
The main objective of this article is to build up a new integral equality related to Riemann Liouville fractional (RLF) operator. Based on this integral equality, we show numerous new inequalities for differentiable convex as well as concave functions which are similar to celebrated Hermite-Hadamard and Simpson's integral inequalities. The present outcomes of this paper are a unification and generalization of the comparable results in the literature on Hermite-Hadamard and Simpson's integral inequalities. Furthermore as applications in numerical analysis, we find some means, q-digamma function and modified Bessel function type inequalities.
Citation: Maimoona Karim, Aliya Fahmi, Shahid Qaisar, Zafar Ullah, Ather Qayyum. New developments in fractional integral inequalities via convexity with applications[J]. AIMS Mathematics, 2023, 8(7): 15950-15968. doi: 10.3934/math.2023814
[1] | Saad Ihsan Butt, Artion Kashuri, Muhammad Umar, Adnan Aslam, Wei Gao . Hermite-Jensen-Mercer type inequalities via Ψ-Riemann-Liouville k-fractional integrals. AIMS Mathematics, 2020, 5(5): 5193-5220. doi: 10.3934/math.2020334 |
[2] | Areej A. Almoneef, Abd-Allah Hyder, Fatih Hezenci, Hüseyin Budak . Simpson-type inequalities by means of tempered fractional integrals. AIMS Mathematics, 2023, 8(12): 29411-29423. doi: 10.3934/math.20231505 |
[3] | Ghulam Farid, Hafsa Yasmeen, Hijaz Ahmad, Chahn Yong Jung . Riemann-Liouville Fractional integral operators with respect to increasing functions and strongly $ (\alpha, m) $-convex functions. AIMS Mathematics, 2021, 6(10): 11403-11424. doi: 10.3934/math.2021661 |
[4] | Zareen A. Khan, Waqar Afzal, Mujahid Abbas, Jongsuk Ro, Najla M. Aloraini . A novel fractional approach to finding the upper bounds of Simpson and Hermite-Hadamard-type inequalities in tensorial Hilbert spaces by using differentiable convex mappings. AIMS Mathematics, 2024, 9(12): 35151-35180. doi: 10.3934/math.20241671 |
[5] | Thanin Sitthiwirattham, Muhammad Aamir Ali, Hüseyin Budak, Sotiris K. Ntouyas, Chanon Promsakon . Fractional Ostrowski type inequalities for differentiable harmonically convex functions. AIMS Mathematics, 2022, 7(3): 3939-3958. doi: 10.3934/math.2022217 |
[6] | Yanping Yang, Muhammad Shoaib Saleem, Waqas Nazeer, Ahsan Fareed Shah . New Hermite-Hadamard inequalities in fuzzy-interval fractional calculus via exponentially convex fuzzy interval-valued function. AIMS Mathematics, 2021, 6(11): 12260-12278. doi: 10.3934/math.2021710 |
[7] | Mustafa Gürbüz, Yakup Taşdan, Erhan Set . Ostrowski type inequalities via the Katugampola fractional integrals. AIMS Mathematics, 2020, 5(1): 42-53. doi: 10.3934/math.2020004 |
[8] | Thabet Abdeljawad, Muhammad Aamir Ali, Pshtiwan Othman Mohammed, Artion Kashuri . On inequalities of Hermite-Hadamard-Mercer type involving Riemann-Liouville fractional integrals. AIMS Mathematics, 2021, 6(1): 712-725. doi: 10.3934/math.2021043 |
[9] | Yu-Pei Lv, Ghulam Farid, Hafsa Yasmeen, Waqas Nazeer, Chahn Yong Jung . Generalization of some fractional versions of Hadamard inequalities via exponentially $ (\alpha, h-m) $-convex functions. AIMS Mathematics, 2021, 6(8): 8978-8999. doi: 10.3934/math.2021521 |
[10] | Manar A. Alqudah, Artion Kashuri, Pshtiwan Othman Mohammed, Muhammad Raees, Thabet Abdeljawad, Matloob Anwar, Y. S. Hamed . On modified convex interval valued functions and related inclusions via the interval valued generalized fractional integrals in extended interval space. AIMS Mathematics, 2021, 6(5): 4638-4663. doi: 10.3934/math.2021273 |
The main objective of this article is to build up a new integral equality related to Riemann Liouville fractional (RLF) operator. Based on this integral equality, we show numerous new inequalities for differentiable convex as well as concave functions which are similar to celebrated Hermite-Hadamard and Simpson's integral inequalities. The present outcomes of this paper are a unification and generalization of the comparable results in the literature on Hermite-Hadamard and Simpson's integral inequalities. Furthermore as applications in numerical analysis, we find some means, q-digamma function and modified Bessel function type inequalities.
An important inequality for classical convex functions which has been extensively studied in recent decades is the Hermite-Hadamard's inequality, which was obtained by Hermite and Hadamard independently. This inequality gives lower and upper estimates for the integral average of any convex function formed on a compact interval encompassing the domain midpoint and endpoints. To, more precise, In [1] Let f:I⊂R→R be a convex function on the interval I of real numbers and α1,α2∈I with α1<α2. Then
f(α1+α22)≤1α2−α1∫α2α1f(λ)dλ≤ f(α1)+f(α2)2. |
In the field of analysis, numerous mathematicians have observed the significance of the double inequality and have also used it in various useful applications. Moreover, it has been extended to various structures utilizing the classical convex function. Fractional calculus has applications in a variety of engineering and science domains, including electromagnetic, photoelasticity, fluid mechanics, electrochemistry, biological population models, optics, and signal processing. Due to its vast variety of applications, many mathematicians employed fractional calculus concepts and studied in various areas, one of which is integral inequalities for different classes of functions. For example, some authors, [2,3,4,5] obtained the inequalities for Riemann-Liouville fractional integrals and AB-fractional integral operator. Dragomir et al. [6], proved some Hermite-Hadamard type inequalities for Riemann-Liouville fractional integrals. In [7], Dragomir used the generalized form of Riemann-Liouville fractional integrals and proved some new Ostrowski type inequalities for bounded functions. In [8], he used the generalized form of Riemann-Liouville fractional integrals and proved some new trapezoid type inequalities for bounded functions. He gave trapezoid and ostrowski type inequalities using the fractional integrals. Iqbal et al. [9] presented some fractional midpoint type inequalities for convex functions. In recent years much attention has been devoted to the theory of convex sets and theory of convex functions by generalizing and extending these concepts in different dimensions using innovative techniques. Here, we recall the important definitions related to convex function and left-right Riemann-Liouville fractional integrals.
