We study a coupled system of multi-term Hilfer fractional differential equations of different orders involving non-integral and autonomous type Riemann-Liouville mixed integral nonlinearities supplemented with nonlocal coupled multi-point and Riemann-Liouville integral boundary conditions. The uniqueness result for the given problem is based on the contraction mapping principle, while the existence results are derived with the aid of Krasnosel'ski⌣i's fixed point theorem and Leray-Schauder nonlinear alternative. Examples illustrating the main results are presented.
Citation: Ahmed Alsaedi, Bashir Ahmad, Afrah Assolami, Sotiris K. Ntouyas. On a nonlinear coupled system of differential equations involving Hilfer fractional derivative and Riemann-Liouville mixed operators with nonlocal integro-multi-point boundary conditions[J]. AIMS Mathematics, 2022, 7(7): 12718-12741. doi: 10.3934/math.2022704
[1] | Bashir Ahmad, Manal Alnahdi, Sotiris K. Ntouyas, Ahmed Alsaedi . On a mixed nonlinear boundary value problem with the right Caputo fractional derivative and multipoint closed boundary conditions. AIMS Mathematics, 2023, 8(5): 11709-11726. doi: 10.3934/math.2023593 |
[2] | Donny Passary, Sotiris K. Ntouyas, Jessada Tariboon . Hilfer fractional quantum system with Riemann-Liouville fractional derivatives and integrals in boundary conditions. AIMS Mathematics, 2024, 9(1): 218-239. doi: 10.3934/math.2024013 |
[3] | Lakhlifa Sadek, Tania A Lazǎr . On Hilfer cotangent fractional derivative and a particular class of fractional problems. AIMS Mathematics, 2023, 8(12): 28334-28352. doi: 10.3934/math.20231450 |
[4] | Sunisa Theswan, Sotiris K. Ntouyas, Jessada Tariboon . Coupled systems of $ \psi $-Hilfer generalized proportional fractional nonlocal mixed boundary value problems. AIMS Mathematics, 2023, 8(9): 22009-22036. doi: 10.3934/math.20231122 |
[5] | Ugyen Samdrup Tshering, Ekkarath Thailert, Sotiris K. Ntouyas . Existence and stability results for a coupled system of Hilfer-Hadamard sequential fractional differential equations with multi-point fractional integral boundary conditions. AIMS Mathematics, 2024, 9(9): 25849-25878. doi: 10.3934/math.20241263 |
[6] | Weerawat Sudsutad, Wicharn Lewkeeratiyutkul, Chatthai Thaiprayoon, Jutarat Kongson . Existence and stability results for impulsive $ (k, \psi) $-Hilfer fractional double integro-differential equation with mixed nonlocal conditions. AIMS Mathematics, 2023, 8(9): 20437-20476. doi: 10.3934/math.20231042 |
[7] | Md. Asaduzzaman, Md. Zulfikar Ali . Existence of positive solution to the boundary value problems for coupled system of nonlinear fractional differential equations. AIMS Mathematics, 2019, 4(3): 880-895. doi: 10.3934/math.2019.3.880 |
[8] | Ishfaq Mallah, Idris Ahmed, Ali Akgul, Fahd Jarad, Subhash Alha . On $ \psi $-Hilfer generalized proportional fractional operators. AIMS Mathematics, 2022, 7(1): 82-103. doi: 10.3934/math.2022005 |
[9] | Saima Rashid, Abdulaziz Garba Ahmad, Fahd Jarad, Ateq Alsaadi . Nonlinear fractional differential equations and their existence via fixed point theory concerning to Hilfer generalized proportional fractional derivative. AIMS Mathematics, 2023, 8(1): 382-403. doi: 10.3934/math.2023018 |
[10] | Ahmed Alsaedi, Fawziah M. Alotaibi, Bashir Ahmad . Analysis of nonlinear coupled Caputo fractional differential equations with boundary conditions in terms of sum and difference of the governing functions. AIMS Mathematics, 2022, 7(5): 8314-8329. doi: 10.3934/math.2022463 |
We study a coupled system of multi-term Hilfer fractional differential equations of different orders involving non-integral and autonomous type Riemann-Liouville mixed integral nonlinearities supplemented with nonlocal coupled multi-point and Riemann-Liouville integral boundary conditions. The uniqueness result for the given problem is based on the contraction mapping principle, while the existence results are derived with the aid of Krasnosel'ski⌣i's fixed point theorem and Leray-Schauder nonlinear alternative. Examples illustrating the main results are presented.
In recent years, the researchers and modelers have shown a keen interest in the topic of fractional differential equations. In fact, such equations appear in the mathematical models of several real-world phenomena occurring in pure, applied and technical sciences, for instance, see the books [1,2,3]. Unlike the classical derivative, there do exist many definitions of fractional derivatives and integrals. In [4], Hilfer proposed an important definition of fractional derivative (known as Hilfer fractional derivative), which represents both Riemann-Liouville and Caputo fractional derivatives under suitable choice of parameters. Several authors studied initial value problems involving Hilfer fractional derivatives, for example, see [5,6,7,8,9]. Some interesting results on boundary value problems involving Hilfer fractional differential equations can be found in the literature. For example, we refer the reader to works on nonlocal Hilfer problems [10,11], Hilfer Langevin equations [12,13], Hilfer Katugampola operators [14], Hilfer Erdelyi-Kober operators [15], Hilfer inclusion problems [16], Hilfer stochastic differential equations [17], ψ-Hilfer problems [18], ψ-Hilfer coupled systems [19], delay Hilfer fractional differential equations [20], Hilfer equations with variable coefficients [21], Hilfer sequential fractional differential equations [22,23], Hilfer approximate controllability [24] and Hilfer-Hadamard boundary value problems [25]. A variety of recent results on boundary value problems and coupled systems of Hilfer fractional differential equations and inclusions can be found in the survey paper [26].
In [27], the authors introduced and developed the existence and uniqueness of solutions for a new class of coupled systems of Hilfer-type fractional differential equations with nonlocal integral boundary conditions of the form
{HDα,βx(t)=f(t,x(t),y(t)),t∈[a,b],HDα1,β1y(t)=g(t,x(t),y(t)),t∈[a,b],x(a)=0,x(b)=m∑i=1θiIφiy(ξi),y(a)=0,y(b)=n∑j=1ζjIψjx(zj), | (1.1) |
where HDα,β, HDα1,β1 are the Hilfer fractional derivatives of orders α, α1, 1<α,α1<2, and parameters β, β1, 0≤β,β1≤1, respectively, and Iφi, Iψj are the Riemann-Liouville fractional integrals of order φi>0 and ψj>0, respectively, the points ξi,zj∈(a,b),a≥0, f,g:[a,b]×R×R→R are continuous functions and θi, ζj∈R, i=1,2,…,m, j=1,2,…,n are given real constants.
Recently, in [28], the authors studied a coupled system of ψ-Hilfer fractional order Langevin equations with nonlocal integral boundary conditions given by
{HDα1,β1;ψa+(HDp1,q1;ψa++λ1)x(t)=f(t,x(t),y(t)),t∈J:=[a,b],HDα2,β2;ψa+(HDp2,q2;ψa++λ2)y(t)=g(t,x(t),y(t)),t∈J:=[a,b],[0.2cm]x(a)=0,x(b)=m∑i=1ηiIδi;ψa+y(θi),y(a)=0,y(b)=n∑j=1μjIκj;ψa+x(ξj), | (1.2) |
where HDu,v;ψa+ is ψ-Hilfer fractional derivatives of order u∈{α1,α2,p1,p2} with 0<u≤1 and v∈{β1,β2,q1,q2} with 0≤v≤1, Iw;ψa+ is ψ-Riemann-Liouville fractional integral of order w={δi,κj}, w>0, the points θi, ξj∈(a,b), i=1,2,…,m, j=1,2,…,n, λ1, λ2∈R, f, g∈C([a,b]×R2,R) and b>a≥0.
The objective of the present paper is to investigate the existence and uniqueness of solutions for a new class of coupled systems of Langevin type Hilfer fractional differential equations of different orders involving non-integral and autonomous type Riemann-Liouville mixed integral nonlinearities complemented with nonlocal coupled multi-point and Riemann-Liouville integral boundary conditions. This work is motivated by [27] and [28]. In precise terms, we consider the following problem:
{HDα1,β1(HDα2,β2+λ1)x(t)=Iζ1a+g1(x(t),y(t))+f1(t,x(t),y(t)),t∈[a,b],HDα3,β3(HDα4,β4+λ2)y(t)=Iζ2b−g2(x(t),y(t))+f2(t,x(t),y(t)),t∈[a,b],x(a)=0,x(b)=m∑i=1μiy(ηi)+n∑k=1νkIqka+y(ξk),qk>0,y(a)=0,y(b)=m∑i=1δix(ηi)+n∑k=1θkIpka+x(ξk),pk>0, | (1.3) |
where HDαj,βj represents Hilfer fractional derivative operator of order αj∈(0,1) with parameter βj∈[0,1], j=1,2,3,4, λ1,λ2,μi,νk,δi and θk,i=1,2,...,m,k=1,2,...,n are constants, a<ηi,ξk<b, where a≥0 and m,n∈N, Iζ1a+,Iqka+,Ipka+ denote the left Riemann-Liouville fractional integral operators of orders ζ1>0,qk>0,pk>0 respectively, while Iζ2b− denotes the right Riemann-Liouville fractional integral operator of order ζ2>0, and f1,f2:[a,b]×R×R→R, g1,g2:R×R→R are given continuous functions.
Note that problem (1.3) is more general than problem (1.2), since it contains non-integral as well as Riemann-Liouville mixed integral nonlinearities and nonlocal coupled multi-point and Riemann-Liouville integral boundary conditions.
The rest of the paper is organized as follows. In Section 2, we present some necessary material related to our study and prove an auxiliary lemma to define the solution for the problem at hand. Section 3 contains the main results which rely on Banach contraction mapping principle, Krasnosel'ski⌣i's fixed point theorem and Leray-Schauder alternative. In Section 4, we construct examples for the illustration of the results obtained in Section 3.
We begin this section with some basic concepts used in our study.
Definition 2.1. ([3]) The left and right Riemann–Liouville fractional integrals of order ω>0 for a continuous function g, existing almost everywhere on [a,b], are respectively defined by
Iωa+g(t)=∫ta(t−s)ω−1Γ(ω)g(s)dsandIωb−g(t)=∫bt(s−t)ω−1Γ(ω)g(s)ds. |
For the sake of simplicity, we write Iωa+ and Iωb− as Iωa and Iωb respectively.
Definition 2.2. ([4]) For n−1<α<n,0≤β≤1, the Hilfer fractional derivative of order α and parameter β for a continuous function g is defined by
HDα,βg(t)=Iβ(n−α)aDnI(1−β)(n−α)ag(t),D=ddt, |
where
Iωag(t)=1Γ(ω)t∫a(t−s)ω−1g(s)ds,a≥0, |
with ω∈{β(n−α),(1−β)(n−α)}.
Lemma 2.1. ([16]) Let h∈L(a,b),n−1<γ1≤n,n∈N,0≤γ2≤1 and I(n−γ1)(1−γ2)ah∈ACk[a,b]. Then
Iγ1a(HDγ1,γ2h)(t)=h(t)−n−1∑k=0(t−a)k−(n−γ1)(1−γ2)Γ(k−(n−γ1)(1−γ2)+1)limt⟶a+dkdtk(I(1−γ2)(n−γ1)ah)(t). |
In the following lemma, we solve the linear variant of the problem (1.3).
Lemma 2.2. Let h1,h2:[a,b]→R be continuous functions and Δ≠0. Then the unique solution of the following coupled system:
{HDα1,β1(HDα2,β2+λ1)x(t)=h1(t),t∈[a,b],HDα3,β3(HDα4,β4+λ2)y(t)=h2(t),t∈[a,b],x(a)=0,x(b)=m∑i=1μiy(ηi)+n∑k=1νkIqkay(ξk),qk>0,y(a)=0,y(b)=m∑i=1δix(ηi)+n∑k=1θkIpkax(ξk),pk>0, | (2.1) |
is given by
x(t)=Iα1+α2ah1(t)−λ1Iα2ax(t)+(t−a)α2+ϵ1−1ΔΓ(α2+ϵ1){Ω2(λ1Iα2ax(b)−Iα1+α2ah1(b)−λ2m∑i=1μiIα4ay(ηi)+m∑i=1μiIα3+α4ah2(ηi)+n∑k=1νkIqk+α3+α4ah2(ξk)−λ2n∑k=1νkIqk+α4ay(ξk))+Ω4(λ2Iα4ay(b)−Iα3+α4ah2(b)+m∑i=1δiIα1+α2ah1(ηi)−λ1m∑i=1δiIα2ax(ηi)+n∑k=1θkIpk+α1+α2ah1(ξk)−λ1n∑k=1θkIpk+α2ax(ξk))}, | (2.2) |
y(t)=Iα3+α4ah2(t)−λ2Iα4ay(t)+(t−a)α4+ϵ3−1ΔΓ(α4+ϵ3){Ω3(λ1Iα2ax(b)−Iα1+α2ah1(b)−λ2m∑i=1μiIα4ay(ηi)+m∑i=1μiIα3+α4ah2(ηi)+n∑k=1νkIqk+α3+α4ah2(ξk)−λ2n∑k=1νkIqk+α4ay(ξk))+Ω1(−Iα3+α4ah2(b)+λ2Iα4ay(b)+m∑i=1δiIα1+α2ah1(ηi)−λ1m∑i=1δiIα2ax(ηi)+n∑k=1θkIpk+α1+α2ah1(ξk)−λ1n∑k=1θkIpk+α2ax(ξk))}, | (2.3) |
where Δ,Ωi,i=1,2,3,4 are given by
Ω1=(b−a)α2+ϵ1−1Γ(α2+ϵ1),Ω2=(b−a)α4+ϵ3−1Γ(α4+ϵ3),Ω3=m∑i=1δi(ηi−a)α2+ϵ1−1Γ(α2+ϵ1)+n∑k=1θk(ξk−a)pk+α2+ϵ1−1Γ(pk+α2+ϵ1),Ω4=m∑i=1μi(ηi−a)α4+ϵ3−1Γ(α4+ϵ3)+n∑k=1νk(ξk−a)qk+α4+ϵ3−1Γ(qk+α4+ϵ3),Δ=Ω1Ω2−Ω3Ω4, | (2.4) |
and ϵi=αi+βi−αiβi,i=1,2,3,4.
