Processing math: 55%
Research article Special Issues

Nonlinear fractional differential equations and their existence via fixed point theory concerning to Hilfer generalized proportional fractional derivative

  • This article adopts a class of nonlinear fractional differential equation associating Hilfer generalized proportional fractional (GPF) derivative with having boundary conditions, which amalgamates the Riemann-Liouville (RL) and Caputo-GPF derivative. Taking into consideration the weighted space continuous mappings, we first derive a corresponding integral for the specified boundary value problem. Also, we investigate the existence consequences for a certain problem with a new unified formulation considering the minimal suppositions on nonlinear mapping. Detailed developments hold in the analysis and are dependent on diverse tools involving Schauder's, Schaefer's and Kransnoselskii's fixed point theorems. Finally, we deliver two examples to check the efficiency of the proposed scheme.

    Citation: Saima Rashid, Abdulaziz Garba Ahmad, Fahd Jarad, Ateq Alsaadi. Nonlinear fractional differential equations and their existence via fixed point theory concerning to Hilfer generalized proportional fractional derivative[J]. AIMS Mathematics, 2023, 8(1): 382-403. doi: 10.3934/math.2023018

    Related Papers:

    [1] Sunisa Theswan, Sotiris K. Ntouyas, Jessada Tariboon . Coupled systems of ψ-Hilfer generalized proportional fractional nonlocal mixed boundary value problems. AIMS Mathematics, 2023, 8(9): 22009-22036. doi: 10.3934/math.20231122
    [2] Saima Rashid, Fahd Jarad, Khadijah M. Abualnaja . On fuzzy Volterra-Fredholm integrodifferential equation associated with Hilfer-generalized proportional fractional derivative. AIMS Mathematics, 2021, 6(10): 10920-10946. doi: 10.3934/math.2021635
    [3] Sotiris K. Ntouyas, Bashir Ahmad, Jessada Tariboon . Nonlocal integro-multistrip-multipoint boundary value problems for ¯ψ-Hilfer proportional fractional differential equations and inclusions. AIMS Mathematics, 2023, 8(6): 14086-14110. doi: 10.3934/math.2023720
    [4] Weerawat Sudsutad, Wicharn Lewkeeratiyutkul, Chatthai Thaiprayoon, Jutarat Kongson . Existence and stability results for impulsive (k,ψ)-Hilfer fractional double integro-differential equation with mixed nonlocal conditions. AIMS Mathematics, 2023, 8(9): 20437-20476. doi: 10.3934/math.20231042
    [5] Donny Passary, Sotiris K. Ntouyas, Jessada Tariboon . Hilfer fractional quantum system with Riemann-Liouville fractional derivatives and integrals in boundary conditions. AIMS Mathematics, 2024, 9(1): 218-239. doi: 10.3934/math.2024013
    [6] Ayub Samadi, Sotiris K. Ntouyas, Jessada Tariboon . Coupled systems of nonlinear sequential proportional Hilfer-type fractional differential equations with multi-point boundary conditions. AIMS Mathematics, 2024, 9(5): 12982-13005. doi: 10.3934/math.2024633
    [7] Adel Lachouri, Mohammed S. Abdo, Abdelouaheb Ardjouni, Bahaaeldin Abdalla, Thabet Abdeljawad . On a class of differential inclusions in the frame of generalized Hilfer fractional derivative. AIMS Mathematics, 2022, 7(3): 3477-3493. doi: 10.3934/math.2022193
    [8] Sunisa Theswan, Ayub Samadi, Sotiris K. Ntouyas, Jessada Tariboon . Hilfer iterated-integro-differential equations and boundary conditions. AIMS Mathematics, 2022, 7(8): 13945-13962. doi: 10.3934/math.2022770
    [9] Ugyen Samdrup Tshering, Ekkarath Thailert, Sotiris K. Ntouyas . Existence and stability results for a coupled system of Hilfer-Hadamard sequential fractional differential equations with multi-point fractional integral boundary conditions. AIMS Mathematics, 2024, 9(9): 25849-25878. doi: 10.3934/math.20241263
    [10] Abdelkrim Salim, Sabri T. M. Thabet, Imed Kedim, Miguel Vivas-Cortez . On the nonlocal hybrid (k,φ)-Hilfer inverse problem with delay and anticipation. AIMS Mathematics, 2024, 9(8): 22859-22882. doi: 10.3934/math.20241112
  • This article adopts a class of nonlinear fractional differential equation associating Hilfer generalized proportional fractional (GPF) derivative with having boundary conditions, which amalgamates the Riemann-Liouville (RL) and Caputo-GPF derivative. Taking into consideration the weighted space continuous mappings, we first derive a corresponding integral for the specified boundary value problem. Also, we investigate the existence consequences for a certain problem with a new unified formulation considering the minimal suppositions on nonlinear mapping. Detailed developments hold in the analysis and are dependent on diverse tools involving Schauder's, Schaefer's and Kransnoselskii's fixed point theorems. Finally, we deliver two examples to check the efficiency of the proposed scheme.



    Fractional calculus has attempted to be accessed as a promising technique in fluid mechanics [1], nano-material [2], thermal energy [3], epidemics [4] and other scientific disciplines over recent decades. For example, by provoking interest in both cutting-edge and conventional pure and applied analytical techniques, it has reinforced creative collaboration between different disciplines, existence, and relevant applications in real-world manifestations, see [5,6,7]. In 1965, the possibility of fractional calculus depended on the conversation between L'hospital and Leibnitz as letters in [8]. After that, many researchers started experimenting in this field, and a large portion of them concentrated on describing novel fractional formulations [9,10,11]. Various classifications were raised in this process and were expressed by the advancement of research.

    Recently, extensive investigation has been proposed for the qualitative characterization of verification for various fractional differential equations (FDEs) with initial and boundary value problems. Several significant approaches regarding the existence, uniqueness, multiplicity and stability have been reported by proposing certain fixed point theorems. Although many of the important problems have been tackled by the classical fractional derivatives (RL and Caputo) [12,13,14], it has a few limitations when used to design physical issues as a result of the necessary assumptions are themselves fractional and may be unsuitable for physical problems. The Caputo derivative has the opportunity of being appropriate for physical problems because it only necessitates classical initial conditions [15,16].

    Khalil et al. [17] invented an interesting definition of fractional derivative, which is known to be a conformable derivative. In actuality, this so-called derivative is not a fractional derivative, however, it is it is essentially a first derivative duplicated by an extra straightforward factor. Consequently, this novel concept appears to be a regular extension of the classical derivative. More characterizations and the extended form of this derivative have been expounded in [18]. Then authors [19] explored an extension of the conformable derivative by considering proportional derivative. This fact leads to the modified conformable (proportional) differential operator of order λ. The researchers investigated numerous integral inequalities using classical [20], conformable and generalized conformable fractional integrals [21,22]. Qurashi et al. [23] proposed new fractional derivatives and integrals that have nonsingular kernels. By using the generalized proportional Hadamard fractional integral operator, Zhou et al. [24] investigated some general inequalities and their variant forms.

    This recently characterized local derivative approaches to the original function as λ0. In this manner, they had the option to improve the conformable derivative. Jarad et al. [25] presented another kind of fractional operators created from the extended conformable derivatives. The exponential function appeared as a kernel in their examination with outstanding performance [26,27,28]. For the interest of readers, we draw in their thoughtfulness regarding some new papers [29,30].

    In parallel with the concentrated exploration of the fractional derivative, the existence-uniqueness of verification fits to the intense prominent qualitative characterizations of FDEs, see [31,32,33,34].

    Inspired by the work, we utilize a novel fractional derivative which is known as Hilfer-GPF derivative for finding the existence-uniqueness of solutions for a new class of nonlinear FDEs having non-local boundary conditions. For this we consider the subsequent BVP for a class of Hilfer-FDEs:

    {Dλ,ζ;ϑϖ+1y()=G(,y()),λ(0,1),ζ[0,1],(ϖ1,ϖ2],I1δ,;ϑϖ+1[m1y(ϖ+1)+m2y(ϖ2)]=eȷ,δ=λ+ζ(1λ),eȷR, (1.1)

    where G:(ϖ1,ϖ2]×RR be a continuous mapping, Dλ,ζ;ϑϖ+1(.) is the Hilfer-GPF derivative of order λ(0,1) and I1δ;ϑϖ+1(.) is the GPF integral of order 1δ>0. We find the existence consequences by the fixed point techniques of Schauder, Schaefer and Kransnoselskii. Additionally, the investigation of nonlinear FDEs as far as their information sources (fractional orders, related boundaries, and suitable function) has fascinated the interest of mathematicians because of its importance in Orlicz space (see [35]). Rely upon this, the subject of coherence of verification of the Hilfer-FDEs regarding inputs is significant and worth assuming.

    The organization of the paper is as follows. In Section 2, we proceed with some basics concepts and detailed consequences as a review literature. In Section 3, we establish an equivalence criterion of integral equation of BVP (1.1) and then proposed the existence consequences for GPF-derivative by well-noted fixed point theorem. Also, in Section 4, illustrative examples are presented to check the applicability of the findings developed in Section 3. The conclusion with some open problems is presented in Section 5.

    In what follows, we demonstrate some preliminaries, initial results and spaces which are essential for proving further consequences. Throughout this investigation, let Lp(ϖ1,ϖ2),p1, is the space of Lebesgue integrable mappings on (ϖ1,ϖ2).

    Assume that ϖ1,ϖ2(,+) be a finite and infinite intervals on R.

    Furthermore, we elaborate the subsequent weighted spaces with induced norms defined by (see[8]). Suppose that C[ϖ1,ϖ2] is said to be the space of continuous functions defined on [ϖ1,ϖ2] and the norm is defined as follows:

    GC[ϖ1,ϖ2]=max[ϖ1,ϖ2]|G|,

    and ACn[ϖ1,ϖ2] represents the space of n-times absolutely continuous differentiable mappings defined as follows:

    ACn[ϖ1,ϖ2]={G:(ϖ1,ϖ2]R:Gn1AC[ϖ1,ϖ2]},

    Cδ[ϖ1,ϖ2] denotes the weighted space of G on (ϖ1,ϖ2] is defined as

    Cδ[ϖ1,ϖ2]={G:(ϖ1,ϖ2]R:(ϖ1)δG()C[ϖ1,ϖ2]},δ[0,1)

    with the norm

    GCδ[ϖ1,ϖ2]=(ϖ1)δG()C[ϖ1,ϖ2]=max[ϖ1,ϖ2]|(ϖ1)δG|.

    Also, the weighted space of a function G on (ϖ1,ϖ2] is denoted by Cnδ(ϖ1,ϖ2] defined as

    Cnδ[ϖ1,ϖ2]={G:(ϖ1,ϖ2]R:G()Cn1[ϖ1,ϖ2];Gn()Cδ[ϖ1,ϖ2]},δ[0,1)

    with the norm

    GCnδ[ϖ1,ϖ2]=n1κ=0GκC[ϖ1,ϖ2]+GnCδ[ϖ1,ϖ2],nN.