Definition 1.1. [1] Let I be an interval in R. A function f:I⊂R→R is said to be convex on [α1,α2], with α1<α2, where α1,α2∈I, if,
f(λα1+(1−λ)α2)≤λf(α1)+(1−λ)f(α2), λ∈[0,1]. |
Definition 1.2. [10] For f∈L[α1,α2]. The left-sided and right-sided Riemann-Liouville fractional integrals of order κ∈R+ that are defined by
(Jκ(α1)+f)(x)=1Γ(κ)∫xα1(x−t)κ−1f(t)dt, ( 0≤α1<x≤α2), |
and
(Jκ(α2)−f)(x)=1Γ(κ)∫α2x(t−x)κ−1f(t)dt, ( 0≤α1<x<α2). |
respectively, where Γ(.) is Gamma function and its definition is Γ(κ)=∫∞0e−uuκ−1du. It is to be noted that J0(α1)+f(x)=Jκ(α2)_f(x)=f(x).
If we put κ=1, the fractional integral becomes the classical integral. The recent results and the properties concerning this operator can be found [11,12].
An inequality which is notable as Simpson's inequality in [1]:
Theorem 1.1. Suppose f:[α1,α2] →R is four times continuously differentiable function on (α1,α2) and ‖f(4)‖∞=supθ∈(α1,α2)|f(4)(θ)|<∞, then the following inequality holds:
|[16f(α1)+23f(α1+α22)+16f(α2)]−1α2−α1∫α2α1f(θ)dθ|≤(α2−α1)42880‖f(4)‖∞. | (1.1) |
The accompanying ongoing improvements for Riemann-Liouville fractional integral on double and Simpson's inequalities are demonstrated by Hwang et al. (see [13]).
Theorem 1.2. Let f:[α1,α2]→R be a differentiable function on (α1,α2) and 0<κ≤1. If |f′| is convex function on [α1,α2], then the following inequality holds:
|f(α1)+f(α2)2−Γ(κ+1)2(α2−α1)κ[Jκ(α2)−f(α1)+Jκ(α1)+f(α2)]|≤(α2−α1)(2κ−1)2κ+1(κ+1)[|f′(α1)|+|f′(α2)|]. | (1.2) |
Proposition 1.1. Suppose that all the assumptions of Theorem 2, are satisfied. If we choose κ=1, we have trapezoid inequality:
|f(α1)+f(α2)2−1α2−α1∫α2α1f(x)dx|≤α2−α18[|f′(α1)|+|f′(α2)|], | (1.3) |
which is obtained by Dragomir in [14].
Theorem 1.3. Let f:[α1,α2]→R be a differentiable function on (α1,α2) and 0<κ≤1. If |f′| is convex function on [α1,α2], then the following inequality holds:
|Γ(κ+1)2(α2−α1)κ[Jκ(α2)−f(α1)+Jκ(α1)+f(α2)]−f(α1+α22)|≤α2−α14(κ+1)(2κ−1(κ−1)+12κ−1)[|f′(α1)|+|f′(α2)|]. | (1.4) |
Proposition 1.2. Suppose that all the assumptions of Theorem 3, are satisfied. If we choose κ=1, we have midpoint inequality:
|1α2−α1∫α2α1f(x)dx−f(α1+α22)|≤α2−α18[|f′(α1)|+|f′(α2)|], | (1.5) |
which is obtained by Kirmaci in [15].
Theorem 1.4. Let f:[α1,α2]→R be a differentiable function on (α1,α2) and 0<κ≤1. If |f′| is convex on [α1,α2], then the following inequality holds:
|Γ(κ+1)2(α2−α1)κ[Jκ(α2)−f(α1)+Jκ(α1)+f(α2)]−[5κ−16κf(α1+α22)+6κ−5κ+16κf(α1)+f(α2)2]|≤[1κ+1(2κ+12κ+1−5κ+1+16κ+1)+(5κ−112×6κ)](α2−α1)[|f′(α1)|+|f′(α2)|]. | (1.6) |
Proposition 1.3. Suppose that all the assumptions of Theorem 1.4, are satisfied. If we choose κ=1, we have Simpson's inequality:
|16[f(α1)+4f(α1+α22)+f(α2)]−1α2−α1∫α2α1f(x)dx|≤5(α2−α1)72[|f′(α1)|+|f′(α2)|], | (1.7) |
which is obtained by Sarikaya in [16].
