In the present note, we develop Hermite-Hadamard type inequality and He's inequality for exponential type convex fuzzy interval-valued functions via fuzzy Riemann-Liouville fractional integral and fuzzy He's fractional integral. Moreover, we establish Hermite-Fejér inequality via fuzzy Riemann-Liouville fractional integral.
Citation: Yanping Yang, Muhammad Shoaib Saleem, Waqas Nazeer, Ahsan Fareed Shah. New Hermite-Hadamard inequalities in fuzzy-interval fractional calculus via exponentially convex fuzzy interval-valued function[J]. AIMS Mathematics, 2021, 6(11): 12260-12278. doi: 10.3934/math.2021710
[1] | Iqra Nayab, Shahid Mubeen, Rana Safdar Ali, Faisal Zahoor, Muath Awadalla, Abd Elmotaleb A. M. A. Elamin . Novel fractional inequalities measured by Prabhakar fuzzy fractional operators pertaining to fuzzy convexities and preinvexities. AIMS Mathematics, 2024, 9(7): 17696-17715. doi: 10.3934/math.2024860 |
[2] | Muhammad Bilal Khan, Hari Mohan Srivastava, Pshtiwan Othman Mohammed, Dumitru Baleanu, Taghreed M. Jawa . Fuzzy-interval inequalities for generalized convex fuzzy-interval-valued functions via fuzzy Riemann integrals. AIMS Mathematics, 2022, 7(1): 1507-1535. doi: 10.3934/math.2022089 |
[3] | Muhammad Bilal Khan, Muhammad Aslam Noor, Thabet Abdeljawad, Bahaaeldin Abdalla, Ali Althobaiti . Some fuzzy-interval integral inequalities for harmonically convex fuzzy-interval-valued functions. AIMS Mathematics, 2022, 7(1): 349-370. doi: 10.3934/math.2022024 |
[4] | Muhammad Bilal Khan, Pshtiwan Othman Mohammed, Muhammad Aslam Noor, Abdullah M. Alsharif, Khalida Inayat Noor . New fuzzy-interval inequalities in fuzzy-interval fractional calculus by means of fuzzy order relation. AIMS Mathematics, 2021, 6(10): 10964-10988. doi: 10.3934/math.2021637 |
[5] | Hari Mohan Srivastava, Soubhagya Kumar Sahoo, Pshtiwan Othman Mohammed, Bibhakar Kodamasingh, Kamsing Nonlaopon, Khadijah M. Abualnaja . Interval valued Hadamard-Fejér and Pachpatte Type inequalities pertaining to a new fractional integral operator with exponential kernel. AIMS Mathematics, 2022, 7(8): 15041-15063. doi: 10.3934/math.2022824 |
[6] | Dawood Khan, Saad Ihsan Butt, Asfand Fahad, Yuanheng Wang, Bandar Bin Mohsin . Analysis of superquadratic fuzzy interval valued function and its integral inequalities. AIMS Mathematics, 2025, 10(1): 551-583. doi: 10.3934/math.2025025 |
[7] | Thongchai Botmart, Soubhagya Kumar Sahoo, Bibhakar Kodamasingh, Muhammad Amer Latif, Fahd Jarad, Artion Kashuri . Certain midpoint-type Fejér and Hermite-Hadamard inclusions involving fractional integrals with an exponential function in kernel. AIMS Mathematics, 2023, 8(3): 5616-5638. doi: 10.3934/math.2023283 |
[8] | Hongling Zhou, Muhammad Shoaib Saleem, Waqas Nazeer, Ahsan Fareed Shah . Hermite-Hadamard type inequalities for interval-valued exponential type pre-invex functions via Riemann-Liouville fractional integrals. AIMS Mathematics, 2022, 7(2): 2602-2617. doi: 10.3934/math.2022146 |
[9] | Muhammad Bilal Khan, Gustavo Santos-García, Hüseyin Budak, Savin Treanțǎ, Mohamed S. Soliman . Some new versions of Jensen, Schur and Hermite-Hadamard type inequalities for (p,J)-convex fuzzy-interval-valued functions. AIMS Mathematics, 2023, 8(3): 7437-7470. doi: 10.3934/math.2023374 |
[10] | Muhammad Zakria Javed, Muhammad Uzair Awan, Loredana Ciurdariu, Omar Mutab Alsalami . Pseudo-ordering and δ1-level mappings: A study in fuzzy interval convex analysis. AIMS Mathematics, 2025, 10(3): 7154-7190. doi: 10.3934/math.2025327 |
In the present note, we develop Hermite-Hadamard type inequality and He's inequality for exponential type convex fuzzy interval-valued functions via fuzzy Riemann-Liouville fractional integral and fuzzy He's fractional integral. Moreover, we establish Hermite-Fejér inequality via fuzzy Riemann-Liouville fractional integral.
Convex functions play an important role in solving many problems of pure and applied mathematics, for example the all the developments in optimization theory are based on convex function. A real valued function ß:ℵ→ℜ is said to be convex on the interval ℵ if
ß(⊺⋉1+(1−⊺)⋉2)≤⊺ß(⋉1)+(1−⊺)ß(⋉2) |
holds for all ⋉1,⋉2∈ℵ and ⊺∈[0,1].
The Hermite-Hadamard (H-H) inequality [1,2] for convex function ß:ℵ→ℜ on ℵ=[⋉1,⋉2] is
ß(⋉1+⋉22)⩽ |
In 2013, Sarika et al. [3] gave the following fractional H-H-inequality for convex function:
\begin{equation*} ß\bigg(\dfrac{\ltimes_{1}+\ltimes_{2}}{2}\bigg)\leqslant\dfrac{\Gamma(\mathbb{\rightthreetimes}+1)}{2(\ltimes_{2}-\ltimes_{1})^{\mathbb{\rightthreetimes}}}[\Finv_{\ltimes_{1}^{+}}^{\rightthreetimes}ß(\ltimes_{2})+\Finv_{\ltimes_{2}^{-}}^{\rightthreetimes}ß(\ltimes_{1})]\leq\dfrac{ß(\ltimes_{1})+ß(\ltimes_{2})}{2}, \end{equation*} |
where ß:\aleph = [\ltimes_{1}, \ltimes_{2}]\rightarrow \Re supposed to be a non-negative function on [\ltimes_{1}, \ltimes_{2}], \; ß\in L_{1}(\ltimes_{1}, \ltimes_{2}) with \ltimes_{1} < \ltimes_{2} and also \Finv_{\ltimes_{1}^{+}}^{\rightthreetimes}, \Finv_{\ltimes_{2}^{-}}^{\rightthreetimes} are the left and right sided Riemann-Liouville fractional integrals of order 0\leq\rightthreetimes as follows [27]:
\begin{equation*} \Finv_{\ltimes_{1}^{+}}^{\rightthreetimes}ß(\ltimes) = \dfrac{1}{\Gamma(\rightthreetimes)}\int_{\ltimes_{1}}^{\ltimes}(\ltimes-\intercal)^{\rightthreetimes-1}ß(\intercal)d\intercal, \; (\ltimes > \ltimes_{1}); \end{equation*} |
\begin{equation*} \Finv_{\ltimes_{2}^{-}}^{\rightthreetimes}ß(\ltimes) = \dfrac{1}{\Gamma(\rightthreetimes)}\int_{\ltimes}^{\ltimes_{2}}(\intercal-\ltimes)^{\rightthreetimes-1}ß(\intercal)d\intercal, \; (\ltimes < \ltimes_{2}). \end{equation*} |
Definition 1.1. [4] A real valued function ß:\aleph\rightarrow \Re is said to be exponential type convex on the interval \aleph if
\begin{equation} ß(\intercal\ltimes_{1}+(1-\intercal)\ltimes_{2})\leq(\varrho^{\intercal}-1)ß(\ltimes_{1})+(\varrho^{(1-\intercal)}-1)ß(\ltimes_{2}) \end{equation} | (1.1) |
holds for all \ltimes_{1}, \ltimes_{2}\in\aleph and \intercal\in[0, 1].
