsaadi. Nonlinear fractional differential equations and their existence via fixed point theory concerning to Hilfer generalized proportional fractional derivative[J]. AIMS Mathematics, 2023, 8(1): 382-403. doi: 10.3934/math.2023018
[1] | Sunisa Theswan, Sotiris K. Ntouyas, Jessada Tariboon . Coupled systems of ψ-Hilfer generalized proportional fractional nonlocal mixed boundary value problems. AIMS Mathematics, 2023, 8(9): 22009-22036. doi: 10.3934/math.20231122 |
[2] | Saima Rashid, Fahd Jarad, Khadijah M. Abualnaja . On fuzzy Volterra-Fredholm integrodifferential equation associated with Hilfer-generalized proportional fractional derivative. AIMS Mathematics, 2021, 6(10): 10920-10946. doi: 10.3934/math.2021635 |
[3] | Sotiris K. Ntouyas, Bashir Ahmad, Jessada Tariboon . Nonlocal integro-multistrip-multipoint boundary value problems for ¯ψ∗-Hilfer proportional fractional differential equations and inclusions. AIMS Mathematics, 2023, 8(6): 14086-14110. doi: 10.3934/math.2023720 |
[4] | Weerawat Sudsutad, Wicharn Lewkeeratiyutkul, Chatthai Thaiprayoon, Jutarat Kongson . Existence and stability results for impulsive (k,ψ)-Hilfer fractional double integro-differential equation with mixed nonlocal conditions. AIMS Mathematics, 2023, 8(9): 20437-20476. doi: 10.3934/math.20231042 |
[5] | Donny Passary, Sotiris K. Ntouyas, Jessada Tariboon . Hilfer fractional quantum system with Riemann-Liouville fractional derivatives and integrals in boundary conditions. AIMS Mathematics, 2024, 9(1): 218-239. doi: 10.3934/math.2024013 |
[6] | Ayub Samadi, Sotiris K. Ntouyas, Jessada Tariboon . Coupled systems of nonlinear sequential proportional Hilfer-type fractional differential equations with multi-point boundary conditions. AIMS Mathematics, 2024, 9(5): 12982-13005. doi: 10.3934/math.2024633 |
[7] | Adel Lachouri, Mohammed S. Abdo, Abdelouaheb Ardjouni, Bahaaeldin Abdalla, Thabet Abdeljawad . On a class of differential inclusions in the frame of generalized Hilfer fractional derivative. AIMS Mathematics, 2022, 7(3): 3477-3493. doi: 10.3934/math.2022193 |
[8] | Sunisa Theswan, Ayub Samadi, Sotiris K. Ntouyas, Jessada Tariboon . Hilfer iterated-integro-differential equations and boundary conditions. AIMS Mathematics, 2022, 7(8): 13945-13962. doi: 10.3934/math.2022770 |
[9] | Ugyen Samdrup Tshering, Ekkarath Thailert, Sotiris K. Ntouyas . Existence and stability results for a coupled system of Hilfer-Hadamard sequential fractional differential equations with multi-point fractional integral boundary conditions. AIMS Mathematics, 2024, 9(9): 25849-25878. doi: 10.3934/math.20241263 |
[10] | Abdelkrim Salim, Sabri T. M. Thabet, Imed Kedim, Miguel Vivas-Cortez . On the nonlocal hybrid (k,φ)-Hilfer inverse problem with delay and anticipation. AIMS Mathematics, 2024, 9(8): 22859-22882. doi: 10.3934/math.20241112 |
This article adopts a class of nonlinear fractional differential equation associating Hilfer generalized proportional fractional (GPF) derivative with having boundary conditions, which amalgamates the Riemann-Liouville (RL) and Caputo-GPF derivative. Taking into consideration the weighted space continuous mappings, we first derive a corresponding integral for the specified boundary value problem. Also, we investigate the existence consequences for a certain problem with a new unified formulation considering the minimal suppositions on nonlinear mapping. Detailed developments hold in the analysis and are dependent on diverse tools involving Schauder's, Schaefer's and Kransnoselskii's fixed point theorems. Finally, we deliver two examples to check the efficiency of the proposed scheme.
Fractional calculus has attempted to be accessed as a promising technique in fluid mechanics [1], nano-material [2], thermal energy [3], epidemics [4] and other scientific disciplines over recent decades. For example, by provoking interest in both cutting-edge and conventional pure and applied analytical techniques, it has reinforced creative collaboration between different disciplines, existence, and relevant applications in real-world manifestations, see [5,6,7]. In 1965, the possibility of fractional calculus depended on the conversation between L'hospital and Leibnitz as letters in [8]. After that, many researchers started experimenting in this field, and a large portion of them concentrated on describing novel fractional formulations [9,10,11]. Various classifications were raised in this process and were expressed by the advancement of research.
Recently, extensive investigation has been proposed for the qualitative characterization of verification for various fractional differential equations (FDEs) with initial and boundary value problems. Several significant approaches regarding the existence, uniqueness, multiplicity and stability have been reported by proposing certain fixed point theorems. Although many of the important problems have been tackled by the classical fractional derivatives (RL and Caputo) [12,13,14], it has a few limitations when used to design physical issues as a result of the necessary assumptions are themselves fractional and may be unsuitable for physical problems. The Caputo derivative has the opportunity of being appropriate for physical problems because it only necessitates classical initial conditions [15,16].
Khalil et al. [17] invented an interesting definition of fractional derivative, which is known to be a conformable derivative. In actuality, this so-called derivative is not a fractional derivative, however, it is it is essentially a first derivative duplicated by an extra straightforward factor. Consequently, this novel concept appears to be a regular extension of the classical derivative. More characterizations and the extended form of this derivative have been expounded in [18]. Then authors [19] explored an extension of the conformable derivative by considering proportional derivative. This fact leads to the modified conformable (proportional) differential operator of order λ. The researchers investigated numerous integral inequalities using classical [20], conformable and generalized conformable fractional integrals [21,22]. Qurashi et al. [23] proposed new fractional derivatives and integrals that have nonsingular kernels. By using the generalized proportional Hadamard fractional integral operator, Zhou et al. [24] investigated some general inequalities and their variant forms.
This recently characterized local derivative approaches to the original function as λ↦0. In this manner, they had the option to improve the conformable derivative. Jarad et al. [25] presented another kind of fractional operators created from the extended conformable derivatives. The exponential function appeared as a kernel in their examination with outstanding performance [26,27,28]. For the interest of readers, we draw in their thoughtfulness regarding some new papers [29,30].
In parallel with the concentrated exploration of the fractional derivative, the existence-uniqueness of verification fits to the intense prominent qualitative characterizations of FDEs, see [31,32,33,34].
Inspired by the work, we utilize a novel fractional derivative which is known as Hilfer-GPF derivative for finding the existence-uniqueness of solutions for a new class of nonlinear FDEs having non-local boundary conditions. For this we consider the subsequent BVP for a class of Hilfer-FDEs:
{Dλ,ζ;ϑϖ+1y(℘)=G(℘,y(℘)),λ∈(0,1),ζ∈[0,1],℘∈(ϖ1,ϖ2],I1−δ,;ϑϖ+1[m1y(ϖ+1)+m2y(ϖ−2)]=eȷ,δ=λ+ζ(1−λ),eȷ∈R, | (1.1) |
where G:(ϖ1,ϖ2]×R↦R be a continuous mapping, Dλ,ζ;ϑϖ+1(.) is the Hilfer-GPF derivative of order λ∈(0,1) and I1−δ;ϑϖ+1(.) is the GPF integral of order 1−δ>0. We find the existence consequences by the fixed point techniques of Schauder, Schaefer and Kransnoselskii. Additionally, the investigation of nonlinear FDEs as far as their information sources (fractional orders, related boundaries, and suitable function) has fascinated the interest of mathematicians because of its importance in Orlicz space (see [35]). Rely upon this, the subject of coherence of verification of the Hilfer-FDEs regarding inputs is significant and worth assuming.
The organization of the paper is as follows. In Section 2, we proceed with some basics concepts and detailed consequences as a review literature. In Section 3, we establish an equivalence criterion of integral equation of BVP (1.1) and then proposed the existence consequences for GPF-derivative by well-noted fixed point theorem. Also, in Section 4, illustrative examples are presented to check the applicability of the findings developed in Section 3. The conclusion with some open problems is presented in Section 5.
In what follows, we demonstrate some preliminaries, initial results and spaces which are essential for proving further consequences. Throughout this investigation, let Lp(ϖ1,ϖ2),p≥1, is the space of Lebesgue integrable mappings on (ϖ1,ϖ2).
Assume that ϖ1,ϖ2∈(−∞,+∞) be a finite and infinite intervals on R.
Furthermore, we elaborate the subsequent weighted spaces with induced norms defined by (see[8]). Suppose that C[ϖ1,ϖ2] is said to be the space of continuous functions defined on [ϖ1,ϖ2] and the norm is defined as follows:
‖G‖C[ϖ1,ϖ2]=max℘∈[ϖ1,ϖ2]|G|, |
and ACn[ϖ1,ϖ2] represents the space of n-times absolutely continuous differentiable mappings defined as follows:
ACn[ϖ1,ϖ2]={G:(ϖ1,ϖ2]↦R:Gn−1∈AC[ϖ1,ϖ2]}, |
Cδ[ϖ1,ϖ2] denotes the weighted space of G on (ϖ1,ϖ2] is defined as
Cδ[ϖ1,ϖ2]={G:(ϖ1,ϖ2]↦R:(℘−ϖ1)δG(℘)∈C[ϖ1,ϖ2]},δ∈[0,1) |
with the norm
‖G‖Cδ[ϖ1,ϖ2]=‖(℘−ϖ1)δG(℘)‖C[ϖ1,ϖ2]=max℘∈[ϖ1,ϖ2]|(℘−ϖ1)δG|. |
Also, the weighted space of a function G on (ϖ1,ϖ2] is denoted by Cnδ(ϖ1,ϖ2] defined as
Cnδ[ϖ1,ϖ2]={G:(ϖ1,ϖ2]↦R:G(℘)∈Cn−1[ϖ1,ϖ2];Gn(℘)∈Cδ[ϖ1,ϖ2]},δ∈[0,1) |
with the norm
‖G‖Cnδ[ϖ1,ϖ2]=n−1∑κ=0‖Gκ‖C[ϖ1,ϖ2]+‖Gn‖Cδ[ϖ1,ϖ2],∀n∈N. |
For n=0, Cnδ[ϖ1,ϖ2] coincides with Cδ[ϖ1,ϖ2].
Definition 2.1. ([8]) Assume that G∈L1([ϖ1,ϖ2],R), then the RL fractional integral operator of G of order λ>0 is stated as
Jλϖ+1G(℘)=1Γ(λ)℘∫ϖ1(℘−ℓ)λ−1G(ℓ)dℓ,℘>ϖ1, | (2.1) |
where Γ(.) represents the classical Gamma function.
Definition 2.2. ([8]) Assume that G∈C([ϖ1,ϖ2]), then the RL fractional derivative operator of G of order λ>0 is stated as
Dλϖ+1G(℘)=1Γ(n−λ)dnd℘n℘∫ϖ1(℘−ℓ)n−λ−1G(ℓ)dℓ,℘>ϖ1,n−1<λ<n,n∈N, | (2.2) |
where Γ(.) represents the Gamma function.