In [17], Lian et al. presented fractional integrals inequalities for concave function as follows,
Theorem 1.5. Let f:[α1,α2]→R be a differentiable function on (α1,α2) and 0<κ≤1. If |f′| is convex function on [α1,α2], then the following inequality holds:
|f(α1+α22)+Γ(κ+1)(α2−α1)[(2α1−α2)κJκ(α1+α22)+f(α1)−(2α1−α2)κJκ(α1+α22)−f(α2)]|≤α2−α14(κ+1)[|f′((κ+3)α1+(κ+1)α22(κ+2))|+|f′((κ+1)α1+(κ+3)α22(κ+2))|]. | (1.8) |
Proposition 1.4. Suppose that all the assumptions of Theorem 1.5, are satisfied. If we choose κ=1, we have midpoint inequality:
|1α2−α1∫α2α1f(x)dx−f(α1+α22)|≤α2−α18[|f′(α1+2α23)|+|f′(2α1+α23)|]. | (1.9) |
The current study is organized in two sections. The first section is related to the introductory body, where ideas and the hypotheses that provides the foundation for the advancement of the work has been discussed. While the second section has been divided into three sub-sections which shows the outcomes acquired for each of the inequalities under investigation. Moreover, the purpose of this paper is to study Hermite-Hadamard and Simpson's-like integral inequalities for convex functions as well as concave functions by applying the fractional concept. We also discuss the relation of our results with comparable results existing in the literature. Furthermore as applications, we find some means, q-digamma function and modified Bessel function type inequalities. We expect that the study initiated in this paper may inspire new research in this area.
Here, we prove an important new Lemma for Riemann-Livouille fractional integrals, which plays a key role to prove our main results as follows:
Lemma 2.1. Let f:[α1,α2]→R be a differentiable function on (α1,α2) with α1<α2. If f′∈L[α1,α2] with 0 < κ≤1, λ∈[0,1], and ρ,ϑ∈[0,1], then the following equality holds:
2κ−2+ρ+ϑ2κ(f(α1)+f(α2)2)+2−ρ−ϑ2κf(α1+α22)−Γ(κ+1)2(α2−α1)κ[Jκ(α2)−f(α1)+Jκ(α1)+f(α2)]=α2−α12κ+2(Q1+Q2+Q3+Q4), |
where
Q1=∫10[(1−λ)κ−ρ]f′(λα1+(1−λ)α1+α22)dλ, Q2=∫10[ϑ−(1−λ)κ]f′(λα2+(1−λ)α1+α22)dλ,Q3=∫10[(2−λ)κ+ρ−2]f′(λα1+α22+(1−λ)α2)dλ,Q4=∫10[2−ϑ−(2−λ)κ]f′(λα1+α22+(1−λ)α1)dλ. |
Proof. Integrating by parts successively, in order to compute each integral, one obtain
Q1=∫10[(1−λ)κ−ρ]f′(λα1+(1−λ)α1+α22)dλ=2[(1−λ)κ−ρ]f(λα1+(1−λ)α1+α22)dλα1−α2|10+2κα1−α2∫10(1−λ)κ−1f(λα1+(1−λ)α1+α22)dλ=2ρα2−α1f(α1)+2(1−ρ)α2−α1f(α1+α22)−κ(2κ+1)(α2−α1)κ+1∫α1+α22α1(x−α1)κ−1f(x)dx. | (2.1) |
Simple calculations analogously
Q2=∫10[ϑ−(1−λ)κ]f′(λα2+(1−λ)α1+α22)dλ=2[ϑ−(1−λ)κ]f(λα2+(1−λ)α1+α22)dλα2−α1|10+2κα1−α2∫10(1−λ)κ−1f(λα2+(1−λ)α1+α22)dλ=2ϑα2−α1f(α2)+2(1−ϑ)α2−α1f(α1+α22)−κ(2κ+1)(α2−α1)κ+1∫α2α1+α22(α2−x)κ−1f(x)dx. | (2.2) |
Q3=∫10[(2−λ)κ+ρ−2]f′(λα1+α22+(1−λ)α2)dλ=2[(2−λ)κ+ρ−2]f(λα1+α22+(1−λ)α2)dλα1−α2|10+2κα1−α2∫10(2−λ)κ−1f(λα1+α22+(1−λ)α2)dλ=2(2κ−2+ρ)α2−α1f(α2)+2(1−ρ)α2−α1f(α1+α22)−κ(2κ+1)(α2−α1)κ+1∫α2α1+α22(x−α1)κ−1f(x)dx. | (2.3) |
Q4=∫10[2−ϑ−(2−λ)κ]f′(λα1+α22+(1−λ)α1)dλ=2[2−ϑ−(2−λ)κ]f(λα1+α22+(1−λ)α1)dλα2−α1|10+2κα1−α2∫10(2−λ)κ−1f(λα1+α22+(1−λ)α1)dλ=2(2κ−2+ϑ)α2−α1f(α1)+2(1−ϑ)α2−α1f(α1+α22)−κ(2κ+1)(α2−α1)κ+1∫α1+α22α1(α2−x)κ−1f(x)dx. | (2.4) |
Hence, by adding (2.1)–(2.4), and multiplying the resultant one by α2−α12κ+2, we obtain the resultant equality.