In 2020, Kadakal et al. [4] obtained the following new refinement of the classical H-H-inequality on the exponential type convex function:
\begin{equation*} \dfrac{1}{2(\varrho^{\frac{1}{2}}-1)}ß\bigg(\dfrac{\ltimes_{1}+\ltimes_{2}}{2}\bigg)\leqslant\dfrac{1}{\ltimes_{2}-\ltimes_{1}}\int_{\ltimes_{1}}^{\ltimes_{2}}ß(n)dn\leqslant(\varrho-2)[ß(\ltimes_{1})+ß(\ltimes_{2})]. \end{equation*} |
Zhao et al. [5] gave the following result for interval valued function (I-V-F):
Let ß:[\ltimes_{1}, \ltimes_{2}]\subset\Re\rightarrow \Pi_{c}^{+} be a convex I-V-F given by ß(\ltimes) = [ß_{*}(\ltimes), ß^{*}(\ltimes)] for all \ltimes\in[\ltimes_{1}, \ltimes_{2}] where ß_{*}(\ltimes) is a convex function and ß^{*}(\ltimes) is a concave function. If ß(\ltimes) is a Riemann integrable function, then
\begin{equation} ß\bigg(\dfrac{\ltimes_{1}+\ltimes_{2}}{2}\bigg)\supseteq\dfrac{1}{\ltimes_{2}-\ltimes_{1}}\; ^{(IR)}\int_{\ltimes_{1}}^{\ltimes_{2}}ß(n)dn\supseteq\dfrac{ß(\ltimes_{1})+ß(\ltimes_{2})}{2}. \end{equation} | (1.2) |
Budek et al. [6] gave the following strong connection between convex I-V-F and interval H-H-inequality as a counter part of (1.2):
\begin{equation*} ß\bigg(\dfrac{\ltimes_{1}+\ltimes_{2}}{2}\bigg)\supseteq\dfrac{\Gamma(\mathbb{\rightthreetimes}+1)}{2(\ltimes_{2}-\ltimes_{1})^{\mathbb{\rightthreetimes}}}[\Finv_{\ltimes_{1}^{+}}^{\rightthreetimes}ß(\ltimes_{2})+\Finv_{\ltimes_{2}^{-}}^{\rightthreetimes}ß(\ltimes_{1})]\supseteq\dfrac{ß(\ltimes_{1})+ß(\ltimes_{2})}{2}, \end{equation*} |
where ß:\aleph = [\ltimes_{1}, \ltimes_{2}]\rightarrow \Pi_{c}^{+} be a non-negative convex I-V-F on [\ltimes_{1}, \ltimes_{2}]\;, ß\in L_{1}((\ltimes_{1}, \ltimes_{2}), \Pi_{c}^{+}) with \ltimes_{1} < \ltimes_{2} also \Finv_{\ltimes_{1}^{+}}^{\rightthreetimes} and \Finv_{\ltimes_{2}^{-}}^{\rightthreetimes} are the left sided and right sided Riemann-Liouville fractional of order 0\leq\rightthreetimes.
Allahviranloo et al. [7] introduced the following fuzzy interval Riemann-Liouville fractional integral operators.
Let 0 < \rightthreetimes and L((\ltimes_{1}, \ltimes_{2}), \Pi_{0}) be the collection of all Lebesgue measurable fuzzy-I-V-Fs on [\ltimes_{1}, \ltimes_{2}]. Then, the fuzzy interval left and right Riemann-Liouville fractional integrals of ß\in L((\ltimes_{1}, \ltimes_{2}), \Pi_{0}) with order 0 < \rightthreetimes are:
\begin{equation*} \Finv_{\ltimes_{1}^{+}}^{\rightthreetimes}ß(\ltimes) = \dfrac{1}{\Gamma(\rightthreetimes)}\int_{\ltimes_{1}}^{\ltimes}(\ltimes-\intercal)^{\rightthreetimes-1}ß(\intercal)d\intercal\; \; \; , (\ltimes > \ltimes_{1}); \end{equation*} |
\begin{equation*} \Finv_{\ltimes_{2}^{-}}^{\rightthreetimes}ß(\ltimes) = \dfrac{1}{\Gamma(\rightthreetimes)}\int_{\ltimes}^{\ltimes_{2}}(\intercal-\ltimes)^{\rightthreetimes-1}ß(\intercal)d\intercal\; \; \; , (\ltimes < \ltimes_{2}); \end{equation*} |
respectively, where \Gamma(\ltimes) = \int_{0}^{\infty}\intercal^{\ltimes-1}s^{-\intercal}d(\intercal) is the Euler \varsigma function. The fuzzy interval left and right Riemann-Liouville fractional integral \ltimes based on left and right end point functions can be given as
\begin{align*} [\Finv_{\ltimes_{1}^{+}}^{\rightthreetimes}ß(\ltimes)]^{\varsigma}& = \dfrac{1}{\Gamma(\rightthreetimes)}\int_{\ltimes_{1}}^{\ltimes}(\ltimes-\intercal)^{\rightthreetimes-1}ß_{\varsigma}(\intercal)d\intercal\notag\\ & = \dfrac{1}{\Gamma(\rightthreetimes)}\int_{\ltimes_{1}}^{\ltimes}(\ltimes-\intercal)^{\rightthreetimes-1}[ß_{*}(\intercal, \varsigma), ß^{*}(\intercal, \varsigma)]d\intercal, \; (\ltimes > \ltimes_{1}), \end{align*} |
where
\begin{equation*} \Finv_{\ltimes_{1}^{+}}^{\rightthreetimes}ß_{*}(\ltimes, \varsigma) = \dfrac{1}{\Gamma(\rightthreetimes)}\int_{\ltimes_{1}}^{\ltimes}(\ltimes-\intercal)^{\rightthreetimes-1}ß_{*}(\intercal, \varsigma)d\intercal, \; (\ltimes > \ltimes_{1}), \end{equation*} |
and
\begin{equation*} \Finv_{\ltimes_{1}^{+}}^{\rightthreetimes}ß^{*}(\ltimes, \varsigma) = \dfrac{1}{\Gamma(\rightthreetimes)}\int_{\ltimes_{1}}^{\ltimes}(\ltimes-\intercal)^{\rightthreetimes-1}ß^{*}(\intercal, \varsigma)d\intercal, \; (\ltimes > \ltimes_{1}). \end{equation*} |
Similarly, we can give right Riemann-Liouville fractional integral ß of \ltimes based on left and right end point functions. For the applications of fractional order integral operators, we refer [8,9,10,11,12] to the readers. There are several papers with different integrals and fractional operators in the literature, for example in [13], Ekinci and Özdemir presented some new interesting integral inequalities via Riemann-Liouville integral operators. Grübüz and Özdemir in 2020 [14] established some inequalities for product of different kinds of convex functions. Grüss type inequalities for fractional integral operator involving the extended generalized Mittag-Leffler function were presented in [15]. For more advances in this direction, we recommend [16,17] and references therein.