    For n=0, Cnδ[ϖ1,ϖ2] coincides with Cδ[ϖ1,ϖ2].

    Definition 2.1. ([8]) Assume that GL1([ϖ1,ϖ2],R), then the RL fractional integral operator of G of order λ>0 is stated as

    Jλϖ+1G()=1Γ(λ)ϖ1()λ1G()d,>ϖ1, (2.1)

    where Γ(.) represents the classical Gamma function.

    Definition 2.2. ([8]) Assume that GC([ϖ1,ϖ2]), then the RL fractional derivative operator of G of order λ>0 is stated as

    Dλϖ+1G()=1Γ(nλ)dndnϖ1()nλ1G()d,>ϖ1,n1<λ<n,nN, (2.2)

    where Γ(.) represents the Gamma function.

    Definition 2.3. ([8]) Assume that GCn([ϖ1,ϖ2]), then the Caputo fractional derivative operator of G of order λ>0 is stated as

    cDλϖ+1G()=1Γ(nλ)ϖ1()nλ1Gn()d,>ϖ1,n1<λ<n,nN, (2.3)

    where Γ(.) represents the Gamma function.

    Definition 2.4. ([25]) For ϑ(0,1],λC,(λ)>0, then the left-sided generalized proportional integral of G of order λ>0 is stated as

    Jλ;ϑϖ+1G()=1ϑλΓ(λ)ϖ1eϑ1ϑ()()λ1G()d,>ϖ1. (2.4)

    Definition 2.5. ([25]) For ϑ(0,1],λC,(λ)>0, then the left-sided generalized proportional derivative of G of order λ>0 is stated as

    Dλ;ϑϖ+1G()=Dn,ϑϑnλΓ(nλ)ϖ1eϑ1ϑ()()nλ1G()d,>ϖ1, (2.5)

    where n=[λ]+1.

    Definition 2.6. ([25]) For ϑ(0,1],λC,(λ)>0, then the left-sided generalized proportional integral of G of order λ>0 is stated as

    cDλ;ϑϖ+1G()=1ϑnλΓ(nλ)ϖ1eϑ1ϑ()()nλ1(Dn,ϑG)()d,>ϖ1, (2.6)

    where n=[λ]+1.

    Remark 2.1. Specifically, if ϑ=1 Definitions 2.4–2.6 reduces to Definitions 2.1–2.3, respectively.

    Definition 2.7. ([25]) For nN,λ(n1,n),ϑ(0,1],ζ[0,1], then the left/right-sided Hilfer-GPF derivative having order λ, type ζ of G is stated as follows:

    (Dϖ+1G)(y)=Iζ(nλ),ϑϖ+1[Dϑ(I(1ζ)(nλ),ϑϖ+1G)](y), (2.7)

    where DϑG(y)=(1ϑ)G(y)+ϑG(y) and I assumed to be GPF-integral stated in 2.4.

    Specifically, if n=1, then Definition 2.7 reduces to

    (Dϖ+1G)(y)=Iζ(1λ),ϑϖ+1[Dϑ(I(1ζ)(1λ),ϑϖ+1G)](y). (2.8)

    In the present investigation, we discuss the case where n=1,λ(0,1),ζ[0,1] and δ=λ+ζλζ.

    Remark 2.2. It is remarkable to mention that:

    (a)The Hilfer fractional derivative can be considered as an interpolator between the GPF-derivative and Caputo GPF-derivative, respectively, as

    Dλ,ζ;ϑϖ+1G={DϑI(1λ);ϑϖ+1G,ζ=0(seeDefinition2.5),I1λ;ϑϖ+1DϑG,ζ=1(seeDefinition2.6), (2.9)

    (b) The following assumptions holds true:

    0<δ1δλ,δ>ζ,1δ<1ζ(1λ).

    (c) Particularly, if λ(0,1),ζ[0,1] and δ=λ+ζλζ, then

    (Dλ,ζ;ϑϖ+1G)()=(Iζ(1λ)ϖ+1[Dϑ(I(1ζ)(1λ)ϖ+1G)])(y),

    therefore, we have

    (Dλ,ζ;ϑϖ+1G)()=(Iζ(1λ)ϖ+1(Dδ;ϑϖ+1G))(),

    where (Dδ;ϑϖ+1g1)()=dd(I(1ζ)(1λ);ϑϖ+1G)().

    Now we define the weighted spaces of continuous mappings on (ϖ1,ϖ2]:

    Cλ,ζ;ϑ1δ[ϖ1,ϖ2]={GC1δ[ϖ1,ϖ2],Dλ,ζ;ϑϖ+1GC1δ[ϖ1,ϖ2]},δ=λ+ζ(1λ) (2.10)

    and

    Cδ1δ[ϖ1,ϖ2]={GC1δ[ϖ1,ϖ2],Dδ;ϑϖ+1GC1δ[ϖ1,ϖ2]}. (2.11)

    Since Dλ,ζ;ϑϖ+1=Iζ(1λ),ϑϖ+1Dδ;ϑϖ+1, therefore, we have Cδ1δ[ϖ1,ϖ2]Cλ,ζ1δ[ϖ1,ϖ2].

    Theorem 2.1. ([25]) For ϖ1,ϑ(0,1],(λ),(ζ)>0. If GC([ϖ1,ϖ2],R), then

    Iλ;ϑϖ+1(Iζ;ϑϖ+1G)()=Iζ;ϑϖ+1(Iλ;ϑϖ+1G)()=(Iλ+ζϖ+1G)().

    Theorem 2.2. ([25]) For ϖ1,ϑ(0,1] and (λ)>0 and let GL1([ϖ1,ϖ2]), then

    Dλ;ϑϖ+1Iλ;ϑϖ+1G()=G(),n=[(λ)]+1.

    Lemma 2.1. ([25]) For λ,ςC such that (λ)0 and (ς)>0. Then for any ϑ(0,1] we have

    (a)(Iλ;ϑϖ+1eϑ1ϑ(ϖ1)ς1)()=Γ(ς)ϑλΓ(ς+λ)eϑ1ϑ(ϖ1)ς+λ1,
    (b)(Dλ;ϑϖ+1eϑ1ϑ(ϖ1)ς1)()=ϑλΓ(ς)Γ(ςλ)eϑ1ϑ(ϖ1)ςλ1.

    Lemma 2.2. ([30]) For λ(0,1),ϑ(0,1],ζ(0,1) and δ=λ+ζλζ. If GCδ1δ[ϖ1,ϖ2], then

    Iδ;ϑϖ+1Dδ;ϑϖ+1G=Iδ;ϑϖ+1Dλ,ζ;ϑϖ+1G

    and

    Dδ;ϑϖ+1Iλ;ϑϖ+1G=Dζ(1λ);ϑϖ+1G.

    Lemma 2.3. ([30])For y(ϖ1,ϖ2],λ(0,1),ϑ(0,1),ζ[0,1] and δ(0,1). If GC1δ[ϖ1,ϖ2] and I1δ,ϑϖ+1G, then

    Iλ;ϑϖ+1Dλ,ζ;ϑϖ+1G(y)=G(y)eϑ1ϑ(yϖ1)(yϖ1)δ1ϑδ1Γ(δ)(I1δ;ϑϖ1)(ϖ+1).

    Lemma 2.4. ([30]) For δ[0,1),ϑ(0,1] and g1Cδ. If GCδ[ϖ1,ϖ2], then

    Iλ;ϑϖ+1G(ϖ1)=limyϖ+1Iλ;ϑϖ+1G(y)=0,δ[0,λ).

    Lemma 2.5. ([30]) For λ(0,1),ζ[0,1] and δ=λ+ζλζ and let G:(ϖ1,ϖ2]×RR be a mapping such that GC1δ[ϖ1,ϖ2] for any yCδ1δ[ϖ1,ϖ2], then y satisfies problem (1.1) if and only if y satisfies the Volterra integral equation

    y()=(ϖ1)δ1eϑ1ϑ(ϖ1)I1δ;ϑϖ+1y(ϖ+1)ϑδ1Γ(δ)+1ϑλΓ(λ)ϖ1eϑ1ϑ(s1)()λ1G(,y())d. (2.12)

    This section consists of the existence of solution to BVP (1.1) in Cλ,ζ;ϑ1δ[ϖ1,ϖ2].

    Lemma 3.1. For λ(0,1),ζ[0,1], where δ=λ+ζλζ and suppose there be a function G:(ϖ1,ϖ2]×RR such that GC1δ[ϖ1,ϖ2] for any yC1δ[ϖ1,ϖ2]. If yCδ1δ[ϖ1,ϖ2], then y fulfills BVP (1.1) if and only if y holds the following identity

    y()=eȷm1+m2eϑ1ϑ(ϖ1)(ϖ1)δ1ϑδΓ(δ)m2m1+m2eϑ1ϑ(ϖ1)(ϖ1)δ1ϑδΓ(δ)×1ϑ1δ+λΓ(1δ+λ)ϖ2ϖ1eϑ1ϑ(ϖ2)(ϖ2)λδG(,y())d+1ϑλΓ(λ)ϖ1eϑ1ϑ()()λ1G(,y())d. (3.1)

    Proof. By means of Lemma 2.5 and utilizing the solution of (1.1) can be expressed as

    y()=J1δ;ϑϖ+1y(ϖ+1)ϑδ1Γ(δ)eϑ1ϑ(ϖ1)(ϖ1)δ1+1ϑδΓ(δ)ϖ1eϑ1ϑ()()λ1G(,y())d,>ϖ1. (3.2)

    Employing J1δ;ϑϖ+1 on (3.2) and applying the limit ϖ12, we find

    J1δ;ϑϖ+1y(ϖ2)=J1δ;ϑϖ+1y(ϖ+1)+1ϑ1δ+λΓ(1δ+λ)ϖ2ϖ1eϑ1ϑ(ϖ2)(ϖ2)λδG(,y())d. (3.3)

    Again, employing J1δ;ϑϖ+1 on (3.3), we have

    J1δ;ϑϖ+1y(ϖ2)=J1δ;ϑϖ+1y(ϖ+1)+1ϑ1δ+λΓ(1δ+λ)ϖ1eϑ1ϑ(ϖ2)()λδG(,y())d=J1δ;ϑϖ+1y(ϖ+1)+J1ζ(1λ);ϑϖ+1G(,y()). (3.4)

    Applying limit ϖ+1 and utilizing Lemma 2.4 having 1δ<1ζ(1λ), yields

    J1δ;ϑϖ+1y(ϖ+1)=J1δ;ϑϖ+1y(ϖ+1), (3.5)

    thus

    J1δ;ϑϖ+1y(ϖ2)=J1δ;ϑϖ+1y(ϖ+1)+1ϑ1δ+λΓ(1δ+λ)ϖ2ϖ1eϑ1ϑ(ϖ2)(ϖ2)λδG(,y())d. (3.6)

    From boundary condition (1.1), we have

    J1δ;ϑϖ+1y(ϖ2)=eȷm2m1m2J1δ;ϑϖ+1y(ϖ+1). (3.7)