Theorem 2.1. Let f:[α1,α2]→R be a differentiable function on (α1,α2) with α1<α2. If f′∈L1[α1,α2] with 0 <κ≤1 and ρ,ϑ∈[0,1], and |f′| is a convex on [α1,α2], then the following inequality holds:
|2κ−2+ρ+ϑ2κ(f(α1)+f(α2)2)+2−ρ−ϑ2κf(α1+α22)−Γ(κ+1)2(α2−α1)κ[Jκ(α2)−f(α1)+Jκ(α1)+f(α2)]|≤(α2−α1)(U1+U2+U3+U4+U5+U6+U7+U8)2κ+2( |f′(α1)|+|f′(α2)| ), | (2.5) |
where,
U1=∫10|[(1−λ)κ−ρ]|λdλ=[1−2(1−(1−ρ1κ))κ+2(κ+1)(κ+2)−2(1−ρ1κ)(1−(1−ρ1κ))κ+1(κ+1)+ρ2(1−2((1−ρ1κ))2)]. |
U2=∫10|[(1−λ)κ−ρ]|(1−λ)dλ=[2(ρ1κ)κ+1(1−ρ1κ)(κ+1)+1−2(ρ1κ)κ+1(κ+1)−1−2(ρ1κ)κ+2(κ+1)(κ+2)+ρ(1−2(1−ρ1κ))−ρ2(1−2(1−ρ1κ)2)]. |
U3=∫10|[ϑ−(1−λ)κ]|λdλ=[1−2(1−(1−ϑ1κ))κ+2(κ+1)(κ+2)−2(1−ϑ1κ)(1−(1−ϑ1κ))κ+1(κ+1)+ϑ2(1−2((1−ϑ1κ))2)].U4=∫10|[ϑ−(1−λ)κ]|(1−λ)dλ=[2(ϑ1κ)κ+1(1−ϑ1κ)(κ+1)+1−2(ϑ1κ)κ+1(κ+1)−1−2(ϑ1κ)κ+2(κ+1)(κ+2)+ϑ(1−2(1−ϑ1α))−ϑ2(1−2(1−ϑ1α)2)]. |
U5=∫10|[(2−λ)κ+ρ−2]|λdλ=1+2κ+2−2(2−(2−(2−ρ))1κ)κ+2κ2+3κ+2+1−2(2−(2−ρ))1κ((2−(2−(2−ρ))1κ)κ+1)(κ+1)+(2−ρ)(12−((2−(2−ρ))1κ)2). |
U6=∫10|[(2−λ)κ+ρ−2]|(1−λ)dλ=12ρ(−4(κ(ρ−3)+ρ−2)(2−ρ)κ(κ+1)(κ+2)−2ρ2+8ρ−9)+κ(−4(2−ρ)κ+2κ+1+κ+3)+1(κ+1)(κ+2). |
U7=∫10|[2−ϑ−(2−λ)κ]|λdλ=1+2κ+2−2(2−(2−(2−ϑ))1κ)κ+2κ2+3κ+2+1−2(2−(2−ϑ))1κ((2−(2−(2−ϑ))1κ)κ+1)(κ+1)+(2−ϑ)(12−((2−(2−ϑ))1κ)2).U8=∫10|[2−ϑ−(2−λ)κ]|(1−λ)dλ=12ϑ(−4(κ(ϑ−3)+ϑ−2)(2−ϑ)κ(κ+1)(κ+2)−2ϑ2+8ϑ−9)+κ(−4(2−ϑ)κ+2κ+1+κ+3)+1(κ+1)(κ+2). |
Proof. From Lemma 2.1 and convexity, it follows that,
|2κ−2+ρ+ϑ2κ(f(α1)+f(α2)2)+2−ρ−ϑ2κf(α1+α22)−Γ(κ+1)2(α2−α1)κ[Jκ(α2)−f(α1)+Jκ(α1)+f(α2)]|=|α2−α12κ+2∫10[(1−λ)κ−ρ]f′(λα1+(1−λ)α1+α22)dλ|+|α2−α12κ+2∫10[ϑ−(1−λ)κ]f′(λα2+(1−λ)α1+α22)dλ|+|α2−α12κ+2∫10[(2−λ)κ+ρ−2]f′(λα1+α22+(1−λ)α2)dλ|+|α2−α12κ+2∫10[2−ϑ−(2−λ)κ]f′(λα1+α22+(1−λ)α1)dλ| |
≤α2−α12κ+2∫10|[(1−λ)κ−ρ]||f′(λα1+(1−λ)α1+α22)|dλ+α2−α12κ+2∫10|[ϑ−(1−λ)κ]||f′(λα2+(1−λ)α1+α22)|dλ+α2−α12κ+2∫10|[(2−λ)κ+ρ−2]||f′(λα1+α22+(1−λ)α2)|dλ+α2−α12κ+2∫10|[2−ϑ−(2−λ)κ]||f′(λα1+α22+(1−λ)α1)|dλ |
≤α2−α12κ+2∫10|[(1−λ)κ−ρ]|[λ|f′(α1)|+(1−λ)|f′(α1+α22)|]dλ+α2−α12κ+2∫10|[ϑ−(1−λ)κ]|[λ|f′(α2)|+(1−λ)|f′(α1+α22)|]dλ+α2−α12κ+2∫10|[(2−λ)κ+ρ−2]|[λ|f′(α1+α22)|+(1−λ)|f′(α2)|]dλ+α2−α12κ+2∫10|[2−ϑ−(2−λ)κ]|[λ|f′(α1+α22)|+(1−λ)|f′(α1)|]dλ|2κ−2+ρ+ϑ2κ(f(α1)+f(α2)2)+2−ρ−ϑ2κf(α1+α22)−Γ(κ+1)2(α2−α1)κ[Jκ(α2)−f(α1)+Jκ(α1)+f(α2)]|≤(α2−α1)(U1+U2+U3+U4+U5+U6+U7+U8)2κ+2( |f′(α1)|+|f′(α2)| ). |
The proof is completed.
Example 2.1. Let [α1,α2]=[0,1] and define the function f:[0,1]→R as f(λ)=λ3+3. Let us consider the right-hand side of the inequality (2.5) as follows:
(α2−α1)(U1+U2+U3+U4+U5+U6+U7+U8)2κ+2=2(−ρκ+1+κ(2ρ2−3ρ+2)−2(2−ρ)κ+ρ(2−ρ)κ+2κ+1+2ρ2)(κ+1)+2(−3ρ−ϑκ+1+2(κ+1)ϑ2−2(2−ϑ)κ+ϑ(−3κ+(2−ϑ)κ−3)+4)(κ+1) |
From the definitions of fractional integrals, the equalities
|2κ−2+ρ+ϑ2κ(f(0)+f(1)2)+2−ρ−ϑ2κf(12)−Γ(κ+1)2(α2−α1)κ[Jκ(α2)−f(α1)+Jκ(α1)+f(α2)]|=2−ρ−ϑ2κ(338)+2κ−2+ρ+ϑ2κ(92)−12(33κ2+99κ+728κ2+24κ+16) |
are valid. Finally, we have the following inequality:
2−ρ−ϑ2κ(338)−12(33κ2+99κ+728κ2+24κ+16)≤12κ+2[2(κ2−8.2κ+2κ+2+4κ+5)(κ+1)(κ+2)+2(−4.2κ+2κ+1+κ+3)(κ+1)(κ+2)+2(κ+1)+2(κ+1)(κ+2)]. | (2.6) |
As one can see in Figure 1, (2.6) in Example 1 shows the correctness of this inequality for all values of κ∈(0,1] and special choices of ρ,ϑ. The Figure 1 represents the Graphical description of inequality (2.6) and their difference.