In this paper, we established Hermite-Hadamard type inequality and He's inequality for exponential type convex fuzzy interval-valued functions via fuzzy Riemann-Liouville fractional integral and fuzzy He's fractional integral. We also established Hermite-Fejér inequality via fuzzy Riemann-Liouville fractional integral.
In this section, we firstly give some preliminary notations, definitions and results which will be helpful in our work. Then, we give new definitions and analyze some properties of exponential type convex fuzzy-I-V-Fs.
Let \Pi_{c} be the space of all closed and bounded intervals of \Re , and \nu\in\Pi_{c} given by
\begin{equation*} \nu = [\nu_{*}, \nu^{*}] = \{\ltimes\in\Re\big|\nu_{*} < \ltimes < \nu^{*}\}, \; \; \; \nu_{*}, \nu^{*}\in\Re. \end{equation*} |
If \nu_{*} = \nu^{*} , then \nu is said to be degenerate. In our work, all intervals are non-degenerate intervals. If 0\leq\nu_{*} , then \nu is said to be a non-negative interval. The set of all non-negative intervals is denoted by \Pi_{c}^{+} and given as
\begin{equation*} \Pi_{c}^{+} = \{[\nu_{*}, \nu^{*}]\; \big|\; [\nu_{*}, \nu^{*}]\in\Pi_{c}, \; 0\leq\nu_{*}\}. \end{equation*} |
Some binary operations are given as follows:
Scalar multiplication \intercal\in\Re
\begin{equation*} \intercal.\nu = \begin{cases} [\intercal\nu_{*}, \intercal\nu^{*}]\; \; if\; \; 0\leq\intercal;\\ [\intercal\nu^{*}, \intercal\nu_{*}]\; \; if\; \; \intercal\leq0. \end{cases} \end{equation*} |
Minkowski difference, addition, product, relation \subset and \leq_{I} for \nu_{1}, \nu_{2}\in\Pi_{c} are respectively given by [38]:
\begin{equation*} \nu_{1}-\nu_{2} = [\nu_{1*}, \nu_{1}^{*}]-[\nu_{2*}, \nu_{2}^{*}] = [\nu_{1*}-\nu_{2*}, \nu_{1}^{*}-\nu_{2}^{*}, ]; \end{equation*} |
\begin{equation*} \nu_{1}+\nu_{2} = [\nu_{1*}, \nu_{1}^{*}]+[\nu_{2*}, \nu_{2}^{*}] = [\nu_{1*}+\nu_{2*}, \nu_{1}^{*}+\nu_{2}^{*}, ]; \end{equation*} |
\begin{equation*} \nu_{1}\times\nu_{2} = [min\{\nu_{1*}\nu_{2*}, \nu_{1}^{*}\nu_{2*}, \nu_{1*}\nu_{2}^{*}, \nu_{1}^{*}\nu_{2}^{*}\}, max\{\nu_{1*}\nu_{2*}, \nu_{1}^{*}\nu_{2*}, \nu_{1*}\nu_{2}^{*}, \nu_{1}^{*}\nu_{2}^{*}\}]; \end{equation*} |
\begin{equation*} \nu_{1}\subseteq\nu_{2}\Longleftrightarrow[\nu_{1*}, \nu_{1}^{*}]\subseteq[\nu_{2*}, \nu_{2}^{*}]\Longleftrightarrow\nu_{2*}\leq\nu_{1*}, \nu_{1}^{*}\leq\nu_{2}^{*}; \end{equation*} |
\begin{equation*} [\nu_{1*}, \nu_{1}^{*}]\leq_{I}[\nu_{2*}, \nu_{2}^{*}]\Longleftrightarrow\nu_{1*}\leq\nu_{2*}, \nu_{1}^{*}\leq\nu_{2}^{*}. \end{equation*} |
Definition 2.1. A fuzzy subset \pitchfork of \Re is characterized by a mapping \Cup:\Re\rightarrow [0, 1] is said to be the membership function for each fuzzy set and \varsigma\in(0, 1] , then \varsigma-level sets of \Cup is denoted and given as follows:
\begin{equation*} \Cup_{\varsigma} = \{\ltimes\in\Re\big|\; \varsigma\leq\Cup(\ltimes)\}. \end{equation*} |
If \varsigma = 0 , then
\begin{equation*} supp(\Cup) = \{\ltimes\in\Re\big|\; \Cup(\ltimes) > 0\} \end{equation*} |
is said to be support of \Cup and [\Cup]^{o} is said to be closure of supp(\Cup).
Let \prod(\Re) be the family of all fuzzy sets and \Cup\in\prod(\Re) denote the family of all nonempty sets. \Cup\in\prod(\Re) is a fuzzy set. Then, we define the following:
Case 2.2. \Cup is said to be normal if there exists \ltimes\in\Re such that \Cup(\ltimes) = 1.
Case 2.3. \Cup is said to be upper semi-continuous on \Re if for given \ltimes\in\Re, there exists \Im > 0 there exists \Im_{1} > 0 such that \Cup(\ltimes)-\Cup(\ltimes_{1}) < \Im for all \ltimes_{1}\in\Re with |\ltimes-\ltimes_{1}| < \Im_{1}.
Case 2.4. \Cup is said to be fuzzy convex if \Cup_{\varsigma} is convex for every \varsigma\in[0, 1].
Case 2.5. \Cup is compactly supported if supp(\Cup) is compact.
A fuzzy set is said to be a fuzzy number or fuzzy interval if it has properties given above in Cases 2.2-2.5. We denote by \prod_{0} the family of all intervals [34,35,36,37,38,39,40,41,42,43].
Definition 2.6. The \Cup\in\prod_{0} be a fuzzy interval if and only if \varsigma- levels [\Cup]^{\varsigma} is a nonempty compact convex set of \Re . From these definitions, we have
\begin{equation*} [\Cup]^{\varsigma} = [\Cup_{*}(\varsigma), \Cup^{*}(\varsigma)] \end{equation*} |
where
\begin{equation*} \Cup_{*}(\varsigma) = inf\{\ltimes\in\Re\big|\varsigma\leq\Cup(\ltimes)\} \end{equation*} |
and
\begin{equation*} \Cup^{*}(\varsigma) = sup\{\ltimes\in\Re\big|\varsigma\leq\Cup(\ltimes)\}. \end{equation*} |
The relations scalar multiplication \odot , addition \oplus , product \otimes , scalar addition and partial order relation \preceq for \Cup_{1}, \Cup_{2}\in\prod_{0} and \intercal\in\Re are respectively given by:
\begin{equation*} [\intercal\odot\Cup_{1}]^{\varsigma} = \intercal.[\Cup_{1}]^{\varsigma}; \end{equation*} |
\begin{equation*} [\Cup_{1}\oplus\Cup_{2}]^{\varsigma} = [\Cup_{1}]^{\varsigma}+[\Cup_{2}]^{\varsigma}; \end{equation*} |
\begin{equation*} [\Cup_{1}\otimes\Cup_{2}]^{\varsigma} = [\Cup_{1}]^{\varsigma}\times[\Cup_{2}]^{\varsigma}; \end{equation*} |
\begin{equation*} [\intercal\oplus\Cup_{1}]^{\varsigma} = \intercal+[\Cup_{1}]^{\varsigma}; \end{equation*} |
\begin{equation*} \Cup_{1}\preceq\Cup_{2}\Longleftrightarrow[\Cup_{1}]^{\varsigma}\leq_{I}[\Cup_{2}]^{\varsigma}\; \; ([18]) \end{equation*} |
for all \varsigma\in[0, 1] .