    From (3.5) and (3.6), and utilizing (3.4), we have

    J1δ;ϑϖ+1y(ϖ+1)=m2m1+m2(eȷm21ϑ1δ+λΓ(1δ+λ)ϖ2ϖ1eϑ1ϑ(ϖ2)(ϖ2)λδG(,y())d). (3.8)

    Setting (3.2) in (3.8), one can find

    y()=eȷm1+m2eϑ1ϑ(ϖ1)(ϖ1)δ1ϑδ1Γ(δ)m2m1+m2eϑ1ϑ(ϖ1)(ϖ1)δ1ϑδ1Γ(δ)×1ϑ1δ+λΓ(1δ+λ)ϖ2ϖ1eϑ1ϑ(ϖ2)(ϖ2)λδG(,y())d+1ϑλΓ(λ)ϖ1eϑ1ϑ()()λ1G(,y())d. (3.9)

    Conversely, employing J1δ;ϑϖ+1 on (3.1), utilizing Lemmas 2.1 and 2.2, and simple computations yields

    J1δ;ϑϖ+1m1y(ϖ+1)+J1δ;ϑϖ+1m2y(ϖ2)=m1m2m1+m2(eȷm21ϑ1δ+λΓ(1δ+λ)ϖ2ϖ1eϑ1ϑ(ϖ2)(ϖ2)λδG(,y())d)+m22m1+m2(eȷm21ϑ1δ+λΓ(1δ+λ)ϖ2ϖ1eϑ1ϑ(ϖ2)(ϖ2)λδG(,y())d)+m2ϑ1δ+λΓ(1δ+λ)ϖ2ϖ1eϑ1ϑ(ϖ2)(ϖ2)λδG(,y())d=eȷ, (3.10)

    This shows that y() satisfies boundary condition (1.1).

    Furthermore, employing Dδ;ϑϖ+1 on (3.1) and applying Lemmas 2.1 and 2.2, we have

    Dδ;ϑϖ+1y()=Dζ(1λ);ϑϖ+1G(,y()). (3.11)

    Since yCδ;ϑ1δ[ϖ1,ϖ2] and in view of definition of Cδ;ϑ1δ[ϖ1,ϖ2], we have Dδϖ+1yCϑnδ[ϖ1,ϖ2], thus, Dζ(1λ);ϑϖ+1G=DI1ζ(1λ)ϖ+1GC1δ[ϖ1,ϖ2].

    For GC1δ[ϖ1,ϖ2], it is noting that I1ζ(1λ)ϖ+1GC1δ[ϖ1,ϖ2]. So, G and I1ζ(1λ);ϑϖ+1G holds the assumptions of Lemma 2.3. Now, employing Iζ(1λ);ϑϖ+1 on (3.11), we have

    Iζ(1λ);ϑϖ+1Dδ;ϑϖ+1y()=Iζ(1λ);ϑϖ+1Dζ(1λ);ϑϖ+1G(,y()). (3.12)

    Considering (2.8), (3.11) and Lemma 2.3, we have

    Iδ;ϑϖ+1Dδ;ϑϖ+1y()=G(,y())I1ζ(1λ);ϑϖ+1G(ϖ1,y(ϖ1))ϑζ(1λ)Γ(ζ(1λ))eϑ1ϑ(ϖ1)(ϖ1)ζ(1λ)1,(ϖ1,ϖ2]. (3.13)

    By Lemma 2.4, we have I1ζ(nλ)ϖ+1G(ϖ1,y(ϖ1))=0. Thus, we have Dλ,ζ;ϑϖ+1y()=G(,y()). Hence, this completes the proof.

    Let us evoke some essential assumptions which are required to prove the existence of solutions for the problem mentioned.

    (A1) Let a function G:(ϖ1,ϖ2]×RR with G(.,y(.))Cζ(1λ);ϑ1δ[ϖ1,ϖ2]. For any yCϑ1δ[ϖ1,ϖ2] and there exist two constants M1,m such that

    |G(1,y)|M1(1+myCϑ1δ). (3.14)

    (A2) The inequality

    G:=mM1Γ(δ)ϑλΓ(λ+1)[(ϖ2ϖ1)λ+(ϖ2ϖ1)λ+1δ]<1 (3.15)

    holds.

    Now we are in a position to show the existence results for the BVP (1.1) by employing Schauder's fixed point theorem (see [36]).

    Theorem 3.1. Suppose that the assumptions (A1) and (A2) fulfills. Then by Hilfer-BVP (1.1) has at least one solution in Cδ;ϑ1δ[ϖ1,ϖ2]Cλ,ζ;ϑ1δ[ϖ1,ϖ2].

    Proof. Defining an operator T:C1δ[ϖ1,ϖ2]C1δ[ϖ1,ϖ2] by

    (Ty)()=eȷm1+m2eϑ1ϑ(ϖ1)(ϖ1)δ1ϑδ1Γ(δ)m2m1+m2eϑ1ϑ(ϖ1)(ϖ1)δ1ϑδ1Γ(δ)×1ϑ1δ+λΓ(1δ+λ)ϖ2ϖ1eϑ1ϑ(ϖ2)(ϖ2)λδG(,y())d+1ϑλΓ(λ)ϖ1eϑ1ϑ()()λ1G(,y())d. (3.16)

    Assume that Bϱ={yC1δ[ϖ1,ϖ2]:yC1δϱ} having ϱΩ1G, for G<1, we have

    Ω:=eȷ(m1+m2)ϑδ1Γ(δ)+|m2m1+m2|1ϑδ1Γ(δ)×M1ϑ1δ+λ[(ϖ2ϖ1)λ+1δΓ(λδ+2)+(ϖ2ϖ1)2λδ+1Γ(λ+1)]. (3.17)

    The proof will be demonstrated by the accompanying three steps:

    Case 1. We will prove that T(Bϱ)Bϱ. Utilizing assumption (A2), we have

    |(Ty)()(ϖ1)1δ||eȷ(m1+m2)ϑδ1Γ(δ)|+|m2m1+m21ϑδ1Γ(δ)|×1ϑ1δ+λΓ(1δ+λ)ϖ2ϖ1|eϑ1ϑ(ϖ2)|(ϖ2)λδM1(1+m|y|)d+(ϖ1)1δϑλΓ(λ)ϖ1|eϑ1ϑ()|()λ1M1(1+m|y|)deȷ(m1+m2)ϑδ1Γ(δ)+|m2m1+m2|1ϑδ1Γ(δ)×1ϑ1δ+λΓ(1δ+λ)ϖ2ϖ1|eϑ1ϑ(ϖ2)|(ϖ2)λδM1(1+myC1δ)d+(ϖ1)1δϑλΓ(λ)ϖ1|eϑ1ϑ()|()λ1M1(1+myC1δ)d. (3.18)

    Since |eϑ1ϑ|<1. Observe that, for any yBϱ, and for every (ϖ1,ϖ2], we have

    1ϑ1δ+λΓ(1δ+λ)ϖ2ϖ1|eϑ1ϑ(ϖ2)|(ϖ2)λδM1(1+myC1δ)dM1(ϖ2ϖ1)λϑ1δ+λ[(ϖ2ϖ1)1δΓ(λδ+2)+mϱΓ(δ)Γ(λ+1)],since|eϑ1ϑ|<1 (3.19)

    and

    |(ϖ1)1δ|ϑλΓ(λ)ϖ1|eϑ1ϑ()|()λ1M1(1+myC1δ)dM1(ϖ1)λδ+1ϑλ[(ϖ1)λΓ(λ+1)+mϱΓ(δ)Γ(λ+1)]. (3.20)

    Therefore, we get

    |(Ty)()(ϖ1)1δ|eȷ(m1+m2)ϑδ1Γ(δ)+|m2m1+m2|1ϑδ1Γ(δ)×M1(ϖ2ϖ1)λϑ1δ+λ[(ϖ2ϖ1)1δΓ(λδ+2)+mϱΓ(δ)Γ(λ+1)]+M1(ϖ1)λδ+1ϑλ[(ϖ1)λΓ(λ+1)+mϱΓ(δ)Γ(λ+1)], (3.21)

    which leads to

    TyC1δeȷ(m1+m2)ϑδ1Γ(δ)+|m2m1+m2|1ϑδ1Γ(δ)×M1ϑ1δ+λ[(ϖ2ϖ1)λ+1δΓ(λδ+2)+(ϖ2ϖ1)2λδ+1Γ(λ+1)]+M1mϱΓ(δ)ϑλΓ(λ+1)[(ϖ1)λ+(ϖ2ϖ1)λ+1δ]. (3.22)

    of assumption (A2), we conclude that TyC1δGϱ+(1G)ϱ=ϱ, Therefore, T(Bϱ)Bϱ.

    Next we will prove that T is completely continuous.

    Case 2. We prove that the operator T is completely continuous.

    Assume that {ˉzn} is a sequence such that ˉznˉz in Bϱ as n. Then for every (ϖ1,ϖ2], we have

    |((Tˉzn)()(Tˉz)())(ϖ1)1δ|=|m2m1+m2|1ϑδ1Γ(δ)×1ϑ1δ+λΓ(1δ+λ)ϖ2ϖ1|eϑ1ϑ(ϖ2)|(ϖ2)λδ|G(,ˉzn())G(,ˉz())|d+(ϖ1)1δϑλΓ(λ)ϖ1|eϑ1ϑ()|()λ1|G(,ˉzn())G(,ˉz())|d|m2m1+m2|1ϑλΓ(λ+1)(ϖ2ϖ1)λG(.,ˉzn(.))G(.,ˉz(.))C1δ+Γ(δ)(ϖ1)1δ+λϑλδΓ(λδ)()1δ+λG(.,ˉzn(.))G(.,ˉz(.))C1δ. (3.23)

    Since |eϑ1ϑ|<1 and G is continuous on (ϖ1,ϖ2] and ˉznˉz, then

    (TˉznTˉzC1δ0asn, (3.24)

    which shows that operator T is continuous on Bϱ.