Definition 2.3. ([8]) Assume that G∈Cn([ϖ1,ϖ2]), then the Caputo fractional derivative operator of G of order λ>0 is stated as
cDλϖ+1G(℘)=1Γ(n−λ)℘∫ϖ1(℘−ℓ)n−λ−1Gn(ℓ)dℓ,℘>ϖ1,n−1<λ<n,n∈N, | (2.3) |
where Γ(.) represents the Gamma function.
Definition 2.4. ([25]) For ϑ∈(0,1],λ∈C,ℜ(λ)>0, then the left-sided generalized proportional integral of G of order λ>0 is stated as
Jλ;ϑϖ+1G(℘)=1ϑλΓ(λ)℘∫ϖ1eϑ−1ϑ(℘−ℓ)(℘−ℓ)λ−1G(ℓ)dℓ,℘>ϖ1. | (2.4) |
Definition 2.5. ([25]) For ϑ∈(0,1],λ∈C,ℜ(λ)>0, then the left-sided generalized proportional derivative of G of order λ>0 is stated as
Dλ;ϑϖ+1G(℘)=Dn,ϑϑn−λΓ(n−λ)℘∫ϖ1eϑ−1ϑ(℘−ℓ)(℘−ℓ)n−λ−1G(ℓ)dℓ,℘>ϖ1, | (2.5) |
where n=[λ]+1.
Definition 2.6. ([25]) For ϑ∈(0,1],λ∈C,ℜ(λ)>0, then the left-sided generalized proportional integral of G of order λ>0 is stated as
cDλ;ϑϖ+1G(℘)=1ϑn−λΓ(n−λ)℘∫ϖ1eϑ−1ϑ(℘−ℓ)(℘−ℓ)n−λ−1(Dn,ϑG)(ℓ)dℓ,℘>ϖ1, | (2.6) |
where n=[λ]+1.
Remark 2.1. Specifically, if ϑ=1 Definitions 2.4–2.6 reduces to Definitions 2.1–2.3, respectively.
Definition 2.7. ([25]) For n∈N,λ∈(n−1,n),ϑ∈(0,1],ζ∈[0,1], then the left/right-sided Hilfer-GPF derivative having order λ, type ζ of G is stated as follows:
(Dϖ+1G)(y)=Iζ(n−λ),ϑϖ+1[Dϑ(I(1−ζ)(n−λ),ϑϖ+1G)](y), | (2.7) |
where DϑG(y)=(1−ϑ)G(y)+ϑG′(y) and I assumed to be GPF-integral stated in 2.4.
Specifically, if n=1, then Definition 2.7 reduces to
(Dϖ+1G)(y)=Iζ(1−λ),ϑϖ+1[Dϑ(I(1−ζ)(1−λ),ϑϖ+1G)](y). | (2.8) |
In the present investigation, we discuss the case where n=1,λ∈(0,1),ζ∈[0,1] and δ=λ+ζ−λζ.
Remark 2.2. It is remarkable to mention that:
(a)The Hilfer fractional derivative can be considered as an interpolator between the GPF-derivative and Caputo GPF-derivative, respectively, as
Dλ,ζ;ϑϖ+1G={DϑI(1−λ);ϑϖ+1G,ζ=0(seeDefinition2.5),I1−λ;ϑϖ+1DϑG,ζ=1(seeDefinition2.6), | (2.9) |
(b) The following assumptions holds true:
0<δ≤1δ≥λ,δ>ζ,1−δ<1−ζ(1−λ). |
(c) Particularly, if λ∈(0,1),ζ∈[0,1] and δ=λ+ζ−λζ, then
(Dλ,ζ;ϑϖ+1G)(℘)=(Iζ(1−λ)ϖ+1[Dϑ(I(1−ζ)(1−λ)ϖ+1G)])(y), |
therefore, we have
(Dλ,ζ;ϑϖ+1G)(℘)=(Iζ(1−λ)ϖ+1(Dδ;ϑϖ+1G))(℘), |
where (Dδ;ϑϖ+1g1)(℘)=dd℘(I(1−ζ)(1−λ);ϑϖ+1G)(℘).
Now we define the weighted spaces of continuous mappings on (ϖ1,ϖ2]:
Cλ,ζ;ϑ1−δ[ϖ1,ϖ2]={G∈C1−δ[ϖ1,ϖ2],Dλ,ζ;ϑϖ+1G∈C1−δ[ϖ1,ϖ2]},δ=λ+ζ(1−λ) | (2.10) |
and
Cδ1−δ[ϖ1,ϖ2]={G∈C1−δ[ϖ1,ϖ2],Dδ;ϑϖ+1G∈C1−δ[ϖ1,ϖ2]}. | (2.11) |
Since Dλ,ζ;ϑϖ+1=Iζ(1−λ),ϑϖ+1Dδ;ϑϖ+1, therefore, we have Cδ1−δ[ϖ1,ϖ2]⊂Cλ,ζ1−δ[ϖ1,ϖ2].
Theorem 2.1. ([25]) For ℘≥ϖ1,ϑ∈(0,1],ℜ(λ),ℜ(ζ)>0. If G∈C([ϖ1,ϖ2],R), then
Iλ;ϑϖ+1(Iζ;ϑϖ+1G)(℘)=Iζ;ϑϖ+1(Iλ;ϑϖ+1G)(℘)=(Iλ+ζϖ+1G)(℘). |
Theorem 2.2. ([25]) For ℘≥ϖ1,ϑ∈(0,1] and ℜ(λ)>0 and let G∈L1([ϖ1,ϖ2]), then
Dλ;ϑϖ+1Iλ;ϑϖ+1G(℘)=G(℘),n=[ℜ(λ)]+1. |
Lemma 2.1. ([25]) For λ,ς∈C such that ℜ(λ)≥0 and ℜ(ς)>0. Then for any ϑ∈(0,1] we have
(a)(Iλ;ϑϖ+1eϑ−1ϑℓ(ℓ−ϖ1)ς−1)(℘)=Γ(ς)ϑλΓ(ς+λ)eϑ−1ϑ℘(℘−ϖ1)ς+λ−1, |
(b)(Dλ;ϑϖ+1eϑ−1ϑℓ(ℓ−ϖ1)ς−1)(℘)=ϑλΓ(ς)Γ(ς−λ)eϑ−1ϑ℘(℘−ϖ1)ς−λ−1. |
Lemma 2.2. ([30]) For λ∈(0,1),ϑ∈(0,1],ζ∈(0,1) and δ=λ+ζ−λζ. If G∈Cδ1−δ[ϖ1,ϖ2], then
Iδ;ϑϖ+1Dδ;ϑϖ+1G=Iδ;ϑϖ+1Dλ,ζ;ϑϖ+1G |
and
Dδ;ϑϖ+1Iλ;ϑϖ+1G=Dζ(1−λ);ϑϖ+1G. |
Lemma 2.3. ([30])For y∈(ϖ1,ϖ2],λ∈(0,1),ϑ∈(0,1),ζ∈[0,1] and δ∈(0,1). If G∈C1−δ[ϖ1,ϖ2] and I1−δ,ϑϖ+1G, then
Iλ;ϑϖ+1Dλ,ζ;ϑϖ+1G(y)=G(y)−eϑ−1ϑ(y−ϖ1)(y−ϖ1)δ−1ϑδ−1Γ(δ)(I1−δ;ϑϖ1)(ϖ+1). |
Lemma 2.4. ([30]) For δ∈[0,1),ϑ∈(0,1] and g1∈Cδ. If G∈Cδ[ϖ1,ϖ2], then
Iλ;ϑϖ+1G(ϖ1)=limy↦ϖ+1Iλ;ϑϖ+1G(y)=0,δ∈[0,λ). |
Lemma 2.5. ([30]) For λ∈(0,1),ζ∈[0,1] and δ=λ+ζ−λζ and let G:(ϖ1,ϖ2]×R↦R be a mapping such that G∈C1−δ[ϖ1,ϖ2] for any y∈Cδ1−δ[ϖ1,ϖ2], then y satisfies problem (1.1) if and only if y satisfies the Volterra integral equation
y(℘)=(℘−ϖ1)δ−1eϑ−1ϑ(℘−ϖ1)I1−δ;ϑϖ+1y(ϖ+1)ϑδ−1Γ(δ)+1ϑλΓ(λ)℘∫ϖ1eϑ−1ϑ(℘−s1)(℘−ℓ)λ−1G(ℓ,y(ℓ))dℓ. | (2.12) |
This section consists of the existence of solution to BVP (1.1) in Cλ,ζ;ϑ1−δ[ϖ1,ϖ2].
Lemma 3.1. For λ∈(0,1),ζ∈[0,1], where δ=λ+ζ−λζ and suppose there be a function G:(ϖ1,ϖ2]×R→R such that G∈C1−δ[ϖ1,ϖ2] for any y∈C1−δ[ϖ1,ϖ2]. If y∈Cδ1−δ[ϖ1,ϖ2], then y fulfills BVP (1.1) if and only if y holds the following identity
y(℘)=eȷm1+m2eϑ−1ϑ(℘−ϖ1)(℘−ϖ1)δ−1ϑδΓ(δ)−m2m1+m2eϑ−1ϑ(℘−ϖ1)(℘−ϖ1)δ−1ϑδΓ(δ)×1ϑ1−δ+λΓ(1−δ+λ)ϖ2∫ϖ1eϑ−1ϑ(ϖ2−ℓ)(ϖ2−ℓ)λ−δG(ℓ,y(ℓ))dℓ+1ϑλΓ(λ)℘∫ϖ1eϑ−1ϑ(℘−ℓ)(℘−ℓ)λ−1G(ℓ,y(ℓ))dℓ. | (3.1) |
Proof. By means of Lemma 2.5 and utilizing the solution of (1.1) can be expressed as
y(℘)=J1−δ;ϑϖ+1y(ϖ+1)ϑδ−1Γ(δ)eϑ−1ϑ(℘−ϖ1)(℘−ϖ1)δ−1+1ϑδΓ(δ)℘∫ϖ1eϑ−1ϑ(℘−ℓ)(℘−ℓ)λ−1G(ℓ,y(ℓ))dℓ,℘>ϖ1. | (3.2) |
Employing J1−δ;ϑϖ+1 on (3.2) and applying the limit ℘→ϖ−12, we find
J1−δ;ϑϖ+1y(ϖ−2)=J1−δ;ϑϖ+1y(ϖ+1)+1ϑ1−δ+λΓ(1−δ+λ)ϖ2∫ϖ1eϑ−1ϑ(ϖ2−ℓ)(ϖ2−ℓ)λ−δG(ℓ,y(ℓ))dℓ. | (3.3) |
Again, employing J1−δ;ϑϖ+1 on (3.3), we have
J1−δ;ϑϖ+1y(ϖ−2)=J1−δ;ϑϖ+1y(ϖ+1)+1ϑ1−δ+λΓ(1−δ+λ)℘∫ϖ1eϑ−1ϑ(ϖ2−ℓ)(℘−ℓ)λ−δG(ℓ,y(ℓ))dℓ=J1−δ;ϑϖ+1y(ϖ+1)+J1−ζ(1−λ);ϑϖ+1G(℘,y(℘)). | (3.4) |
Applying limit ℘↦ϖ+1 and utilizing Lemma 2.4 having 1−δ<1−ζ(1−λ), yields
J1−δ;ϑϖ+1y(ϖ+1)=J1−δ;ϑϖ+1y(ϖ+1), | (3.5) |
thus
J1−δ;ϑϖ+1y(ϖ−2)=J1−δ;ϑϖ+1y(ϖ+1)+1ϑ1−δ+λΓ(1−δ+λ)ϖ2∫ϖ1eϑ−1ϑ(ϖ2−ℓ)(ϖ2−ℓ)λ−δG(ℓ,y(ℓ))dℓ. | (3.6) |
From boundary condition (1.1), we have
J1−δ;ϑϖ+1y(ϖ−2)=eȷm2−m1m2J1−δ;ϑϖ+1y(ϖ+1). | (3.7) |
From (3.5) and (3.6), and utilizing (3.4), we have
J1−δ;ϑϖ+1y(ϖ+1)=m2m1+m2(eȷm2−1ϑ1−δ+λΓ(1−δ+λ)ϖ2∫ϖ1eϑ−1ϑ(ϖ2−ℓ)(ϖ2−ℓ)λ−δG(ℓ,y(ℓ))dℓ). | (3.8) |
Setting (3.2) in (3.8), one can find
y(℘)=eȷm1+m2eϑ−1ϑ(℘−ϖ1)(℘−ϖ1)δ−1ϑδ−1Γ(δ)−m2m1+m2eϑ−1ϑ(℘−ϖ1)(℘−ϖ1)δ−1ϑδ−1Γ(δ)×1ϑ1−δ+λΓ(1−δ+λ)ϖ2∫ϖ1eϑ−1ϑ(ϖ2−ℓ)(ϖ2−ℓ)λ−δG(ℓ,y(ℓ))dℓ+1ϑλΓ(λ)℘∫ϖ1eϑ−1ϑ(℘−ℓ)(℘−ℓ)λ−1G(ℓ,y(ℓ))dℓ. | (3.9) |
Conversely, employing J1−δ;ϑϖ+1 on (3.1), utilizing Lemmas 2.1 and 2.2, and simple computations yields
J1−δ;ϑϖ+1m1y(ϖ+1)+J1−δ;ϑϖ+1m2y(ϖ−2)=m1m2m1+m2(eȷm2−1ϑ1−δ+λΓ(1−δ+λ)ϖ2∫ϖ1eϑ−1ϑ(ϖ2−ℓ)(ϖ2−ℓ)λ−δG(ℓ,y(ℓ))dℓ)+m22m1+m2(eȷm2−1ϑ1−δ+λΓ(1−δ+λ)ϖ2∫ϖ1eϑ−1ϑ(ϖ2−ℓ)(ϖ2−ℓ)λ−δG(ℓ,y(ℓ))dℓ)+m2ϑ1−δ+λΓ(1−δ+λ)ϖ2∫ϖ1eϑ−1ϑ(ϖ2−ℓ)(ϖ2−ℓ)λ−δG(ℓ,y(ℓ))dℓ=eȷ, | (3.10) |
This shows that y(℘) satisfies boundary condition (1.1).