For \Cup\in\prod_{0} such that \Cup_{1} = \Cup_{2}\oplus\Cup , then Hukuhara difference [29] \circleddash is given by:
\begin{equation*} (\Cup)^{*}(\varsigma) = (\Cup_{1}\circleddash\Cup_{2})^{*}(\varsigma) = (\Cup_{1})^{*}(\varsigma)-(\Cup_{1})^{*}(\varsigma); \end{equation*} |
\begin{equation*} (\Cup)_{*}(\varsigma) = (\Cup_{1}\circleddash\Cup_{2})_{*}(\varsigma) = (\Cup_{1})_{*}(\varsigma)-(\Cup_{1})_{*}(\varsigma). \end{equation*} |
Definition 2.7. [19] A fuzzy mapping ß:\aleph\subset\Re\rightarrow \prod_{0} is said to be fuzzy I-V-F for all \varsigma\in[0, 1] , whose \varsigma- levels define the family of I-V-Fs ß_{\varsigma}:\aleph\subset\Re\rightarrow \Pi_{c} are given by ß_{\varsigma}(\ltimes) = [ß_{*}(\ltimes, \varsigma), ß^{*}(\ltimes, \varsigma)] for all \ltimes\in\aleph \;, \; ß_{*}(\ltimes, \varsigma), ß^{*}(\ltimes, \varsigma):\aleph\rightarrow \Re are said to be lower and upper functions of ß .
Definition 2.8. [20] The fuzzy I-V-F ß:[\ltimes_{1}, \ltimes_{2}]\rightarrow \prod_{0} is said to be convex fuzzy I-V-F on [\ltimes_{1}, \ltimes_{2}] if,
\begin{equation*} ß(\intercal\ltimes_{11}+(1-\intercal)\ltimes_{12})\preceq\intercalß(\ltimes_{11})\oplus(1-\intercal)ß(\ltimes_{12}) \end{equation*} |
for all \ltimes_{11}, \ltimes_{12}\in[\ltimes_{1}, \ltimes_{2}], \; \intercal\in[0, 1] where 0\preceqß(\ltimes) for all \ltimes\in[\ltimes_{1}, \ltimes_{2}] .
Now, we introduce exponential type convex fuzzy I-V-F.
Definition 2.9. The fuzzy I-V-F ß:[\ltimes_{1}, \ltimes_{2}]\rightarrow \prod_{0} is said to be exponential type convex fuzzy I-V-F on [\ltimes_{1}, \ltimes_{2}] if,
\begin{equation} ß(\intercal\ltimes_{11}+(1-\intercal)\ltimes_{12})\preceq(\varrho^{\intercal}-1)ß(\ltimes_{11})\oplus(\varrho^{(1-\intercal)}-1)ß(\ltimes_{12}) \end{equation} | (2.1) |
for all \ltimes_{11}, \ltimes_{12}\in[\ltimes_{1}, \ltimes_{2}], \; \intercal\in[0, 1] where 0\preceqß(\ltimes) for all \ltimes\in[\ltimes_{1}, \ltimes_{2}] .
Remark 2.10. If (2.1) is reversed, then ß is said to be exponential type concave fuzzy I-V-F on [\ltimes_{1}, \ltimes_{2}] .
Remark 2.11. If ß_{*}(\ltimes, \varsigma) = ß^{*}(\ltimes, \varsigma) and \varsigma = 1 then we get (1.1).
Remark 2.12. Every nonnegative convex fuzzy I-V-F is exponential type convex fuzzy I-V-F, since \intercal\leq\varrho^{\intercal}-1 and 1-\intercal\leq\varrho^{1-\intercal}-1 for all \intercal\in[0, 1] .
\begin{align*} ß(\intercal\ltimes_{11}+(1-\intercal)\ltimes_{12})\preceq\intercalß(\ltimes_{11})\oplus(1-\intercal)ß(\ltimes_{12})\preceq(\varrho^{\intercal}-1)ß(\ltimes_{11})\oplus(\varrho^{(1-\intercal)}-1)ß(\ltimes_{12}) \end{align*} |
In this section, we use the following fractional H-H-inequality for convex fuzzy-I-V-Fs. We also give fractional H-H inequality for exponential type convex fuzzy-I-V-F through fuzzy order relation. The family of Lebesgue measurable fuzzy-I-V-Fs denoted by L([\ltimes_{1}, \ltimes_{2}], \prod_{0}) .
Lemma 3.1. [21] Let ß:[\ltimes_{1}, \ltimes_{2}]\rightarrow \prod_{0} be an convex fuzzy I-V-F on [\ltimes_{1}, \ltimes_{2}] , whose \varsigma- levels define the family of I-V-Fs ß_{\varsigma}:[\ltimes_{1}, \ltimes_{2}]\subset\Re\rightarrow \Pi_{c}^{+} are given by ß_{\varsigma}(\ltimes) = [ß_{*}(\ltimes, \varsigma), ß^{*}(\ltimes, \varsigma)] for all \ltimes\in[\ltimes_{1}, \ltimes_{2}] and \varsigma\in[0, 1]. If ß\in L([\ltimes_{1}, \ltimes_{2}], \prod_{0}) , then
\begin{equation*} ß\bigg(\dfrac{\ltimes_{1}+\ltimes_{2}}{2}\bigg)\preceq\dfrac{\Gamma(\mathbb{\rightthreetimes}+1)}{2(\ltimes_{2}-\ltimes_{1})^{\mathbb{\rightthreetimes}}}[\Finv_{\ltimes_{1}^{+}}^{\rightthreetimes}ß(\ltimes_{2})\oplus\Finv_{\ltimes_{2}^{-}}^{\rightthreetimes}ß(\ltimes_{1})]\preceq\dfrac{ß(\ltimes_{1})\oplusß(\ltimes_{2})}{2}. \end{equation*} |
For concave fuzzy I-V-F, we have
\begin{equation*} \dfrac{ß(\ltimes_{1})\oplusß(\ltimes_{2})}{2}\preceq\dfrac{\Gamma(\mathbb{\rightthreetimes}+1)}{2(\ltimes_{2}-\ltimes_{1})^{\mathbb{\rightthreetimes}}}[\Finv_{\ltimes_{1}^{+}}^{\rightthreetimes}ß(\ltimes_{2})\oplus\Finv_{\ltimes_{2}^{-}}^{\rightthreetimes}ß(\ltimes_{1})]\preceqß\bigg(\dfrac{\ltimes_{1}+\ltimes_{2}}{2}\bigg). \end{equation*} |
Theorem 3.2. Let ß:[\ltimes_{1}, \ltimes_{2}]\rightarrow \prod_{0} be an exponential type convex fuzzy I-V-F on [\ltimes_{1}, \ltimes_{2}] , whose \varsigma- levels define the family of I-V-Fs ß_{\varsigma}:[\ltimes_{1}, \ltimes_{2}]\subset\Re\rightarrow \Pi_{c}^{+} are given by ß_{\varsigma}(\ltimes) = [ß_{*}(\ltimes, \varsigma), ß^{*}(\ltimes, \varsigma)] for all \ltimes\in[\ltimes_{1}, \ltimes_{2}] and \varsigma\in[0, 1]. If ß\in L([\ltimes_{1}, \ltimes_{2}], \prod_{0}) , then
\begin{align*} \dfrac{1}{(\varrho^{\frac{1}{2}}-1)}ß\bigg(\dfrac{\ltimes_{1}+\ltimes_{2}}{2}\bigg)\preceq\dfrac{\Gamma(\rightthreetimes+1)}{(\ltimes_{2}-\ltimes_{1})^{\rightthreetimes}}[\Finv_{\ltimes_{1}^{+}}^{\rightthreetimes}ß(\ltimes_{2})\oplus\Finv_{\ltimes_{2}^{-}}^{\rightthreetimes}ß(\ltimes_{1})]\preceq K[ß(\ltimes_{1})\oplusß(\ltimes_{2})] \end{align*} |
where
\begin{equation} K = \rightthreetimes\bigg(-\mathrm{\rightthreetimes}\operatorname{\Gamma}\left(\rightthreetimes, 1\right)-\dfrac{\operatorname{\Gamma}\left(\rightthreetimes, -1\right)}{\left(-1\right)^\rightthreetimes}+\dfrac{\operatorname{\Gamma}\left(\rightthreetimes\right)}{\left(-1\right)^\rightthreetimes}+\mathrm{e}\operatorname{\Gamma}\left(\rightthreetimes\right)-\dfrac{2}{\rightthreetimes}\bigg) \end{equation} | (3.1) |
for all \rightthreetimes > 0 , \mathrm{e} is Euler's number and \Gamma(a, b) is incomplete Gamma function [22].