Proof. Applying the integral operators Iα1a and Iα3a on the first and second Hilfer fractional differential equations in (2.1) respectively and using Lemma 2.1, we obtain
(HDα2,β2+λ1)x(t)−c0(t−a)ϵ1−1Γ(ϵ1)=Iα1ah1(t), | (2.5) |
(HDα4,β4+λ2)y(t)−d0(t−a)ϵ3−1Γ(ϵ3)=Iα3ah2(t). | (2.6) |
Now operating Iα2a and Iα4a respectively to the Eqs (2.5) and (2.6), we get
x(t)+λ1Iα2ax(t)−c1(t−a)ϵ2−1Γ(ϵ2)−c0(t−a)α2+ϵ1−1Γ(α2+ϵ1)=Iα1+α2ah1(t), | (2.7) |
y(t)+λ2Iα4ay(t)−d1(t−a)ϵ4−1Γ(ϵ4)−d0(t−a)α4+ϵ3−1Γ(α4+ϵ3)=Iα3+α4ah2(t). | (2.8) |
Using the conditions x(a)=0 and y(a)=0 in (2.7) and (2.8) respectively, we find that c1=d1=0. Thus we have
x(t)=Iα1+α2ah1(t)−λ1Iα2ax(t)+c0(t−a)α2+ϵ1−1Γ(α2+ϵ1), | (2.9) |
y(t)=Iα3+α4ah2(t)−λ2Iα4ay(t)+d0(t−a)α4+ϵ3−1Γ(α4+ϵ3). | (2.10) |
Inserting (2.9) and (2.10) in the condition x(b)=m∑i=1μiy(ηi)+n∑k=1νkIqkay(ξk), we find that
Iα1+α2ah1(b)−λ1Iα2ax(b)+c0(b−a)α2+ϵ1−1Γ(α2+ϵ1)=m∑i=1μi{Iα3+α4ah2(ηi)−λ2Iα4ay(ηi)+d0(ηi−a)α4+ϵ3−1Γ(α4+ϵ3)}+n∑k=1νkIqka{Iα3+α4ah2(ξk)−λ2Iα4ay(ξk)+d0(ξk−a)α4+ϵ3−1Γ(α4+ϵ3)}, |
which can alternatively be written as
c0(b−a)α2+ϵ1−1Γ(α2+ϵ1)−d0{m∑i=1μi(ηi−a)α4+ϵ3−1Γ(α4+ϵ3)+n∑k=1νk(ξk−a)qk+α4+ϵ3−1Γ(qk+α4+ϵ3)}=λ1Iα2ax(b)−Iα1+α2ah1(b)−λ2m∑i=1μiIα4ay(ηi)+m∑i=1μiIα3+α4ah2(ηi)+n∑k=1νkIqk+α3+α4ah2(ξk)−λ2n∑k=1νkIqk+α4ay(ξk). | (2.11) |
In a similar manner, making use of (2.9) and (2.10) in the condition: y(b)=∑mi=1δix(ηi)+∑nk=1θkIpkax(ξk), leads to
−c0{m∑i=1δi(ηi−a)α2+ϵ1−1Γ(α2+ϵ1)+n∑k=1θk(ξk−a)pk+α2+ϵ1−1Γ(pk+α2+ϵ1)}+d0(b−a)α4+ϵ3−1Γ(α4+ϵ3)=λ2Iα4ay(b)−Iα3+α4ah2(b)+m∑i=1δiIα1+α2ah1(ηi)−λ1m∑i=1δiIα2ax(ηi)+n∑k=1θkIpk+α1+α2ah1(ξk)−λ1n∑k=1θkIpk+α2ax(ξk). | (2.12) |
Making use of the notation in (2.4), we can write (2.11) and (2.12) as
Ω1c0−Ω4d0=λ1Iα2ax(b)−Iα1+α2ah1(b)−λ2m∑i=1μiIα4ay(ηi)+m∑i=1μiIα3+α4ah2(ηi)+n∑k=1νkIqk+α3+α4ah2(ξk)−λ2n∑k=1νkIqk+α4ay(ξk),−Ω3c0+Ω2d0=λ2Iα4ay(b)−Iα3+α4ah2(b)+m∑i=1δiIα1+α2ah1(ηi)−λ1m∑i=1δiIα2ax(ηi)+n∑k=1θkIpk+α1+α2ah1(ξk)−λ1n∑k=1θkIpk+α2ax(ξk), |
which, on solving for c0 and d0, yields
c0=1Δ{Ω2(λ1Iα2ax(b)−Iα1+α2ah1(b)−λ2m∑i=1μiIα4ay(ηi)+m∑i=1μiIα3+α4ah2(ηi)+n∑k=1νkIqk+α3+α4ah2(ξk)−λ2n∑k=1νkIqk+α4ay(ξk))+Ω4(λ2Iα4ay(b)−Iα3+α4ah2(b)+m∑i=1δiIα1+α2ah1(ηi)−λ1m∑i=1δiIα2ax(ηi)+n∑k=1θkIpk+α1+α2ah1(ξk)−λ1n∑k=1θkIpk+α2ax(ξk))},d0=1Δ{Ω3(λ1Iα2ax(b)−Iα1+α2ah1(b)−λ2m∑i=1μiIα4ay(ηi)+m∑i=1μiIα3+α4ah2(ηi)+n∑k=1νkIqk+α3+α4ah2(ξk)−λ2n∑k=1νkIqk+α4ay(ξk))+Ω1(λ2Iα4ay(b)−Iα3+α4ah2(b)+m∑i=1δiIα1+α2ah1(ηi)−λ1m∑i=1δiIα2ax(ηi)+n∑k=1θkIpk+α1+α2ah1(ξk)−λ1n∑k=1θkIpk+α2ax(ξk))}. |
Substituting the values of c0 and d0 in (2.9) and (2.10) respectively together with (2.4), we get the solution (2.2) and (2.3). By direct computation, one can obtain the converse of this lemma. The proof is finished.
Let X=C([a,b],R) denote the Banach space of all continuous functions from [a,b] to R with the norm ‖x‖=supt∈[a,b]|x(t)|. Then the product space (X×X,‖⋅‖) is also a Banach space endowed with the norm ‖(x,y)‖=‖x‖+‖y‖ for (x,y)∈X×X.
In view of Lemma 2.2, we introduce an operator T:X×X→X×X as
T(x,y)(t)=(T1(x,y)(t)T2(x,y)(t)), |
where
T1(x,y)(t)=Iα1+α2+ζ1ag1(x(t),y(t))+Iα1+α2af1(t,x(t),y(t))−λ1Iα2ax(t)+(t−a)α2+ϵ1−1ΔΓ(α2+ϵ1)×{Ω2(λ1Iα2ax(b)−Iα1+α2+ζ1ag1(x(b),y(b))−Iα1+α2af1(b,x(b),y(b))−λ2m∑i=1μiIα4ay(ηi)+m∑i=1μiIα3+α4a(Iζ2bg2(x(ηi),y(ηi)))+m∑i=1μiIα3+α4af2(ηi,x(ηi),y(ηi))+n∑k=1νkIqk+α3+α4a(Iζ2bg2(x(ξk),y(ξk)))+n∑k=1νkIqk+α3+α4af2(ξk,x(ξk),y(ξk))−λ2n∑k=1νkIqk+α4ay(ξk))+Ω4(λ2Iα4ay(b)−Iα3+α4af2(b,x(b),y(b))+m∑i=1δiIα1+α2+ζ1ag1(x(ηi),y(ηi))+m∑i=1δiIα1+α2af1(ηi,x(ηi),y(ηi))−λ1m∑i=1δiIα2ax(ηi)+n∑k=1θkIpk+α1+α2+ζ1ag1(x(ξk),y(ξk))+n∑k=1θkIpk+α1+α2af1(ξk,x(ξk),y(ξk))−λ1n∑k=1θkIpk+α2ax(ξk))}, | (3.1) |
and
T2(x,y)(t)=Iα3+α4a(Iζ2bg2(x(t),y(t)))+Iα3+α4af2(t,x(t),y(t))−λ2Iα4ay(t)+(t−a)α4+ϵ3−1ΔΓ(α4+ϵ3)×{Ω3(λ1Iα2ax(b)−Iα1+α2+ζ1ag1(x(b),y(b))−Iα1+α2af1(b,x(b),y(b))−λ2m∑i=1μiIα4ay(ηi)+m∑i=1μiIα3+α4a(Iζ2bg2(x(ηi),y(ηi)))+m∑i=1μiIα3+α4af2(ηi,x(ηi),y(ηi))+n∑k=1νkIqk+α3+α4a(Iζ2bg2(x(ξk),y(ξk)))+n∑k=1νkIqk+α3+α4af2(ξk,x(ξk),y(ξk))−λ2n∑k=1νkIqk+α4ay(ξk))+Ω1(λ2Iα4ay(b)−Iα3+α4af2(b,x(b),y(b))+m∑i=1δiIα1+α2+ζ1ag1(x(ηi),y(ηi))+m∑i=1δiIα1+α2af1(ηi,x(ηi),y(ηi))−λ1m∑i=1δiIα2ax(ηi)+n∑k=1θkIpk+α1+α2+ζ1ag1(x(ξk),y(ξk))+n∑k=1θkIpk+α1+α2af1(ξk,x(ξk),y(ξk))−λ1n∑k=1θkIpk+α2ax(ξk))}. | (3.2) |
For computational facilitation, we set
σ1=(b−a)α1+α2Γ(α1+α2+1)+Ω1|Δ|{Ω2(b−a)α1+α2Γ(α1+α2+1)+|Ω4|(m∑i=1|δi|(ηi−a)α1+α2Γ(α1+α2+1)+n∑k=1|θk|(ξk−a)pk+α1+α2Γ(pk+α1+α2+1))}, | (3.3) |
σ2=Ω1|Δ|{Ω2(m∑i=1|μi|(ηi−a)α3+α4Γ(α3+α4+1)+n∑k=1|νk|(ξk−a)qk+α3+α4Γ(qk+α3+α4+1))+|Ω4|(b−a)α3+α4Γ(α3+α4+1)}, | (3.4) |
σ3=Ω2|Δ|{|Ω3|(b−a)α1+α2Γ(α1+α2+1)+Ω1(m∑i=1|δi|(ηi−a)α1+α2Γ(α1+α2+1)+n∑k=1|θk|(ξk−a)pk+α1+α2Γ(pk+α1+α2+1))}, | (3.5) |
σ4=(b−a)α3+α4Γ(α3+α4+1)+Ω2|Δ|{|Ω3|(m∑i=1|μi|(ηi−a)α3+α4Γ(α3+α4+1)+n∑k=1|νk|(ξk−a)qk+α3+α4Γ(qk+α3+α4+1))+Ω1(b−a)α3+α4Γ(α3+α4+1)}, | (3.6) |
σ5=1|Δ|{|λ1|(|Δ|+Ω2Ω1)(b−a)α2Γ(α2+1)+Ω1|λ2Ω4|(b−a)α4Γ(α4+1)+Ω1|λ1Ω4|(m∑i=1|δi|(ηi−a)α2Γ(α2+1)+n∑k=1|θk|(ξk−a)pk+α2Γ(pk+α2+1))+|λ2|Ω2Ω1(n∑k=1|νk|(ξk−a)qk+α4Γ(qk+α4+1)+m∑i=1|μi|(ηi−a)α4Γ(α4+1))}, | (3.7) |
σ6=1|Δ|{Ω2|λ1Ω3|(b−a)α2Γ(α2+1)+|λ2|(|Δ|+Ω1Ω2)(b−a)α4Γ(α4+1)+|λ1|Ω1Ω2(m∑i=1|δi|(ηi−a)α2Γ(α2+1)+n∑k=1|θk|(ξk−a)pk+α2Γ(pk+α2+1))+Ω2|λ2Ω3|(m∑i=1|μi|(ηi−a)α4Γ(α4+1)+n∑k=1|νk|(ξk−a)qk+α4Γ(qk+α4+1))}, | (3.8) |
σ7=(b−a)α1+α2+ζ1Γ(α1+α2+ζ1+1)+Ω1|Δ|{Ω2(b−a)α1+α2+ζ1Γ(α1+α2+ζ1+1)+|Ω4|(m∑i=1|δi|(ηi−a)α1+α2+ζ1Γ(α1+α2+ζ1+1)+n∑k=1|θk|(ξk−a)pk+α1+α2+ζ1Γ(pk+α1+α2+ζ1+1))}, | (3.9) |
σ8=Ω1Ω2(b−a)ζ2|Δ|Γ(ζ2+1)(m∑i=1|μi|(ηi−a)α3+α4Γ(α3+α4+1)+n∑k=1|νk|(ξk−a)qk+α3+α4Γ(qk+α3+α4+1)), | (3.10) |
σ9=Ω2|Δ|{|Ω3|(b−a)α1+α2+ζ1Γ(α1+α2+ζ1+1)+Ω1(m∑i=1|δi|(ηi−a)α1+α2+ζ1Γ(α1+α2+ζ1+1)+n∑k=1|θk|(ξk−a)pk+α1+α2+ζ1Γ(pk+α1+α2+ζ1+1))}, | (3.11) |
σ10=(b−a)ζ2Γ(ζ2+1)((b−a)α3+α4Γ(α3+α4+1)+Ω2|Ω3||Δ|(m∑i=1|μi|(ηi−a)α3+α4Γ(α3+α4+1)+n∑k=1|νk|(ξk−a)qk+α3+α4Γ(qk+α3+α4+1))). | (3.12) |
In the sequel, we suppose that f1,f2:[a,b]×R×R→R and g1,g2:R×R→R are continuous functions satisfying the following assumptions:
(H1) ∀(x1,y1),(x2,y2)∈R2, there exist positive real constants Ki, i = 1, 2, such that
|f1(t,x1,y1)−f1(t,x2,y2)|≤K1(|x1−x2|+|y1−y2|),|f2(t,x1,y1)−f2(t,x2,y2)|≤K2(|x1−x2|+|y1−y2|); |
(H2)∀(x1,y1),(x2,y2)∈R2, there exist positive real constants Li, i = 1, 2, such that
|g1(x1,y1)−g1(x2,y2)|≤L1(|x1−x2|+|y1−y2|),|g2(x1,y1)−g2(x2,y2)|≤L2(|x1−x2|+|y1−y2|); |
(H3) We can find real constants uk,vk,ωk,τk⩾ with u_{0}, v_{0}, \omega_{0}, \tau_{0}\neq 0 such that
\begin{eqnarray*} |f_{1}(t, x, y)|&\leq& u_{0}+u_{1}|x|+u_{2}|y|, |f_{2}(t, x, y)|\leq v_{0}+v_{1}|x|+v_{2}|y|, \\ |g_{1}(x, y)| &\leq& \omega_{0}+\omega_{1}|x|+\omega_{2}|y|, |g_{2}(x, y)|\leq \tau_{0}+\tau_{1}|x|+\tau_{2}|y|; \end{eqnarray*} |
(H_{4}) There exist nonnegative functions \phi _{1}, \phi _{2} \in C([a, b], {\mathbb R}^{+}), and positive constants \Lambda_{1}, \Lambda_{2} such that
|f_{1}(t, x, y)|\le \phi_{1}(t) , |f_{2}(t, x, y)|\le \phi_{2}(t) , |g_1(x, y)|\leqslant \Lambda_{1} , |g_2(x, y)|\leqslant \Lambda_{2} for all (t, x, y)\in [a, b] \times {\mathbb R}\times {\mathbb R}.