Remark 2.1. If we choose ρ=ϑ=1, κ=1, in Theorem 2.1, then inequality (2.5) reduces to inequality (1.3).
Remark 2.2. If we choose ρ=ϑ=0, κ=1, in Theorem 2.1, then inequality (2.5) reduces to inequality (1.5).
Remark 2.3. If we choose ρ=ϑ=13, κ=1, in Theorem 2.1, then inequality (2.5) reduces to inequality (1.7).
Theorem 2.2. Let f:[α1,α2]→R be a differentiable function on (α1,α2) with α1<α2 with 0 < κ≤1, λ∈[0,1], and ρ,ϑ∈[0,1]. If f′∈L[α1,α2] and mapping |f′|q with q≥1, is convex on [α1,α2], then the following inequality holds:
|2κ−2+ρ+ϑ2κ(f(α1)+f(α2)2)+2−ρ−ϑ2κf(α1+α22)−Γ(κ+1)2(α2−α1)κ[Jκ(α2)−f(α1)+Jκ(α1)+f(α2)]|≤α2−α12κ+2 ×[{(U9)1−1/q(U1|f′(α1)|q+U2|f′(α1+α22)|q)1/q+(U10)1−1/q(U3|f′(α1)|q+U4|f′(α1+α22)|q)1/q}+{(U11)1−1/q(U5|f′(α1+α22)|q+U6|f′(α2)|q)1/q+(U12)1−1/q(U7|f′(α1+α22)|q+U8|f′(α2)|q)1/q}], | (2.7) |
where,
U9=∫10|[(1−λ)κ−ρ]|dλ=1−2(1−η1)κ+1κ+1+(1−2η1)ρ, η1=1−ρ1κ.U10=∫10|[ϑ−(1−λ)κ]|dλ=1+2(1−η2)κ+1κ+1−(1−2η2)ϑ, η2=1−ϑ1κ. |
U11=∫10|[(2−λ)κ−(2−ρ)]|dλ=1−2κ+1+2(2−η3)κ+1κ+1−(2κ−ρ)(1−2η2), η3=2−(2κ−ρ)1κ. |
U12=∫10|[2−ϑ−(2−λ)κ]|dλ=1+2κ+1−2(2−η4)κ+1κ+1+(2κ−ϑ)(1−2η4), η4=2−(2κ−ϑ)1κ. |
Proof. Utilizing the Lemma 2.1 and Power-mean inequality, we obtain
|2κ−2+ρ+ϑ2κ(f(α1)+f(α2)2)+2−ρ−ϑ2κf(α1+α22)−Γ(κ+1)2(α2−α1)κ[Jκ(α2)−f(α1)+Jκ(α1)+f(α2)]|≤α2−α12κ+2(∫10|(1−λ)κ−ρ|dλ)1−1/q×(∫10|(1−λ)κ−ρ||f′(λα1+(1−λ)α1+α22)|qdλ)1/q+α2−α12κ+2(∫10[ϑ−(1−λ)κ]dλ)1−1/q×(∫10[ϑ−(1−λ)κ]|f′(λα2+(1−λ)α1+α22)|qdλ)1/q+α2−α12κ+2(∫10|(2−λ)κ+ρ−2|dλ)1−1/q×(∫10|(2−λ)κ+ρ−2||f′(λα1+α22+(1−λ)α2)|qdλ)1/q+α2−α12κ+2(∫10[2−ϑ−(2−λ)κ]dλ)1−1/q×(∫10[(2−λ)κ+ρ−2]|f′(λα1+α22+(1−λ)α1)|qdλ)1/q |
≤α2−α12κ+2(∫10|(1−λ)κ−ρ|dλ)1−1/q×(∫10|(1−λ)κ−ρ|(λ|f′(α1)|q+(1−λ)|f′(α1+α22)|q)dλ)1/q+α2−α12κ+2(∫10|ϑ−(1−λ)κ|dλ)1−1/q×(∫10|ϑ−(1−λ)κ|(λ|f′(α2)|q+(1−λ)|f′(α1+α22)|q)dλ)1/q |
+α2−α12κ+2(∫10|(2−λ)κ+ρ−2|dλ)1−1/q×(∫10|(2−λ)κ+ρ−2|(λ|f′(α1+α22)|q+(1−λ)|f′(α2)|q)dλ)1/q+α2−α12κ+2(∫10[|2−ϑ−(2−λ)κ|]dλ)1−1/q×(∫10|(2−λ)κ+ρ−2|(λ|f′(α1+α22)|q+(1−λ)|f′(α1)|q)dλ)1/q. |
|2κ−2+ρ+ϑ2κ(f(α1)+f(α2)2)+2−ρ−ϑ2κf(α1+α22)−Γ(κ+1)2(α2−α1)κ[Jκ(α2)−f(α1)+Jκ(α1)+f(α2)]|≤α2−α12κ+2 ×[{(U9)1−1/q(U1|f′(α1)|q+U2|f′(α1+α22)|q)1/q+(U10)1−1/q(U3|f′(α1)|q+U4|f′(α1+α22)|q)1/q}+{(U11)1−1/q(U5|f′(α1+α22)|q+U6|f′(α2)|q)1/q+(U12)1−1/q(U7|f′(α1+α22)|q+U8|f′(α2)|q)1/q}]. | (2.8) |
The proof is completed.