Proof. Let ß:[\ltimes_{1}, \ltimes_{2}]\rightarrow \prod_{0} be an exponential type convex fuzzy I-V-F on [\ltimes_{1}, \ltimes_{2}] , then
\begin{equation*} \dfrac{1}{(\varrho^{\frac{1}{2}}-1)}ß\bigg(\dfrac{\ltimes_{1}+\ltimes_{2}}{2}\bigg)\preceq[ß(\intercal\ltimes_{1}+(1-\intercal)\ltimes_{2})\oplusß((1-\intercal)\ltimes_{1}+\intercal\ltimes_{2})] \end{equation*} |
for every \varsigma\in[0, 1] , we get
\begin{equation*} \dfrac{1}{(\varrho^{\frac{1}{2}}-1)}ß_{*}\bigg(\dfrac{\ltimes_{1}+\ltimes_{2}}{2}, \varsigma\bigg)\leq[ß_{*}(\intercal\ltimes_{1}+(1-\intercal)\ltimes_{2}, \varsigma)+ß_{*}((1-\intercal)\ltimes_{1}+\intercal\ltimes_{2}, \varsigma)]. \end{equation*} |
Multiplying by \intercal^{\rightthreetimes-1} and then integrating
\begin{align*} &\dfrac{1}{(\varrho^{\frac{1}{2}}-1)}ß_{*}\bigg(\dfrac{\ltimes_{1}+\ltimes_{2}}{2}, \varsigma\bigg)\int_{0}^{1}\intercal^{\rightthreetimes-1}d\intercal\\ & \leq \int_{0}^{1}\intercal^{\rightthreetimes-1}ß_{*}(\intercal\ltimes_{1}+(1-\intercal)\ltimes_{2}, \varsigma)d\intercal\\ &+\int_{0}^{1}\intercal^{\rightthreetimes-1}ß_{*}((1-\intercal)\ltimes_{1}+\intercal\ltimes_{2}, \varsigma)d\intercal \end{align*} |
taking \ltimes_{11} = \intercal\ltimes_{1}+(1-\intercal)\ltimes_{2} and \ltimes_{12} = ((1-\intercal)\ltimes_{1}+\intercal\ltimes_{2}
\begin{align*} & \dfrac{1}{\rightthreetimes(\varrho^{\frac{1}{2}}-1)}ß_{*} \bigg(\dfrac{\ltimes_{1}+\ltimes_{2}}{2}, \varsigma\bigg)\\ &\leq\int_{\ltimes_{1}}^{\ltimes_{2}}\bigg(\dfrac{\ltimes_{2}-\ltimes_{11}}{\ltimes_{2}-\ltimes_{1}}\bigg)^{\rightthreetimes-1}ß_{*}(\ltimes_{11}, \varsigma)\dfrac{d\ltimes_{11}}{\ltimes_{2}-\ltimes_{1}}\\ &+\int_{\ltimes_{1}}^{\ltimes_{2}}\bigg(\dfrac{\ltimes_{12}-\ltimes_{1}}{\ltimes_{2}-\ltimes_{1}}\bigg)^{\rightthreetimes-1}ß_{*}(\ltimes_{12}, \varsigma)\dfrac{d\ltimes_{12}}{\ltimes_{2}-\ltimes_{1}}\\ &\leq\dfrac{1}{(\ltimes_{2}-\ltimes_{1})^{\rightthreetimes}}\bigg[\int_{\ltimes_{1}}^{\ltimes_{2}}(\ltimes_{2}-\ltimes_{11})^{\rightthreetimes-1}ß_{*}(\ltimes_{11}, \varsigma)d\ltimes_{11}\\&+\int_{\ltimes_{1}}^{\ltimes_{2}}(\ltimes_{12}-\ltimes_{1})^{\rightthreetimes-1}ß_{*}(\ltimes_{12}, \varsigma)d\ltimes_{12}\bigg]. \end{align*} |
So, we get
\begin{equation*} \dfrac{1}{\rightthreetimes(\varrho^{\frac{1}{2}}-1)}ß_{*}\bigg(\dfrac{\ltimes_{1}+\ltimes_{2}}{2}, \varsigma\bigg)\leq\dfrac{\Gamma(\rightthreetimes)}{(\ltimes_{2}-\ltimes_{1})^{\rightthreetimes}}[\Finv_{\ltimes_{1}^{+}}^{\rightthreetimes}ß_{*}(\ltimes_{2}, \varsigma)+\Finv_{\ltimes_{2}^{-}}^{\rightthreetimes}ß_{*}(\ltimes_{1}, \varsigma)]. \end{equation*} |
Similarly,
\begin{equation*} \dfrac{1}{\rightthreetimes(\varrho^{\frac{1}{2}}-1)}ß^{*}\bigg(\dfrac{\ltimes_{1}+\ltimes_{2}}{2}, \varsigma\bigg)\leq\dfrac{\Gamma(\rightthreetimes)}{(\ltimes_{2}-\ltimes_{1})^{\rightthreetimes}}[\Finv_{\ltimes_{1}^{+}}^{\rightthreetimes}ß^{*}(\ltimes_{2}, \varsigma)+\Finv_{\ltimes_{2}^{-}}^{\rightthreetimes}ß^{*}(\ltimes_{1}, \varsigma)]. \end{equation*} |
Thus, we can write
\begin{align*} & \dfrac{1}{\rightthreetimes(\varrho^{\frac{1}{2}}-1)}\bigg[ß_{*}\bigg(\dfrac{\ltimes_{1}+\ltimes_{2}}{2}, \varsigma\bigg), ß^{*}\bigg(\dfrac{\ltimes_{1}+\ltimes_{2}}{2}, \varsigma\bigg)\bigg]\\ & \leq_{I}\dfrac{\Gamma(\rightthreetimes)}{(\ltimes_{2}-\ltimes_{1})^{\rightthreetimes}}\bigg[[\Finv_{\ltimes_{1}^{+}}^{\rightthreetimes}ß_{*}(\ltimes_{2}, \varsigma)+\Finv_{\ltimes_{2}^{-}}^{\rightthreetimes}ß_{*}(\ltimes_{1}, \varsigma)], [\Finv_{\ltimes_{1}^{+}}^{\rightthreetimes}ß^{*}(\ltimes_{2}, \varsigma)+\Finv_{\ltimes_{2}^{-}}^{\rightthreetimes}ß^{*}(\ltimes_{1}, \varsigma)]\bigg] \end{align*} |