Now we present our first main result dealing with the uniqueness of solutions for the system (1.3), which relies on Banach contraction mapping principle [29].
Theorem 3.1. Assume that conditions ( H_{1}) and (H_{2} ) hold. Then the system (1.3) has a unique solution on [a, b] provided that
\begin{equation} (\sigma_{1}+\sigma_{3})K_{1}+(\sigma_{4}+\sigma_{2})K_{2}+(\sigma_{9}+\sigma_{7})L_{1}+(\sigma_{10}+\sigma_{8})L_{2} +\sigma_{5}+\sigma_{6} < 1, \end{equation} | (3.13) |
where \sigma_1, \dots, \sigma_{10} are given in (3.3)–(3.12).
Proof. Let us fix \sup_{t\in[a, b]}|f_{i}(t, 0, 0)| = M_{i} < \infty, |g_{i}(0, 0)| = 0, \; i = 1, 2. In order to satisfy the hypotheses of Banach contraction mapping principle, we first show that \mathcal{T}B_{\rho}\subset B_{\rho}, where B_{\rho} is a closed bounded ball B_{\rho}\subset \mathcal{X} \times \mathcal{X} defined by
\begin{equation*} B_{\rho} = \{(x, y) \in \mathcal{X} \times \mathcal{X} :\|(x, y)\|\leq \rho \}, \end{equation*} |
with
\begin{equation} \rho\geq \dfrac{M_{1}(\sigma_{1}+\sigma_{3})+M_{2}(\sigma_{2}+\sigma_{4})}{1-[K_{1}(\sigma_{1}+\sigma_{3})+K_{2}(\sigma_{2}+\sigma_{4})+L_{1}(\sigma_{7}+\sigma_{9})+L_{2}(\sigma_{8}+\sigma_{10})+\sigma_{5}+\sigma_{6}]}. \end{equation} | (3.14) |
For an arbitrary element (x, y) \in B_{\rho} and for each t \in [a, b], we have
\begin{eqnarray*} |\mathcal{T}_{1}(x, y)(t)| &\leq& I_a^{\alpha_{1}+\alpha_{2}+\zeta_1}(|g_1(x(t), y(t)) -g_{1}(0, 0)|+|g_{1}(0, 0)|)\\\nonumber && + I_{a}^{\alpha_{1}+\alpha_{2}}(|f_{1}(t, x(t), y(t))-f_{1}(t, 0, 0)|+|f_{1}(t, 0, 0)|)\\\nonumber && +|\lambda_{1}| I_{a}^{\alpha_{2}}|x(t)| +\dfrac{(b-a)^{\alpha_{2}+\epsilon_{1}-1}}{|\Delta|\Gamma(\alpha_{2}+\epsilon_{1})} \Big\{\Omega_{2} \Big(|\lambda_{1}| I_{a}^{\alpha_{2}}|x(b)|\\\nonumber && +I_a^{\alpha_{1}+\alpha_{2}+\zeta_1} (|g_1(x(b), y(b)) -g_{1}(0, 0)|+|g_{1}(0, 0)|)\\ \nonumber && +I_{a}^{\alpha_{1}+\alpha_{2}}(|f_{1}(b, x(b), y(b))-f_{1}(b, 0, 0)|+|f_{1}(b, 0, 0)|) +|\lambda_{2}| \sum\limits_{i = 1}^{m}|\mu_{i}| I_{a}^{\alpha_{4}}|y(\eta_{i})|\\\nonumber &&+\sum\limits_{i = 1}^{m}|\mu_{i}| I_{a}^{\alpha_{3}+\alpha_{4}}I^{\zeta_2}_{b}(|g_2(x(\eta_{i}), y(\eta_{i})) -g_{2}(0, 0)|+|g_{2}(0, 0)|)\\\nonumber &&+\sum\limits_{i = 1}^{m}|\mu_{i}| I_{a}^{\alpha_{3}+\alpha_{4}}(|f_{2}(\eta_{i}, x(\eta_{i}), y(\eta_{i}))-f_{2}(\eta_{i}, 0, 0)|+|f_{2}(\eta_{i}, 0, 0)|)\\\nonumber && +\sum\limits_{k = 1}^{n}|\nu_{k}|I_{a}^{q_{k}+\alpha_{3}+\alpha_{4}}I^{\zeta_2}_{b}(|g_2(x(\xi_{k}), y(\xi_{k})) -g_{2}(0, 0)|+|g_{2}(0, 0)|)\\\nonumber &&+\sum\limits_{k = 1}^{n}|\nu_{k}|I_{a}^{q_{k}+\alpha_{3}+\alpha_{4}}(| f_{2}(\xi_{k}, x(\xi_{k}), y(\xi_{k}))-f_{2}(\xi_{k}, 0, 0)|+|f_{2}(\xi_{k}, 0, 0)|) \\\nonumber &&+|\lambda_{2} |\sum\limits_{k = 1}^{n}|\nu_{k}|I_{a}^{q_{k}+\alpha_{4}}|y(\xi_{k})|\Big) +\Omega_{4}\Big(|\lambda_{2} |I_{a}^{\alpha_{4}}|y(b)|\\ \nonumber &&+I_{a}^{\alpha_{3}+\alpha_{4}}(| f_{2}(b, x(b), y(b))-f_{2}(b, 0, 0)|+|f_{2}(b, 0, 0)|) \\\nonumber &&+\sum\limits_{i = 1}^{m}|\delta_{i}|I_a^{\alpha_{1}+\alpha_{2}+\zeta_1} (|g_1(x(\eta_{i}), y(\eta_{i})) -g_{1}(0, 0)|+|g_{1}(0, 0)|)\\ \nonumber &&+\sum\limits_{i = 1}^{m}|\delta_{i}|I_{a}^{\alpha_{1}+\alpha_{2}}(|f_{1}(\eta_{i}, x(\eta_{i}), y(\eta_{i}))-f_{1}(\eta_{i}, 0, 0)|+|f_{1}(\eta_{i}, 0, 0)|) \\\nonumber && +\sum\limits_{k = 1}^{n}|\theta_{k}|I_a^{p_{k}+\alpha_{1}+\alpha_{2}+\zeta_1}(|g_1(x(\xi_{k}), y(\eta_{i})) -g_{1}((0, 0)|+|g_{1}(0, 0)|)\\\nonumber && +\sum\limits_{k = 1}^{n}|\theta_{k}|I_{a}^{p_{k}+\alpha_{1}+\alpha_{2}}(|f_{1}(\xi_{k}, x(\xi_{k}), y(\xi_{k}))-f_{1}(\xi_{k}, 0, 0)|+|f_{1}(\xi_{k}, 0, 0)|)\\\nonumber && +|\lambda_{1}| \sum\limits_{i = 1}^{m}|\delta_{i}|I_{a}^{\alpha_{2}}|x(\eta_{i})|+|\lambda_{1}| \sum\limits_{k = 1}^{n}|\theta_{k}|I_{a}^{p_{k}+\alpha_{2}}|x(\xi_{k})| \Big)\Big\}\\ &\le& \sigma_{1}[K_1(\|x\|+\|y\|)+M_1]+ \sigma_{2}[K_2(\|x\|+\|y\|)+M_2]+\sigma_{7}L_{1}(\|x\|+\|y\|)\\ \nonumber &&+\sigma_{8}L_{2}(\|x\|+\|y\|)+\sigma_{5}(\|x\|+\|y\|). \end{eqnarray*} |
In a similar manner, one can find that
\begin{eqnarray*} \|\mathcal{T}_{2}(x, y)\|& \leq & \sigma_{3}[K_1(\|x\|+\|y\|)+M_1]+ \sigma_{4}[K_2(\|x\|+\|y\|)+M_2]\\ &&+ \sigma_{9}L_{1}(\|x\|+\|y\|)+ \sigma_{10}L_{2}(\|x\|+\|y\|)+\sigma_{6} (\|x\|+\|y\|). \end{eqnarray*} |
Adding the last two inequalities and using (3.14), we obtain
\begin{eqnarray*} \|\mathcal{T}(x, y)\| &\leq& ( \sigma_{1}+\sigma_{3})[K_1(\|x\|+\|y\|)+M_1]+ (\sigma_{2}+\sigma_{4})[K_2(\|x\|+\|y\|)+M_2]\\ &&+(\sigma_{7}+\sigma_{9})L_{1}(\|x\|+\|y\|)+(\sigma_{8}+\sigma_{10})L_{2}(\|x\|+\|y\|)\\ &&+(\sigma_{5}+\sigma_{6})(\|x\|+\|y\|)\\ \nonumber &\leq& \rho, \end{eqnarray*} |
which shows that \mathcal{T}B_{\rho}\subset B_{\rho} .
Next, we show that \mathcal{T} is a contraction on \mathcal{X}\times \mathcal{X}. For that, let (x, y), (x_1, y_1) \in \mathcal{X} \times \mathcal{X}. Then we have
\begin{eqnarray*} &&|\mathcal{T}_{1}(x, y)(t)-\mathcal{T}_{1}(x_1, y_1)(t)|\\ &\leq& I_a^{\alpha_{1}+\alpha_{2}+\zeta_1} |g_1(x(t), y(t))-g_1(x_{1}(t), y_{1}(t))|+I_{a}^{\alpha_{1}+\alpha_{2}}|f_{1}(t, x(t), y(t))-f_{1}(t, x_1(t), y_1(t))| \\&& +|\lambda_{1}| I_{a}^{\alpha_{2}}|x(t)-x_1(t)| +\dfrac{\Omega_{1}}{|\Delta|}\Big\{\Omega_{2} \Big(I_{a}^{\alpha_{1}+\alpha_{2}}|f_{1}(b, x(b), y(b))-f_{1}(b, x_1(b), y_1(b))|\\&& +|\lambda_{1}| I_{a}^{\alpha_{2}}|x(b)-x_1(b)|+I_a^{\alpha_{1}+\alpha_{2}+\zeta_1} |g_1(x(b), y(b))-g_1(x_{1}(b), y_{1}(b))| \\\nonumber && +|\lambda_{2}| \sum\limits_{i = 1}^{m}|\mu_{i}| I_{a}^{\alpha_{4}}|y(\eta_{i})-y_1(\eta_{i})|\\\nonumber &&+\sum\limits_{i = 1}^{m}|\mu_{i}| I_{a}^{\alpha_{3}+\alpha_{4}}I^{\zeta_2}_{b}(|g_2(x(\eta_{i}), y(\eta_{i}))-g_2(x_{1}(\eta_{i}), y_{1}(\eta_{i}))|)\\\nonumber &&+\sum\limits_{i = 1}^{m}|\mu_{i}| I_{a}^{\alpha_{3}+\alpha_{4}}|f_{2}(\eta_{i}, x(\eta_{i}), y(\eta_{i}))-f_{2}(\eta_{i}, x_1(\eta_{i}), y_1(\eta_{i}))| \\&&+\sum\limits_{k = 1}^{n}|\nu_{k}|I_{a}^{q_{k}+\alpha_{3}+\alpha_{4}} |f_{2}(\xi_{k}, x(\xi_{k}), y(\xi_{k}))-f_{2}(\xi_{k}, x_1(\xi_{k}), y_1(\xi_{k}))|\\\nonumber && +\sum\limits_{k = 1}^{n}|\nu_{k}|I_{a}^{q_{k}+\alpha_{3}+\alpha_{4}}I^{\zeta_2}_{b}(|g_2(x(\xi_{k}), y(\xi_{k}))-g_2 (x_1(\xi_{k}), y_1(\xi_{k}))|) \\\nonumber &&+|\lambda_{2}| \sum\limits_{k = 1}^{n}|\nu_{k}|I_{a}^{q_{k}+\alpha_{4}}|y(\xi_{k})-y_1(\xi_{k})|\Big)\\ &&+|\Omega_{4}|\Big( I_{a}^{\alpha_{3}+\alpha_{4}}|f_{2}(b, x(b), y(b))-f_{2}(b, x_1(b), y_1(b))|+ |\lambda_{2} |I_{a}^{\alpha_{4}}|y(b)-y_1(b)|\\&& +\sum\limits_{i = 1}^{m}|\delta_{i}|I_{a}^{\alpha_{1}+\alpha_{2}}|f_{1}(\eta_{i}, x(\eta_{i}), y(\eta_{i}))-f_{1}(\eta_{i}, x_1(\eta_{i}), y_1(\eta_{i}))|\\\nonumber &&+\sum\limits_{i = 1}^{m}|\delta_{i}|I_a^{\alpha_{1}+\alpha_{2}+\zeta_1}| g_1(x(\eta_{i}), y(\eta_{i}))- g_1(x_{1}(\eta_{i}), y_{1}(\eta_{i}))|\\\nonumber &&+\sum\limits_{k = 1}^{n}|\theta_{k}|I_a^{p_{k}+\alpha_{1}+\alpha_{2}+\zeta_1}|g_{1}(x(\xi_{k}), y(\xi_{k}))-g_{1}(x_{1}(\xi_{k}), y_{1}(\xi_{k}))|\\\nonumber && +|\lambda_{1}| \sum\limits_{k = 1}^{n}|\theta_{k}|I_{a}^{p_{k}+\alpha_{2}}|x(\xi_{k})-x_1(\xi_{k})| \\&& +\sum\limits_{k = 1}^{n}|\theta_{k}|I_{a}^{p_{k}+\alpha_{1}+\alpha_{2}}|f_{1}(\xi_{k}, x(\xi_{k}), y(\xi_{k}))-f_{1}(\xi_{k}, x_1(\xi_{k}), y_1(\xi_{k}))|\\&&+|\lambda_{1}| \sum\limits_{i = 1}^{m}|\delta_{i}|I_{a}^{\alpha_{2}}|x(\eta_{i})-x_{1}(\eta_{i})|\Big)\Big\}, \end{eqnarray*} |
which leads to
\begin{eqnarray*} \|\mathcal{T}_{1}(x, y)-\mathcal{T}_{1}(x_1, y_1)\| &\leq & [\sigma_{1}K_{1}+\sigma_{2}K_{2}+\sigma_{7}L_{1}+\sigma_{8}L_{2}+\sigma_{5}] (\|x-x_1\|+\|y-y_1\|). \end{eqnarray*} |
Similarly one can obtain
\begin{eqnarray*} \|\mathcal{T}_{2}(x, y)-\mathcal{T}_{2}(x_1, y_1)\|\leq [\sigma_{3}K_{1}+\sigma_{4}K_{2}+\sigma_{9}L_{1}+\sigma_{10}L_{2}+\sigma_{6}] (\|x-x_1\|+\|y-y_1\|). \end{eqnarray*} |
It follows from the last two inequalities that
\begin{eqnarray*} \|\mathcal{T}(x, y)-\mathcal{T}(x_1, y_1)\| &\leq &[(\sigma_{1}+\sigma_{3})K_{1}+(\sigma_{4}+\sigma_{2})K_{2}+(\sigma_{9}+\sigma_{7})L_{1}+(\sigma_{10}+\sigma_{8})L_{2} \\&&+ \sigma_{5}+\sigma_{6}] [\|x-x_1\|+\|y-y_1\|]. \end{eqnarray*} |
Since (\sigma_{1}+\sigma_{3})K_{1}+(\sigma_{4}+\sigma_{2})K_{2}+(\sigma_{9}+\sigma_{7})L_{1}+(\sigma_{10}+\sigma_{8})L_{2} +\sigma_{5}+\sigma_{6} < 1 by (3.13), therefore \mathcal{T} is a contraction and hence by Banach's contraction mapping principle, the operator \mathcal{T} has a unique fixed point. In consequence, the problem (1.3) has a unique solution on [a, b]. The proof is completed.