    Case 3. We show that T(Bϱ) is relatively compact. In case 1, we have T(Bϱ)Bϱ. It is observed that T(Bϱ) is uniformly bounded. To show operator T is equi-continuous on Bϱ. In fact, for any ϖ1<1<2<ϖ2 and ˉzBϱ, we have

    |(2ϖ1)1δ(Ty)(2)(1ϖ1)1δ(Ty)()||(2ϖ1)nκ(1ϖ1)nκ|ϑδ1Γ(δ)eȷm1+m2+|m2m1+m2||(2ϖ1)nκ(1ϖ1)nκ|ϑδ1Γ(δ)×1ϑλδ+1Γ(λδ+1)ϖ2ϖ1eϑ1ϑ(ϖ2)(ϖ2)λδ|G(,y())|d+1ϑλΓ(λ)|(2ϖ1)1δ2ϖ1eϑ1ϑ(2)(2)λ1G(,y())d(1ϖ1)1δ1ϖ1eϑ1ϑ(1)(1)λ1G(,y())d||(2ϖ1)nκ(1ϖ1)nκ|ϑδ1Γ(δ)[eȷm1+m2+|m2m1+m2GC1δϑ1δ+λΓ(1δ+λ)ϖ2ϖ1(ϖ2)λδ(ϖ1)δ1d]+GC1δϑλΓ(λ)|(2ϖ1)1δ2ϖ1(2)λ1(ϖ1)δ1d(1ϖ1)1δ1ϖ1(1)λ1(ϖ1)δ1d|(since|eϑ1ϑ|<1)|(2ϖ1)nκ(1ϖ1)nκ|ϑδ1Γ(δ)[eȷm1+m2+|m2m1+m2Γ(δ)ϑλΓ(λ+1)(ϖ2ϖ1)λGC1δ]+GC1δϑλΓ(λ)B(δn+1,λ)|(2ϖ1)λ(1ϖ1)λ|, (3.25)

    which approaches to zero as \wp_{2}\rightarrow \wp_{1}, independent of y\in\mathbb{\varrho}, where \mathfrak{B}(., .) denotes the Euler Beta function.

    Therefore, we deduce that {\bf T}(\mathbb{B}_{\varrho}) is equicontinuous on \mathbb{B}_{\varrho}, that leads to the relatively compactness. As a result, we conclude that by Arzela-Ascoli theorem, the defined operator {\bf T}:\mathbb{B}_{\varrho}\mapsto\mathbb{B}_{\varrho} is completely continuous operator.

    By Schauder's fixed point theorem, there exists at least one fixed point y of {\bf T} in \mathbb{C}_{1-\delta}[\varpi_{1}, \varpi_{2}]. This fixed point y is the solution of (1.1) in \mathbb{C}_{1-\delta}^{\delta; \vartheta}, and this completes the proof.

    Now we present another existence result via Schaefer fixed point theorem. For this, we need the following assumption.

    (A_{3}) Suppose a function \mathcal{G}:(\varpi_{1}, \varpi_{2}]\times\mathbb{R}\mapsto\mathbb{R} such that \mathcal{G}(., y(.))\in\mathbb{C}_{1-\delta}^{\zeta(1-\lambda); \vartheta}[\varpi_{1}, \varpi_{2}] for any y\in\mathbb{C}_{1-\delta}[\varpi_{1}, \varpi_{2}] and there exist a mapping \eta(\wp)\in\mathbb{C}_{1-\delta}[\varpi_{1}, \varpi_{2}] such that

    \begin{eqnarray} \big\vert \mathcal{G}(\wp, y)\big\vert\leq\eta(\wp), \; \forall \wp\in(\varpi_{1}, \varpi_{2}], y\in\mathbb{R}. \end{eqnarray} (3.26)

    Theorem 3.2. Suppose that assumption (A_{3}) satisfies. then Hilfer- BVP (1.1) has at least one solution in \mathbb{C}_{1-\delta}^{\delta}\subset\mathbb{C}_{1-\delta}^{\lambda, \zeta; \vartheta}[\varpi_{1}, \varpi_{2}].

    Proof. For the proof of Theorem 3.2, one can adopt the same technique as we did in Theorem 3.1 and easily prove that the operator {\bf T}:\mathbb{C}_{1-\delta}[\varpi_{1}, \varpi_{2}]\mapsto\mathbb{C}_{1-\delta}[\varpi_{1}, \varpi_{2}] stated in (3.16) is completely continuous. Now we show that

    \begin{eqnarray} \Delta = \Big\{y\in\mathbb{C}_{n-\delta}[\varpi_{1}, \varpi_{2}]: y = \sigma{\bf T}y, \; for\; some\; \sigma\in(0, 1)\Big\} \end{eqnarray} (3.27)

    is bounded set. Assume that y\in\Delta and \sigma\in(0, 1) be such that y = \sigma {\bf T}y. By assumption (A_{3}) and (3.16), then for all \wp\in[\varpi_{1}, \varpi_{2}], we have

    \begin{eqnarray} &&\big\vert{\bf T}y(\wp)(\wp-\varpi_{1})^{n-\delta}\big\vert\\&&\leq\sum\limits_{\kappa = 1}^{n}\frac{e^{\frac{\vartheta-1}{\vartheta}(\wp-\varpi_{1})}(\wp-\varpi_{1})^{n-\kappa}}{\vartheta^{\delta-\kappa+1}\Gamma(\delta-\kappa+1)}\frac{e_{\jmath}}{m_{1}+m_{2}}\\&&\quad+\Big\vert\frac{m_{2}}{m_{1}+m_{2}}\Big\vert\sum\limits_{\kappa = 1}^{n}\frac{e^{\frac{\vartheta-1}{\vartheta}(\wp-\varpi_{1})}(\wp-\varpi_{1})^{n-\kappa}}{\vartheta^{n-\delta+\lambda}\Gamma(\delta-\kappa+1)\Gamma(n-\delta+\lambda)}\\&&\int\limits_{\varpi_{1}}^{\varpi_{2}}e^{\frac{\vartheta-1}{\vartheta}(\varpi_{2}-\ell)}(\varpi_{2}-\ell)^{n+\lambda-\delta-1}\eta(\ell)d\ell\\&&\quad+\frac{\vert(\wp-\varpi_{1})^{n-\delta}\vert}{\vartheta^{\lambda}\Gamma(\lambda)}\int\limits_{\varpi_{1}}^{\wp}e^{\frac{\vartheta-1}{\vartheta}(\wp-\ell)}(\wp-\ell)^{\lambda-1}\eta(\ell)d\ell\\&&\leq\sum\limits_{\kappa = 1}^{n}\frac{(\wp-\varpi_{1})^{n-\kappa}}{\vartheta^{\delta-\kappa+1}\Gamma(\delta-\kappa+1)}\frac{e_{\jmath}}{m_{1}+m_{2}}\\&&\quad+\Big\vert\frac{m_{2}}{m_{1}+m_{2}}\Big\vert\sum\limits_{\kappa = 1}^{n}\frac{(\wp-\varpi_{1})^{n-\kappa}}{\vartheta^{n-\delta+\lambda}\Gamma(\delta-\kappa+1)\Gamma(n-\delta+\lambda)}\\&&\int\limits_{\varpi_{1}}^{\varpi_{2}}(\varpi_{2}-\ell)^{n+\lambda-\delta-1}(\ell-\varpi_{1})^{\delta-n}\|\eta\|_{\mathbb{C}_{n-\delta}}d\ell\\&&\quad+\frac{\vert(\wp-\varpi_{1})^{n-\delta}\vert}{\vartheta^{\lambda}\Gamma(\lambda)}\int\limits_{\varpi_{1}}^{\wp}(\wp-\ell)^{\lambda-1}(\ell-\varpi_{1})^{\delta-n}\|\eta\|_{\mathbb{C}_{n-\delta}}d\ell. \end{eqnarray} (3.28)

    Since \big\vert e^{\frac{\vartheta-1}{\vartheta}\wp}\big\vert < 1, we have

    \begin{eqnarray} &&\|{\bf T}y\|_{\mathbb{C}_{n-\delta}}\\&&\leq\sum\limits_{\kappa = 1}^{n}\frac{(\varpi_{2}-\varpi_{1})^{n-\kappa}}{\vartheta^{\delta-\kappa+1}\Gamma(\delta-\kappa+1)}\frac{e_{\jmath}}{m_{1}+m_{2}}\\&&\quad+\bigg[\Big\vert\frac{m_{2}}{m_{1}+m_{2}}\Big\vert\sum\limits_{\kappa = 1}^{n}\frac{(\varpi_{2}-\varpi_{1})^{-\kappa}}{\vartheta^{\delta-\kappa+1}}\frac{\Gamma(\lambda)}{\mathfrak{B}(\lambda, 1)}+\frac{\mathfrak{B}(\delta-n+1, 1)}{\vartheta^{\lambda}(\varpi_{2}-\varpi_{1})^{\delta}}\bigg] (\varpi_{2}-\varpi_{1})^{n+\lambda}\|\eta\|_{\mathbb{C}_{n-\delta}}\\&&: = \tau. \end{eqnarray} (3.29)

    Since \sigma\in(0, 1), then y < {\bf T}y. The last inequality with (3.29) leads us to the conclusion that

    \begin{eqnarray} \|y\|_{\mathbb{C}_{n-\delta}} < \|{\bf T}y\|_{\mathbb{C}_{n-\delta}}\leq\tau, \end{eqnarray} (3.30)

    which proves that \Delta is bounded. Utilizing Schaefer fixed point postulate, this completes the proof.

    Our last result is the existence result for the problem (1.1) by using the Kransnoselskii's fixed point theorem (see [37]), the following assumption is needed:

    (A_{4}) Suppose that \mathcal{G}:(\varpi_{1}, \varpi_{2}]\times\mathbb{R}\mapsto\mathbb{R} is a function such that \mathcal{G}(. y(.))\in\mathbb{C}_{n-\delta}^{\zeta(n-\lambda); \vartheta}[\varpi_{1}, \varpi_{2}] for any y\in\mathbb{C}_{n-\delta}[\varpi_{1}, \varpi_{2}] and there exists a constant L > 0 such that

    \begin{eqnarray} \big\vert \mathcal{G}(\wp, y)-\mathcal{G}(\wp, \omega)\big\vert\leq L\big\vert y-\omega\big\vert, \; \forall\wp\in(\varpi_{1}, \varpi_{2}], \, y, \omega\in\mathbb{R}. \end{eqnarray} (3.31)

    Also, we note the following assumption as follows: (A_{5}) the inequality

    \begin{eqnarray} \mathcal{Q}&&: = \bigg[\Big\vert\frac{m_{2}}{m_{1}+m_{2}}\Big\vert\sum\limits_{\kappa = 1}^{n}\frac{(\varpi_{2}-\varpi_{1})^{n-\kappa}}{\vartheta^{n-\delta+\lambda}\Gamma(\delta-\kappa+1)}+\frac{\mathfrak{B}(\delta-n, \lambda+1)}{\vartheta^{\delta}\Gamma(\delta-n)}\bigg]\\&&\quad\times\frac{\Gamma(\delta-n)(\varpi_{2}-\varpi_{1})^{\lambda}}{\vartheta^{\lambda}\mathfrak{B}(\delta-n, 1)\Gamma(\lambda+1)}\|\tilde{\mathcal{G}}\|_{\mathbb{C}_{n-\delta}}+\frac{e_{\jmath}}{m_{1}+m_{2}}\sum\limits_{\kappa = 1}^{n}\frac{(\varpi_{2}-\varpi_{1})^{n-\kappa}}{\vartheta^{n-\delta+\lambda}\Gamma(\delta-\kappa+1)}L < 1 \end{eqnarray} (3.32)

    is hold.