which is
\begin{equation*} \dfrac{1}{\rightthreetimes(\varrho^{\frac{1}{2}}-1)}ß\bigg(\dfrac{\ltimes_{1}+\ltimes_{2}}{2}\bigg)\preceq\dfrac{\Gamma(\rightthreetimes)}{(\ltimes_{2}-\ltimes_{1})^{\rightthreetimes}}[\Finv_{\ltimes_{1}^{+}}^{\rightthreetimes}ß(\ltimes_{2})\oplus\Finv_{\ltimes_{2}^{-}}^{\rightthreetimes}ß(\ltimes_{1})] \end{equation*} |
\begin{equation*} \dfrac{1}{(\varrho^{\frac{1}{2}}-1)}ß\bigg(\dfrac{\ltimes_{1}+\ltimes_{2}}{2}\bigg)\preceq\dfrac{\Gamma(\rightthreetimes+1)}{(\ltimes_{2}-\ltimes_{1})^{\rightthreetimes}}[\Finv_{\ltimes_{1}^{+}}^{\rightthreetimes}ß(\ltimes_{2})\oplus\Finv_{\ltimes_{2}^{-}}^{\rightthreetimes}ß(\ltimes_{1})]. \end{equation*} |
Similarly,
\begin{equation*} \dfrac{\Gamma(\rightthreetimes+1)}{(\ltimes_{2}-\ltimes_{1})^{\rightthreetimes}}[\Finv_{\ltimes_{1}^{+}}^{\rightthreetimes}ß(\ltimes_{2})\oplus\Finv_{\ltimes_{2}^{-}}^{\rightthreetimes}ß(\ltimes_{1})]\preceq K[ß(\ltimes_{1})\oplusß(\ltimes_{2})]. \end{equation*} |
From (3.1) and combining above inequalities,
\begin{align*} \dfrac{1}{(\varrho^{\frac{1}{2}}-1)}ß\bigg(\dfrac{\ltimes_{1}+\ltimes_{2}}{2}\bigg)\preceq\dfrac{\Gamma(\rightthreetimes+1)}{(\ltimes_{2}-\ltimes_{1})^{\rightthreetimes}}[\Finv_{\ltimes_{1}^{+}}^{\rightthreetimes}ß(\ltimes_{2})\oplus\Finv_{\ltimes_{2}^{-}}^{\rightthreetimes}ß(\ltimes_{1})]\preceq K[ß(\ltimes_{1})\oplusß(\ltimes_{2})]. \end{align*} |
Now, we deal with the H-H inequality in the sense of He's fractional derivatives as introduced in [24,25,26,27]. Let us recall the following fractional derivative introduced by He.
Definition 3.3. For any L_{1} function ß on an interval [0, \Im] , the \Bbbk -th He's fractional derivative of ß(\Im) is defined by
\begin{equation*} \eth_{\Im}^{\Bbbk}ß(\Im) = \dfrac{1}{\Gamma(n-\Bbbk)}\dfrac{d^{n}}{d\Im^{n}}\int_{0}^{\Im}(\intercal-\Im)^{n-\Bbbk-1}ß(\intercal)d\intercal. \end{equation*} |
Now we introduce, fuzzy interval He's fractional derivative \ltimes based on left and right end point functions can be given as
\begin{align*} [\eth_{\ltimes}^{\Bbbk}ß(\ltimes)]^{\varsigma}& = \dfrac{1}{\Gamma(n-\Bbbk)}\dfrac{d^{n}}{d\ltimes^{n}}\int_{0}^{\ltimes}(\intercal-\ltimes)^{n-\Bbbk-1}ß_{\varsigma}(\intercal)d\intercal\notag\\ & = \dfrac{1}{\Gamma(n-\Bbbk)}\dfrac{d^{n}}{d\ltimes^{n}}\int_{0}^{\ltimes}(\intercal-\ltimes)^{n-\Bbbk-1}[ß_{*}(\intercal, \varsigma), ß^{*}(\intercal, \varsigma)]d\intercal, \; \; \; (\ltimes > \ltimes_{1}) \end{align*} |
where
\begin{equation} \eth_{\ltimes}^{\Bbbk}ß_{*}(\ltimes, \varsigma) = \dfrac{1}{\Gamma(n-\Bbbk)}\dfrac{d^{n}}{d\ltimes^{n}}\int_{0}^{\ltimes}(\intercal-\ltimes)^{n-\Bbbk-1}ß_{*}(\intercal, \varsigma)d\intercal, \; (\ltimes > \ltimes_{1}) \end{equation} | (3.2) |
and
\begin{equation*} \eth_{\ltimes}^{\Bbbk}ß^{*}(\ltimes, \varsigma) = \dfrac{1}{\Gamma(n-\Bbbk)}\dfrac{d^{n}}{d\ltimes^{n}}\int_{0}^{\ltimes}(\intercal-\ltimes)^{n-\Bbbk-1}ß^{*}(\intercal, \varsigma)d\intercal, \; (\ltimes > \ltimes_{1}) \end{equation*} |
where, \varsigma\in[0, 1].