The next existence result is based on Krasnosel'ski{\rm{\mathord{\buildrel{\lower3pt\hbox{$\scriptscriptstyle\smile$}} \over i} }}'s fixed point theorem.
Lemma 3.1. (Krasnosel'ski{{\mathord{\buildrel{\lower3pt\hbox{$\scriptscriptstyle\smile$}} \over i} }}'s fixed point theorem). [30] Let B be a closed, convex, bounded and nonempty subset of a Banach space X. Let E_1 and E_2 be the operators such that (i) E_1x+E_2y \in B whenever x, y \in B; (ii) E_1 is compact and continuous; (iii) E_2 is a contractionmapping. Then there exists z \in B such that z = E_1z+E_2z.
Theorem 3.2. Assume that (H_1), (H_2) and (H_{4}) hold and
\begin{equation} \sigma_{5}+\sigma_{6} < 1, \end{equation} | (3.15) |
where \sigma_{5} and \sigma_{6} are given by (3.7) and (3.8) respectively. Then the problem (1.3) has at least one solution on [a, b].
Proof. Let us split the operators \mathcal{T}_{1} and \mathcal{T}_{2} defined by (3.1) and (3.2) respectively into four operators as follows
\mathcal{T}_{1}(x, y)(t) = \mathcal{T}_{1, 1}(x, y)(t)+\mathcal{T}_{1, 2}(x, y)(t), \, \, \mathcal{T}_{2}(x, y)(t) = \mathcal{T}_{2, 1}(x, y)(t)+\mathcal{T}_{2, 2}(x, y)(t), |
where
\begin{eqnarray*} \mathcal{T}_{1, 1}(x, y)(t)& = & I_a^{\alpha_{1}+\alpha_{2}+\zeta_1} g_1(x(t), y(t)) + I_{a}^{\alpha_{1}+\alpha_{2}}f_{1}(t, x(t), y(t))\\ \nonumber && +\dfrac{(t-a)^{\alpha_{2}+\epsilon_{1}-1}}{\Delta\Gamma(\alpha_{2}+\epsilon_{1})}\times \Big\{\Omega_{2}\Big( -I_a^{\alpha_{1}+\alpha_{2}+\zeta_1} g_1(x(b), y(b)) - I_{a}^{\alpha_{1}+\alpha_{2}}f_{1}(b, x(b), y(b))\\&& +\sum\limits_{i = 1}^{m}\mu_{i} I_{a}^{\alpha_{3}+\alpha_{4}}(I^{\zeta_2}_{b}g_2(x(\eta_{i}), y(\eta_{i}))) +\sum\limits_{i = 1}^{m}\mu_{i} I_{a}^{\alpha_{3}+\alpha_{4}}f_{2}(\eta_{i}, x(\eta_{i}), y(\eta_{i}))\\&& +\sum\limits_{k = 1}^{n}\nu_{k}I_{a}^{q_{k}+\alpha_{3}+\alpha_{4}}(I^{\zeta_2}_{b}g_2(x(\xi_{k}), y(\xi_{k}))) +\sum\limits_{k = 1}^{n}\nu_{k}I_{a}^{q_{k}+\alpha_{3}+\alpha_{4}} f_{2}(\xi_{k}, x(\xi_{k}), y(\xi_{k})) \Big)\\&& +\Omega_{4}\Big(-I_{a}^{\alpha_{3}+\alpha_{4}}f_{2}(b, x(b), y(b)) +\sum\limits_{i = 1}^{m}\delta_{i}I_a^{\alpha_{1}+\alpha_{2}+\zeta_1} g_1(x(\eta_{i}), y(\eta_{i}))\\&& +\sum\limits_{i = 1}^{m}\delta_{i}I_{a}^{\alpha_{1}+\alpha_{2}}f_{1}(\eta_{i}, x(\eta_{i}), y(\eta_{i})) +\sum\limits_{k = 1}^{n}\theta_{k}I_a^{p_{k}+\alpha_{1}+\alpha_{2}+\zeta_1}g_{1}(x(\xi_{k}), y(\xi_{k}))\\&& +\sum\limits_{k = 1}^{n}\theta_{k}I_{a}^{p_{k}+\alpha_{1}+\alpha_{2}}f_{1}(\xi_{k}, x(\xi_{k}), y(\xi_{k}))\Big)\Big\}, \\ \mathcal{T}_{1, 2}(x, y)(t)& = & -\lambda_{1} I_{a}^{\alpha_{2}}x(t)+\dfrac{(t-a)^{\alpha_{2}+\epsilon_{1}-1}}{\Delta\Gamma(\alpha_{2}+\epsilon_{1})} \Big\{\Omega_{2}\Big(-\lambda_{1} I_{a}^{\alpha_{2}}x(b) - \lambda_{2} \sum\limits_{i = 1}^{m}\mu_{i} I_{a}^{\alpha_{4}}y(\eta_{i})\\&& - \lambda_{2} \sum\limits_{k = 1}^{n}\nu_{k}I_{a}^{q_{k}+\alpha_{4}}y(\xi_{k})\Big)+\Omega_{4}\Big(\lambda_{2} I_{a}^{\alpha_{4}}y(b)-\lambda_{1} \sum\limits_{i = 1}^{m}\delta_{i}I_{a}^{\alpha_{2}}x(\eta_{i})\\& & - \lambda_{1} \sum\limits_{k = 1}^{n}\theta_{k}I_{a}^{p_{k}+\alpha_{2}}x(\xi_{k}) \Big)\Big\}, \end{eqnarray*} |
\begin{eqnarray*} \mathcal{T}_{2, 1}(x, y)(t)& = &I_{a}^{\alpha_{3}+\alpha_{4}}(I^{\zeta_2}_{b}g_2(x(t), y(t)))+ I_{a}^{\alpha_{3}+\alpha_{4}}f_{2}(t, x(t), y(t)) \\ \nonumber && +\dfrac{(t-a)^{\alpha_{4}+\epsilon_{3}-1}}{\Delta\Gamma(\alpha_{4}+\epsilon_{3})}\times \Big\{\Omega_{3}\Big(-I_a^{\alpha_{1}+\alpha_{2}+\zeta_1}g_{1}(x(b), y(b)) -I_{a}^{\alpha_{1}+\alpha_{2}}f_{1}(b, x(b), y(b))\\&& +\sum\limits_{i = 1}^{m}\mu_{i} I_{a}^{\alpha_{3}+\alpha_{4}}(I^{\zeta_2}_{b}g_2(x(\eta_{i}), y(\eta_{i}))) +\sum\limits_{i = 1}^{m}\mu_{i} I_{a}^{\alpha_{3}+\alpha_{4}}f_{2}(\eta_{i}, x(\eta_{i}), y(\eta_{i}))\\&& +\sum\limits_{k = 1}^{n}\nu_{k}I_{a}^{q_{k}+\alpha_{3}+\alpha_{4}}(I^{\zeta_2}_{b}g_2(x(\xi_{k}), y(\xi_{k}))) +\sum\limits_{k = 1}^{n}\nu_{k}I_{a}^{q_{k}+\alpha_{3}+\alpha_{4}} f_{2}(\xi_{k}, x(\xi_{k}), y(\xi_{k}))\Big)\\&& +\Omega_{1}\Big( -I_{a}^{\alpha_{3}+\alpha_{4}}f_{2}(b, x(b), y(b)) +\sum\limits_{i = 1}^{m}\delta_{i}I_a^{\alpha_{1}+\alpha_{2}+\zeta_1}g_{1}(x(\eta_{i}), y(\eta_{i})) \\ \nonumber &&+\sum\limits_{i = 1}^{m}\delta_{i}I_{a}^{\alpha_{1}+\alpha_{2}}f_{1}(\eta_{i}, x(\eta_{i}), y(\eta_{i}))+\sum\limits_{k = 1}^{n}\theta_{k}I_a^{p_{k}+\alpha_{1}+\alpha_{2}+\zeta_1}g_{1}(x(\xi_{k}), y(\xi_{k}))\\ \nonumber &&+\sum\limits_{k = 1}^{n}\theta_{k}I_a^{p_{k}+\alpha_{1}+\alpha_{2}}f_{1}(\xi_{k}, x(\xi_{k}), y(\xi_{k})) \Big)\Big\}, \\ \mathcal{T}_{2, 2}(x, y)(t)& = & -\lambda_{2} I_{a}^{\alpha_{4}}y(t) +\dfrac{(t-a)^{\alpha_{4}+\epsilon_{3}-1}}{\Delta\Gamma(\alpha_{4}+\epsilon_{3})}\times \Big\{\Omega_{3}\Big(\lambda_{1} I_{a}^{\alpha_{2}}x(b) -\lambda_{2} \sum\limits_{i = 1}^{m}\mu_{i} I_{a}^{\alpha_{4}}y(\eta_{i}) \\&& -\lambda_{2} \sum\limits_{k = 1}^{n}\nu_{k}I_{a}^{q_{k}+\alpha_{4}}y(\xi_{k})\Big)+\Omega_{1}\Big(\lambda_{2} I_{a}^{\alpha_{4}}y(b) -\lambda_{1} \sum\limits_{i = 1}^{m}\delta_{i}I_{a}^{\alpha_{2}}x(\eta_{i})\\ \nonumber &&-\lambda_{1} \sum\limits_{k = 1}^{n}\theta_{k}I_{a}^{p_{k}+\alpha_{2}}x(\xi_{k}) \Big)\Big\}. \end{eqnarray*} |
Now we verify the hypotheses of Krasnosel'ski{\rm{\mathord{\buildrel{\lower3pt\hbox{$\scriptscriptstyle\smile$}} \over i} }}'s fixed point theorem (Lemma 3.1) in three steps.
(ⅰ) In this step, it will be shown that \mathcal{T}_{1}(x, y)+\mathcal{T}_{2}(\widehat{x}, \widehat{y}) \in B_{r} for all (x, y), (\widehat{x}, \widehat{y}) \in B_{r}, where B_{r}\subset \mathcal{X}\times \mathcal{X} is a bounded closed ball with radius
r \geqslant \dfrac{ (\sigma_{1}+\sigma_{3})\|\phi_{1}\|+(\sigma_{2}+\sigma_{4})\|\phi_{2}\|+(\sigma_{7}+\sigma_{9})\Lambda_{1}+(\sigma_{8}+\sigma_{10})\Lambda_{2}}{1-\sigma_{5}-\sigma_{6}}. |
As in the proof of Theorem 3.1, we can find that
\begin{eqnarray*} |\mathcal{T}_{1, 1}(x, y)(t)+\mathcal{T}_{1, 2}(x, y)(t)| \leq \sigma_{1}\|\phi_{1}\|+\sigma_{2}\|\phi_{2}\|+ \sigma_{7}\Lambda_{1}+ \sigma_{8}\Lambda_{2}+\sigma_{5}r, \end{eqnarray*} |
and
\begin{eqnarray*} |\mathcal{T}_{2, 1}(\widehat{x}, \widehat{y})(t)+\mathcal{T}_{2, 2}(\widehat{x}, \widehat{y})(t)| \leq \sigma_{3}\|\phi_{1}\|+\sigma_{4}\|\phi_{2}\|+ \sigma_{9}\Lambda_{1}+ \sigma_{10}\Lambda_{2}+\sigma_{6}r, \end{eqnarray*} |
which lead to the inequality
\begin{eqnarray*} \| \mathcal{T}_{1}(x, y)+\mathcal{T}_{2}(\widehat{x}, \widehat{y})\| &\leq & (\sigma_{1}+\sigma_{3})\|\phi_{1}\|+(\sigma_{2}+\sigma_{4})\|\phi_{2}\|+(\sigma_{7}+\sigma_{9})\Lambda_{1} \\&&+ (\sigma_{8}+\sigma_{10})\Lambda_{2}+ (\sigma_{5}+\sigma_{6})r \leq r. \end{eqnarray*} |
Thus \mathcal{T}_{1}(x, y)+\mathcal{T}_{2}(\widehat{x}, \widehat{y}) \in B_{r} .