Furthermore, employing Dδ;ϑϖ+1 on (3.1) and applying Lemmas 2.1 and 2.2, we have
Dδ;ϑϖ+1y(℘)=Dζ(1−λ);ϑϖ+1G(℘,y(℘)). | (3.11) |
Since y∈Cδ;ϑ1−δ[ϖ1,ϖ2] and in view of definition of Cδ;ϑ1−δ[ϖ1,ϖ2], we have Dδϖ+1y∈Cϑn−δ[ϖ1,ϖ2], thus, Dζ(1−λ);ϑϖ+1G=DI1−ζ(1−λ)ϖ+1G∈C1−δ[ϖ1,ϖ2].
For G∈C1−δ[ϖ1,ϖ2], it is noting that I1−ζ(1−λ)ϖ+1G∈C1−δ[ϖ1,ϖ2]. So, G and I1−ζ(1−λ);ϑϖ+1G holds the assumptions of Lemma 2.3. Now, employing Iζ(1−λ);ϑϖ+1 on (3.11), we have
Iζ(1−λ);ϑϖ+1Dδ;ϑϖ+1y(℘)=Iζ(1−λ);ϑϖ+1Dζ(1−λ);ϑϖ+1G(℘,y(℘)). | (3.12) |
Considering (2.8), (3.11) and Lemma 2.3, we have
Iδ;ϑϖ+1Dδ;ϑϖ+1y(℘)=G(℘,y(℘))−I1−ζ(1−λ);ϑϖ+1G(ϖ1,y(ϖ1))ϑζ(1−λ)Γ(ζ(1−λ))eϑ−1ϑ(℘−ϖ1)(℘−ϖ1)ζ(1−λ)−1,∀℘∈(ϖ1,ϖ2]. | (3.13) |
By Lemma 2.4, we have I1−ζ(n−λ)ϖ+1G(ϖ1,y(ϖ1))=0. Thus, we have Dλ,ζ;ϑϖ+1y(℘)=G(℘,y(℘)). Hence, this completes the proof.
Let us evoke some essential assumptions which are required to prove the existence of solutions for the problem mentioned.
(A1) Let a function G:(ϖ1,ϖ2]×R↦R with G(.,y(.))∈Cζ(1−λ);ϑ1−δ[ϖ1,ϖ2]. For any y∈Cϑ1−δ[ϖ1,ϖ2] and there exist two constants M1,m such that
|G(℘1,y)|≤M1(1+m‖y‖Cϑ1−δ). | (3.14) |
(A2) The inequality
G:=mM1Γ(δ)ϑλΓ(λ+1)[(ϖ2−ϖ1)λ+(ϖ2−ϖ1)λ+1−δ]<1 | (3.15) |
holds.
Now we are in a position to show the existence results for the BVP (1.1) by employing Schauder's fixed point theorem (see [36]).
Theorem 3.1. Suppose that the assumptions (A1) and (A2) fulfills. Then by Hilfer-BVP (1.1) has at least one solution in Cδ;ϑ1−δ[ϖ1,ϖ2]⊂Cλ,ζ;ϑ1−δ[ϖ1,ϖ2].
Proof. Defining an operator T:C1−δ[ϖ1,ϖ2]↦C1−δ[ϖ1,ϖ2] by
(Ty)(℘)=eȷm1+m2eϑ−1ϑ(℘−ϖ1)(℘−ϖ1)δ−1ϑδ−1Γ(δ)−m2m1+m2eϑ−1ϑ(℘−ϖ1)(℘−ϖ1)δ−1ϑδ−1Γ(δ)×1ϑ1−δ+λΓ(1−δ+λ)ϖ2∫ϖ1eϑ−1ϑ(ϖ2−ℓ)(ϖ2−ℓ)λ−δG(ℓ,y(ℓ))dℓ+1ϑλΓ(λ)℘∫ϖ1eϑ−1ϑ(℘−ℓ)(℘−ℓ)λ−1G(ℓ,y(ℓ))dℓ. | (3.16) |
Assume that Bϱ={y∈C1−δ[ϖ1,ϖ2]:‖y‖C1−δ≤ϱ} having ϱ≥Ω1−G, for G<1, we have
Ω:=eȷ(m1+m2)ϑδ−1Γ(δ)+|m2m1+m2|1ϑδ−1Γ(δ)×M1ϑ1−δ+λ[(ϖ2−ϖ1)λ+1−δΓ(λ−δ+2)+(ϖ2−ϖ1)2λ−δ+1Γ(λ+1)]. | (3.17) |
The proof will be demonstrated by the accompanying three steps:
Case 1. We will prove that T(Bϱ)⊂Bϱ. Utilizing assumption (A2), we have
|(Ty)(℘)(℘−ϖ1)1−δ|≤|eȷ(m1+m2)ϑδ−1Γ(δ)|+|m2m1+m21ϑδ−1Γ(δ)|×1ϑ1−δ+λΓ(1−δ+λ)ϖ2∫ϖ1|eϑ−1ϑ(ϖ2−ℓ)|(ϖ2−ℓ)λ−δM1(1+m|y|)dℓ+(℘−ϖ1)1−δϑλΓ(λ)℘∫ϖ1|eϑ−1ϑ(℘−ℓ)|(℘−ℓ)λ−1M1(1+m|y|)dℓ≤eȷ(m1+m2)ϑδ−1Γ(δ)+|m2m1+m2|1ϑδ−1Γ(δ)×1ϑ1−δ+λΓ(1−δ+λ)ϖ2∫ϖ1|eϑ−1ϑ(ϖ2−ℓ)|(ϖ2−ℓ)λ−δM1(1+m‖y‖C1−δ)dℓ+(℘−ϖ1)1−δϑλΓ(λ)℘∫ϖ1|eϑ−1ϑ(℘−ℓ)|(℘−ℓ)λ−1M1(1+m‖y‖C1−δ)dℓ. | (3.18) |
Since |eϑ−1ϑ℘|<1. Observe that, for any y∈Bϱ, and for every ℘∈(ϖ1,ϖ2], we have
1ϑ1−δ+λΓ(1−δ+λ)ϖ2∫ϖ1|eϑ−1ϑ(ϖ2−ℓ)|(ϖ2−ℓ)λ−δM1(1+m‖y‖C1−δ)dℓ≤M1(ϖ2−ϖ1)λϑ1−δ+λ[(ϖ2−ϖ1)1−δΓ(λ−δ+2)+mϱΓ(δ)Γ(λ+1)],since|eϑ−1ϑ℘|<1 | (3.19) |
and
|(℘−ϖ1)1−δ|ϑλΓ(λ)℘∫ϖ1|eϑ−1ϑ(℘−ℓ)|(℘−ℓ)λ−1M1(1+m‖y‖C1−δ)dℓ≤M1(℘−ϖ1)λ−δ+1ϑλ[(℘−ϖ1)λΓ(λ+1)+mϱΓ(δ)Γ(λ+1)]. | (3.20) |
Therefore, we get
|(Ty)(℘)(℘−ϖ1)1−δ|≤eȷ(m1+m2)ϑδ−1Γ(δ)+|m2m1+m2|1ϑδ−1Γ(δ)×M1(ϖ2−ϖ1)λϑ1−δ+λ[(ϖ2−ϖ1)1−δΓ(λ−δ+2)+mϱΓ(δ)Γ(λ+1)]+M1(℘−ϖ1)λ−δ+1ϑλ[(℘−ϖ1)λΓ(λ+1)+mϱΓ(δ)Γ(λ+1)], | (3.21) |
which leads to
‖Ty‖C1−δ≤eȷ(m1+m2)ϑδ−1Γ(δ)+|m2m1+m2|1ϑδ−1Γ(δ)×M1ϑ1−δ+λ[(ϖ2−ϖ1)λ+1−δΓ(λ−δ+2)+(ϖ2−ϖ1)2λ−δ+1Γ(λ+1)]+M1mϱΓ(δ)ϑλΓ(λ+1)[(℘−ϖ1)λ+(ϖ2−ϖ1)λ+1−δ]. | (3.22) |
of assumption (A2), we conclude that ‖Ty‖C1−δ≤Gϱ+(1−G)ϱ=ϱ, Therefore, T(Bϱ)⊂Bϱ.
Next we will prove that T is completely continuous.
Case 2. We prove that the operator T is completely continuous.