Theorem 3.4. Let ß:[\ltimes_{1}, \ltimes_{2}]\rightarrow \prod_{0} be an exponential type convex fuzzy I-V-F on [\ltimes_{1}, \ltimes_{2}] , whose \varsigma- levels define the family of I-V-Fs ß_{\varsigma}:[\ltimes_{1}, \ltimes_{2}]\subset\Re\rightarrow \Pi_{c}^{+} are given by ß_{\varsigma}(\ltimes) = [ß_{*}(\ltimes, \varsigma), ß^{*}(\ltimes, \varsigma)] for all \ltimes\in[\ltimes_{1}, \ltimes_{2}] and \varsigma\in[0, 1]. If ß\in L_{1}([\ltimes_{1}, \ltimes_{2}], \prod_{0}) , then
\begin{align*} (-1)^{n-\Bbbk-1}ß\bigg(\dfrac{\ltimes_{2}}{2}\bigg) \leq\dfrac{(\varrho^{\frac{1}{2}}-1)\Im^{\Bbbk}}{\ltimes_{2}^{n-\Bbbk}}[(-1)^{n-\Bbbk-1}\eth_{(1-\Im )b}^{\Bbbk}ß((1-\Im )b)+\eth_{\Im b}^{\Bbbk}ß(\Im b)]. \end{align*} |
Proof. Let ß:[\ltimes_{1}, \ltimes_{2}]\rightarrow \prod_{0} be an exponential type convex fuzzy I-V-F on [\ltimes_{1}, \ltimes_{2}] , then
\begin{equation*} ß\bigg(\dfrac{\ltimes_{1}+\ltimes_{2}}{2}\bigg)\preceq(\varrho^{\frac{1}{2}}-1)[ß(\intercal\ltimes_{1}+(1-\intercal)\ltimes_{2})\oplusß((1-\intercal)\ltimes_{1}+\intercal\ltimes_{2})]. \end{equation*} |
For every \varsigma\in[0, 1] , we get
\begin{equation*} ß_{*}\bigg(\dfrac{\ltimes_{1}+\ltimes_{2}}{2}, \varsigma\bigg)\leq(\varrho^{\frac{1}{2}}-1)[ß_{*}(\intercal\ltimes_{1}+(1-\intercal)\ltimes_{2}, \varsigma)+ß_{*}((1-\intercal)\ltimes_{1}+\intercal\ltimes_{2}, \varsigma)]. \end{equation*} |
Taking \ltimes_{1} = 0 and 0\leq\ltimes_{2} and multiplying by \dfrac{(\intercal-\Im)^{n-\Bbbk-1}}{\Gamma(n-\Bbbk)} , we get
\begin{equation*} \dfrac{(\intercal-\Im)^{n-\Bbbk-1}}{\Gamma(n-\Bbbk)}ß_{*}\bigg(\dfrac{\ltimes_{2}}{2}, \varsigma\bigg)\leq(\varrho^{\frac{1}{2}}-1)\dfrac{(\intercal-\Im)^{n-\Bbbk-1}}{\Gamma(n-\Bbbk)}[ß_{*}((1-\intercal)\ltimes_{2}, \varsigma)+ß_{*}(\intercal\ltimes_{2}, \varsigma)]. \end{equation*} |
Integrating with respect to \intercal over [0, \Im] , we get
\begin{align*} & ß_{*}\bigg(\dfrac{\ltimes_{2}}{2}, \varsigma\bigg) \dfrac{1}{\Gamma(n-\Bbbk)}\int_{0}^{\Im}(\intercal-\Im)^{n-\Bbbk-1}d\intercal\\ &\leq\dfrac{(\varrho^{\frac{1}{2}}-1)}{\Gamma(n-\Bbbk)}\int_{0}^{\Im}(\intercal-\Im)^{n-\Bbbk-1}ß_{*}((1-\intercal)\ltimes_{2}, \varsigma)d\intercal\\ & +\dfrac{(\varrho^{\frac{1}{2}}-1)}{\Gamma(n-\Bbbk)}\int_{0}^{\Im}(\intercal-\Im)^{n-\Bbbk-1}ß_{*}(\intercal\ltimes_{2}, \varsigma)d\intercal, \end{align*} |
\begin{align*} & ß_{*}\bigg(\dfrac{\ltimes_{2}}{2}, \varsigma\bigg) \dfrac{(-1)^{n-\Bbbk-1}\Im^{^{n-\Bbbk}}}{\Gamma(n-\Bbbk)}\\ &\leq\dfrac{(\varrho^{\frac{1}{2}}-1)}{\Gamma(n-\Bbbk)}\int_{0}^{\Im}(\intercal-\Im)^{n-\Bbbk-1}ß_{*}((1-\intercal)\ltimes_{2}, \varsigma)d\intercal \\ & +\dfrac{(\varrho^{\frac{1}{2}}-1)}{\Gamma(n-\Bbbk)}\int_{0}^{\Im}(\intercal-\Im)^{n-\Bbbk-1}ß_{*}(\intercal\ltimes_{2}, \varsigma)d\intercal. \end{align*} |
Taking n-th derivative on both sides and using (3.2), we get
\begin{align*} (-1)^{n-\Bbbk-1}ß_{*}\bigg(\dfrac{\ltimes_{2}}{2}, \varsigma\bigg) \leq\dfrac{(\varrho^{\frac{1}{2}}-1)\Im^{\Bbbk}}{\ltimes_{2}^{n-\Bbbk}}[(-1)^{n-\Bbbk-1}\eth_{(1-\Im )b}^{\Bbbk}ß_{*}((1-\Im )b, \varsigma)+\eth_{\Im b}^{\Bbbk}ß_{*}(\Im b, \varsigma)]. \end{align*} |
Similarly,
\begin{align*} (-1)^{n-\Bbbk-1}ß^{*}\bigg(\dfrac{\ltimes_{2}}{2}, \varsigma\bigg) \leq\dfrac{(\varrho^{\frac{1}{2}}-1)\Im^{\Bbbk}}{\ltimes_{2}^{n-\Bbbk}}[(-1)^{n-\Bbbk-1}\eth_{(1-\Im )b}^{\Bbbk}ß^{*}((1-\Im )b, \varsigma)+\eth_{\Im b}^{\Bbbk}ß^{*}(\Im b, \varsigma)]. \end{align*} |
Thus, we can write
\begin{align*} &(-1)^{n-\Bbbk-1} \bigg[ß_{*}(\dfrac{\ltimes_{2}}{2}, \varsigma\bigg), ß^{*}\bigg(\dfrac{\ltimes_{2}}{2}, \varsigma\bigg)\bigg]\\ &\leq\dfrac{(\varrho^{\frac{1}{2}}-1)\Im^{\Bbbk}}{\ltimes_{2}^{n-\Bbbk}}\bigg[(-1)^{n-\Bbbk-1}\eth_{(1-\Im )b}^{\Bbbk}[ß_{*}((1-\Im )b, \varsigma), ß^{*}((1-\Im )b, \varsigma)] +\eth_{\Im b}^{\Bbbk}[ß_{*}(\Im b, \varsigma), ß^{*}(\Im b, \varsigma)]\bigg]. \end{align*} |
So,
\begin{align*} (-1)^{n-\Bbbk-1}ß\bigg(\dfrac{\ltimes_{2}}{2}\bigg) \leq\dfrac{(\varrho^{\frac{1}{2}}-1)\Im^{\Bbbk}}{\ltimes_{2}^{n-\Bbbk}}[(-1)^{n-\Bbbk-1}\eth_{(1-\Im )b}^{\Bbbk}ß((1-\Im )b)+\eth_{\Im b}^{\Bbbk}ß(\Im b)]. \end{align*} |
In this section, we will purpose fractional H-H-F inequality for exponential type convex fuzzy-I-V-F, to generalize the classical fractional H-H and H-H-F inequalities. First, we will purpose the following inequality linked with the right part of the classical H-H-F inequality for exponential type convex fuzzy-I-V-F through fuzzy order relation, which is said to be 2nd fuzzy fractional H-H-F inequality.