    Theorem 3.3. Suppose that the assumptions (A_{4}) and (A_{5}) are satisfied. If

    \begin{eqnarray} \Big\vert\frac{m_{2}}{m_{1}+m_{2}}\Big\vert\sum\limits_{\kappa = 1}^{n}\frac{(\varpi_{2}-\varpi_{1})^{n-\kappa+\lambda}}{{\vartheta^{n-\delta+\lambda}}\Gamma(\delta-\kappa+1)}\frac{\Gamma(\delta-n+1)}{\vartheta^{\lambda}\Gamma(\lambda+1)}L < 1. \end{eqnarray} (3.33)

    Then the Hilfer- BVP (1.1) has at least one solution in \mathbb{C}_{n-\delta}^{\delta}[\varpi_{1}, \varpi_{2}]\subset\mathbb{C}_{n-\delta}^{\lambda, \zeta; \vartheta}.

    Proof. Considering the operator {\bf T} stated in Theorem 3.1.

    First, surmise the operator {\bf T} into sum of two operators {\bf T}_{1}+{\bf T}_{2} as follows

    {\bf T}_{1}y(\wp) = \frac{-m_{2}}{m_{1}+m_{2}}\sum\limits_{\kappa = 1}^{n}\frac{e^{\frac{\vartheta-1}{\vartheta}(\wp-\varpi)}(\wp-\varpi_{1})^{\delta-\kappa}}{\vartheta^{n-\delta+\lambda}\Gamma(\delta-\kappa+1)}\\ \frac{1}{\Gamma(n-\delta+\lambda)}\int\limits_{\varpi_{1}}^{\varpi_{2}}e^{\frac{\vartheta-1}{\vartheta}(\varpi_{2}-\ell)}(\varpi_{2}-\ell)^{n-\delta+\lambda-1}\mathcal{G}(\ell, y(\ell))d\ell (3.34)

    and

    \begin{eqnarray} {\bf T}_{2}y(\wp) = \frac{e_{\jmath}}{m_{1}+m_{2}}\sum\limits_{\kappa = 1}^{n}\frac{e^{\frac{\vartheta-1}{\vartheta}(\wp-\varpi)}(\wp-\varpi_{1})^{\delta-\kappa}}{\vartheta^{\delta-\kappa+1}\Gamma(\delta-\kappa+1)}+\frac{1}{\vartheta^{\lambda}\Gamma(\lambda)}\int\limits_{\varpi_{1}}^{\wp}e^{\frac{\vartheta-1}{\vartheta}(\wp-\ell)}(\wp-\ell)^{\lambda-1}\mathcal{G}(\ell, y(\ell))d\ell. \end{eqnarray} (3.35)

    Setting \tilde{\mathcal{G}} = \mathcal{G}(\ell, 0) and suppose the ball \mathbb{B}_{\epsilon} = \{y\in\mathbb{C}_{n-\delta; \psi([\varpi_{1}, \varpi_{2}])}:\|y\|_{\mathbb{C}_{n-\delta}; \psi}\leq\epsilon\} having \epsilon\geq\frac{\sigma}{1-\mathcal{Q}}, \mathcal{Q} < 1, where

    \begin{eqnarray} \sigma&& = \bigg[\Big\vert\frac{m_{2}}{m_{1}+m_{2}}\Big\vert\sum\limits_{\kappa = 1}^{n}\frac{(\varpi_{2}-\varpi_{1})^{n-\kappa}}{\vartheta^{n-\delta+\lambda}\Gamma(\delta-\kappa+1)}+\frac{\mathfrak{B}(\delta-n, \lambda+1)}{\vartheta^{\delta}\Gamma(\delta-n)}\bigg]\\&&\quad\times\frac{\Gamma(\delta-n)(\varpi_{2}-\varpi_{1})^{\lambda}}{\vartheta^{\lambda}\mathfrak{B}(\delta-n, 1)\Gamma(\lambda+1)}L < 1 \end{eqnarray} (3.36)

    The proof will be done in three cases.

    Case 1. We show that {\bf T}_{1}y+{\bf T}_{1}\omega\in\mathbb{B}_{\varrho} for every y, \omega\in\mathbb{B}_{\epsilon}.

    Utilizing assumption (A_{4}), then for every y\in\mathbb{B}_{\epsilon} and \wp\in(\varpi_{1}, \varpi_{2}], we have

    \begin{eqnarray} &&\big\vert(\wp-\varpi_{1})^{n-\delta}{\bf T}_{1}(\wp)\big\vert\\&&\leq\Big\vert\frac{m_{2}}{m_{1}+m_{2}}\Big\vert\sum\limits_{\kappa = 1}^{n}\frac{e^{\frac{\vartheta-1}{\vartheta}(\wp-\varpi)}(\wp-\varpi_{1})^{n-\kappa}}{\vartheta^{n-\delta+\lambda}\Gamma(\delta-\kappa+1)}\frac{1}{\Gamma(n-\delta+\lambda)}\\&&\quad\times\int\limits_{\varpi_{1}}^{\varpi_{2}}e^{\frac{\vartheta-1}{\vartheta}(\varpi_{2}-\ell)}(\varpi_{2}-\ell)^{n-\delta+\lambda-1}\Big[\big\vert \mathcal{G}(\ell, y(\ell))-\mathcal{G}(\ell, 0)\big\vert+\big\vert \mathcal{G}(\ell, 0)\big\vert\Big]d\ell\\&&\leq\Big\vert\frac{m_{2}}{m_{1}+m_{2}}\Big\vert\sum\limits_{\kappa = 1}^{n}\frac{e^{\frac{\vartheta-1}{\vartheta}(\wp-\varpi)}(\wp-\varpi_{1})^{n-\kappa}}{\vartheta^{n-\delta+\lambda}\Gamma(\delta-\kappa+1)}\frac{1}{\Gamma(n-\delta+\lambda)}\\&&\quad\times\int\limits_{\varpi_{1}}^{\varpi_{2}}e^{\frac{\vartheta-1}{\vartheta}(\varpi_{2}-\ell)}(\varpi_{2}-\ell)^{n-\delta+\lambda-1}(\ell-\varpi_{1})^{\delta-n}\Big[L\|y\|_{\mathbb{C}_{n-\delta}}+\big\|\tilde{\mathcal{G}}\big\|_{\mathbb{C}_{n-\delta}}\Big]d\ell\\&&\leq\Big\vert\frac{m_{2}}{m_{1}+m_{2}}\Big\vert\sum\limits_{\kappa = 1}^{n}\frac{(\wp-\varpi_{1})^{n-\kappa}}{\vartheta^{n-\delta+\lambda}\Gamma(\delta-\kappa+1)}{\frac{\Gamma(\delta-n+1)}{\vartheta^{\lambda}\Gamma(\lambda+1)}}\Big[L\epsilon+\big\|\tilde{\mathcal{G}}\big\|_{\mathbb{C}_{n-\delta}}\Big]. \end{eqnarray} (3.37)

    Since \big\vert e^{\frac{\vartheta-1}{\vartheta}\wp}\big\vert < 1. Therefore, we get

    \begin{eqnarray} &&\|{\bf T}_{1}y\|_{\mathbb{C}_{n-\delta}}\\&&\leq\Big\vert\frac{m_{2}}{m_{1}+m_{2}}\Big\vert\sum\limits_{\kappa = 1}^{n}\frac{(\varpi_{2}-\varpi_{1})^{n-\kappa+\lambda}}{\vartheta^{n-\delta+\lambda}\Gamma(\delta-\kappa+1)}\frac{\Gamma(\delta-n+1)}{\vartheta^{\lambda}\Gamma(\lambda+1)}\Big[L\epsilon+\big\|\tilde{\mathcal{G}}\big\|_{\mathbb{C}_{n-\delta}}\Big]. \end{eqnarray} (3.38)

    For operator {\bf T}_{2}, we have

    \begin{eqnarray} &&\big\vert(\wp-\varpi_{1})^{n-\delta}{\bf T}_{2}\omega(\wp)\big\vert\\&&\leq\Big\vert\frac{e_{\jmath}}{m_{1}+m_{2}}\Big\vert\sum\limits_{\kappa = 1}^{n}\frac{e^{\frac{\vartheta-1}{\vartheta}(\wp-\varpi)}(\wp-\varpi_{1})^{n-\kappa}}{\vartheta^{n-\delta+\lambda}\Gamma(\delta-\kappa+1)}\\&&\quad\times\frac{(\wp-\varpi_{1})^{n-\delta}}{\vartheta^{\lambda}\Gamma(\lambda)}\int\limits_{\varpi_{1}}^{\wp}e^{\frac{\vartheta-1}{\vartheta}(\wp-\ell)}(\wp-\ell)^{\lambda-1}\Big[\big\vert \mathcal{G}(\ell, \omega(\ell))-\mathcal{G}(\ell, 0)\big\vert+\big\vert \mathcal{G}(\ell, 0)\big\vert\Big]d\ell\\&&\leq\Big\vert\frac{e_{\jmath}}{m_{1}+m_{2}}\Big\vert\sum\limits_{\kappa = 1}^{n}\frac{(\wp-\varpi_{1})^{n-\kappa}}{\vartheta^{n-\delta+\lambda}\Gamma(\delta-\kappa+1)}\\&&\quad\times\frac{(\wp-\varpi_{1})^{n-\delta}}{\vartheta^{\lambda}\Gamma(\lambda)}\int\limits_{\varpi_{1}}^{\wp}e^{\frac{\vartheta-1}{\vartheta}(\wp-\ell)}(\wp-\ell)^{\lambda-1}(\ell-\varpi_{1})^{\delta-n} \Big[L\|\omega\|_{\mathbb{C}_{n-\delta}}+\big\|\tilde{\mathcal{G}}\big\|_{\mathbb{C}_{n-\delta}}\Big]d\ell. \end{eqnarray} (3.39)

    For every \omega\in\mathbb{B}_{\epsilon} and \wp\in(\varpi_{1}, \varpi_{2}], this shows

    \begin{eqnarray} &&\|{\bf T}_{1}\omega\|_{\mathbb{C}_{n-\delta}}\\&&\leq\Big\vert\frac{e_{\jmath}}{m_{1}+m_{2}}\Big\vert\sum\limits_{\kappa = 1}^{n}\frac{(\varpi_{2}-\varpi_{1})^{n-\kappa}}{\vartheta^{n-\delta+\lambda}\Gamma(\delta-\kappa+1)}\\&&\quad\times\frac{(\varpi_{2}-\varpi_{1})^{\lambda}}{\vartheta^{\lambda}\Gamma(\delta-n+\lambda+1)} \Big[L\epsilon+\big\|\tilde{\mathcal{G}}\big\|_{\mathbb{C}_{n-\delta}}\Big]. \end{eqnarray} (3.40)

    From (3.38), (3.40) and utilizing assumption (A_{5}) with (3.36), we find

    \begin{eqnarray} &&\|{\bf T}_{1}y+{\bf T}_{2}\omega\| _{\mathbb{C}_{n-\delta}}\\&&\leq\|{\bf T}_{1}y\| _{\mathbb{C}_{n-\delta}}+\|{\bf T}_{1}\omega\| _{\mathbb{C}_{n-\delta}}\\&&\leq\frac{(\varpi_{2}-\varpi_{1})^{\lambda}\Gamma(\delta-n+1)}{\vartheta^{\lambda}\Gamma(\lambda+1)}\Big[L\epsilon+\big\|\tilde{\mathcal{G}}\big\|_{\mathbb{C}_{n-\delta}}\Big]\\&&\bigg[\Big\vert\frac{m_{2}}{m_{1}+m_{2}}\Big\vert\sum\limits_{\kappa = 1}^{n}\frac{(\varpi_{2}-\varpi_{1})^{n-\kappa}}{\vartheta^{n-\delta+\lambda}\Gamma(\delta-\kappa+1)}+\frac{\Gamma(\lambda+1)}{\Gamma(\delta-n+\lambda+1)}\bigg]\\&&\quad+\frac{e_{\jmath}}{m_{1}+m_{2}}\sum\limits_{\kappa = 1}^{n}\frac{(\varpi_{2}-\varpi_{1})^{n-\kappa}}{\vartheta^{n-\delta+\lambda}\Gamma(\delta-\kappa+1)}\\&&\leq\mathcal{Q}\epsilon+(1-\mathcal{Q})\epsilon = \epsilon. \end{eqnarray} (3.41)

    Case 2. We prove that the operator {\bf T} is a contraction mapping on \mathbb{B}_{\varrho}.