Assume that {ˉzn} is a sequence such that ˉzn↦ˉz in Bϱ as n↦∞. Then for every ℘∈(ϖ1,ϖ2], we have
|((Tˉzn)(℘)−(Tˉz)(℘))(℘−ϖ1)1−δ|=|m2m1+m2|1ϑδ−1Γ(δ)×1ϑ1−δ+λΓ(1−δ+λ)ϖ2∫ϖ1|eϑ−1ϑ(ϖ2−ℓ)|(ϖ2−ℓ)λ−δ|G(ℓ,ˉzn(ℓ))−G(ℓ,ˉz(ℓ))|dℓ+(℘−ϖ1)1−δϑλΓ(λ)℘∫ϖ1|eϑ−1ϑ(℘−ℓ)|(℘−ℓ)λ−1|G(ℓ,ˉzn(ℓ))−G(ℓ,ˉz(ℓ))|dℓ≤|m2m1+m2|1ϑλΓ(λ+1)(ϖ2−ϖ1)λ‖G(.,ˉzn(.))−G(.,ˉz(.))‖C1−δ+Γ(δ)(℘−ϖ1)1−δ+λϑλ−δΓ(λ−δ)(℘−ℓ)1−δ+λ‖G(.,ˉzn(.))−G(.,ˉz(.))‖C1−δ. | (3.23) |
Since |eϑ−1ϑ℘|<1 and G is continuous on (ϖ1,ϖ2] and ˉzn↦ˉz, then
‖(Tˉzn−Tˉz‖C1−δ→0asn→∞, | (3.24) |
which shows that operator T is continuous on Bϱ.
Case 3. We show that T(Bϱ) is relatively compact. In case 1, we have T(Bϱ)⊂Bϱ. It is observed that T(Bϱ) is uniformly bounded. To show operator T is equi-continuous on Bϱ. In fact, for any ϖ1<℘1<℘2<ϖ2 and ˉz∈Bϱ, we have
|(℘2−ϖ1)1−δ(Ty)(℘2)−(℘1−ϖ1)1−δ(Ty)(℘)|≤|(℘2−ϖ1)n−κ−(℘1−ϖ1)n−κ|ϑδ−1Γ(δ)eȷm1+m2+|m2m1+m2||(℘2−ϖ1)n−κ−(℘1−ϖ1)n−κ|ϑδ−1Γ(δ)×1ϑλ−δ+1Γ(λ−δ+1)ϖ2∫ϖ1eϑ−1ϑ(ϖ2−ℓ)(ϖ2−ℓ)λ−δ|G(ℓ,y(ℓ))|dℓ+1ϑλΓ(λ)|(℘2−ϖ1)1−δ℘2∫ϖ1eϑ−1ϑ(℘2−ℓ)(℘2−ℓ)λ−1G(ℓ,y(ℓ))dℓ−(℘1−ϖ1)1−δ℘1∫ϖ1eϑ−1ϑ(℘1−ℓ)(℘1−ℓ)λ−1G(ℓ,y(ℓ))dℓ|≤|(℘2−ϖ1)n−κ−(℘1−ϖ1)n−κ|ϑδ−1Γ(δ)[eȷm1+m2+|m2m1+m2‖G‖C1−δϑ1−δ+λΓ(1−δ+λ)ϖ2∫ϖ1(ϖ2−ℓ)λ−δ(ℓ−ϖ1)δ−1dℓ]+‖G‖C1−δϑλΓ(λ)|(℘2−ϖ1)1−δ℘2∫ϖ1(℘2−ℓ)λ−1(ℓ−ϖ1)δ−1dℓ−(℘1−ϖ1)1−δ℘1∫ϖ1(℘1−ℓ)λ−1(ℓ−ϖ1)δ−1dℓ|(since|eϑ−1ϑ℘|<1)≤|(℘2−ϖ1)n−κ−(℘1−ϖ1)n−κ|ϑδ−1Γ(δ)[eȷm1+m2+|m2m1+m2Γ(δ)ϑλΓ(λ+1)(ϖ2−ϖ1)λ‖G‖C1−δ]+‖G‖C1−δϑλΓ(λ)B(δ−n+1,λ)|(℘2−ϖ1)λ−(℘1−ϖ1)λ|, | (3.25) |
which approaches to zero as \wp_{2}\rightarrow \wp_{1}, independent of y\in\mathbb{\varrho}, where \mathfrak{B}(., .) denotes the Euler Beta function.
Therefore, we deduce that {\bf T}(\mathbb{B}_{\varrho}) is equicontinuous on \mathbb{B}_{\varrho}, that leads to the relatively compactness. As a result, we conclude that by Arzela-Ascoli theorem, the defined operator {\bf T}:\mathbb{B}_{\varrho}\mapsto\mathbb{B}_{\varrho} is completely continuous operator.
By Schauder's fixed point theorem, there exists at least one fixed point y of {\bf T} in \mathbb{C}_{1-\delta}[\varpi_{1}, \varpi_{2}]. This fixed point y is the solution of (1.1) in \mathbb{C}_{1-\delta}^{\delta; \vartheta}, and this completes the proof.
Now we present another existence result via Schaefer fixed point theorem. For this, we need the following assumption.
(A_{3}) Suppose a function \mathcal{G}:(\varpi_{1}, \varpi_{2}]\times\mathbb{R}\mapsto\mathbb{R} such that \mathcal{G}(., y(.))\in\mathbb{C}_{1-\delta}^{\zeta(1-\lambda); \vartheta}[\varpi_{1}, \varpi_{2}] for any y\in\mathbb{C}_{1-\delta}[\varpi_{1}, \varpi_{2}] and there exist a mapping \eta(\wp)\in\mathbb{C}_{1-\delta}[\varpi_{1}, \varpi_{2}] such that
\begin{eqnarray} \big\vert \mathcal{G}(\wp, y)\big\vert\leq\eta(\wp), \; \forall \wp\in(\varpi_{1}, \varpi_{2}], y\in\mathbb{R}. \end{eqnarray} | (3.26) |
Theorem 3.2. Suppose that assumption (A_{3}) satisfies. then Hilfer- BVP (1.1) has at least one solution in \mathbb{C}_{1-\delta}^{\delta}\subset\mathbb{C}_{1-\delta}^{\lambda, \zeta; \vartheta}[\varpi_{1}, \varpi_{2}].
Proof. For the proof of Theorem 3.2, one can adopt the same technique as we did in Theorem 3.1 and easily prove that the operator {\bf T}:\mathbb{C}_{1-\delta}[\varpi_{1}, \varpi_{2}]\mapsto\mathbb{C}_{1-\delta}[\varpi_{1}, \varpi_{2}] stated in (3.16) is completely continuous. Now we show that
\begin{eqnarray} \Delta = \Big\{y\in\mathbb{C}_{n-\delta}[\varpi_{1}, \varpi_{2}]: y = \sigma{\bf T}y, \; for\; some\; \sigma\in(0, 1)\Big\} \end{eqnarray} | (3.27) |
is bounded set. Assume that y\in\Delta and \sigma\in(0, 1) be such that y = \sigma {\bf T}y. By assumption (A_{3}) and (3.16), then for all \wp\in[\varpi_{1}, \varpi_{2}], we have
\begin{eqnarray} &&\big\vert{\bf T}y(\wp)(\wp-\varpi_{1})^{n-\delta}\big\vert\\&&\leq\sum\limits_{\kappa = 1}^{n}\frac{e^{\frac{\vartheta-1}{\vartheta}(\wp-\varpi_{1})}(\wp-\varpi_{1})^{n-\kappa}}{\vartheta^{\delta-\kappa+1}\Gamma(\delta-\kappa+1)}\frac{e_{\jmath}}{m_{1}+m_{2}}\\&&\quad+\Big\vert\frac{m_{2}}{m_{1}+m_{2}}\Big\vert\sum\limits_{\kappa = 1}^{n}\frac{e^{\frac{\vartheta-1}{\vartheta}(\wp-\varpi_{1})}(\wp-\varpi_{1})^{n-\kappa}}{\vartheta^{n-\delta+\lambda}\Gamma(\delta-\kappa+1)\Gamma(n-\delta+\lambda)}\\&&\int\limits_{\varpi_{1}}^{\varpi_{2}}e^{\frac{\vartheta-1}{\vartheta}(\varpi_{2}-\ell)}(\varpi_{2}-\ell)^{n+\lambda-\delta-1}\eta(\ell)d\ell\\&&\quad+\frac{\vert(\wp-\varpi_{1})^{n-\delta}\vert}{\vartheta^{\lambda}\Gamma(\lambda)}\int\limits_{\varpi_{1}}^{\wp}e^{\frac{\vartheta-1}{\vartheta}(\wp-\ell)}(\wp-\ell)^{\lambda-1}\eta(\ell)d\ell\\&&\leq\sum\limits_{\kappa = 1}^{n}\frac{(\wp-\varpi_{1})^{n-\kappa}}{\vartheta^{\delta-\kappa+1}\Gamma(\delta-\kappa+1)}\frac{e_{\jmath}}{m_{1}+m_{2}}\\&&\quad+\Big\vert\frac{m_{2}}{m_{1}+m_{2}}\Big\vert\sum\limits_{\kappa = 1}^{n}\frac{(\wp-\varpi_{1})^{n-\kappa}}{\vartheta^{n-\delta+\lambda}\Gamma(\delta-\kappa+1)\Gamma(n-\delta+\lambda)}\\&&\int\limits_{\varpi_{1}}^{\varpi_{2}}(\varpi_{2}-\ell)^{n+\lambda-\delta-1}(\ell-\varpi_{1})^{\delta-n}\|\eta\|_{\mathbb{C}_{n-\delta}}d\ell\\&&\quad+\frac{\vert(\wp-\varpi_{1})^{n-\delta}\vert}{\vartheta^{\lambda}\Gamma(\lambda)}\int\limits_{\varpi_{1}}^{\wp}(\wp-\ell)^{\lambda-1}(\ell-\varpi_{1})^{\delta-n}\|\eta\|_{\mathbb{C}_{n-\delta}}d\ell. \end{eqnarray} | (3.28) |
Since \big\vert e^{\frac{\vartheta-1}{\vartheta}\wp}\big\vert < 1, we have
\begin{eqnarray} &&\|{\bf T}y\|_{\mathbb{C}_{n-\delta}}\\&&\leq\sum\limits_{\kappa = 1}^{n}\frac{(\varpi_{2}-\varpi_{1})^{n-\kappa}}{\vartheta^{\delta-\kappa+1}\Gamma(\delta-\kappa+1)}\frac{e_{\jmath}}{m_{1}+m_{2}}\\&&\quad+\bigg[\Big\vert\frac{m_{2}}{m_{1}+m_{2}}\Big\vert\sum\limits_{\kappa = 1}^{n}\frac{(\varpi_{2}-\varpi_{1})^{-\kappa}}{\vartheta^{\delta-\kappa+1}}\frac{\Gamma(\lambda)}{\mathfrak{B}(\lambda, 1)}+\frac{\mathfrak{B}(\delta-n+1, 1)}{\vartheta^{\lambda}(\varpi_{2}-\varpi_{1})^{\delta}}\bigg] (\varpi_{2}-\varpi_{1})^{n+\lambda}\|\eta\|_{\mathbb{C}_{n-\delta}}\\&&: = \tau. \end{eqnarray} | (3.29) |
Since \sigma\in(0, 1), then y < {\bf T}y. The last inequality with (3.29) leads us to the conclusion that
\begin{eqnarray} \|y\|_{\mathbb{C}_{n-\delta}} < \|{\bf T}y\|_{\mathbb{C}_{n-\delta}}\leq\tau, \end{eqnarray} | (3.30) |
which proves that \Delta is bounded. Utilizing Schaefer fixed point postulate, this completes the proof.