(ⅱ) Here we establish that (\mathcal{T}_{1, 2}, \mathcal{T}_{2, 2}) is a contraction mapping. Let (x, y), (\widehat{x}, \widehat{y}) \in B_{r}. Then it is easy to find that
|\mathcal{T}_{1, 2}(x, y)(t)-\mathcal{T}_{1, 2}(\widehat{x}, \widehat{y})(t)| \leq \sigma_{5}[\|x-\widehat{x}\|+\|y-\widehat{y}\|], |
|\mathcal{T}_{2, 2}(x, y)(t)-\mathcal{T}_{2, 2}(\widehat{x}, \widehat{y})| \leq \sigma_{6}[\|x-\widehat{x}\|+\|y-\widehat{y}\|]. |
Consequently, we get
\begin{eqnarray*} \|(\mathcal{T}_{1, 2}, \mathcal{T}_{2, 2})(x, y)-(\mathcal{T}_{1, 2}, \mathcal{T}_{2, 2})(\widehat{x}, \widehat{y})\| \leq (\sigma_{5}+\sigma_{6}) [\|x-\widehat{x}\|+\|y-\widehat{y}\|], \end{eqnarray*} |
which, by (3.15), implies that (\mathcal{T}_{1, 2}, \mathcal{T}_{2, 2}) is a contraction.
(ⅲ) We show that (\mathcal{T}_{1, 1}, \mathcal{T}_{2, 1}) is compact and continuous.
Continuity of (\mathcal{T}_{1, 1}, \mathcal{T}_{2, 1}) is obvious. For (x, y) \in B_{r}, we have
\begin{eqnarray*} |\mathcal{T}_{1, 1}(x, y)(t)| &\leq& I_a^{\alpha_{1}+\alpha_{2}+\zeta_1}(|g_1(x(t), y(t))|) + I_{a}^{\alpha_{1}+\alpha_{2}}(|f_{1}(t, x(t), y(t))|)\\\nonumber && +\dfrac{(b-a)^{\alpha_{2}+\epsilon_{1}-1}}{|\Delta|\Gamma(\alpha_{2}+\epsilon_{1})} \Big\{\Omega_{2} \Big( I_a^{\alpha_{1}+\alpha_{2}+\zeta_1} (|g_1(x(b), y(b)) |) +I_{a}^{\alpha_{1}+\alpha_{2}}(|f_{1}(b, x(b), y(b))|)\\&& +\sum\limits_{i = 1}^{m}|\mu_{i}| I_{a}^{\alpha_{3}+\alpha_{4}}(I^{\zeta_2}_{b}(|g_2(x(\eta_{i}), y(\eta_{i})) |) +\sum\limits_{i = 1}^{m}|\mu_{i}| I_{a}^{\alpha_{3}+\alpha_{4}}(|f_{2}(\eta_{i}, x(\eta_{i}), y(\eta_{i}))|)\\&& +\sum\limits_{k = 1}^{n}|\nu_{k}|I_{a}^{q_{k}+\alpha_{3}+\alpha_{4}}(I^{\zeta_2}_{b}(|g_2(x(\xi_{k}), y(\xi_{k}))|)+\sum\limits_{k = 1}^{n}|\nu_{k}|I_{a}^{q_{k}+\alpha_{3}+\alpha_{4}}(| f_{2}(\xi_{k}, x(\xi_{k}), y(\xi_{k}))|) \Big) \\&&+\Omega_{4}\Big(I_{a}^{\alpha_{3}+\alpha_{4}}(| f_{2}(b, x(b), y(b))|) +\sum\limits_{i = 1}^{m}\delta_{i}I_a^{\alpha_{1}+\alpha_{2}+\zeta_1} (|g_1(x(\eta_{i}), y(\eta_{i})) |)\\&& +\sum\limits_{i = 1}^{m}|\delta_{i}|I_{a}^{\alpha_{1}+\alpha_{2}}(|f_{1}(\eta_{i}, x(\eta_{i}), y(\eta_{i}))|) +\sum\limits_{k = 1}^{n}\theta_{k}I_a^{p_{k}+\alpha_{1}+\alpha_{2}+\zeta_1}(|g_1(x(\xi_{k}), y(\eta_{i})) |)\\&& +\sum\limits_{k = 1}^{n}|\theta_{k}|I_{a}^{p_{k}+\alpha_{1}+\alpha_{2}}(|f_{1}(\xi_{k}, x(\xi_{k}), y(\xi_{k}))|) \Big)\Big\}\\ &\le& \sigma_{1}\|\phi_{1}\|+\sigma_{2}\|\phi_{2}\|+ \sigma_{7}\Lambda_{1}+ \sigma_{8}\Lambda_{2}. \end{eqnarray*} |
In a similar manner, we can get |\mathcal{T}_{2, 1}(x, y)(t)| \leq \sigma_{3}\|\phi_{1}\|+\sigma_{4}\|\phi_{2}\|+ \sigma_{9}\Lambda_{1}+ \sigma_{10}\Lambda_{2}. Thus
\|(\mathcal{T}_{1, 1}, \mathcal{T}_{2, 1})(x, y)\|\leq (\sigma_{1}+\sigma_{3})\|\phi_{1}\|+(\sigma_{2}+\sigma_{4})\|\phi_{2}\|+(\sigma_{7}+\sigma_{9})\Lambda_{1} + (\sigma_{8}+\sigma_{10})\Lambda_{2}, |
which means that (\mathcal{T}_{1, 1}, \mathcal{T}_{2, 1}) is uniformly bounded on B_{r}.
In order to show the equicontinuity of (\mathcal{T}_{1, 1}, \mathcal{T}_{2, 1}), we take t_{1}, t_{2} \in [a, b] with t_{1} < t_{2}. Then, for arbitrary (x, y) \in B_{r}, we obtain
\begin{eqnarray*} &&| \mathcal{T}_{1, 1}(x, y)(t_{2})-\mathcal{T}_{1, 1}(x, y)(t_{1})|\\ &\leq& \Big|\int_{a}^{t_{2}}\dfrac{(t_{2}-s)^{\alpha_{1}+\alpha_{2}-1}}{\Gamma(\alpha_{1}+\alpha_{2})}f_{1}(s, x(s), y(s))ds -\int_{a}^{t_{1}}\dfrac{(t_{1}-s)^{\alpha_{1}+\alpha_{2}-1}}{\Gamma(\alpha_{1}+\alpha_{2})}f_{1}(s, x(s), y(s))ds\Big| \\&& + \Big|\int_{a}^{t_{2}}\dfrac{(t_{2}-s)^{\alpha_{1}+\alpha_{2}+\zeta_1-1}}{\Gamma(\alpha_{1}+\alpha_{2}+\zeta_1)}g_1(x(s), y(s))ds -\int_{a}^{t_{1}}\dfrac{(t_{1}-s)^{\alpha_{1}+\alpha_{2}+\zeta_1-1}}{\Gamma(\alpha_{1}+\alpha_{2})+\zeta_1}g_1(x(s), y(s))ds\Big| \\&&+\dfrac{ |(t_{2}-a)^{\alpha_{2}+\epsilon_{1}-1}-(t_{1}-a)^{\alpha_{2}+\epsilon_{1}-1}|}{|\Delta| \Gamma(\alpha_{2}+\epsilon_{1})} \Big\{\Omega_{2} \Big( I_a^{\alpha_{1}+\alpha_{2}+\zeta_1} (|g_1(x(b), y(b)) |)\\&& +I_{a}^{\alpha_{1}+\alpha_{2}}(|f_{1}(b, x(b), y(b))|) +\sum\limits_{i = 1}^{m}|\mu_{i}| I_{a}^{\alpha_{3}+\alpha_{4}}(I^{\zeta_2}_{b}(|g_2(x(\eta_{i}), y(\eta_{i})) |)\\&& +\sum\limits_{i = 1}^{m}|\mu_{i}| I_{a}^{\alpha_{3}+\alpha_{4}}(|f_{2}(\eta_{i}, x(\eta_{i}), y(\eta_{i}))|) +\sum\limits_{k = 1}^{n}|\nu_{k}|I_{a}^{q_{k}+\alpha_{3}+\alpha_{4}}(I^{\zeta_2}_{b}(|g_2(x(\xi_{k}), y(\xi_{k}))|)\\&& +\sum\limits_{k = 1}^{n}|\nu_{k}|I_{a}^{q_{k}+\alpha_{3}+\alpha_{4}}(| f_{2}(\xi_{k}, x(\xi_{k}), y(\xi_{k}))|) \Big) +\Omega_{4}\Big(I_{a}^{\alpha_{3}+\alpha_{4}}(| f_{2}(b, x(b), y(b))|)\\&& +\sum\limits_{i = 1}^{m}|\delta_{i}|I_a^{\alpha_{1}+\alpha_{2}+\zeta_1} (|g_1(x(\eta_{i}), y(\eta_{i})) |) +\sum\limits_{i = 1}^{m}|\delta_{i}|I_{a}^{\alpha_{1}+\alpha_{2}}(|f_{1}(\eta_{i}, x(\eta_{i}), y(\eta_{i}))|)\\&& +\sum\limits_{k = 1}^{n}|\theta_{k}|I_a^{p_{k}+\alpha_{1}+\alpha_{2}+\zeta_1}(|g_1(x(\xi_{k}), y(\eta_{i})) |) +\sum\limits_{k = 1}^{n}|\theta_{k}|I_{a}^{p_{k}+\alpha_{1}+\alpha_{2}}(|f_{1}(\xi_{k}, x(\xi_{k}), y(\xi_{k}))|) \Big)\Big\}\\ & \leqslant & \dfrac{\|\phi_{1}\|}{\Gamma(\alpha_{1}+\alpha_{2}+1)}\Big\{2(t_{2}-t_1)^{\alpha_{1}+\alpha_{2}}+|(t_{2}-a)^{\alpha_{1}+\alpha_{2}}-(t_{1}-a)^{\alpha_{1}+\alpha_{2}}|\Big\}\\&& +\dfrac{\Lambda_{1}}{\Gamma(\alpha_{1}+\alpha_{2}+\zeta_1+1)}\Big\{2(t_{2}-t_1)^{\alpha_{1}+\alpha_{2}+\zeta_1}+|(t_{2}-a)^{\alpha_{1}+\alpha_{2}+\zeta_1}-(t_{1}-a)^{\alpha_{1}+\alpha_{2}+\zeta_1}|\Big\}\\&& +\dfrac{ |(t_{2}-a)^{\alpha_{2}+\epsilon_{1}-1}-(t_{1}-a)^{\alpha_{2}+\epsilon_{1}-1}|}{|\Delta| \Gamma(\alpha_{2}+\epsilon_{1})} \Big\{\Omega_{2}\Big(\dfrac{\|\phi_{1}\|(b-a)^{\alpha_{1}+\alpha_{2}}}{\Gamma(\alpha_{1}+\alpha_{2}+1)}\\&& +\dfrac{\Lambda_{1}(b-a)^{\alpha_{1}+\alpha_{2}+\zeta_{1}}}{\Gamma(\alpha_{1}+\alpha_{2}+\zeta_{1}+1)} +\sum\limits_{i = 1}^{m} \dfrac{|\mu_{i}| \|\phi_{2}\|(\eta_{i}-a)^{\alpha_{3}+\alpha_{4}}}{\Gamma(\alpha_{3}+\alpha_{4}+1)}\\&& +\sum\limits_{i = 1}^{m} \dfrac{|\mu_{i}| \Lambda_{2}(b-a)^{\zeta_{2}}(\eta_{i}-a)^{\alpha_{3}+\alpha_{4}}}{\Gamma(\alpha_{3}+\alpha_{4}+1)\Gamma(\zeta_{2}+1)} +\sum\limits_{k = 1}^{n}\dfrac{|\nu_{k}| \|\phi_{2}\|(\xi_{k}-a)^{q_{k}+\alpha_{3}+\alpha_{4}}}{\Gamma(q_{k}+\alpha_{3}+\alpha_{4}+1)}\Big)\\&& +\sum\limits_{k = 1}^{n}\dfrac{|\nu_{k}| \Lambda_{2}(b-a)^{\zeta_{2}}(\xi_{k}-a)^{q_{k}+\alpha_{3}+\alpha_{4}}}{\Gamma(\zeta_{2}+1)\Gamma(q_{k}+\alpha_{3}+\alpha_{4}+1)}\Big)\\&& +|\Omega_{4}|\Big( \dfrac{\|\phi_{2}\|(b-a)^{\alpha_{3}+\alpha_{4}}}{\Gamma(\alpha_{3}+\alpha_{4}+1)} +\sum\limits_{i = 1}^{m}\dfrac{|\delta_{i}| \|\phi_{1}\|(\eta_{i}-a)^{\alpha_{1}+\alpha_{2}}}{\Gamma(\alpha_{1}+\alpha_{2}+1)}\\&& +\sum\limits_{i = 1}^{m}\dfrac{|\delta_{i}| \Lambda_{1}(\eta_{i}-a)^{\alpha_{1}+\alpha_{2}+\zeta_{1}}}{\Gamma(\alpha_{1}+\alpha_{2}+\zeta_{1}+1)} +\sum\limits_{k = 1}^{n}\dfrac{|\theta_{k}| \|\phi_{1}\|(\xi_{k}-a)^{p_{k}+\alpha_{1}+\alpha_{2}}}{\Gamma(p_{k}+\alpha_{1}+\alpha_{2}+1)} \\&& +\sum\limits_{k = 1}^{n}\dfrac{|\theta_{k}| \Lambda_{1}(\xi_{k}-a)^{p_{k}+\alpha_{1}+\alpha_{2}+\zeta_{1}}}{\Gamma(p_{k}+\alpha_{1}+\alpha_{2}+\zeta_{1}+1)}\Big)\Big\}\to 0, \end{eqnarray*} |
as t_{2}\rightarrow t_{1} independently of (x, y) \in B_{r}. Also
\begin{eqnarray*} &&| \mathcal{T}_{2, 1}(x, y)(t_{2})-\mathcal{T}_{2, 1}(x, y)(t_{1})|\\ &\leq& \dfrac{\|\phi_{2}\|}{\Gamma(\alpha_{3}+\alpha_{4}+1)}\Big\{2(t_{2}-t_1)^{\alpha_{3}+\alpha_{4}}+|(t_{2}-a)^{\alpha_{3}+\alpha_{4}}-(t_{1}-a)^{\alpha_{3}+\alpha_{4}}|\Big\}\\&& +\dfrac{\Lambda_{2}(b-a)^{\zeta_{2}}}{\Gamma(\zeta_{2}+1)\Gamma(\alpha_{3}+\alpha_{4}+1)}\Big\{2(t_{2}-t_1)^{\alpha_{3}+\alpha_{4}}+|(t_{2}-a)^{\alpha_{3}+\alpha_{4}}-(t_{1}-a)^{\alpha_{3}+\alpha_{4}}|\Big\}\\&& +\dfrac{ |(t_{2}-a)^{\alpha_{4}+\epsilon_{3}-1}-(t_{1}-a)^{\alpha_{4}+\epsilon_{3}-1}|}{|\Delta| \Gamma(\alpha_{4}+\epsilon_{3})} \Big\{|\Omega_{3}|\Big(\dfrac{\|\phi_{1}\|(b-a)^{\alpha_{1}+\alpha_{2}}}{\Gamma(\alpha_{1}+\alpha_{2}+1)}\\&& +\dfrac{\Lambda_{1}(b-a)^{\alpha_{1}+\alpha_{2}+\zeta_{1}}}{\Gamma(\alpha_{1}+\alpha_{2}+\zeta_{1}+1)} +\sum\limits_{i = 1}^{m} \dfrac{|\mu_{i}| \|\phi_{2}\|(\eta_{i}-a)^{\alpha_{3}+\alpha_{4}}}{\Gamma(\alpha_{3}+\alpha_{4}+1)}\\&& +\sum\limits_{i = 1}^{m} \dfrac{|\mu_{i}| \Lambda_{2}(b-a)^{\zeta_{2}}(\eta_{i}-a)^{\alpha_{3}+\alpha_{4}}}{\Gamma(\zeta_{2}+1)\Gamma(\alpha_{3}+\alpha_{4}+1)} +\sum\limits_{k = 1}^{n}\dfrac{|\nu_{k}| \|\phi_{2}\|(\xi_{k}-a)^{q_{k}+\alpha_{3}+\alpha_{4}}}{\Gamma(q_{k}+\alpha_{3}+\alpha_{4}+1)}\\&& +\sum\limits_{k = 1}^{n}\dfrac{|\nu_{k}| \Lambda_{2}(b-a)^{\zeta_{2}}(\xi_{k}-a)^{q_{k}+\alpha_{3}+\alpha_{4}}}{\Gamma(\zeta_{2}+1)\Gamma(q_{k}+\alpha_{3}+\alpha_{4}+1)}\Big) +\Omega_{1}\Big( \dfrac{\|\phi_{2}\|(b-a)^{\alpha_{3}+\alpha_{4}}}{\Gamma(\alpha_{3}+\alpha_{4}+1)}\\&& +\sum\limits_{i = 1}^{m}\dfrac{|\delta_{i}| \|\phi_{1}\|(\eta_{i}-a)^{\alpha_{1}+\alpha_{2}}}{\Gamma(\alpha_{1}+\alpha_{2}+1)} +\sum\limits_{i = 1}^{m}\dfrac{|\delta_{i}| \Lambda_{1}(\eta_{i}-a)^{\alpha_{1}+\alpha_{2}+\zeta_{1}}}{\Gamma(\alpha_{1}+\alpha_{2}+\zeta_{1}+1)} \\&& +\sum\limits_{k = 1}^{n}\dfrac{|\theta_{k}| \|\phi_{1}\|(\xi_{k}-a)^{p_{k}+\alpha_{1}+\alpha_{2}}}{\Gamma(p_{k}+\alpha_{1}+\alpha_{2}+1)} +\sum\limits_{k = 1}^{n}\dfrac{|\theta_{k}| \Lambda_{1}(\xi_{k}-a)^{p_{k}+\alpha_{1}+\alpha_{2}+\zeta_{1}}}{\Gamma(p_{k}+\alpha_{1}+\alpha_{2}+\zeta_{1}+1)} \Big)\Big\}\to 0, \end{eqnarray*} |
as t_{2}\rightarrow t_{1} independently of (x, y) \in B_{r}. Thus |(\mathcal{T}_{1, 1}, \mathcal{T}_{2, 1})(x, y)(t_{2})-(\mathcal{T}_{1, 1}, \mathcal{T}_{2, 1})(x, y)(t_{1})| vanishes as t_{2}\rightarrow t_{1} independently of (x, y) \in B_{r}, which shows that (\mathcal{T}_{1, 1}, \mathcal{T}_{2, 1}) is equicontinuous. So we deduce by the Arzelá-Ascoli theorem that (\mathcal{T}_{1, 1}, \mathcal{T}_{2, 1}) is compact on B_{r}.