    For any y, \omega\in\mathbb{B}_{\varrho}, and for any \wp\in(\varpi_{1}, \varpi_{2}], then by supposition (A_{4}), we have

    \begin{eqnarray} &&\big\vert(\wp-\varpi_{1})^{n-\delta}{\bf T}_{1}y(\wp)-(\wp-\varpi_{1})^{n-\delta}{\bf T}_{1}\omega(\wp) \big\vert\\&&\leq\Big\vert\frac{m_{2}}{m_{1}+m_{2}}\Big\vert\sum\limits_{\kappa = 1}^{n}\frac{e^{\frac{\vartheta-1}{\vartheta}(\wp-\varpi)}(\wp-\varpi_{1})^{n-\kappa}}{\vartheta^{n-\delta+\lambda}\Gamma(\delta-\kappa+1)}\frac{1}{\Gamma(n-\delta+\lambda)}\\&&\int\limits_{\varpi_{1}}^{\varpi_{2}}e^{\frac{\vartheta-1}{\vartheta}(\varpi_{2}-\ell)}(\varpi_{2}-\ell)^{n-\delta+\lambda-1}\Big[\mathcal{G}(\ell, y(\ell))-\mathcal{G}(\ell, \omega(\ell))\Big]d\ell\\&&\leq \Big\vert\frac{m_{2}}{m_{1}+m_{2}}\Big\vert\sum\limits_{\kappa = 1}^{n}\frac{e^{\frac{\vartheta-1}{\vartheta}(\wp-\varpi)}(\wp-\varpi_{1})^{n-\kappa}}{\vartheta^{n-\delta+\lambda}\Gamma(\delta-\kappa+1)}\frac{1}{\Gamma(n-\delta+\lambda)}\\&&\int\limits_{\varpi_{1}}^{\varpi_{2}}e^{\frac{\vartheta-1}{\vartheta}(\varpi_{2}-\ell)}(\varpi_{2}-\ell)^{n-\delta+\lambda-1}L\big\vert y(\ell)-\omega(\ell)\big\vert d\ell\\&&\leq\Big\vert\frac{m_{2}}{m_{1}+m_{2}}\Big\vert\sum\limits_{\kappa = 1}^{n}\frac{(\wp-\varpi_{1})^{n-\kappa}}{\vartheta^{n-\delta+\lambda}\Gamma(\delta-\kappa+1)}\frac{\Gamma(\delta-n+1)}{\vartheta^{\lambda}\Gamma(\lambda+1)}(\varpi_{2}-\ell)^{\lambda}L\big\| y-\omega\big\|_{\mathbb{C}_{n-\delta}}. \end{eqnarray} (3.42)

    Since \big\vert e^{\frac{\vartheta-1}{\vartheta}\wp}\big\vert < 1, this yields

    \begin{eqnarray} && \big\|{\bf T}y-{\bf T}\omega\big\|_{\mathbb{C}_{n-\delta}}\\&&\leq\Big\vert\frac{m_{2}}{m_{1}+m_{2}}\Big\vert\sum\limits_{\kappa = 1}^{n}\frac{(\varpi_{2}-\varpi_{1})^{n-\kappa+\lambda}}{\vartheta^{\vartheta^{n-\delta+\lambda}}\Gamma(\delta-\kappa+1)}\frac{\Gamma(\delta-n+1)}{\vartheta^{\lambda}\Gamma(\lambda+1)}L\|y-\omega\|_{\mathbb{C}_{n-\delta}}. \end{eqnarray} (3.43)

    Due to assumption (3.33), which shows that the operator {\bf T} is a contraction mapping.

    Case 3: Now we show that the operator {\bf T}_{2} is completely continuous on \mathbb{B}_{\epsilon}.

    From the continuity of \mathcal{G}, we deduce that the operator {\bf T}_{2}:\mathbb{B}_{\epsilon}\mapsto\mathbb{B}_{\epsilon} is continuous on \mathbb{B}_{\epsilon}. Furthermore, we prove that for all \epsilon > 0 there exists some \epsilon^{\prime} > 0 such that \|{\bf T}_{2}y\|_{\mathbb{C}_{n-\delta}} < \epsilon^{\prime}. In view of case 1, for y\in\mathbb{B}_{\epsilon}, we have that

    \|{\bf T}_{2}y\|_{\mathbb{C}_{n-\delta}}\leq\sum\limits_{\kappa = 1}^{n}\frac{(\varpi_{2}-\varpi_{1})^{n-\kappa}}{\vartheta^{\delta-\kappa+1}\Gamma(\delta-\kappa+1)}\frac{e_{\jmath}}{m_{1}+m_{2}}+\\ \frac{\mathfrak{B}(\delta-n+1, \lambda)(\varpi_{2}-\varpi_{1})^{\lambda}}{\vartheta^{\lambda}\Gamma(\lambda)}\Big[L\epsilon+\|\tilde{\mathcal{G}}\|_{\mathbb{C}_{n-\delta}}\Big], (3.44)

    which is free of \wp and y, so there exists

    \begin{eqnarray} \epsilon^{\prime} = \frac{e_{\jmath}}{m_{1}+m_{2}}\sum\limits_{\kappa = 1}^{n}\frac{(\varpi_{2}-\varpi_{1})^{n-\kappa}}{\vartheta^{n-\delta+\lambda}\Gamma(\delta-\kappa+1)}+\frac{\mathfrak{B}(\delta-n+1, \lambda)(\varpi_{2}-\varpi_{1})^{\lambda}}{\vartheta^{\lambda}\Gamma(\lambda)}\Big[L\epsilon+\|\tilde{\mathcal{G}}\|_{\mathbb{C}_{n-\delta}}\Big] \end{eqnarray} (3.45)

    such that \|{\bf T}_{2}(y)\|_{\mathbb{C}_{n-\delta}}\leq\epsilon^{\prime}. Therefore, {\bf T}_{2} is uniformly bounded set on \mathbb{B}_{\epsilon}. Finally, to show that {\bf T}_{2} is equicontinuous in \mathbb{B}_{\epsilon}, for any z\in\mathbb{B}_{\epsilon} and \wp_{1}, \wp_{2}\in(\varpi_{1}, \varpi_{2}] having \wp_{1} < \wp_{2}, we have

    \begin{eqnarray} &&\big\vert(\wp_{2}-\varpi_{1})^{n-\delta}{\bf T}_{2}y(\wp_{2})-(\wp_{1}-\varpi_{1})^{n-\delta}{\bf T}_{2}y(\wp_{1})\big\vert\\&& = \frac{e_{\jmath}}{m_{1}+m_{2}}\bigg\vert\sum\limits_{\kappa = 1}^{n}\frac{(\wp_{2}-\varpi_{1})^{n-\kappa}-(\wp_{1}-\varpi_{1})^{n-\delta}}{\vartheta^{\delta-\kappa}\Gamma(\delta-\kappa+1)}+\frac{(\wp_{2}-\varpi_{1})^{n-\delta}}{\vartheta^{\lambda}\Gamma(\lambda)}\\&& \int\limits_{\varpi_{1}}^{\wp_{2}}e^{\frac{\vartheta-1}{\vartheta}(\wp_{2}-\ell)}(\wp_{2}-\ell)^{\lambda-1}\mathcal{G}(\ell, y(\ell))d\ell\\&&\quad-\frac{(\wp_{1}-\varpi_{1})^{n-\delta}}{\vartheta^{\lambda}\Gamma(\lambda)}\int\limits_{\varpi_{1}}^{\wp_{1}}e^{\frac{\vartheta-1}{\vartheta}(\wp_{1}-\ell)}(\wp_{1}-\ell)^{\lambda-1}\mathcal{G}(\ell, y(\ell))d\ell\bigg\vert\\&&\leq\frac{e_{\jmath}}{m_{1}+m_{2}}\sum\limits_{\kappa = 1}^{n}\frac{\big\vert (\wp_{2}-\varpi_{1})^{n-\kappa}-(\wp_{1}-\varpi_{1})^{n-\delta}\big\vert }{\vartheta^{\delta-\kappa}\Gamma(\delta-\kappa+1)}\\&&\quad+\bigg\vert\frac{(\wp_{2}-\varpi_{1})^{n-\delta}}{\vartheta^{\lambda}\Gamma(\lambda)}\int\limits_{\varpi_{1}}^{\wp_{2}}e^{\frac{\vartheta-1}{\vartheta}(\wp_{2}-\ell)}(\wp_{2}-\ell)^{\lambda-1}(\ell-\varpi_{1})^{\delta-n}\|\mathcal{G}\|_{\mathbb{C}_{n-\delta, \psi[\varpi_{1}, \varpi_{2}]}}d\ell\\&&\quad-\frac{(\wp_{1}-\varpi_{1})^{n-\delta}}{\vartheta^{\lambda}\Gamma(\lambda)}\int\limits_{\varpi_{1}}^{\wp_{1}}e^{\frac{\vartheta-1}{\vartheta}(\wp_{1}-\ell)}(\wp_{1}-\ell)^{\lambda-1}(\ell-\varpi_{1})^{\delta-n}\|\mathcal{G}\|_{\mathbb{C}_{n-\delta, \psi[\varpi_{1}, \varpi_{2}]}}d\ell\bigg\vert\\&& = \sum\limits_{\kappa = 1}^{n}\frac{e_{\jmath}}{m_{1}+m_{2}}\frac{\big\vert (\wp_{2}-\varpi_{1})^{n-\kappa}-(\wp_{1}-\varpi_{1})^{n-\delta}\big\vert }{\vartheta^{\delta-\kappa}\Gamma(\delta-\kappa+1)}+\frac{\mathfrak{B}(\delta-n+1)}{\vartheta^{\lambda}}\\&& \|\mathcal{G}\|_{\mathbb{C}_{n-\delta;\psi[\varpi_{1}, \varpi_{2}]}}\big\vert(\wp_{2}-\varpi_{1})^{\lambda}-(\wp_{1}-\varpi_{1})^{\lambda}\big\vert .\\ \end{eqnarray} (3.46)

    Since \big\vert e^{\frac{\vartheta-1}{\vartheta}\wp}\big\vert < 1. It is noting that the right hand side of the aforesaid variant is free of y. So,

    \begin{eqnarray} \big\vert(\wp_{2}-\varpi_{1})^{n-\delta}{\bf T}_{2}y(\wp_{2})-(\wp_{1}-\varpi_{1})^{n-\delta}{\bf T}_{2}y(\wp_{1})\big\vert\mapsto 0, \; as\; \vert \wp_{2}-\wp_{1}\vert\mapsto 0. \end{eqnarray} (3.47)

    This shows that {\bf T}_{2} is equicontinuous on \mathbb{B}_{\epsilon}. According to Arzela-Ascoli Theorem, observed that ({\bf T}_{2}\mathbb{B}_{\epsilon}) is relatively compact. By Kransnoselskii's fixed point theorem, the problem (1.1) has at least one solution.