Now we discuss the particular inequalities which generalize inequalities in classical sense.
Corollary 2.1. Suppose that all the assumptions of Theorem 2.2, are satisfied. If we choose ρ=ϑ=1, κ=1, the following inequality holds:
|f(α1)+f(α2)2−1α2−α1∫α2α1f(u)du|≤α2−α18[(23|f′(α1)|q+13|f′(α1+α22)|q)1q+(23|f′(α2)|q+13|f′(α1+α22)|q)1q]. |
Corollary 2.2. Suppose that all the assumptions of Theorem 2.2, are satisfied. If we choose ρ=ϑ=0, κ=1, the following inequality holds:
|f(α1+α22)−1α2−α1∫α2α1f(u)du|≤α2−α18[(13|f′(α1)|q+23|f′(α1+α22)|q)1q+(13|f′(α2)|q+23|f′(α1+α22)|q)1q]. |
Corollary 2.3. Suppose that all the assumptions of Theorem 2.2, are satisfied. If we choose ρ=ϑ=13, κ=1, the following inequality holds:
|13{2f(α1+α22)+f(α1)+f(α2)2}−1α2−α1∫α2α1f(u)du|≤5(α2−α1)72×[(881|f′(α1)|q+29162|f′(α1+α22)|q)1q+(881|f′(α2)|q+29162|f′(α1+α22)|q)1q]. |
Now we obtain some estimates of Simpson's and Hermite-Hadamard-inequalities for concavity.
Theorem 2.3. Let f:[α1,α2]→R be a differentiable mapping on (α1,α2) with α1<α2,0 < κ≤1, and ρ,ϑ∈[0,1], q≥1. If |f′|q is concave on [α1,α2], then the following inequality holds:
|2κ−2+ρ+ϑ2κ(f(α1)+f(α2)2)+2−ρ−ϑ2κf(α1+α22)−Γ(κ+1)2(α2−α1)κ[Jκ(α2)−f(α1)+Jκ(α1)+f(α2)]|≤α2−α12κ+2[{U9×|f′({U1×(α1)+U2×(α1+α22)U9})|+U10×|f′({U3×(α2)+U4×(α1+α22)U10})|}+U11×|f′({(U5×(α1+α22)+U6×(α2)U11})|+U12×|f′({(U7×(α1+α22)+U8×(α1)U12})|]. | (2.9) |
Proof. Using the concavity of |f′|q and the power-mean inequality, we know that for λ∈[0,1],
|f′(λα1+(1−λ)α2)|q>λ|f′(α1)|q+(1−λ)|f′(α2)|q≥(λ|f′(α1)|+(1−λ)|f′(α2)|)q |
Hence
|f′(λα1+(1−λ)α2)|≥λ|f′(α1)|+(1−λ)|f′(α2)|. |
By the concavity and Jensen integral inequality, we have
|2κ−2+ρ+ϑ2κ(f(α1)+f(α2)2)+2−ρ−ϑ2κf(α1+α22)−Γ(κ+1)2(α2−α1)κ[Jκ(α2)−f(α1)+Jκ(α1)+f(α2)]|≤α2−α12κ+2(∫10|[(1−λ)κ−ρ]|dλ)|f′(∫10[(1−λ)κ−ρ]|(λα1+(1−λ)α1+α22)|dλ∫10|[(1−λ)κ−ρ]|dλ)|+α2−α12κ+2(∫10|[ϑ−(1−λ)κ]|dλ)|f′(∫10[ϑ−(1−λ)κ]|(λα2+(1−λ)α1+α22)|dλ∫10|[ϑ−(1−λ)κ]|dλ)|+α2−α12κ+2(∫10|[(2−λ)κ+ρ−2]|dλ)|f′(∫10[(2−λ)κ+ρ−2]|(λα1+α22+(1−λ)α2)|dλ∫10|[(2−λ)κ+ρ−2]|dλ)|+α2−α12κ+2(∫10|[2−ϑ−(2−λ)κ]|dλ)|f′(∫10[2−ϑ−(2−λ)κ]|(λα1+α22+(1−λ)α1)|dλ∫10|[2−ϑ−(2−λ)κ]|dλ)|≤α2−α12κ+2(U9)|f′(U1(α1)+U2(α1+α22)U9)|+α2−α12κ+2(U10)|f′(U3(α2)+U4(α1+α22)U9)|+α2−α12κ+2(U11)|f′((U5(α1+α22)+U6(α2)U6)|+α2−α12κ+2(U12)|f′((U7(α1+α22)+U8(α1)U6)| |
|2κ−2+ρ+ϑ2κ(f(α1)+f(α2)2)+2−ρ−ϑ2κf(α1+α22)−Γ(κ+1)2κ+1(α2−α1)κ[Jκ(α2)−f(α1)+Jκ(α1)+f(α2)]|≤α2−α12κ+2[{U9×|f′({U1×(α1)+U2×(α1+α22)U9})|+U10×|f′({U3×(α2)+U4×(α1+α22)U10})|}+U11×|f′({(U5×(α1+α22)+U6×(α2)U11})|+U12×|f′({(U7×(α1+α22)+U8×(α1)U12})|], |
which completes the proof.
As a special case of Theorem 2.3, we obtain the following result,
Corollary 2.4. Suppose that all the assumptions of Theorem 2.3, are satisfied. If we choose ρ=ϑ=13, κ=1, we have Simpson's inequality:
|13{2f(α1+α22)+f(α1)+f(α2)2}−1α2−α1∫α2α1f(u)du|≤5(α2−α1)72×[|f′(16α1+29α245)|+|f′(29α1+16α245)|]. | (2.10) |
Remark 2.4. Our inequality (2.10) is an improvement of Alomari inequality as obtained in [18].
Let consider the following special means for α1≠α2.