It follows from the steps (i)-(iii) that the hypotheses of Krasnosel'ski{\rm{\mathord{\buildrel{\lower3pt\hbox{$\scriptscriptstyle\smile$}} \over i} }}'s fixed point theorem are satisfied, so its conclusion implies that the problem (1.3) has at least one solution on [a, b]. This finishes the proof.
Remark 3.1. The conclusion of Theorem 3.2 can also be achieved by assuming (H_{1}), (H_{2}), (H_4) and the condition: (\sigma_{1}+\sigma_{3})K_{1}+(\sigma_{2}+\sigma_{4})K_{2}+(\sigma_{7}+\sigma_{9})L_{1}+(\sigma_{8}+\sigma_{10})L_{2} < 1, where \sigma_1, \dots, \sigma_4 are given in (3.3)–(3.6) and \sigma_7, \dots, \sigma_{10} are given in (3.9)–(3.12).
In the following result, we prove the existence of solutions for the problem (1.3) by applying the Leray-Schauder alternative [29].
Lemma 3.2. (Leray-Schauder alternative [29]) Let E be a Banach space, M be closed, convex subset of E , U is an open subset of C and 0 \in U. Suppose that F:\overline{U}\to C is continuous, compact map (that is, F(U) is a relatively compact subset of C ). Then either (i) F has a fixed point in \overline{U} , or (ii) there are u \in \partial U, and \lambda \in (0, 1) with u = \lambda F(U) .
Theorem 3.3. Assume that ( H_{3}) holds. Then there exists at least one solution for the problem (1.3) on [a, b] provided that
\begin{equation} (\sigma_{1}+\sigma_{3})u_{i}+(\sigma_{2}+\sigma_{4})v_{i}+(\sigma_{7}+\sigma_{9})\omega_{i}+(\sigma_{8}+\sigma_{10})\tau_{i}+(\sigma_{5}+\sigma_{6}) < 1\; , \; i = 1, 2, \end{equation} | (3.16) |
where \sigma_1, \dots, \sigma_{10} are given in (3.3)–(3.12).
Proof. For all (x, y) \in B_{\rho}\subset \mathcal{X} \times \mathcal{X}, where B_{\rho} defined by (3.14), there exist positive constants N_{1}, \dots, N_4 such that |f_{1}(t, x, y)|\leq N_{1}, |f_{2}(t, x, y)|\leq N_{2}, |g_{1}(x, y)|\leq N_{3}, |g_{2}(x, y)|\leq N_{4}, Then we show that \mathcal{T}: \mathcal{X} \times \mathcal{X} \rightarrow \mathcal{X} \times \mathcal{X} is completely continuous. Observe that continuity of f_{1}, f_{2}, g_{1}, g_2 implies that of the operator \mathcal{T}. For (x, y) \in B_{\rho} , as in the proof of Theorem 3.1, we have
\begin{eqnarray*} \|\mathcal{T}_{1}(x, y)\| &\leq& \sigma_{1}N_{1}+\sigma_{2}N_{2}+\sigma_{7}N_{3}+\sigma_{8}N_{4}+\rho \sigma_{5}, \\ \| \mathcal{T}_{2}(x, y)\|&\leq & \sigma_{3}N_{1}+\sigma_{4}N_{2}+\sigma_{9}N_{3}+\sigma_{10}N_{4}+\rho \sigma_{6}. \end{eqnarray*} |
From the preceding inequalities, we get
\| \mathcal{T}(x, y)\| \leq (\sigma_{1}+ \sigma_{3})N_{1}+(\sigma_{2}+\sigma_{4})N_{2}+(\sigma_{7}+\sigma_{9})N_{3}+(\sigma_{8}+\sigma_{10})N_{4}+\rho (\sigma_{5}+\sigma_{6}), |
which implies that \mathcal{T}B_{\rho} is uniformly bounded.
Next we show that \mathcal{T}B_{\rho} is equicontinues. Let t_{1}, t_{2} \in [a, b] with t_{2} > t_{1}. Then, for arbitrary (x, y) \in B_{\rho}, we obtain
\begin{eqnarray*} &&|\mathcal{T}_{1}(x, y)(t_{2})-\mathcal{T}_{1}(x, y)(t_{1})| \\ &\leq & |\int_{a}^{t_{2}}\dfrac{(t_{2}-s)^{\alpha_{1}+\alpha_{2}-1}}{\Gamma(\alpha_{1}+\alpha_{2})}f_{1}(s, x(s), y(s))ds -\int_{a}^{t_{1}}\dfrac{(t_{1}-s)^{\alpha_{1}+\alpha_{2}-1}}{\Gamma(\alpha_{1}+\alpha_{2})}f_{1}(s, x(s), y(s))ds | \\&& + |\int_{a}^{t_{2}}\dfrac{(t_{2}-s)^{\alpha_{1}+\alpha_{2}+\zeta_1-1}}{\Gamma(\alpha_{1}+\alpha_{2}+\zeta_1)}g_1(x(s), y(s))ds -\int_{a}^{t_{1}}\dfrac{(t_{1}-s)^{\alpha_{1}+\alpha_{2}+\zeta_1-1}}{\Gamma(\alpha_{1}+\alpha_{2}+\zeta_1)}g_1(x(s), y(s))ds | \\&&+ \dfrac{|\lambda_{1}|}{\Gamma(\alpha_{2})} |\int_{a}^{t_{1}}[(t_{2}-s)^{\alpha_{2}-1}-(t_{1}-s)^{\alpha_{2}-1}]x(s)ds+\int_{t_1}^{t_{2}}(t_{2}-s)^{\alpha_{2}-1}x(s)ds |\\&& +\dfrac{ |(t_{2}-a)^{\alpha_{2}+\epsilon_{1}-1}-(t_{1}-a)^{\alpha_{2}+\epsilon_{1}-1}|}{|\Delta| \Gamma(\alpha_{2}+\epsilon_{1})} \{\Omega_{2} ( I_a^{\alpha_{1}+\alpha_{2}+\zeta_1} (|g_1(x(b), y(b)) |)\\&& +I_{a}^{\alpha_{1}+\alpha_{2}}(|f_{1}(b, x(b), y(b))|)+|\lambda_{1}| I_{a}^{\alpha_{2}}|x(b)| +|\lambda_{2} |\sum\limits_{i = 1}^{m}|\mu_{i}| I_{a}^{\alpha_{4}}|y(\eta_{i})|\\&& +\sum\limits_{i = 1}^{m}|\mu_{i}| I_{a}^{\alpha_{3}+\alpha_{4}}(I^{\zeta_2}_{b}(|g_2(x(\eta_{i}), y(\eta_{i})) |) +\sum\limits_{i = 1}^{m}|\mu_{i}| I_{a}^{\alpha_{3}+\alpha_{4}}(|f_{2}(\eta_{i}, x(\eta_{i}), y(\eta_{i}))|)\\&& +\sum\limits_{k = 1}^{n}|\nu_{k}|I_{a}^{q_{k}+\alpha_{3}+\alpha_{4}}(I^{\zeta_2}_{b}(|g_2(x(\xi_{k}), y(\xi_{k}))|) +\sum\limits_{k = 1}^{n}|\nu_{k}|I_{a}^{q_{k}+\alpha_{3}+\alpha_{4}}(| f_{2}(\xi_{k}, x(\xi_{k}), y(\xi_{k}))|)\\&& +|\lambda_{2}| \sum\limits_{k = 1}^{n}|\nu_{k}|I_{a}^{q_{k}+\alpha_{4}}|y(\xi_{k})| ) +\Omega_{4} (|\lambda_{2}| I_{a}^{\alpha_{4}}|y(b)|+I_{a}^{\alpha_{3}+\alpha_{4}}(| f_{2}(b, x(b), y(b))|)\\&& +\sum\limits_{i = 1}^{m}|\delta_{i}|I_a^{\alpha_{1}+\alpha_{2}+\zeta_1} (|g_1(x(\eta_{i}), y(\eta_{i})) |) +\sum\limits_{i = 1}^{m}|\delta_{i}|I_{a}^{\alpha_{1}+\alpha_{2}}(|f_{1}(\eta_{i}, x(\eta_{i}), y(\eta_{i}))|)\\&& +|\lambda_{1}| \sum\limits_{i = 1}^{m}|\delta_{i}|I_{a}^{\alpha_{2}}|x(\eta_{i})| +\sum\limits_{k = 1}^{n}|\theta_{k}|I_a^{p_{k}+\alpha_{1}+\alpha_{2}+\zeta_1}(|g_1(x(\xi_{k}), y(\eta_{i})) |)\\&& +\sum\limits_{k = 1}^{n}|\theta_{k}|I_{a}^{p_{k}+\alpha_{1}+\alpha_{2}}(|f_{1}(\xi_{k}, x(\xi_{k}), y(\xi_{k}))|)+|\lambda_{1} |\sum\limits_{k = 1}^{n}|\theta_{k}|I_{a}^{p_{k}+\alpha_{2}}|x(\xi_{k})| ) \}\\ && \leqslant \dfrac{N_{1}}{\Gamma(\alpha_{1}+\alpha_{2}+1)} \{2(t_{2}-t_1)^{\alpha_{1}+\alpha_{2}}+|(t_{2}-a)^{\alpha_{1}+\alpha_{2}}-(t_{1}-a)^{\alpha_{1}+\alpha_{2}}| \}\\&& +\dfrac{N_{3}}{\Gamma(\alpha_{1}+\alpha_{2}+\zeta_1+1)} \{2(t_{2}-t_1)^{\alpha_{1}+\alpha_{2}+\zeta_1}+|(t_{2}-a)^{\alpha_{1}+\alpha_{2}+\zeta_1}-(t_{1}-a)^{\alpha_{1}+\alpha_{2}+\zeta_1}| \}\\&& +\dfrac{|\lambda_{1}|\rho}{\Gamma(\alpha_{2}+1)} \{2(t_{2}-t_1)^{\alpha_{2}}+|(t_{2}-a)^{\alpha_{2}}-(t_{1}-a)^{\alpha_{2}}| \}\\&& +\dfrac{ |(t_{2}-a)^{\alpha_{2}+\epsilon_{1}-1}-(t_{1}-a)^{\alpha_{2}+\epsilon_{1}-1}|}{|\Delta| \Gamma(\alpha_{2}+\epsilon_{1})} \{\Omega_{2} (\dfrac{|\lambda_{1}|\rho(b-a)^{\alpha_{2}}}{\Gamma(\alpha_{2}+1)} +\sum\limits_{i = 1}^{m}\dfrac{|\lambda_{2}\mu_{i}|\rho(\eta_{i}-a)^{\alpha_{4}}}{ \Gamma(\alpha_{4}+1)}\\&& +\sum\limits_{k = 1}^{n}\dfrac{|\lambda_{2} \nu_{k}|\rho(\xi_{k}-a)^{q_{k}+\alpha_{4}}}{\Gamma(q_{k}+\alpha_{4}+1)} + \dfrac{N_{1}(b-a)^{\alpha_{1}+\alpha_{2}}}{\Gamma(\alpha_{1}+\alpha_{2}+1)} +\dfrac{N_{3}(b-a)^{\alpha_{1}+\alpha_{2}+\zeta_{1}}}{\Gamma(\alpha_{1}+\alpha_{2}+\zeta_{1}+1)} \\&& +\sum\limits_{i = 1}^{m} \dfrac{|\mu_{i}| N_{2}(\eta_{i}-a)^{\alpha_{3}+\alpha_{4}}}{\Gamma(\alpha_{3}+\alpha_{4}+1)} +\sum\limits_{i = 1}^{m} \dfrac{|\mu_{i}| N_{4}(b-a)^{\zeta_{2}}(\eta_{i}-a)^{\alpha_{3}+\alpha_{4}}}{\Gamma(\alpha_{3}+\alpha_{4}+1)\Gamma(\zeta_{2}+1)}\\&& +\sum\limits_{k = 1}^{n}\dfrac{|\nu_{k}| N_{2}(\xi_{k}-a)^{q_{k}+\alpha_{3}+\alpha_{4}}}{\Gamma(q_{k}+\alpha_{3}+\alpha_{4}+1)} +\sum\limits_{k = 1}^{n}\dfrac{|\nu_{k}| N_{4}(b-a)^{\zeta_{2}}(\xi_{k}-a)^{q_{k} +\alpha_{3}+\alpha_{4}}}{\Gamma(\zeta_{2}+1)\Gamma(q_{k}+\alpha_{3}+\alpha_{4}+1)} )\\&& +|\Omega_{4}| ( \dfrac{N_{2}(b-a)^{\alpha_{3}+\alpha_{4}}}{\Gamma(\alpha_{3}+\alpha_{4}+1)} +\sum\limits_{i = 1}^{m}\dfrac{|\delta_{i}| N_{1}(\eta_{i}-a)^{\alpha_{1}+\alpha_{2}}}{\Gamma(\alpha_{1}+\alpha_{2}+1)}\\&& +\sum\limits_{i = 1}^{m}\dfrac{|\delta_{i}|N_{3}(\eta_{i}-a)^{\alpha_{1}+\alpha_{2}+\zeta_{1}}}{\Gamma(\alpha_{1}+\alpha_{2}+\zeta_{1}+1)} +\sum\limits_{k = 1}^{n}\dfrac{|\theta_{k}|N_{1}(\xi_{k}-a)^{p_{k}+\alpha_{1}+\alpha_{2}}}{\Gamma(p_{k}+\alpha_{1}+\alpha_{2}+1)} \\&& +\sum\limits_{k = 1}^{n}\dfrac{|\theta_{k}| N_{3}(\xi_{k}-a)^{p_{k}+\alpha_{1}+\alpha_{2}+\zeta_{1}}}{\Gamma(p_{k}+\alpha_{1}+\alpha_{2}+\zeta_{1}+1)} +\dfrac{|\lambda_{2}|\rho (b-a)^{\alpha_{4}}}{\Gamma(\alpha_{4}+1)}\\&& +\sum\limits_{i = 1}^{m}\dfrac{|\lambda_{1} \delta_{i}|\rho(\eta_{i}-a)^{\alpha_{2}}}{\Gamma(\alpha_{2}+1)} +\sum\limits_{k = 1}^{n}\dfrac{|\lambda_{1} \theta_{k}|\rho(\xi_{k}-a)^{p_{k}+\alpha_{2}}}{\Gamma(p_{k}+\alpha_{2}+1)} ) \}, \end{eqnarray*} |