    Consider the fractional differential equation with boundary condition which encompasses the Hilfer- GPF derivative of the form

    \begin{eqnarray} \left \{ \begin{array}{cc} \mathcal{D}_{\varpi_{1}^{+}}^{\lambda, \zeta;\vartheta}y(\wp) = \wp^{-\frac{1}{6}}+\frac{\wp^{5/6}}{16}\sin y(\wp), \, \wp\in\mathbb{J} = [0, 2], \lambda\in(0, 1), \zeta\in[0, 1]\\ \mathcal{I}_{\varpi_{1}^{+}}^{1-\delta;\vartheta}\Big[\frac{1}{3}y(0^{+})+\frac{2}{3}y(2^{-})\Big] = \frac{2}{5}, \lambda\leq\delta = \lambda+\zeta-\lambda\zeta, \\ \end{array} \right. \end{eqnarray} (4.1)

    By comparison (1.1) with (2.9), we have \lambda = \frac{1}{2}, \zeta = \frac{1}{3}, \delta = \frac{2}{3}, m_{1} = \frac{1}{3}, m_{2} = \frac{2}{3}, \vartheta = 1 and e_{1} = \frac{2}{5}. It is clear that \wp^{\frac{1}{3}}\mathcal{G}(\wp, y(\wp)) = \wp^{\frac{1}{6}}+\frac{\wp^{7/6}}{16}\sin y(\wp)\in\mathbb{C}([0, 2]), So \mathcal{G}(\wp, y(\wp))\in\mathbb{C}_{\frac{1}{3}}. Thus, it follows that, for any y\in\mathbb{R}^{+} and \wp\in\mathbb{J},

    \begin{eqnarray} \big\vert \mathcal{G}(\wp, y(\wp))\big\vert&&\leq\wp^{\frac{1}{6}}\bigg(1+\frac{\wp^{2/3}}{16}\big\vert\wp^{1/3}y(\wp)\big\vert\bigg)\\&&\leq\bigg(1+\frac{1}{16}\big\|y\|_{\mathbb{C}_{\frac{1}{3}}}\bigg). \end{eqnarray} (4.2)

    Hence, the assumption (A_{1}) is fulfilled having \mathcal{M} = 1 and \mathfrak{m} = \frac{1}{16}. It is easy to verify that the assumption (A_{2}) is hold too. In fact, by simple computations, we obtain

    \begin{eqnarray} \mathcal{G}: = \frac{\mathfrak{m}\mathcal{M}_{1}\Gamma(\delta)}{\vartheta^{\lambda}\Gamma(\lambda+1)}\Big[(\varpi_{2}-\varpi_{1})^{\lambda}+(\varpi_{2}-\varpi_{1})^{\lambda+1-\delta}\Big]\approx-0.03510 < 1. \end{eqnarray} (4.3)

    Hence, all suppositions of Theorem 3.1 implies that the problem (1.1) has a unique solution in \mathbb{C}_{\frac{1}{3}}^{\frac{2}{3}}([0, 2]).

    Also, assume that \mathcal{G}(\wp, y(\wp)) = \wp^{-\frac{1}{6}}+\frac{\wp^{5/6}}{16}\sin y(\wp). Thus \big\vert \mathcal{G}(\wp_{1}, y(\wp))\leq \wp^{-\frac{1}{6}}+\frac{\wp^{5/6}}{16}\big\vert = \eta(\wp)\in\mathbb{C}_{1-\delta}([0, 2]). So, (A_{3}) is satisfied. Therefore, in view of Theorem 3.2, we conclude that problem (1.1) has a solution in \mathbb{C}_{1/3}^{2/3}([0, 2]).

    Finally, if \mathcal{G}(\wp, y(\wp)) = \wp^{-\frac{1}{6}}+\frac{\wp^{5/6}}{16}\sin y(\wp), then for y, \omega\in\mathbb{R}^{+} and \wp\in\mathbb{J}, we have

    \begin{eqnarray*} \Big\vert \mathcal{G}(\wp, y(\wp))-\mathcal{G}(\wp, \omega(\wp))\Big\vert\leq\frac{1}{16}\big\vert y-\omega\big\vert. \end{eqnarray*}

    Therefore, the assumption (A_{4}) is fulfilled having L = \frac{1}{16}. Clearly, assumption (A_{5}) and inequality (3.33) are holds. In fact, simple computations yields

    \begin{eqnarray} \mathcal{Q}&&: = \bigg[\Big\vert\frac{m_{2}}{m_{1}+m_{2}}\Big\vert\sum\limits_{\kappa = 1}^{n}\frac{(\varpi_{2}-\varpi_{1})^{n-\kappa}}{\vartheta^{n-\delta+\lambda}\Gamma(\delta-\kappa+1)}+\frac{\mathfrak{B}(\delta-n, \lambda+1)}{\vartheta^{\delta}\Gamma(\delta-n)}\bigg]\\&&\quad\times\frac{\Gamma(\delta-n)(\varpi_{2}-\varpi_{1})^{\lambda}}{\vartheta^{\lambda}\mathfrak{B}(\delta-n, 1)\Gamma(\lambda+1)}L\approx 0.1456 < 1, \end{eqnarray} (4.4)

    and

    \begin{eqnarray} \Big\vert\frac{m_{2}}{m_{1}+m_{2}}\Big\vert\sum\limits_{\kappa = 1}^{n}\frac{(\varpi_{2}-\varpi_{1})^{n-\kappa+\lambda}}{\vartheta^{n-\delta+\lambda}\Gamma(\delta-\kappa+1)}\frac{\Gamma(\delta-n+1)}{\vartheta^{\lambda}\Gamma(\lambda+1)}L\approx0.0495 < 1 \end{eqnarray} (4.5)

    of Theorem 3.3, shows that problem (1.1) has a solution in \mathbb{C}_{\frac{1}{3}}^{\frac{2}{3}}([0, 2]).

    In this approach, we have established certain existence consequences for the solution of BVP for Hilfer- FDEs depend on the lessening of FDEs to integral equations. The proposed scheme with the fixed point assertions unifies the existing results in the frame of RL and Caputo GPF sense, respectively. Besides that, the analysis's comprehensive improvements are dependent on various techniques such as Schauder's, Schaefer's and Kransnoselskii's fixed point theorems. Also, the Hilffer GPF -derivative comprise two parameters and a proportionality index \vartheta.

    \bullet If \vartheta\mapsto 1 and \lambda = [0, 1], then the contemplated problem converted to RL and Caputo fractional derivative [8]. If \vartheta\in(0, 1) and \zeta = 0, 1 we recaptures the RL and Caputo GPF -derivative [25], respectively (see Figure 1).

    Figure 1.  Plot of y(\wp) , for the RL fractional derivatives (\zeta = 0, \vartheta = 1) , and GPF -derivatives (\zeta = 0, \vartheta\, \in \, (0, 1)) .

    \bullet Clearly, if \vartheta, \zeta\in(0, 1), then the newly employed derivatives amalgamate the existing ones in the adjustment of Hilfer, RL and GPF -derivative, (see Figure 2).

    Figure 2.  Graph of y(\wp) , for the RL fractional derivatives (\zeta = 0, \vartheta = 1) , GPF -derivatives (\zeta = 0, \vartheta = 0.8) and Hilfer GPF -derivatives (\zeta\, \in \, (0, 1), \vartheta\, \in \, (0, 1)) .

    \bullet If \vartheta\mapsto 1 and \zeta, \lambda\in[0, 1], then the formulation for this problem enjoys Hilfer factional derivative [8], (see Figure 3).

    Figure 3.  Plot of y(\wp) , for the Hilfer fractional derivatives (\vartheta = 1) and Hilfer GPF -derivatives (\vartheta\, \in \, (0, 1)) .

    Moreover, a stimulative example is presented to show the efficacy of the established outcomes. We hope that the testified outcomes here will have a considerable impact for more parameters on the stability and other qualitative features of differential equations in the areas of interest of applied sciences.

    The authors declare that there is no conflict of interests.