The arithmetic mean:
A(α1,α2)=α1+α22, α1,α2∈R. |
The logarithmic-mean:
L(α1,α2)=α2−α1ln|α2|−ln|α1|,|α1|≠|α2|, α1,α2≠0, α1,α2∈R. |
The generalized logarithmic-mean:
Lr(α1,α2)=[(α2)r+1−(α1)r+1(r+1)(α2−α1)]1r;r∈R∖{−1,0}, α1,α2>0. |
Proposition 2.1. Suppose r∈R∖{−1,0} and α1,α2∈R such that 0<α1<α2 with q≥1, then the following inequality holds:
|A(α1,α2)−Lrr(α1,α2)|≤r(α2−α1)8[(23|α1|q+13|(α1+α22)r−1|q)1q+(23|α2|q+13|(α1+α22)r−1|q)1q]. |
Proof. The assertion follows from Corollary 1 for the function f(x)=xr and r as specified above.
Proposition 2.2. Suppose q≥1 and α1,α2∈R, such that 0<α1<α2, then the following inequality holds:
|A−1(α1,α2)−L−1(α1,α2)|≤(α2−α1)8[(13|α1|q+23|A−2(α1,α2)|q)1q+(13|α2|q+23|A−2(α1,α2)|q)1q]. |
Proof. The assertion follows from Corollary 2.2 for the function f(x)=1x.
Suppose 0<q<1, the q-digamma function φq, is the q-analogue of the digamma function φ defined by (see [19,20]).
φq=−ln(1−q)+ lnq∞∑k=0qk+x1−qk+x =−ln(1−q)+ lnq∞∑k=0qkx1−qkx |
For q>1 and x>0, q-digamma function φqdefined by
φq=−ln(q−1)+ lnq[x−12−∞∑k=0q−(k+x)1−q−(k+x)] =−ln(q−1)+ lnq[x−12−∞∑k=0q−kx1−q−kx] |
Proposition 2.3. Suppose α1,α2 be real numbers such that 0<α1<α2, with q≥1, then the following inequality holds:
|A(φq(α1),φq(α2))−1α2−α1∫α2α1φq(u)du|≤(α2−α1)8[(23|φ′q(α1)|q+13|φ′q(α1+α22)|q)1q+(23|φ′q(α2)|q+13|φ′q(α1+α22)|q)1q]. |
Proof. The assertion can be obtained immediately by using Corollary 2.1 to f(ε)=φq(ε) and ε>0, f′(ε)=φ′q(ε) is convex on (0,+∞).
Proposition 2.4. Suppose α1,α2 be real numbers such that 0<α1<α2, with q≥1, then the following inequality holds:
|13{2φq(α1+α22)+A(φq(α1),φq(α2))}−1α2−α1∫α2α1φq(u)du|≤5(α2−α1)72×[(881|φ′q(α1)|q+29162|φ′q(α1+α22)|q)1q+(881|φ′q(α2)|q+29162|φ′q(α1+α22)|q)1q]. |
Proof. The assertion can be obtained immediately by using Corollary 2.3 to f(ε)=φq(ε) and ε>0, f′(ε)=φ′q(ε) is convex on (0,+∞).
Recall the first kind of modified Bessel function Iρ, which has the series representation ([19], p.77).
Iρ(x)=∑m≥0(x2)ρ+2mm!Γ(ρ+m+1), |
where x∈R and ρ>−1, while the second kind modified Bessel function Kρ ([19], p.78) is usually defined as
Kρ(x)=π2I−ρ(x)−Iρ(x)sinρπ. |
Here, we consider the function Ωρ(x):R→[1,∞) defined by
Ωρ(x)=2ρΓ(ρ+1)x−ρIρ(x), |
where Γ is the Gamma function.
Proposition 2.5. Suppose ρ>−1 and 0<α1<α2. Then
|Ωρ(α1+α22)−1α2−α1∫α2α1Ωρ(ε)dε|≤(α2−α1)16(ρ+1)[(13α1|Ωρ+1(α1)|q+α1+α23|Ωρ+1(α1+α22)|q)1q+(13α2|Ωρ+1(α2)|q+α1+α23|Ωρ+1(α1+α22)|q)1q]. |
Specifically, if ρ=−12, then
|cosh(α1+α22)−1α2−α1∫α2α1cosh(ε)dε|≤(α2−α1)8[(13α1|sinh(α1)α1|q+α1+α23|sinh(α1+α22)α1+α22|q)1q+(13α2|sinh(α2)α2|q+α1+α23|sinh(α1+α22)α1+α22|q)1q]. |
Proof. The assertion can be obtained immediately by using Corollary 2.2 to f(ε)=Ωρ(ε), ε>0, and Ω′ρ(ε)=ερ+1Ωρ+1(ε). Now taking into account the relations Ω−12(ε)=cosh(ε) and Ω12(ε)=sinh(ε)ε.
In this article, we have established an integral identity via Riemann-Livouille fractional integral. Based on this identity, we present several midpoint, trapezoid and Simpson's-type inequalities whose absolute values are convex and concave. It is also shown that several results are given by special cases of the main results. We deduce that the findings proved in this work are naturally universal, contribute to the theory of inequalities. Finally, we have presented some applications to special means, q-digamma and modifies Bessel functions with respect to our deduced results. In future studies, researchers can obtain generalized versions of our results by utilizing other kinds of convex function classes or different types of generalized fractional integral operators.
We would like to thank you for following the instructions above very closely in advance. It will definitely save us lot of time and expedite the process of your paper's publication.
There is no conflict of interest among the authors.