which tends to zero as t_{1}\rightarrow t_{2} independent of (x, y) \in B_{\rho}. Similarly, it can be established that | \mathcal{T}_{2}(x, y)(t_{2})-\mathcal{T}_{2}(x, y)(t_{1})|\rightarrow 0 as t_{2}\rightarrow t_{1} independently of (x, y) \in B_{\rho}. Thus the operator \mathcal{T} is equicontinuous. Hence, by the Arzelá-Ascoli theorem, the operator \mathcal{T} is completely continuous.
Next we consider the set
\Omega = \{(x, y) \in \mathcal{X}\times \mathcal{X}: (x, y) = r \mathcal{T}(x, y), \; \; 0\leq r \leq 1\}, |
and show that it is bounded. Let (x, y) \in \Omega , then (x, y) = r \mathcal{T}(x, y) implies that x(t) = r \mathcal{T}_{1}(x, y)(t), and y(t) = r \mathcal{T}_{2}(x, y)(t), \forall t \in [a, b]. By the condition ( H_{3} ), we obtain
\begin{eqnarray*} \|x\|&\leq & \sigma_{1}( u_{0}+u_{1}|x|+u_{2}|y|) +\sigma_{2}( v_{0}+v_{1}|x|+v_{2}|y|)+ \sigma_{7}( \omega_{0}+\omega_{1}|x|+\omega_{2}|y|)\\ &&+\sigma_{8}( \tau_{0}+\tau_{1}|x|+\tau_{2}|y|)+\sigma_{5}(\|x\|+ \|y\| ), \\ \|y\|&\leq & \sigma_{3}( u_{0}+u_{1}|x|+u_{2}|y|) +\sigma_{4}( v_{0}+v_{1}|x|+v_{2}|y|)+ \sigma_{9}( \omega_{0}+\omega_{1}|x|+\omega_{2}|y|)\\ &&+\sigma_{10}( \tau_{0}+\tau_{1}|x|+\tau_{2}|y|) +\sigma_{6}(\|x\|+ \|y\| ). \end{eqnarray*} |
Adding the above inequalities, we get
\begin{eqnarray*} \|x\|+ \|y\| &\leq & (\sigma_{1}+\sigma_{3})( u_{0}+u_{1}|x|+u_{2}|y|) +(\sigma_{2}+\sigma_{4})( v_{0}+v_{1}|x|+v_{2}|y|)\\&&+ (\sigma_{7}+\sigma_{9})( \omega_{0}+\omega_{1}|x|+\omega_{2}|y|)+(\sigma_{8}+\sigma_{10})( \tau_{0}+\tau_{1}|x|+\tau_{2}|y|) \\ &&+(\sigma_{5}+\sigma_{6})(\|x\|+ \|y\| ), \end{eqnarray*} |
which leads to
\|(x, y)\| \leq \dfrac{(\sigma_{1}+\sigma_{3})u_{0}+(\sigma_{2}+\sigma_{4})v_{0}+(\sigma_{7}+\sigma_{9})\omega_{0}+(\sigma_{8}+\sigma_{10}) \tau_{0}}{\sigma^{*}}, |
where
\begin{eqnarray*} \sigma^{*}& = & \min\{1-(\sigma_{1}+\sigma_{3})u_{1}-(\sigma_{2}+\sigma_{4})v_{1}-(\sigma_{7}+\sigma_{9})\omega_{1}-(\sigma_{8}+\sigma_{10})\tau_{1}-(\sigma_{5}+\sigma_{7}), \\ &&1-(\sigma_{1}+\sigma_{3})u_{2}-(\sigma_{2}+\sigma_{4})v_{2}-(\sigma_{7}+\sigma_{9})\omega_{2}-(\sigma_{8}+\sigma_{10})\tau_{2}-(\sigma_{5}+\sigma_{7})\} > 0 \end{eqnarray*} |
by condition (3.16). Thus the set \Omega is bounded. Hence it follows by the Leray-Schauder alternative for single-valued maps [29] that the problem (1.3) has at least one solution on [a, b], which completes the proof.
Consider a coupled system of Hilfer fractional differential equations with boundary conditions:
\begin{equation} \left\{ \begin{array}{ll} ^HD^{1/2, 3/4}(^HD^{1/6, 4/5}+1/90 )x(t) = I_{0^+}^{1/2}g_{1}(x, y)+f_{1}(t, x, y), \, t \in [0, 1], \\[0.4cm] ^HD^{1/2, 3/4}(^HD^{1/2, 1/7}+1/100 )y(t) = I_{1^-}^{1/3}g_{2}(x, y)+f_{2}(t, x, y), \, t \in [0, 1], \\[0.4cm] x(0) = y(0) = 0, \\ x(1) = \dfrac{1}{100}y(1/10)+\dfrac{1}{200}y(1/5)+\dfrac{1}{300}y(3/10)+\dfrac{1}{400}y(2/5)+\dfrac{1}{500}y(1/2) \\[0.4cm] \quad +\dfrac{1}{90}I_{0^+}^{1/2}y(3/5) +\dfrac{1}{70}I_{0^+}^{1/2}y(7/10) +\dfrac{1}{20}I_{0^+}^{1/2}y(4/5), \\[0.4cm] y(1) = \dfrac{1}{35}x(1/10)+\dfrac{1}{100}x(1/5)+\dfrac{1}{21}x(3/10)+\dfrac{1}{70}x(2/5)+\dfrac{1}{500}x(1/2)\\[0.4cm] \quad + \dfrac{1}{100}I_{0^+}^{1/3}x(3/5)+\dfrac{1}{200} I_{0^+}^{1/3}x(7/10) +\dfrac{1}{300}I_{0^+}^{1/3}x(4/5). \end{array} \right. \end{equation} | (4.1) |
Here \alpha_{1} = 1/2, \alpha_{2} = 1/6, \alpha_{3} = 1/2, \alpha_{4} = 1/2, \beta_{1} = 3/4, \beta_{2} = 4/5, \beta_{3} = 3/4, \beta_{4} = 1/7, \lambda_{1} = 1/90, \lambda_{2} = 1/100, \epsilon_{1} = 7/8 = \epsilon_{3}, q_{k} = 1/2, p_{k} = 1/3, k = 1, 2, 3, m = 5, n = 3, \eta_{1} = 1/10, \eta_{2} = 1/5, \eta_{3} = 3/10, \eta_{4} = 2/5, \eta_{5} = 1/2, \xi_{1} = 3/5, \xi_{2} = 7/10, \xi_{3} = 4/5, \mu_{1} = 1/100, \mu_{2} = 1/200, \mu_{3} = 1/300, \mu_{4} = 1/400, \mu_{5} = 1/500, \nu_{1} = 1/90, \nu_{2} = 1/70, \nu_{3} = 1/20, \delta_{1} = 1/35, \delta_{2} = 1/100, \delta_{3} = 1/21, \delta_{4} = 1/70, \delta_{5} = 1/500, \theta_{1} = 1/100, \theta_{2} = 1/200, \theta_{3} = 1/300, \zeta_{1} = 1/2, \zeta_{2} = 1/3 .
With the given data, it is found that |\Delta| = 1.1419, \sigma_{1} = 2.2278, \sigma_{3} = 0.1836, \sigma_{2} = 0.1096, \sigma_{4} = 2.0132, \sigma_{5} = 0.0009, \sigma_{6} = 0.0025, \sigma_{7} = 1.8560, \sigma_{8} = 0.0475, \sigma_{9} = 0.1328, \sigma_{10} = 1.1252.
({\bf a)} For illustrating Theorem 3.1, we take
\begin{equation} \left\{ \begin{array}{ll} f_{1}(t, x, y) = \dfrac{2\arctan x+\pi}{14\pi(1+t)}+\dfrac{1}{7(t+\pi)}\sin|y|, \\ f_{2}(t, x, y) = \dfrac{1}{7}\arctan x+\dfrac{3}{(21+t)}\dfrac{|y|}{(1+|y|)}+\dfrac{t^3}{(1+t^2)}, \\ g_{1}(x, y) = \dfrac{1}{12} \Big(\dfrac{|x|}{(1+|x|)}+|y| \Big), \\ g_{2}(x, y) = \dfrac{1}{17} \Big(\sin|x|+\arctan|y| \Big). \end{array} \right. \end{equation} | (4.2) |
It can easily be verified that f_{1}, f_{2} satisfy the condition (H_1) with K_{1} = 1/7\pi, K_{2} = 1/7, respectively and g_{1}, g_{2} satisfy the condition (H_2) with L_{1} = 1/12, L_{2} = 1/17, respectively. Furthermore
(\sigma_{1}+\sigma_{3})K_{1}+(\sigma_{4}+\sigma_{2})K_{2}+(\sigma_{9}+\sigma_{7})L_{1}+(\sigma_{10}+\sigma_{8})L_{2} +\sigma_{5}+\sigma_{6}\approx 0.65102 < 1. |
Clearly the hypotheses of Theorem 3.1 are satisfied and hence it follows by its conclusion that the system (4.1) with f_{1}(t, x, y), f_{2}(t, x, y), g_{1}(x, y) and g_{2}(x, y) given by (4.2) has a unique solution on [0, 1]. On the other hand, one can deduce that the system (4.1) with (4.2) has at least one solution on [0, 1] by the application of Remark 3.1 with (\sigma_{1}+\sigma_{3})K_{1}+(\sigma_{4}+\sigma_{2})K_{2}+(\sigma_{9}+\sigma_{7})L_{1}+(\sigma_{10}+\sigma_{8})L_{2}\approx 0.6476 < 1.
({\bf b)} As an application of Theorem 3.2, consider
\begin{equation} \left\{ \begin{array}{ll} f_{1}(t, x, y) = \dfrac{\arctan x}{10(t^2+1)}+ \dfrac{\sin |y|}{17(1+t)} , \\ f_{2}(t, x, y) = \dfrac{2}{\sqrt{t^{2}+2}} + \dfrac{2|x|}{5\pi(8+t)(1+|x|)}, \\ g_{1}(x, y) = \dfrac{|x|}{2(1+|x|)}+ \dfrac{1}{6} \arctan y , \\ g_{2}(x, y) = \dfrac{1}{3} e^{-|x|}+ \dfrac{1}{7} \cos|x|. \end{array} \right. \end{equation} | (4.3) |
Using the given values, we find that the assumption ( H_{4} ) is satisfied since |f_{1}(t, x, y)| \leqslant \dfrac{\pi}{20(1+t^2)}+\dfrac{1}{17(t+1)} = \phi_{1}(t) and |f_{2}(t, x, y)|\leqslant \dfrac{2}{\sqrt{t^{2}+2}} + \dfrac{2}{5\pi(8+t)} = \phi_{2}(t), |g_{1}(x, y)|\leqslant (6+\pi)/12 = \Lambda_{1}, |g_{2}(x, y)|\leqslant 10/21 = \Lambda_{2}. Also (\sigma_{5}+\sigma_{6})\approx 0.0034 < 1 holds true. As all the assumptions of Theorem 3.2 are satisfied, so its conclusion implies that the system (4.1) with the nonlinearities (4.3) has at least one solution on [0, 1].