Our last result is the existence result for the problem (1.1) by using the Kransnoselskii's fixed point theorem (see [37]), the following assumption is needed:
(A_{4}) Suppose that \mathcal{G}:(\varpi_{1}, \varpi_{2}]\times\mathbb{R}\mapsto\mathbb{R} is a function such that \mathcal{G}(. y(.))\in\mathbb{C}_{n-\delta}^{\zeta(n-\lambda); \vartheta}[\varpi_{1}, \varpi_{2}] for any y\in\mathbb{C}_{n-\delta}[\varpi_{1}, \varpi_{2}] and there exists a constant L > 0 such that
\begin{eqnarray} \big\vert \mathcal{G}(\wp, y)-\mathcal{G}(\wp, \omega)\big\vert\leq L\big\vert y-\omega\big\vert, \; \forall\wp\in(\varpi_{1}, \varpi_{2}], \, y, \omega\in\mathbb{R}. \end{eqnarray} | (3.31) |
Also, we note the following assumption as follows: (A_{5}) the inequality
\begin{eqnarray} \mathcal{Q}&&: = \bigg[\Big\vert\frac{m_{2}}{m_{1}+m_{2}}\Big\vert\sum\limits_{\kappa = 1}^{n}\frac{(\varpi_{2}-\varpi_{1})^{n-\kappa}}{\vartheta^{n-\delta+\lambda}\Gamma(\delta-\kappa+1)}+\frac{\mathfrak{B}(\delta-n, \lambda+1)}{\vartheta^{\delta}\Gamma(\delta-n)}\bigg]\\&&\quad\times\frac{\Gamma(\delta-n)(\varpi_{2}-\varpi_{1})^{\lambda}}{\vartheta^{\lambda}\mathfrak{B}(\delta-n, 1)\Gamma(\lambda+1)}\|\tilde{\mathcal{G}}\|_{\mathbb{C}_{n-\delta}}+\frac{e_{\jmath}}{m_{1}+m_{2}}\sum\limits_{\kappa = 1}^{n}\frac{(\varpi_{2}-\varpi_{1})^{n-\kappa}}{\vartheta^{n-\delta+\lambda}\Gamma(\delta-\kappa+1)}L < 1 \end{eqnarray} | (3.32) |
is hold.
Theorem 3.3. Suppose that the assumptions (A_{4}) and (A_{5}) are satisfied. If
\begin{eqnarray} \Big\vert\frac{m_{2}}{m_{1}+m_{2}}\Big\vert\sum\limits_{\kappa = 1}^{n}\frac{(\varpi_{2}-\varpi_{1})^{n-\kappa+\lambda}}{{\vartheta^{n-\delta+\lambda}}\Gamma(\delta-\kappa+1)}\frac{\Gamma(\delta-n+1)}{\vartheta^{\lambda}\Gamma(\lambda+1)}L < 1. \end{eqnarray} | (3.33) |
Then the Hilfer- BVP (1.1) has at least one solution in \mathbb{C}_{n-\delta}^{\delta}[\varpi_{1}, \varpi_{2}]\subset\mathbb{C}_{n-\delta}^{\lambda, \zeta; \vartheta}.
Proof. Considering the operator {\bf T} stated in Theorem 3.1.
First, surmise the operator {\bf T} into sum of two operators {\bf T}_{1}+{\bf T}_{2} as follows
{\bf T}_{1}y(\wp) = \frac{-m_{2}}{m_{1}+m_{2}}\sum\limits_{\kappa = 1}^{n}\frac{e^{\frac{\vartheta-1}{\vartheta}(\wp-\varpi)}(\wp-\varpi_{1})^{\delta-\kappa}}{\vartheta^{n-\delta+\lambda}\Gamma(\delta-\kappa+1)}\\ \frac{1}{\Gamma(n-\delta+\lambda)}\int\limits_{\varpi_{1}}^{\varpi_{2}}e^{\frac{\vartheta-1}{\vartheta}(\varpi_{2}-\ell)}(\varpi_{2}-\ell)^{n-\delta+\lambda-1}\mathcal{G}(\ell, y(\ell))d\ell | (3.34) |
and
\begin{eqnarray} {\bf T}_{2}y(\wp) = \frac{e_{\jmath}}{m_{1}+m_{2}}\sum\limits_{\kappa = 1}^{n}\frac{e^{\frac{\vartheta-1}{\vartheta}(\wp-\varpi)}(\wp-\varpi_{1})^{\delta-\kappa}}{\vartheta^{\delta-\kappa+1}\Gamma(\delta-\kappa+1)}+\frac{1}{\vartheta^{\lambda}\Gamma(\lambda)}\int\limits_{\varpi_{1}}^{\wp}e^{\frac{\vartheta-1}{\vartheta}(\wp-\ell)}(\wp-\ell)^{\lambda-1}\mathcal{G}(\ell, y(\ell))d\ell. \end{eqnarray} | (3.35) |
Setting \tilde{\mathcal{G}} = \mathcal{G}(\ell, 0) and suppose the ball \mathbb{B}_{\epsilon} = \{y\in\mathbb{C}_{n-\delta; \psi([\varpi_{1}, \varpi_{2}])}:\|y\|_{\mathbb{C}_{n-\delta}; \psi}\leq\epsilon\} having \epsilon\geq\frac{\sigma}{1-\mathcal{Q}}, \mathcal{Q} < 1, where
\begin{eqnarray} \sigma&& = \bigg[\Big\vert\frac{m_{2}}{m_{1}+m_{2}}\Big\vert\sum\limits_{\kappa = 1}^{n}\frac{(\varpi_{2}-\varpi_{1})^{n-\kappa}}{\vartheta^{n-\delta+\lambda}\Gamma(\delta-\kappa+1)}+\frac{\mathfrak{B}(\delta-n, \lambda+1)}{\vartheta^{\delta}\Gamma(\delta-n)}\bigg]\\&&\quad\times\frac{\Gamma(\delta-n)(\varpi_{2}-\varpi_{1})^{\lambda}}{\vartheta^{\lambda}\mathfrak{B}(\delta-n, 1)\Gamma(\lambda+1)}L < 1 \end{eqnarray} | (3.36) |
The proof will be done in three cases.
Case 1. We show that {\bf T}_{1}y+{\bf T}_{1}\omega\in\mathbb{B}_{\varrho} for every y, \omega\in\mathbb{B}_{\epsilon}.
Utilizing assumption (A_{4}), then for every y\in\mathbb{B}_{\epsilon} and \wp\in(\varpi_{1}, \varpi_{2}], we have
\begin{eqnarray} &&\big\vert(\wp-\varpi_{1})^{n-\delta}{\bf T}_{1}(\wp)\big\vert\\&&\leq\Big\vert\frac{m_{2}}{m_{1}+m_{2}}\Big\vert\sum\limits_{\kappa = 1}^{n}\frac{e^{\frac{\vartheta-1}{\vartheta}(\wp-\varpi)}(\wp-\varpi_{1})^{n-\kappa}}{\vartheta^{n-\delta+\lambda}\Gamma(\delta-\kappa+1)}\frac{1}{\Gamma(n-\delta+\lambda)}\\&&\quad\times\int\limits_{\varpi_{1}}^{\varpi_{2}}e^{\frac{\vartheta-1}{\vartheta}(\varpi_{2}-\ell)}(\varpi_{2}-\ell)^{n-\delta+\lambda-1}\Big[\big\vert \mathcal{G}(\ell, y(\ell))-\mathcal{G}(\ell, 0)\big\vert+\big\vert \mathcal{G}(\ell, 0)\big\vert\Big]d\ell\\&&\leq\Big\vert\frac{m_{2}}{m_{1}+m_{2}}\Big\vert\sum\limits_{\kappa = 1}^{n}\frac{e^{\frac{\vartheta-1}{\vartheta}(\wp-\varpi)}(\wp-\varpi_{1})^{n-\kappa}}{\vartheta^{n-\delta+\lambda}\Gamma(\delta-\kappa+1)}\frac{1}{\Gamma(n-\delta+\lambda)}\\&&\quad\times\int\limits_{\varpi_{1}}^{\varpi_{2}}e^{\frac{\vartheta-1}{\vartheta}(\varpi_{2}-\ell)}(\varpi_{2}-\ell)^{n-\delta+\lambda-1}(\ell-\varpi_{1})^{\delta-n}\Big[L\|y\|_{\mathbb{C}_{n-\delta}}+\big\|\tilde{\mathcal{G}}\big\|_{\mathbb{C}_{n-\delta}}\Big]d\ell\\&&\leq\Big\vert\frac{m_{2}}{m_{1}+m_{2}}\Big\vert\sum\limits_{\kappa = 1}^{n}\frac{(\wp-\varpi_{1})^{n-\kappa}}{\vartheta^{n-\delta+\lambda}\Gamma(\delta-\kappa+1)}{\frac{\Gamma(\delta-n+1)}{\vartheta^{\lambda}\Gamma(\lambda+1)}}\Big[L\epsilon+\big\|\tilde{\mathcal{G}}\big\|_{\mathbb{C}_{n-\delta}}\Big]. \end{eqnarray} | (3.37) |
Since \big\vert e^{\frac{\vartheta-1}{\vartheta}\wp}\big\vert < 1. Therefore, we get
\begin{eqnarray} &&\|{\bf T}_{1}y\|_{\mathbb{C}_{n-\delta}}\\&&\leq\Big\vert\frac{m_{2}}{m_{1}+m_{2}}\Big\vert\sum\limits_{\kappa = 1}^{n}\frac{(\varpi_{2}-\varpi_{1})^{n-\kappa+\lambda}}{\vartheta^{n-\delta+\lambda}\Gamma(\delta-\kappa+1)}\frac{\Gamma(\delta-n+1)}{\vartheta^{\lambda}\Gamma(\lambda+1)}\Big[L\epsilon+\big\|\tilde{\mathcal{G}}\big\|_{\mathbb{C}_{n-\delta}}\Big]. \end{eqnarray} | (3.38) |
For operator {\bf T}_{2}, we have
\begin{eqnarray} &&\big\vert(\wp-\varpi_{1})^{n-\delta}{\bf T}_{2}\omega(\wp)\big\vert\\&&\leq\Big\vert\frac{e_{\jmath}}{m_{1}+m_{2}}\Big\vert\sum\limits_{\kappa = 1}^{n}\frac{e^{\frac{\vartheta-1}{\vartheta}(\wp-\varpi)}(\wp-\varpi_{1})^{n-\kappa}}{\vartheta^{n-\delta+\lambda}\Gamma(\delta-\kappa+1)}\\&&\quad\times\frac{(\wp-\varpi_{1})^{n-\delta}}{\vartheta^{\lambda}\Gamma(\lambda)}\int\limits_{\varpi_{1}}^{\wp}e^{\frac{\vartheta-1}{\vartheta}(\wp-\ell)}(\wp-\ell)^{\lambda-1}\Big[\big\vert \mathcal{G}(\ell, \omega(\ell))-\mathcal{G}(\ell, 0)\big\vert+\big\vert \mathcal{G}(\ell, 0)\big\vert\Big]d\ell\\&&\leq\Big\vert\frac{e_{\jmath}}{m_{1}+m_{2}}\Big\vert\sum\limits_{\kappa = 1}^{n}\frac{(\wp-\varpi_{1})^{n-\kappa}}{\vartheta^{n-\delta+\lambda}\Gamma(\delta-\kappa+1)}\\&&\quad\times\frac{(\wp-\varpi_{1})^{n-\delta}}{\vartheta^{\lambda}\Gamma(\lambda)}\int\limits_{\varpi_{1}}^{\wp}e^{\frac{\vartheta-1}{\vartheta}(\wp-\ell)}(\wp-\ell)^{\lambda-1}(\ell-\varpi_{1})^{\delta-n} \Big[L\|\omega\|_{\mathbb{C}_{n-\delta}}+\big\|\tilde{\mathcal{G}}\big\|_{\mathbb{C}_{n-\delta}}\Big]d\ell. \end{eqnarray} | (3.39) |
For every \omega\in\mathbb{B}_{\epsilon} and \wp\in(\varpi_{1}, \varpi_{2}], this shows
\begin{eqnarray} &&\|{\bf T}_{1}\omega\|_{\mathbb{C}_{n-\delta}}\\&&\leq\Big\vert\frac{e_{\jmath}}{m_{1}+m_{2}}\Big\vert\sum\limits_{\kappa = 1}^{n}\frac{(\varpi_{2}-\varpi_{1})^{n-\kappa}}{\vartheta^{n-\delta+\lambda}\Gamma(\delta-\kappa+1)}\\&&\quad\times\frac{(\varpi_{2}-\varpi_{1})^{\lambda}}{\vartheta^{\lambda}\Gamma(\delta-n+\lambda+1)} \Big[L\epsilon+\big\|\tilde{\mathcal{G}}\big\|_{\mathbb{C}_{n-\delta}}\Big]. \end{eqnarray} | (3.40) |
From (3.38), (3.40) and utilizing assumption (A_{5}) with (3.36), we find
\begin{eqnarray} &&\|{\bf T}_{1}y+{\bf T}_{2}\omega\| _{\mathbb{C}_{n-\delta}}\\&&\leq\|{\bf T}_{1}y\| _{\mathbb{C}_{n-\delta}}+\|{\bf T}_{1}\omega\| _{\mathbb{C}_{n-\delta}}\\&&\leq\frac{(\varpi_{2}-\varpi_{1})^{\lambda}\Gamma(\delta-n+1)}{\vartheta^{\lambda}\Gamma(\lambda+1)}\Big[L\epsilon+\big\|\tilde{\mathcal{G}}\big\|_{\mathbb{C}_{n-\delta}}\Big]\\&&\bigg[\Big\vert\frac{m_{2}}{m_{1}+m_{2}}\Big\vert\sum\limits_{\kappa = 1}^{n}\frac{(\varpi_{2}-\varpi_{1})^{n-\kappa}}{\vartheta^{n-\delta+\lambda}\Gamma(\delta-\kappa+1)}+\frac{\Gamma(\lambda+1)}{\Gamma(\delta-n+\lambda+1)}\bigg]\\&&\quad+\frac{e_{\jmath}}{m_{1}+m_{2}}\sum\limits_{\kappa = 1}^{n}\frac{(\varpi_{2}-\varpi_{1})^{n-\kappa}}{\vartheta^{n-\delta+\lambda}\Gamma(\delta-\kappa+1)}\\&&\leq\mathcal{Q}\epsilon+(1-\mathcal{Q})\epsilon = \epsilon. \end{eqnarray} | (3.41) |
Case 2. We prove that the operator {\bf T} is a contraction mapping on \mathbb{B}_{\varrho}.