[1] | S. S. Dragomir, C. E. M. Pearce, Selected Topics on Hermite-Hadamard Inequalities and Applications, RGMIA Monographs Victoria University, 2000. |
[2] |
M. Z. Sarikaya, E. Set, H. Yaldiz, N. Başak, Hermite-Hadamard's inequalities for fractional integrals and related fractional inequalities, Math. Comput. Model., 57 (2013), 2403–2407. https://doi.org/10.1016/j.mcm.2011.12.048 doi: 10.1016/j.mcm.2011.12.048
![]() |
[3] |
J. Nasir, S. Qaisar, S. I. Butt, A. Qayyum, Some Ostrowski type inequalities for mappings whose second derivatives are preinvex function via fractional integral operator, AIMS Mathematics, 7 (2022), 3303–3320. https://doi.org/10.3934/math.2022184 doi: 10.3934/math.2022184
![]() |
[4] |
M. Karim, A. Fahmi, Z. Ullah, M. A. T. Bhatti, A. Qayyum, On certain Ostrowski type integral inequalities for convex function via AB-fractional integral operator, AIMS Mathematics, 8 (2023), 9166–9184. https://doi.org/10.3934/math.2023459 doi: 10.3934/math.2023459
![]() |
[5] | A. Qayyum, I. Faye, M. Shoaib, On new generalized inequalities via Riemann-Liouville fractional integration, J. Fract. Calc. Appl., 6 (2015), 91–100. |
[6] | S. S. Dragomir, M. I. Bhatti, M. Iqbal, M. Muddassar, Some new Hermite-Hadamard's type inequalities, J. Comput. Anal. Appl., 18 (2015), 655–660. |
[7] | S. S. Dragomir, Ostrowski type inequalities for generalized Riemann-Liouville fractional integrals of functions with bounded variation, RGMIA Res. Rep. Coll., 20 (2017). |
[8] |
S. S. Dragomir, Trapezoid type inequalities for generalized Riemann-Liouville fractional integrals of functions with bounded variation, Acta Univ. Sapientiae, Math., 12 (2020), 30–53. https://doi.org/10.2478/ausm-2020-0003 doi: 10.2478/ausm-2020-0003
![]() |
[9] |
M. Iqbal, S. Qaisar, S. Hussain, On Simpson's type inequalities utilizing fractional integral, J. Comput. Anal. Appl., 23 (2017), 1137–1145. https://doi.org/10.1186/s13660-019-2160-1 doi: 10.1186/s13660-019-2160-1
![]() |
[10] | R. Gorenflo, F. Mainardi, Fractional Calculus: Integral and Differential Equations of Fractional Order, Vienna: Springer, 1997. |
[11] | S. Belarbi, Z. Dahmani, On some new fractional integral inequalities, J. Ineq. Pure Appl. Math., 10 (2009), 86. |
[12] | Z. Dahmani, New inequalities in fractional integrals, Int. J. Nonlinear Sci., 9 (2010), 493–497. |
[13] |
S. R. Hwang, K. L. Tseng, K. C. Hsu, New inequalities for fractional integrals and their applications, Turk. J. Math., 40 (2016), 471–486. https://doi.org/10.3906/mat-1411-61 doi: 10.3906/mat-1411-61
![]() |
[14] |
S. S. Dragomir, R. P. Agarwal, Two inequalities for differentiable mappings and applications to special means of real numbers and to trapezoidal formula, Appl. Math. Lett., 11 (1998), 91–95. https://doi.org/10.1016/S0893-9659(98)00086-X doi: 10.1016/S0893-9659(98)00086-X
![]() |
[15] |
U. S. Kırmacı, Inequalities for differentiable mappings and applications to special means of real numbers and to midpoint formula, Appl. Math. Comput., 147 (2004), 137–146. https://doi.org/10.1016/S0096-3003(02)00657-4 doi: 10.1016/S0096-3003(02)00657-4
![]() |
[16] | M. Z. Sarikaya, E. Set, M. E. Ozdemir, On new inequalities of Simpson's type for s-convex functions, Comput. Math. Appl., 60 (2010), 2191–2199. |
[17] |
T. Lian, W. Tang, R. Zhou, Fractional Hermite-Hadamard inequalities for (s,m)-convex or s-concave functions, J. Inequal. Appl., 240 (2018). https://doi.org/10.1186/s13660-018-1829-1 doi: 10.1186/s13660-018-1829-1
![]() |
[18] | M. Alomari, M. Darus, S. S. Dragomir, New inequalities of Simpson's type for s-convex functions with applications, RGMIA Res. Rep. Coll., 12 (2009), 13–20. |
[19] | G. N. Watson, A Treatise on the Theory of Bessel Functions, Cambridge University Press, 1995. |
[20] |
S. Jain, K. Mehrez, D. Baleanu, P. Agarwal, Certain Hermite-Hadamard inequalities for logarithmically convex functions with applications, Mathematics, 7 (2019). https://doi.org/10.3390/math7020163 doi: 10.3390/math7020163
![]() |
1. | Abd-Allah Hyder, Çetin Yildiz, New Fractional Inequalities through Convex Functions and Comprehensive Riemann–Liouville Integrals, 2023, 2023, 2314-4785, 1, 10.1155/2023/9532488 | |
2. | Yi Yang, Mengqi Jie, Yuhan Zhao, Limei Liu, Junfeng Yang, Jie Chen, The extended weighted t-norms-based linear hybrid aggregation function and its application for aggregating improved basic uncertain linguistic information, 2024, 136, 09521976, 108975, 10.1016/j.engappai.2024.108975 | |
3. | Fahad Alsharari, Raouf Fakhfakh, Abdelghani Lakhdari, On Fractal–Fractional Simpson-Type Inequalities: New Insights and Refinements of Classical Results, 2024, 12, 2227-7390, 3886, 10.3390/math12243886 | |
4. | Arslan Munir, Ather Qayyum, Siti Supadi, Hüseyin Budak, Irza Faiz, A study of improved error bounds for Simpson type inequality via fractional integral operator, 2024, 38, 0354-5180, 3415, 10.2298/FIL2410415M |