    [1] M. Nazeer, F. Hussain, M. Ijaz Khan, Asad-ur-Rehman, E. R. El-Zahar, Y. M. Chu, et al., Theoretical study of MHD electro-osmotically flow of third-grade fluid in micro channel, Appl. Math. Comput., 420 (2022), 126868. https://doi.org/10.1016/j.amc.2021.126868 doi: 10.1016/j.amc.2021.126868
    [2] Y. M. Chu, B. M. Shankaralingappa, B. J. Gireesha, F. Alzahrani, M. Ijaz Khan, S. U. Khan, Combined impact of Cattaneo-Christov double diffusion and radiative heat flux on bio-convective flow of Maxwell liquid configured by a stretched nano-material surface, Appl. Math. Comput., 419 (2022), 126883. https://doi.org/10.1016/j.amc.2021.126883 doi: 10.1016/j.amc.2021.126883
    [3] Y. M. Chu, U. Nazir, M. Sohail, M. M. Selim, J. R. Lee, Enhancement in thermal energy and solute particles using hybrid nanoparticles by engaging activation energy and chemical reaction over a parabolic surface via finite element approach, Fractal Fract., 5 (2021), 119. https://doi.org/10.3390/fractalfract5030119 doi: 10.3390/fractalfract5030119
    [4] T. H. Zhao, O. Castillo, H. Jahanshahi, A. Yusuf, M. O. Alassafi, F. E. Alsaadi, et al., A fuzzy-based strategy to suppress the novel coronavirus (2019-NCOV) massive outbreak, Appl. Comput. Math., 20 (2021), 160–176.
    [5] Z. Denton, A. S. Vatsala, Fractional integral inequalities and applications, Comput. Math. Appl., 59 (2010), 1087–1094. https://doi.org/10.1016/j.camwa.2009.05.012 doi: 10.1016/j.camwa.2009.05.012
    [6] R. Khalil, M. Al Horani, A. Yousef, M. Sababheh, A new definition of fractional derivative, J. Comput. Appl. Math., 264 (2014), 65–70. https://doi.org/10.1016/j.cam.2014.01.002 doi: 10.1016/j.cam.2014.01.002
    [7] R. Almeida, A Caputo fractional derivative of a function with respect to another function, Commun. Nonlinear Sci., 44 (2017), 460–481. https://doi.org/10.1016/j.cnsns.2016.09.006 doi: 10.1016/j.cnsns.2016.09.006
    [8] A. A. Kilbas, H. M. Srivastava, J. J. Trujillo, Theory and applications of fractional differential equations, Elsevier, 2006.
    [9] R. Hilfer, Applications of fractional calculus in physics, World Scientific, 2000.
    [10] A. Atangana, On the new fractional derivative and application to nonlinear Fisher's reaction-diffusion equation, Appl. Math. Comput., 273 (2016), 948–956. https://doi.org/10.1016/j.amc.2015.10.021 doi: 10.1016/j.amc.2015.10.021
    [11] S. Rashid, F. Jarad, M. A. Noor, H. Kalsoom, Inequalities by means of generalized proportional fractional integral operators with respect to another function, Mathematics, 7 (2020), 1225. https://doi.org/10.3390/math7121225 doi: 10.3390/math7121225
    [12] R. A. Yan, S. R. Sun, Z. L. Han, Existence of solutions of boundary value problems for caputo fractional differential equations on time scales, Bull. Iranian Math. soc., 42 (2016), 247–262.
    [13] A. Atangana, D. Baleanu, Application of fixed point theorem for stability analysis of a nonlinear Schördinger with Caputo-Liouville derivative, Filomat, 31 (2017), 2243–2248. https://doi.org/10.2298/FIL1708243A doi: 10.2298/FIL1708243A
    [14] F. Jarad, S. Harikrishnan, K. Shah, K. Kanagarajan, Existence and stability results to a class of fractional random implicit differential equations involving a generalized Hilfer fractional derivative, Discrete Cont. Dyn. S, 13 (2020), 723–739. https://doi.org/10.3934/dcdss.2020040 doi: 10.3934/dcdss.2020040
    [15] O. A. Arqub, Numerical simulation of time-fractional partial differential equations arising in fluid flows via reproducing Kernel method, Int. J. Numer. Method. H., 30 (2020), 4711–4733. https://doi.org/10.1108/HFF-10-2017-0394 doi: 10.1108/HFF-10-2017-0394
    [16] S. Djennadi, N. Shawagfeh, M. Inc, M. S. Osman, J. F. Gómez-Aguilar, O. A. Arqub, The Tikhonov regularization method for the inverse source problem of time fractional heat equation in the view of ABC-fractional technique, Phys. Scr., 96 (2021), 094006. https://doi.org/10.1088/1402-4896/ac0867 doi: 10.1088/1402-4896/ac0867
    [17] R. Khalil, M. A. Horani, A. Yousef, M. Sababheh, A new definition of fractional derivative, J. Comput. Appl. Math., 264 (2014), 65–70. https://doi.org/10.1016/j.cam.2014.01.002 doi: 10.1016/j.cam.2014.01.002
    [18] T. Abdeljawad, On conformable fractional calculus, J. Comput. Appl. Math., 279 (2015), 57–66. https://doi.org/10.1016/j.cam.2014.10.016 doi: 10.1016/j.cam.2014.10.016
    [19] D. R. Anderson, D. J. Ulness, Newly defined conformable derivatives, Adv. Dyn. Syst. Appl. 10 (2015), 109–137. https://doi.org/10.13140/RG.2.1.1744.9444 doi: 10.13140/RG.2.1.1744.9444
    [20] T. H. Zhao, W. M. Qian, Y. M. Chu, Sharp power mean bounds for the tangent and hyperbolic sine means, J. Math. Inequal., 15 (2021), 1459–1472. https://doi.org/10.7153/jmi-2021-15-100 doi: 10.7153/jmi-2021-15-100
    [21] S. Rashid, E. I. Abouelmagd, S. Sultana, Y. M. Chu, New developments in weighted n-fold type inequalities via discrete generalized {\rm{\hat h}}-proportional fractional operators, Fractals, 30 (2022), 2240056. https://doi.org/10.1142/S0218348X22400564 doi: 10.1142/S0218348X22400564
    [22] S. Rashid, E. I. Abouelmagd, A. Khalid, F. B. Farooq, Y. M. Chu, Some recent developments on dynamical \hbar-discrete fractional type inequalities in the frame of nonsingular and nonlocal kernels, Fractals, 30 (2022), 2240110. https://doi.org/10.1142/S0218348X22401107 doi: 10.1142/S0218348X22401107
    [23] M. Al Qurashi, S. Rashid, S. Sultana, H. Ahmad, K. A. Gepreel, New formulation for discrete dynamical type inequalities via h-discrete fractional operator pertaining to nonsingular kernel, Math. Biosci. Eng., 18 (2021), 1794–1812. https://doi.org/10.3934/mbe.2021093 doi: 10.3934/mbe.2021093
    [24] S. S. Zhou, S. Rashid, S. Parveen, A. O. Akdemir, Z. Hammouch, New computations for extended weighted functionals within the Hilfer generalized proportional fractional integral operators, AIMS Math., 6 (2021), 4507–4525. https://doi.org/10.3934/math.2021267 doi: 10.3934/math.2021267
    [25] F. Jarad, T. Abdeljawad, J. Alzabut, Generalized fractional derivatives generated by a class of local proportional derivatives. Eur. Phys. J. Spec. Top., 226 (2017), 3457–3471. https://doi.org/10.1140/epjst/e2018-00021-7 doi: 10.1140/epjst/e2018-00021-7
    [26] S. Rashid, S. Sultana, Y. Karaca, A. Khalid, Y. M. Chu, Some further extensions considering discrete proportional fractional operators, Fractals, 30 (2022), 2240026. https://doi.org/10.1142/S0218348X22400266 doi: 10.1142/S0218348X22400266
    [27] K. Karthikeyan, P. Karthikeyan, H. M. Baskonus, K. Venkatachalam, Y. M. Chu, Almost sectorial operators on \Psi-Hilfer derivative fractional impulsive integro-differential equations, Math. Method. Appl. Sci., 45 (2022), 8045–8059. https://doi.org/10.1002/mma.7954 doi: 10.1002/mma.7954
    [28] S. Rashid, S. Sultana, Y. Karaca, A. Khalid, Y. M. Chu, Some further extensions considering discrete proportional fractional operators, Fractals, 30 (2022), 2240026. https://doi.org/10.1142/S0218348X22400266 doi: 10.1142/S0218348X22400266
    [29] S. Rashid, F. Jarad, M. A. Noor, Grüss-type integrals inequalities via generalized proportional fractional operators, RACSAM, 114 (2020), 93. https://doi.org/10.1007/s13398-020-00823-5 doi: 10.1007/s13398-020-00823-5
    [30] I. Ahmad, P. Kumam, F. Jarad, P. Borisut, Jirakitpuwapat, On Hilfer generalized proportional fractional derivative, Adv. Differ. Equ., 2020 (2020), 329. https://doi.org/10.1186/s13662-020-02792-w doi: 10.1186/s13662-020-02792-w
    [31] K. Shah, D. Vivek, K. Kanagarajan, Dynamics and stability of \alpha-fractional pantograph equations with boundary conditions, Bol. Soc. Paran. Mat., 39 (2021), 43–55. https://doi.org/10.5269/bspm.41154 doi: 10.5269/bspm.41154
    [32] D. Vivek, K. Kanagarajan, E. Elsayed, Some existence and stability results for Hilfer-fractional implicit differential equations with nonlocal conditions, Mediterr. J. Math., 15 (2018), 15. https://doi.org/10.1007/s00009-017-1061-0 doi: 10.1007/s00009-017-1061-0
    [33] O. A. Arqub, Reproducing Kernel algorithm for the analytical-numerical solutions of nonlinear systems of singular periodic boundary value problems, Math. Probl. Eng., 2015 (2015), 518406. https://doi.org/10.1155/2015/518406 doi: 10.1155/2015/518406
    [34] S. Djennadi, N. Shawagfeh, O. A. Arqub, A fractional Tikhonov regularization method for an inverse backward and source problems in the time-space fractional diffusion equations, Chaos Soliton. Fract., 150 (2021), 111127. https://doi.org/10.1016/j.chaos.2021.111127 doi: 10.1016/j.chaos.2021.111127
    [35] W. Shammakh, H. Z. Alzum, Existence results for nonlinear fractional boundary value problem involving generalized proportional derivative, Adv. Differ. Equ., 2019 (2019), 94. https://doi.org/10.1186/s13662-019-2038-z doi: 10.1186/s13662-019-2038-z
    [36] A. Granas, J. Dugundi, Fixed point theory, New York: Springer, 2003.
    [37] M. Krasnoselskii, Two remarks about the method of successive approximations, Uspekhi Mat. Nauk, 10 (1955), 123–127.
  • This article has been cited by:

    1. Saowaluck Chasreechai, Muhammad Aamir Ali, Surapol Naowarat, Thanin Sitthiwirattham, Kamsing Nonlaopon, On some Simpson's and Newton's type of inequalities in multiplicative calculus with applications, 2023, 8, 2473-6988, 3885, 10.3934/math.2023193
    2. Wasfi Shatanawi, Taqi A. M. Shatnawi, Some fixed point results based on contractions of new types for extended b -metric spaces, 2023, 8, 2473-6988, 10929, 10.3934/math.2023554
    3. Rajaa T. Matoog, Amr M. S. Mahdy, Mohamed A. Abdou, Doaa Sh. Mohamed, A Computational Method for Solving Nonlinear Fractional Integral Equations, 2024, 8, 2504-3110, 663, 10.3390/fractalfract8110663
    4. Mohammed A. Almalahi, Khaled Aldowah, Faez Alqarni, Manel Hleili, Kamal Shah, Fathea M. O. Birkea, On modified Mittag–Leffler coupled hybrid fractional system constrained by Dhage hybrid fixed point in Banach algebra, 2024, 14, 2045-2322, 10.1038/s41598-024-81568-8
    5. Muath Awadallah, Mohamed Hannabou, Hajer Zaway, Jihan Alahmadi, Applicability of Caputo-Hadmard fractional operator in mathematical modeling of pantograph systems, 2025, 1598-5865, 10.1007/s12190-025-02421-3
  • Reader Comments
  • © 2023 the Author(s), licensee AIMS Press. This is an open access article distributed under the terms of the Creative Commons Attribution License (http://creativecommons.org/licenses/by/4.0)
通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索

Metrics

Article views(2462) PDF downloads(249) Cited by(5)

Figures and Tables

Figures(3)

/

DownLoad:  Full-Size Img  PowerPoint
Return
Return

Catalog