For any y, \omega\in\mathbb{B}_{\varrho}, and for any \wp\in(\varpi_{1}, \varpi_{2}], then by supposition (A_{4}), we have
\begin{eqnarray} &&\big\vert(\wp-\varpi_{1})^{n-\delta}{\bf T}_{1}y(\wp)-(\wp-\varpi_{1})^{n-\delta}{\bf T}_{1}\omega(\wp) \big\vert\\&&\leq\Big\vert\frac{m_{2}}{m_{1}+m_{2}}\Big\vert\sum\limits_{\kappa = 1}^{n}\frac{e^{\frac{\vartheta-1}{\vartheta}(\wp-\varpi)}(\wp-\varpi_{1})^{n-\kappa}}{\vartheta^{n-\delta+\lambda}\Gamma(\delta-\kappa+1)}\frac{1}{\Gamma(n-\delta+\lambda)}\\&&\int\limits_{\varpi_{1}}^{\varpi_{2}}e^{\frac{\vartheta-1}{\vartheta}(\varpi_{2}-\ell)}(\varpi_{2}-\ell)^{n-\delta+\lambda-1}\Big[\mathcal{G}(\ell, y(\ell))-\mathcal{G}(\ell, \omega(\ell))\Big]d\ell\\&&\leq \Big\vert\frac{m_{2}}{m_{1}+m_{2}}\Big\vert\sum\limits_{\kappa = 1}^{n}\frac{e^{\frac{\vartheta-1}{\vartheta}(\wp-\varpi)}(\wp-\varpi_{1})^{n-\kappa}}{\vartheta^{n-\delta+\lambda}\Gamma(\delta-\kappa+1)}\frac{1}{\Gamma(n-\delta+\lambda)}\\&&\int\limits_{\varpi_{1}}^{\varpi_{2}}e^{\frac{\vartheta-1}{\vartheta}(\varpi_{2}-\ell)}(\varpi_{2}-\ell)^{n-\delta+\lambda-1}L\big\vert y(\ell)-\omega(\ell)\big\vert d\ell\\&&\leq\Big\vert\frac{m_{2}}{m_{1}+m_{2}}\Big\vert\sum\limits_{\kappa = 1}^{n}\frac{(\wp-\varpi_{1})^{n-\kappa}}{\vartheta^{n-\delta+\lambda}\Gamma(\delta-\kappa+1)}\frac{\Gamma(\delta-n+1)}{\vartheta^{\lambda}\Gamma(\lambda+1)}(\varpi_{2}-\ell)^{\lambda}L\big\| y-\omega\big\|_{\mathbb{C}_{n-\delta}}. \end{eqnarray} | (3.42) |
Since \big\vert e^{\frac{\vartheta-1}{\vartheta}\wp}\big\vert < 1, this yields
\begin{eqnarray} && \big\|{\bf T}y-{\bf T}\omega\big\|_{\mathbb{C}_{n-\delta}}\\&&\leq\Big\vert\frac{m_{2}}{m_{1}+m_{2}}\Big\vert\sum\limits_{\kappa = 1}^{n}\frac{(\varpi_{2}-\varpi_{1})^{n-\kappa+\lambda}}{\vartheta^{\vartheta^{n-\delta+\lambda}}\Gamma(\delta-\kappa+1)}\frac{\Gamma(\delta-n+1)}{\vartheta^{\lambda}\Gamma(\lambda+1)}L\|y-\omega\|_{\mathbb{C}_{n-\delta}}. \end{eqnarray} | (3.43) |
Due to assumption (3.33), which shows that the operator {\bf T} is a contraction mapping.
Case 3: Now we show that the operator {\bf T}_{2} is completely continuous on \mathbb{B}_{\epsilon}.
From the continuity of \mathcal{G}, we deduce that the operator {\bf T}_{2}:\mathbb{B}_{\epsilon}\mapsto\mathbb{B}_{\epsilon} is continuous on \mathbb{B}_{\epsilon}. Furthermore, we prove that for all \epsilon > 0 there exists some \epsilon^{\prime} > 0 such that \|{\bf T}_{2}y\|_{\mathbb{C}_{n-\delta}} < \epsilon^{\prime}. In view of case 1, for y\in\mathbb{B}_{\epsilon}, we have that
\|{\bf T}_{2}y\|_{\mathbb{C}_{n-\delta}}\leq\sum\limits_{\kappa = 1}^{n}\frac{(\varpi_{2}-\varpi_{1})^{n-\kappa}}{\vartheta^{\delta-\kappa+1}\Gamma(\delta-\kappa+1)}\frac{e_{\jmath}}{m_{1}+m_{2}}+\\ \frac{\mathfrak{B}(\delta-n+1, \lambda)(\varpi_{2}-\varpi_{1})^{\lambda}}{\vartheta^{\lambda}\Gamma(\lambda)}\Big[L\epsilon+\|\tilde{\mathcal{G}}\|_{\mathbb{C}_{n-\delta}}\Big], | (3.44) |
which is free of \wp and y, so there exists
\begin{eqnarray} \epsilon^{\prime} = \frac{e_{\jmath}}{m_{1}+m_{2}}\sum\limits_{\kappa = 1}^{n}\frac{(\varpi_{2}-\varpi_{1})^{n-\kappa}}{\vartheta^{n-\delta+\lambda}\Gamma(\delta-\kappa+1)}+\frac{\mathfrak{B}(\delta-n+1, \lambda)(\varpi_{2}-\varpi_{1})^{\lambda}}{\vartheta^{\lambda}\Gamma(\lambda)}\Big[L\epsilon+\|\tilde{\mathcal{G}}\|_{\mathbb{C}_{n-\delta}}\Big] \end{eqnarray} | (3.45) |
such that \|{\bf T}_{2}(y)\|_{\mathbb{C}_{n-\delta}}\leq\epsilon^{\prime}. Therefore, {\bf T}_{2} is uniformly bounded set on \mathbb{B}_{\epsilon}. Finally, to show that {\bf T}_{2} is equicontinuous in \mathbb{B}_{\epsilon}, for any z\in\mathbb{B}_{\epsilon} and \wp_{1}, \wp_{2}\in(\varpi_{1}, \varpi_{2}] having \wp_{1} < \wp_{2}, we have
\begin{eqnarray} &&\big\vert(\wp_{2}-\varpi_{1})^{n-\delta}{\bf T}_{2}y(\wp_{2})-(\wp_{1}-\varpi_{1})^{n-\delta}{\bf T}_{2}y(\wp_{1})\big\vert\\&& = \frac{e_{\jmath}}{m_{1}+m_{2}}\bigg\vert\sum\limits_{\kappa = 1}^{n}\frac{(\wp_{2}-\varpi_{1})^{n-\kappa}-(\wp_{1}-\varpi_{1})^{n-\delta}}{\vartheta^{\delta-\kappa}\Gamma(\delta-\kappa+1)}+\frac{(\wp_{2}-\varpi_{1})^{n-\delta}}{\vartheta^{\lambda}\Gamma(\lambda)}\\&& \int\limits_{\varpi_{1}}^{\wp_{2}}e^{\frac{\vartheta-1}{\vartheta}(\wp_{2}-\ell)}(\wp_{2}-\ell)^{\lambda-1}\mathcal{G}(\ell, y(\ell))d\ell\\&&\quad-\frac{(\wp_{1}-\varpi_{1})^{n-\delta}}{\vartheta^{\lambda}\Gamma(\lambda)}\int\limits_{\varpi_{1}}^{\wp_{1}}e^{\frac{\vartheta-1}{\vartheta}(\wp_{1}-\ell)}(\wp_{1}-\ell)^{\lambda-1}\mathcal{G}(\ell, y(\ell))d\ell\bigg\vert\\&&\leq\frac{e_{\jmath}}{m_{1}+m_{2}}\sum\limits_{\kappa = 1}^{n}\frac{\big\vert (\wp_{2}-\varpi_{1})^{n-\kappa}-(\wp_{1}-\varpi_{1})^{n-\delta}\big\vert }{\vartheta^{\delta-\kappa}\Gamma(\delta-\kappa+1)}\\&&\quad+\bigg\vert\frac{(\wp_{2}-\varpi_{1})^{n-\delta}}{\vartheta^{\lambda}\Gamma(\lambda)}\int\limits_{\varpi_{1}}^{\wp_{2}}e^{\frac{\vartheta-1}{\vartheta}(\wp_{2}-\ell)}(\wp_{2}-\ell)^{\lambda-1}(\ell-\varpi_{1})^{\delta-n}\|\mathcal{G}\|_{\mathbb{C}_{n-\delta, \psi[\varpi_{1}, \varpi_{2}]}}d\ell\\&&\quad-\frac{(\wp_{1}-\varpi_{1})^{n-\delta}}{\vartheta^{\lambda}\Gamma(\lambda)}\int\limits_{\varpi_{1}}^{\wp_{1}}e^{\frac{\vartheta-1}{\vartheta}(\wp_{1}-\ell)}(\wp_{1}-\ell)^{\lambda-1}(\ell-\varpi_{1})^{\delta-n}\|\mathcal{G}\|_{\mathbb{C}_{n-\delta, \psi[\varpi_{1}, \varpi_{2}]}}d\ell\bigg\vert\\&& = \sum\limits_{\kappa = 1}^{n}\frac{e_{\jmath}}{m_{1}+m_{2}}\frac{\big\vert (\wp_{2}-\varpi_{1})^{n-\kappa}-(\wp_{1}-\varpi_{1})^{n-\delta}\big\vert }{\vartheta^{\delta-\kappa}\Gamma(\delta-\kappa+1)}+\frac{\mathfrak{B}(\delta-n+1)}{\vartheta^{\lambda}}\\&& \|\mathcal{G}\|_{\mathbb{C}_{n-\delta;\psi[\varpi_{1}, \varpi_{2}]}}\big\vert(\wp_{2}-\varpi_{1})^{\lambda}-(\wp_{1}-\varpi_{1})^{\lambda}\big\vert .\\ \end{eqnarray} | (3.46) |
Since \big\vert e^{\frac{\vartheta-1}{\vartheta}\wp}\big\vert < 1. It is noting that the right hand side of the aforesaid variant is free of y. So,
\begin{eqnarray} \big\vert(\wp_{2}-\varpi_{1})^{n-\delta}{\bf T}_{2}y(\wp_{2})-(\wp_{1}-\varpi_{1})^{n-\delta}{\bf T}_{2}y(\wp_{1})\big\vert\mapsto 0, \; as\; \vert \wp_{2}-\wp_{1}\vert\mapsto 0. \end{eqnarray} | (3.47) |
This shows that {\bf T}_{2} is equicontinuous on \mathbb{B}_{\epsilon}. According to Arzela-Ascoli Theorem, observed that ({\bf T}_{2}\mathbb{B}_{\epsilon}) is relatively compact. By Kransnoselskii's fixed point theorem, the problem (1.1) has at least one solution.