({\bf c)} In order to demonstrate the application of Theorem 3.3, let us choose
\begin{equation} \left\{ \begin{array}{ll} f_{1}(t, x, y) = \arctan x+ \dfrac{e^{-t}|x|^2}{17(1+|x|)} +\dfrac{1}{26} y \cos x, \\ f_{2}(t, x, y) = \dfrac{2}{\sqrt{t^{2}+2}}+\dfrac{2}{\pi(8+t)}x \; \arctan y + \dfrac{|x||y|}{5(1+|x|)}, \\ g_{1}(x, y) = \ln 7+ \dfrac{1}{21} x \sin |y| + \dfrac{1}{13} y , \\ g_{2}(x, y) = 3e^{-|x|}+ \dfrac{1}{7} x \cos y+ \dfrac{1}{11} y \arctan x. \end{array} \right. \end{equation} | (4.4) |
Obviously ( H_{3} ) holds true with positive values of u_{0}, v_{0}, \omega_{0}, \tau_{0} and u_{1} = 1/17, u_{2} = 1/26, v_1 = 1/8, v_2 = 1/5, \omega_{1} = 1/21, \omega_{2} = 1/13, \tau_{1} = 1/7, \tau_{2} = \pi/22. Also, (\sigma_{1}+\sigma_{3})u_{1}+(\sigma_{2}+\sigma_{4})v_{1}+(\sigma_{7}+\sigma_{9})\omega_{1}+(\sigma_{8}+\sigma_{10})\tau_{1}+(\sigma_{5}+\sigma_{6})\approx 0.6728 < 1, and (\sigma_{1}+\sigma_{3})u_{2}+(\sigma_{2}+\sigma_{4})v_{2}+(\sigma_{7}+\sigma_{9})\omega_{2}+(\sigma_{8}+\sigma_{10})\tau_{2}+(\sigma_{5}+\sigma_{6})\approx 0.8412 < 1. As the hypothesis of Theorem 3.3 is verified, therefore we deduce by its conclusion that there exists at least one solution of the system (4.1) with f_{1}, f_{2}, g_{1} and g_2 given by (4.4).
In the present research work, we investigated the existence and uniqueness of solutions for a new coupled system of multi-term Hilfer fractional differential equations of different orders involving non-integral and autonomous type Riemann-Liouville mixed integral nonlinearities equipped with nonlocal coupled multi-point and Riemann-Liouville integral boundary conditions. Firstly, we proved an auxiliary result concerning the linear variant of the given problem, helping us to transform the problem at hand into a fixed point problem. Then we proved the existence of a unique solution for the given problem by applying Banach's contraction mapping principle and derived the existence results by means of Krasnosel'ski{\rm{\mathord{\buildrel{\lower3pt\hbox{$\scriptscriptstyle\smile$}} \over i} }}'s fixed point theorem and Leray-Schauder nonlinear alternative. All the obtained results are well illustrated by numerical examples. Our results are new and enrich the literature on nonloacl nonlinear integral boundary value problems for Hilfer fractional differential equations.
This project was funded by the Deanship of Scientific Research (DSR), King Abdulaziz University, Jeddah, Saudi Arabia under grant no. (KEP-PHD-80-130-42). The authors, therefore, acknowledge with thanks DSR technical and financial support.
The authors declare no conflict of interest.
[1] | S. G. Samko, A. A. Kilbas, O. I. Marichev, Fractional integrals and derivatives, theory and applications, Yverdon: Gordon and Breach, 1993. |
[2] | I. Podlubny, Fractional differential equations, New York/ London: Academic Press, 1999. |
[3] | A. A. Kilbas, H. M. Srivastava, J. J. Trujillo, Theory and applications of fractional differential equations, Amsterdam: Elsevier Science, 2006. |
[4] | R. Hilfer, Applications of fractional calculus in physics, Singapore: World Scientific, 2000. https://doi.org/10.1142/3779 |
[5] |
K. M. Furati, N. D. Kassim, N. E. Tatar, Existence and uniqueness for a problem involving Hilfer fractional derivative, Comput. Math. Appl., 64 (2012), 1616–1626. https://doi.org/10.1016/j.camwa.2012.01.009 doi: 10.1016/j.camwa.2012.01.009
![]() |
[6] |
H. B. Gu, J. J. Trujillo, Existence of mild solution for evolution equation with Hilfer fractional derivative, Appl. Math. Comput., 257 (2015), 344–354. https://doi.org/10.1016/j.amc.2014.10.083 doi: 10.1016/j.amc.2014.10.083
![]() |
[7] |
J. R. Wang, Y. R. Zhang, Nonlocal initial value problems for differential equations with Hilfer fractional derivative, Appl. Math. Comput., 266 (2015), 850–859. https://doi.org/10.1016/j.amc.2015.05.144 doi: 10.1016/j.amc.2015.05.144
![]() |
[8] |
M. Benchohra, S. Bouriah, J. J. Nieto, Existence and stability results for nonlocal initial value problems for differential equations with Hilfer fractional derivative, Stud. Univ. Babeş-Bolyai Math., 63 (2018), 447–464. https://doi.org/10.24193/subbmath.2018.4.03 doi: 10.24193/subbmath.2018.4.03
![]() |
[9] |
S. Abbas, M. Benchohra, J. E. Lazreg, Y. Zhou, A survey on Hadamard and Hilfer fractional differential equations: Analysis and stability, Chaos Soliton. Fract., 102 (2017), 47–71. https://doi.org/10.1016/j.chaos.2017.03.010 doi: 10.1016/j.chaos.2017.03.010
![]() |
[10] |
S. Asawasamrit, A. Kijjathanakorn, S. K. Ntouyas, J. Tariboon, Nonlocal boundary value problems for Hilfer fractional differential equations, Bull. Korean Math. Soc., 55 (2018), 1639–1657. https://doi.org/10.4134/BKMS.b170887 doi: 10.4134/BKMS.b170887
![]() |
[11] |
C. Nuchpong, S. K. Ntouyas, J. Tariboon, Boundary value problems of Hilfer-type fractional integro-differential equations and inclusions with nonlocal integro-multipoint boundary conditions, Open Math., 18 (2020), 1879–1894. https://doi.org/10.1515/math-2020-0122 doi: 10.1515/math-2020-0122
![]() |
[12] |
S. Harikrishnan, K. Kanagarajan, E. M. Elsayed, Existence and stability results for Langevin equations with Hilfer fractional derivative, Res. Fixed Point Theory Appl., 2018 (2018), 20183. https://doi.org/10.30697/rfpta-2018-3 doi: 10.30697/rfpta-2018-3
![]() |
[13] |
A. Wongchareon, B. Ahmad, S. K. Ntouyas, J. Tariboon, Three-point boundary value problem for the Langevin equation with the Hilfer fractional derivative, Adv. Math. Phys., 2020 (2020), 9606428. https://doi.org/10.1155/2020/9606428 doi: 10.1155/2020/9606428
![]() |
[14] |
E. M. Elsayed, S. Harikrishnan, K. Kanagarajan, On the existence and stability of boundary value problem for differential equation with Hilfer-Katugampola fractional derivative, Acta Math. Sci., 39 (2019), 1568–1578. https://doi.org/10.1007/s10473-019-0608-5 doi: 10.1007/s10473-019-0608-5
![]() |
[15] |
M. I. Abbas, On a Hilfer fractional differential equation with nonlocal Erdelyi-Kober fractional integral boundary conditions, Filomat, 34 (2020), 3003–3014. https://doi.org/10.2298/FIL2009003A doi: 10.2298/FIL2009003A
![]() |
[16] |
A. Wongchareon, S. K. Ntouyas, J. Tariboon, Boundary value problems for Hilfer fractional differential inclusions with nonlocal integral boundary conditions, Mathematics, 8 (2020), 1905. https://doi.org/10.3390/math8111905 doi: 10.3390/math8111905
![]() |
[17] |
M. Yang, A. Alsaedi, B. Ahmad, Y. Zhou, Attractivity for Hilfer fractional stochastic evolution equations, Adv. Differ. Equ., 2020 (2020), 130. https://doi.org/10.1186/s13662-020-02582-4 doi: 10.1186/s13662-020-02582-4
![]() |
[18] |
M. S. Abdo, S. T. M. Thabet, B. Ahmad, The existence and Ulam-Hyers stability results for \psi-Hilfer fractional integrodifferential equations, J. Pseudo-Differ. Oper. Appl., 11 (2020), 1757–1780. https://doi.org/10.1007/s11868-020-00355-x doi: 10.1007/s11868-020-00355-x
![]() |
[19] |
M. S. Abdo, K. Shah, S. K. Panchal, H. A. Wahash, Existence and Ulam stability results of a coupled system for terminal value problems involving \psi-Hilfer fractional operator, Adv. Differ. Equ., 2020 (2020), 316. https://doi.org/10.1186/s13662-020-02775-x doi: 10.1186/s13662-020-02775-x
![]() |
[20] |
K. Kavitha, V. Vijayakumar, R. Udhayakumar, Results on controllability of Hilfer fractional neutral differential equations with infinite delay via measures of noncompactness, Chaos Soliton. Fract., 139 (2020), 110035. https://doi.org/10.1016/j.chaos.2020.110035 doi: 10.1016/j.chaos.2020.110035
![]() |
[21] |
J. E. Restrepo, D. Suragan, Hilfer-type fractional differential equations with variable coefficients, Chaos Soliton. Fract., 150 (2021), 111146. https://doi.org/10.1016/j.chaos.2021.111146 doi: 10.1016/j.chaos.2021.111146
![]() |
[22] |
C. Nuchpong, S. K. Ntouyas, A. Samadi, J. Tariboon, Boundary value problems for Hilfer type sequential fractional differential equations and inclusions involving Riemann-Stieltjes integral multi-strip boundary conditions, Adv. Differ. Equ., 2021 (2021), 268. https://doi.org/10.1186/s13662-021-03424-7 doi: 10.1186/s13662-021-03424-7
![]() |
[23] |
P. Nawapol, S. K. Ntouyas, J. Tariboon, K. Nonlaopon, Nonlocal sequential boundary value problems for Hilfer type fractional integro-differential equations and inclusions, Mathematics, 9 (2021), 615. https://doi.org/10.3390/math9060615 doi: 10.3390/math9060615
![]() |
[24] |
K. Kavitha, V. Vijayakumar, R. Udhayakumar, N. Sakthivel, K. S. Nisar, A note on approximate controllability of the Hilfer fractional neutral differential inclusions with infinite delay, Math. Method. Appl. Sci., 44 (2021), 4428–4447. https://doi.org/10.1002/mma.7040 doi: 10.1002/mma.7040
![]() |
[25] |
B. Ahmad, S. K. Ntouyas, Hilfer–Hadamard fractional boundary value problems with nonlocal mixed boundary conditions, Fractal Fract., 5 (2021), 195. https://doi.org/10.3390/fractalfract5040195 doi: 10.3390/fractalfract5040195
![]() |
[26] |
S. K. Ntouyas, A survey on existence results for boundary value problems of Hilfer fractional differential equations and inclusions, Foundations, 1 (2021), 63–98. https://doi.org/10.3390/foundations1010007 doi: 10.3390/foundations1010007
![]() |
[27] |
A. Wongcharoen, S. K. Ntouyas, J. Tariboon, On coupled system for Hilfer fractional differential equations with nonlocal integral boundary conditions, J. Math., 2020 (2020), 2875152. https://doi.org/10.1155/2020/2875152 doi: 10.1155/2020/2875152
![]() |
[28] |
W. Sudsutad, S. K. Ntouyas, C. Thaiprayoon, Nonlocal coupled system for \psi-Hilfer fractional order Langevin equations, AIMS Mathematics, 6 (2021), 9731–9756. https://doi.org/10.3934/math.2021566 doi: 10.3934/math.2021566
![]() |
[29] | A. Granas, J. Dugundji, Fixed point theory, New York: Springer-Verlag, 2003. https://doi.org/10.1007/978-0-387-21593-8 |
[30] | M. A. Krasnosel'ski{\rm{\mathord{\buildrel{\lower3pt\hbox{$\scriptscriptstyle\smile$}} \over i} }}, Two remarks on the method of successive approximations, Uspekhi Mat. Nauk, 10 (1955), 123–127. |
1. | Ahmed Alsaedi, Madeaha Alghanmi, Bashir Ahmad, Boshra Alharbi, Uniqueness of solutions for a ψ-Hilfer fractional integral boundary value problem with the p-Laplacian operator, 2023, 56, 2391-4661, 10.1515/dema-2022-0195 | |
2. | Muhammad Bilal Khan, Hakeem A. Othman, Michael Gr. Voskoglou, Lazim Abdullah, Alia M. Alzubaidi, Some Certain Fuzzy Aumann Integral Inequalities for Generalized Convexity via Fuzzy Number Valued Mappings, 2023, 11, 2227-7390, 550, 10.3390/math11030550 | |
3. | Muhammad Bilal Khan, Hakeem A. Othman, Gustavo Santos-García, Muhammad Aslam Noor, Mohamed S. Soliman, Some new concepts in fuzzy calculus for up and down λ-convex fuzzy-number valued mappings and related inequalities, 2023, 8, 2473-6988, 6777, 10.3934/math.2023345 | |
4. | Muhammad Bilal Khan, Hakeem A. Othman, Gustavo Santos-García, Tareq Saeed, Mohamed S. Soliman, On fuzzy fractional integral operators having exponential kernels and related certain inequalities for exponential trigonometric convex fuzzy-number valued mappings, 2023, 169, 09600779, 113274, 10.1016/j.chaos.2023.113274 | |
5. | Bashir Ahmad, Sotiris K. Ntouyas, 2024, Chapter 8, 978-3-031-62512-1, 289, 10.1007/978-3-031-62513-8_8 | |
6. | Haitham Qawaqneh, Hasanen A. Hammad, Hassen Aydi, Exploring new geometric contraction mappings and their applications in fractional metric spaces, 2024, 9, 2473-6988, 521, 10.3934/math.2024028 |