Consider the fractional differential equation with boundary condition which encompasses the Hilfer- GPF derivative of the form
\begin{eqnarray} \left \{ \begin{array}{cc} \mathcal{D}_{\varpi_{1}^{+}}^{\lambda, \zeta;\vartheta}y(\wp) = \wp^{-\frac{1}{6}}+\frac{\wp^{5/6}}{16}\sin y(\wp), \, \wp\in\mathbb{J} = [0, 2], \lambda\in(0, 1), \zeta\in[0, 1]\\ \mathcal{I}_{\varpi_{1}^{+}}^{1-\delta;\vartheta}\Big[\frac{1}{3}y(0^{+})+\frac{2}{3}y(2^{-})\Big] = \frac{2}{5}, \lambda\leq\delta = \lambda+\zeta-\lambda\zeta, \\ \end{array} \right. \end{eqnarray} | (4.1) |
By comparison (1.1) with (2.9), we have \lambda = \frac{1}{2}, \zeta = \frac{1}{3}, \delta = \frac{2}{3}, m_{1} = \frac{1}{3}, m_{2} = \frac{2}{3}, \vartheta = 1 and e_{1} = \frac{2}{5}. It is clear that \wp^{\frac{1}{3}}\mathcal{G}(\wp, y(\wp)) = \wp^{\frac{1}{6}}+\frac{\wp^{7/6}}{16}\sin y(\wp)\in\mathbb{C}([0, 2]), So \mathcal{G}(\wp, y(\wp))\in\mathbb{C}_{\frac{1}{3}}. Thus, it follows that, for any y\in\mathbb{R}^{+} and \wp\in\mathbb{J},
\begin{eqnarray} \big\vert \mathcal{G}(\wp, y(\wp))\big\vert&&\leq\wp^{\frac{1}{6}}\bigg(1+\frac{\wp^{2/3}}{16}\big\vert\wp^{1/3}y(\wp)\big\vert\bigg)\\&&\leq\bigg(1+\frac{1}{16}\big\|y\|_{\mathbb{C}_{\frac{1}{3}}}\bigg). \end{eqnarray} | (4.2) |
Hence, the assumption (A_{1}) is fulfilled having \mathcal{M} = 1 and \mathfrak{m} = \frac{1}{16}. It is easy to verify that the assumption (A_{2}) is hold too. In fact, by simple computations, we obtain
\begin{eqnarray} \mathcal{G}: = \frac{\mathfrak{m}\mathcal{M}_{1}\Gamma(\delta)}{\vartheta^{\lambda}\Gamma(\lambda+1)}\Big[(\varpi_{2}-\varpi_{1})^{\lambda}+(\varpi_{2}-\varpi_{1})^{\lambda+1-\delta}\Big]\approx-0.03510 < 1. \end{eqnarray} | (4.3) |
Hence, all suppositions of Theorem 3.1 implies that the problem (1.1) has a unique solution in \mathbb{C}_{\frac{1}{3}}^{\frac{2}{3}}([0, 2]).
Also, assume that \mathcal{G}(\wp, y(\wp)) = \wp^{-\frac{1}{6}}+\frac{\wp^{5/6}}{16}\sin y(\wp). Thus \big\vert \mathcal{G}(\wp_{1}, y(\wp))\leq \wp^{-\frac{1}{6}}+\frac{\wp^{5/6}}{16}\big\vert = \eta(\wp)\in\mathbb{C}_{1-\delta}([0, 2]). So, (A_{3}) is satisfied. Therefore, in view of Theorem 3.2, we conclude that problem (1.1) has a solution in \mathbb{C}_{1/3}^{2/3}([0, 2]).
Finally, if \mathcal{G}(\wp, y(\wp)) = \wp^{-\frac{1}{6}}+\frac{\wp^{5/6}}{16}\sin y(\wp), then for y, \omega\in\mathbb{R}^{+} and \wp\in\mathbb{J}, we have
\begin{eqnarray*} \Big\vert \mathcal{G}(\wp, y(\wp))-\mathcal{G}(\wp, \omega(\wp))\Big\vert\leq\frac{1}{16}\big\vert y-\omega\big\vert. \end{eqnarray*} |
Therefore, the assumption (A_{4}) is fulfilled having L = \frac{1}{16}. Clearly, assumption (A_{5}) and inequality (3.33) are holds. In fact, simple computations yields
\begin{eqnarray} \mathcal{Q}&&: = \bigg[\Big\vert\frac{m_{2}}{m_{1}+m_{2}}\Big\vert\sum\limits_{\kappa = 1}^{n}\frac{(\varpi_{2}-\varpi_{1})^{n-\kappa}}{\vartheta^{n-\delta+\lambda}\Gamma(\delta-\kappa+1)}+\frac{\mathfrak{B}(\delta-n, \lambda+1)}{\vartheta^{\delta}\Gamma(\delta-n)}\bigg]\\&&\quad\times\frac{\Gamma(\delta-n)(\varpi_{2}-\varpi_{1})^{\lambda}}{\vartheta^{\lambda}\mathfrak{B}(\delta-n, 1)\Gamma(\lambda+1)}L\approx 0.1456 < 1, \end{eqnarray} | (4.4) |
and
\begin{eqnarray} \Big\vert\frac{m_{2}}{m_{1}+m_{2}}\Big\vert\sum\limits_{\kappa = 1}^{n}\frac{(\varpi_{2}-\varpi_{1})^{n-\kappa+\lambda}}{\vartheta^{n-\delta+\lambda}\Gamma(\delta-\kappa+1)}\frac{\Gamma(\delta-n+1)}{\vartheta^{\lambda}\Gamma(\lambda+1)}L\approx0.0495 < 1 \end{eqnarray} | (4.5) |
of Theorem 3.3, shows that problem (1.1) has a solution in \mathbb{C}_{\frac{1}{3}}^{\frac{2}{3}}([0, 2]).
In this approach, we have established certain existence consequences for the solution of BVP for Hilfer- FDEs depend on the lessening of FDEs to integral equations. The proposed scheme with the fixed point assertions unifies the existing results in the frame of RL and Caputo GPF sense, respectively. Besides that, the analysis's comprehensive improvements are dependent on various techniques such as Schauder's, Schaefer's and Kransnoselskii's fixed point theorems. Also, the Hilffer GPF -derivative comprise two parameters and a proportionality index \vartheta.
\bullet If \vartheta\mapsto 1 and \lambda = [0, 1], then the contemplated problem converted to RL and Caputo fractional derivative [8]. If \vartheta\in(0, 1) and \zeta = 0, 1 we recaptures the RL and Caputo GPF -derivative [25], respectively (see Figure 1).
\bullet Clearly, if \vartheta, \zeta\in(0, 1), then the newly employed derivatives amalgamate the existing ones in the adjustment of Hilfer, RL and GPF -derivative, (see Figure 2).
\bullet If \vartheta\mapsto 1 and \zeta, \lambda\in[0, 1], then the formulation for this problem enjoys Hilfer factional derivative [8], (see Figure 3).
Moreover, a stimulative example is presented to show the efficacy of the established outcomes. We hope that the testified outcomes here will have a considerable impact for more parameters on the stability and other qualitative features of differential equations in the areas of interest of applied sciences.
The authors declare that there is no conflict of interests.
[1] |
M. Nazeer, F. Hussain, M. Ijaz Khan, Asad-ur-Rehman, E. R. El-Zahar, Y. M. Chu, et al., Theoretical study of MHD electro-osmotically flow of third-grade fluid in micro channel, Appl. Math. Comput., 420 (2022), 126868. https://doi.org/10.1016/j.amc.2021.126868 doi: 10.1016/j.amc.2021.126868
![]() |
[2] |
Y. M. Chu, B. M. Shankaralingappa, B. J. Gireesha, F. Alzahrani, M. Ijaz Khan, S. U. Khan, Combined impact of Cattaneo-Christov double diffusion and radiative heat flux on bio-convective flow of Maxwell liquid configured by a stretched nano-material surface, Appl. Math. Comput., 419 (2022), 126883. https://doi.org/10.1016/j.amc.2021.126883 doi: 10.1016/j.amc.2021.126883
![]() |
[3] |
Y. M. Chu, U. Nazir, M. Sohail, M. M. Selim, J. R. Lee, Enhancement in thermal energy and solute particles using hybrid nanoparticles by engaging activation energy and chemical reaction over a parabolic surface via finite element approach, Fractal Fract., 5 (2021), 119. https://doi.org/10.3390/fractalfract5030119 doi: 10.3390/fractalfract5030119
![]() |
[4] | T. H. Zhao, O. Castillo, H. Jahanshahi, A. Yusuf, M. O. Alassafi, F. E. Alsaadi, et al., A fuzzy-based strategy to suppress the novel coronavirus (2019-NCOV) massive outbreak, Appl. Comput. Math., 20 (2021), 160–176. |
[5] |
Z. Denton, A. S. Vatsala, Fractional integral inequalities and applications, Comput. Math. Appl., 59 (2010), 1087–1094. https://doi.org/10.1016/j.camwa.2009.05.012 doi: 10.1016/j.camwa.2009.05.012
![]() |
[6] |
R. Khalil, M. Al Horani, A. Yousef, M. Sababheh, A new definition of fractional derivative, J. Comput. Appl. Math., 264 (2014), 65–70. https://doi.org/10.1016/j.cam.2014.01.002 doi: 10.1016/j.cam.2014.01.002
![]() |
[7] |
R. Almeida, A Caputo fractional derivative of a function with respect to another function, Commun. Nonlinear Sci., 44 (2017), 460–481. https://doi.org/10.1016/j.cnsns.2016.09.006 doi: 10.1016/j.cnsns.2016.09.006
![]() |
[8] | A. A. Kilbas, H. M. Srivastava, J. J. Trujillo, Theory and applications of fractional differential equations, Elsevier, 2006. |
[9] | R. Hilfer, Applications of fractional calculus in physics, World Scientific, 2000. |
[10] |
A. Atangana, On the new fractional derivative and application to nonlinear Fisher's reaction-diffusion equation, Appl. Math. Comput., 273 (2016), 948–956. https://doi.org/10.1016/j.amc.2015.10.021 doi: 10.1016/j.amc.2015.10.021
![]() |
[11] |
S. Rashid, F. Jarad, M. A. Noor, H. Kalsoom, Inequalities by means of generalized proportional fractional integral operators with respect to another function, Mathematics, 7 (2020), 1225. https://doi.org/10.3390/math7121225 doi: 10.3390/math7121225
![]() |
[12] | R. A. Yan, S. R. Sun, Z. L. Han, Existence of solutions of boundary value problems for caputo fractional differential equations on time scales, Bull. Iranian Math. soc., 42 (2016), 247–262. |
[13] |
A. Atangana, D. Baleanu, Application of fixed point theorem for stability analysis of a nonlinear Schördinger with Caputo-Liouville derivative, Filomat, 31 (2017), 2243–2248. https://doi.org/10.2298/FIL1708243A doi: 10.2298/FIL1708243A
![]() |
[14] |
F. Jarad, S. Harikrishnan, K. Shah, K. Kanagarajan, Existence and stability results to a class of fractional random implicit differential equations involving a generalized Hilfer fractional derivative, Discrete Cont. Dyn. S, 13 (2020), 723–739. https://doi.org/10.3934/dcdss.2020040 doi: 10.3934/dcdss.2020040
![]() |
[15] |
O. A. Arqub, Numerical simulation of time-fractional partial differential equations arising in fluid flows via reproducing Kernel method, Int. J. Numer. Method. H., 30 (2020), 4711–4733. https://doi.org/10.1108/HFF-10-2017-0394 doi: 10.1108/HFF-10-2017-0394
![]() |
[16] |
S. Djennadi, N. Shawagfeh, M. Inc, M. S. Osman, J. F. Gómez-Aguilar, O. A. Arqub, The Tikhonov regularization method for the inverse source problem of time fractional heat equation in the view of ABC-fractional technique, Phys. Scr., 96 (2021), 094006. https://doi.org/10.1088/1402-4896/ac0867 doi: 10.1088/1402-4896/ac0867
![]() |
[17] |
R. Khalil, M. A. Horani, A. Yousef, M. Sababheh, A new definition of fractional derivative, J. Comput. Appl. Math., 264 (2014), 65–70. https://doi.org/10.1016/j.cam.2014.01.002 doi: 10.1016/j.cam.2014.01.002
![]() |
[18] |
T. Abdeljawad, On conformable fractional calculus, J. Comput. Appl. Math., 279 (2015), 57–66. https://doi.org/10.1016/j.cam.2014.10.016 doi: 10.1016/j.cam.2014.10.016
![]() |
[19] |
D. R. Anderson, D. J. Ulness, Newly defined conformable derivatives, Adv. Dyn. Syst. Appl. 10 (2015), 109–137. https://doi.org/10.13140/RG.2.1.1744.9444 doi: 10.13140/RG.2.1.1744.9444
![]() |
[20] |
T. H. Zhao, W. M. Qian, Y. M. Chu, Sharp power mean bounds for the tangent and hyperbolic sine means, J. Math. Inequal., 15 (2021), 1459–1472. https://doi.org/10.7153/jmi-2021-15-100 doi: 10.7153/jmi-2021-15-100
![]() |
[21] |
S. Rashid, E. I. Abouelmagd, S. Sultana, Y. M. Chu, New developments in weighted n-fold type inequalities via discrete generalized {\rm{\hat h}}-proportional fractional operators, Fractals, 30 (2022), 2240056. https://doi.org/10.1142/S0218348X22400564 doi: 10.1142/S0218348X22400564
![]() |
[22] |
S. Rashid, E. I. Abouelmagd, A. Khalid, F. B. Farooq, Y. M. Chu, Some recent developments on dynamical \hbar-discrete fractional type inequalities in the frame of nonsingular and nonlocal kernels, Fractals, 30 (2022), 2240110. https://doi.org/10.1142/S0218348X22401107 doi: 10.1142/S0218348X22401107
![]() |
[23] |
M. Al Qurashi, S. Rashid, S. Sultana, H. Ahmad, K. A. Gepreel, New formulation for discrete dynamical type inequalities via h-discrete fractional operator pertaining to nonsingular kernel, Math. Biosci. Eng., 18 (2021), 1794–1812. https://doi.org/10.3934/mbe.2021093 doi: 10.3934/mbe.2021093
![]() |
[24] |
S. S. Zhou, S. Rashid, S. Parveen, A. O. Akdemir, Z. Hammouch, New computations for extended weighted functionals within the Hilfer generalized proportional fractional integral operators, AIMS Math., 6 (2021), 4507–4525. https://doi.org/10.3934/math.2021267 doi: 10.3934/math.2021267
![]() |
[25] |
F. Jarad, T. Abdeljawad, J. Alzabut, Generalized fractional derivatives generated by a class of local proportional derivatives. Eur. Phys. J. Spec. Top., 226 (2017), 3457–3471. https://doi.org/10.1140/epjst/e2018-00021-7 doi: 10.1140/epjst/e2018-00021-7
![]() |
[26] |
S. Rashid, S. Sultana, Y. Karaca, A. Khalid, Y. M. Chu, Some further extensions considering discrete proportional fractional operators, Fractals, 30 (2022), 2240026. https://doi.org/10.1142/S0218348X22400266 doi: 10.1142/S0218348X22400266
![]() |
[27] |
K. Karthikeyan, P. Karthikeyan, H. M. Baskonus, K. Venkatachalam, Y. M. Chu, Almost sectorial operators on \Psi-Hilfer derivative fractional impulsive integro-differential equations, Math. Method. Appl. Sci., 45 (2022), 8045–8059. https://doi.org/10.1002/mma.7954 doi: 10.1002/mma.7954
![]() |
[28] |
S. Rashid, S. Sultana, Y. Karaca, A. Khalid, Y. M. Chu, Some further extensions considering discrete proportional fractional operators, Fractals, 30 (2022), 2240026. https://doi.org/10.1142/S0218348X22400266 doi: 10.1142/S0218348X22400266
![]() |
[29] |
S. Rashid, F. Jarad, M. A. Noor, Grüss-type integrals inequalities via generalized proportional fractional operators, RACSAM, 114 (2020), 93. https://doi.org/10.1007/s13398-020-00823-5 doi: 10.1007/s13398-020-00823-5
![]() |
[30] |
I. Ahmad, P. Kumam, F. Jarad, P. Borisut, Jirakitpuwapat, On Hilfer generalized proportional fractional derivative, Adv. Differ. Equ., 2020 (2020), 329. https://doi.org/10.1186/s13662-020-02792-w doi: 10.1186/s13662-020-02792-w
![]() |
[31] |
K. Shah, D. Vivek, K. Kanagarajan, Dynamics and stability of \alpha-fractional pantograph equations with boundary conditions, Bol. Soc. Paran. Mat., 39 (2021), 43–55. https://doi.org/10.5269/bspm.41154 doi: 10.5269/bspm.41154
![]() |
[32] |
D. Vivek, K. Kanagarajan, E. Elsayed, Some existence and stability results for Hilfer-fractional implicit differential equations with nonlocal conditions, Mediterr. J. Math., 15 (2018), 15. https://doi.org/10.1007/s00009-017-1061-0 doi: 10.1007/s00009-017-1061-0
![]() |
[33] |
O. A. Arqub, Reproducing Kernel algorithm for the analytical-numerical solutions of nonlinear systems of singular periodic boundary value problems, Math. Probl. Eng., 2015 (2015), 518406. https://doi.org/10.1155/2015/518406 doi: 10.1155/2015/518406
![]() |
[34] |
S. Djennadi, N. Shawagfeh, O. A. Arqub, A fractional Tikhonov regularization method for an inverse backward and source problems in the time-space fractional diffusion equations, Chaos Soliton. Fract., 150 (2021), 111127. https://doi.org/10.1016/j.chaos.2021.111127 doi: 10.1016/j.chaos.2021.111127
![]() |
[35] |
W. Shammakh, H. Z. Alzum, Existence results for nonlinear fractional boundary value problem involving generalized proportional derivative, Adv. Differ. Equ., 2019 (2019), 94. https://doi.org/10.1186/s13662-019-2038-z doi: 10.1186/s13662-019-2038-z
![]() |
[36] | A. Granas, J. Dugundi, Fixed point theory, New York: Springer, 2003. |
[37] | M. Krasnoselskii, Two remarks about the method of successive approximations, Uspekhi Mat. Nauk, 10 (1955), 123–127. |
1. | Saowaluck Chasreechai, Muhammad Aamir Ali, Surapol Naowarat, Thanin Sitthiwirattham, Kamsing Nonlaopon, On some Simpson's and Newton's type of inequalities in multiplicative calculus with applications, 2023, 8, 2473-6988, 3885, 10.3934/math.2023193 | |
2. | Wasfi Shatanawi, Taqi A. M. Shatnawi, Some fixed point results based on contractions of new types for extended b -metric spaces, 2023, 8, 2473-6988, 10929, 10.3934/math.2023554 | |
3. | Rajaa T. Matoog, Amr M. S. Mahdy, Mohamed A. Abdou, Doaa Sh. Mohamed, A Computational Method for Solving Nonlinear Fractional Integral Equations, 2024, 8, 2504-3110, 663, 10.3390/fractalfract8110663 | |
4. | Mohammed A. Almalahi, Khaled Aldowah, Faez Alqarni, Manel Hleili, Kamal Shah, Fathea M. O. Birkea, On modified Mittag–Leffler coupled hybrid fractional system constrained by Dhage hybrid fixed point in Banach algebra, 2024, 14, 2045-2322, 10.1038/s41598-024-81568-8 | |
5. | Muath Awadallah, Mohamed Hannabou, Hajer Zaway, Jihan Alahmadi, Applicability of Caputo-Hadmard fractional operator in mathematical modeling of pantograph systems, 2025, 1598-5865, 10.1007/s12190-025-02421-3 |