Theorem 4.1. Let ß:[\ltimes_{1}, \ltimes_{2}]\rightarrow \prod_{0} be an exponential type convex fuzzy I-V-F with \ltimes_{1} < \ltimes_{2} , whose \varsigma- levels define the family of I-V-Fs ß_{\varsigma}:[\ltimes_{1}, \ltimes_{2}]\subset\Re\rightarrow \Pi_{c}^{+} are given by ß_{\varsigma}(\ltimes) = [ß_{*}(\ltimes, \varsigma), ß^{*}(\ltimes, \varsigma)] for all \ltimes\in[\ltimes_{1}, \ltimes_{2}] and \varsigma\in[0, 1]. If ß\in L([\ltimes_{1}, \ltimes_{2}], \prod_{0}) and \bot:[\ltimes_{1}, \ltimes_{2}]\rightarrow \Re\;, \; 0\leq\bot(\ltimes) symmetric with respect to \dfrac{\ltimes_{1}+\ltimes_{2}}{2} , then
\begin{equation} [\Finv_{\ltimes_{1}^{+}}^{\rightthreetimes}ß\bot(\ltimes_{2})\oplus\Finv_{\ltimes_{2}^{-}}^{\rightthreetimes}ß\bot(\ltimes_{1})]\preceq\; M\; \dfrac{(\ltimes_{2}-\ltimes_{1})^{\rightthreetimes}}{\Gamma(\rightthreetimes)}[ß(\ltimes_{1})\oplusß(\ltimes_{2})], \end{equation} | (4.1) |
where
\begin{equation} M = \int_{0}^{1}\intercal^{\rightthreetimes-1}[\varrho^{\intercal}+\varrho^{1-\intercal}-2]\; \bot((1-\intercal)\ltimes_{1}+\intercal\ltimes_{2})d\intercal. \end{equation} | (4.2) |
Proof. Since, 0\leq\intercal^{\rightthreetimes-1}\bot(\intercal\ltimes_{1}+(1-\intercal)\ltimes_{2}) and ß is and exponential type convex fuzzy I-V-F, then for all \varsigma\in[0, 1], we have
\begin{align*} &\intercal^{\rightthreetimes-1}ß_{*} (\intercal\ltimes_{1}+(1-\intercal)\ltimes_{2}, \varsigma)\bot(\intercal\ltimes_{1}+(1-\intercal)\ltimes_{2})\\ &\leq\intercal^{\rightthreetimes-1}((\varrho^{\intercal}-1)ß(\ltimes_{1}, \varsigma)+(\varrho^{(1-\intercal)}-1)ß(\ltimes_{2}, \varsigma))\; \bot(\intercal\ltimes_{1}+(1-\intercal)\ltimes_{2}) \end{align*} |
and
\begin{align*} &\intercal^{\rightthreetimes-1}ß_{*}((1-\intercal)\ltimes_{1}+\intercal\ltimes_{2}, \varsigma)\bot((1-\intercal)\ltimes_{1}+\intercal\ltimes_{2})\\ & \leq\intercal^{\rightthreetimes-1}((\varrho^{(1-\intercal)}-1)ß_{*}(\ltimes_{1}, \varsigma)+(\varrho^{\intercal}-1)ß_{*}(\ltimes_{2}, \varsigma))\; \bot((1-\intercal)\ltimes_{1}+\intercal\ltimes_{2}). \end{align*} |
So
\begin{align*} &\int_{0}^{1}\intercal^{\rightthreetimes-1}ß_{*} (\intercal\ltimes_{1}+(1-\intercal)\ltimes_{2}, \varsigma)\bot(\intercal\ltimes_{1}+(1-\intercal)\ltimes_{2})d\intercal\\ &+\int_{0}^{1}\intercal^{\rightthreetimes-1}ß_{*}((1-\intercal)\ltimes_{1}+\intercal\ltimes_{2}, \varsigma)\bot((1-\intercal)\ltimes_{1}+\intercal\ltimes_{2})d\intercal\\ &\leq\int_{0}^{1}\big[\intercal^{\rightthreetimes-1}((\varrho^{\intercal}-1)ß_{*}(\ltimes_{1}, \varsigma)+(\varrho^{(1-\intercal)}-1)ß_{*}(\ltimes_{2}, \varsigma))\; \bot(\intercal\ltimes_{1}+(1-\intercal)\ltimes_{2})\\ &+\intercal^{\rightthreetimes-1}((\varrho^{(1-\intercal)}-1)ß_{*}(\ltimes_{1}, \varsigma)+(\varrho^{\intercal}-1)ß_{*}(\ltimes_{2}, \varsigma))\; \bot((1-\intercal)\ltimes_{1}+\intercal\ltimes_{2})\big]d\intercal\\ & = ß_{*}(\ltimes_{1}, \varsigma)\int_{0}^{1}\intercal^{\rightthreetimes-1}[\varrho^{\intercal}+\varrho^{1-\intercal}-2]\; \bot(\intercal\ltimes_{1}+(1-\intercal)\ltimes_{2})d\intercal\\ &+ß_{*}(\ltimes_{2}, \varsigma)\int_{0}^{1}\intercal^{\rightthreetimes-1}[\varrho^{\intercal}+\varrho^{1-\intercal}-2]\; \bot((1-\intercal)\ltimes_{1}+\intercal\ltimes_{2})d\intercal. \end{align*} |
Since \bot is symmetric, so
\begin{align*} & = [ß_{*}(\ltimes_{1}, \varsigma)+ß_{*}(\ltimes_{2}, \varsigma)]\int_{0}^{1}\intercal^{\rightthreetimes-1}[\varrho^{\intercal}+\varrho^{1-\intercal}-2]\; \bot((1-\intercal)\ltimes_{1}+\intercal\ltimes_{2})d\intercal\\ & = M\; [ß_{*}(\ltimes_{1}, \varsigma)+ß_{*}(\ltimes_{2}, \varsigma)]. \end{align*} |
Now, taking \ltimes = ((1-\intercal)\ltimes_{1}+\intercal\ltimes_{2}, \varsigma) , we have
![]() |
So,
![]() |
Similarly,
![]() |
Combining both left and right end point functions,
\begin{align*} \dfrac{\Gamma(\rightthreetimes)}{(\ltimes_{2}-\ltimes_{1})^{\rightthreetimes}}&[\Finv_{\ltimes_{1}^{+}}^{\rightthreetimes}ß_{*}\bot(\ltimes_{2})+\Finv_{\ltimes_{2}^{-}}^{\rightthreetimes}ß_{*}\bot(\ltimes_{1}), \Finv_{\ltimes_{1}^{+}}^{\rightthreetimes}ß^{*}\bot(\ltimes_{2})+\Finv_{\ltimes_{2}^{-}}^{\rightthreetimes}ß^{*}\bot(\ltimes_{1})]\\ & \leq_{I}\; M\; [ß_{*}(\ltimes_{1}, \varsigma)+ß_{*}(\ltimes_{2}, \varsigma), ß^{*}(\ltimes_{1}, \varsigma)+ß^{*}(\ltimes_{2}, \varsigma)]. \end{align*} |
Thus, we get
\begin{equation*} [\Finv_{\ltimes_{1}^{+}}^{\rightthreetimes}ß\bot(\ltimes_{2})\oplus\Finv_{\ltimes_{2}^{-}}^{\rightthreetimes}ß\bot(\ltimes_{1})]\preceq\; M\; \dfrac{(\ltimes_{2}-\ltimes_{1})^{\rightthreetimes}}{\Gamma(\rightthreetimes)}[ß(\ltimes_{1})\oplusß(\ltimes_{2})]. \end{equation*} |
Now, we will purpose the following inequality linked with the left part of classical H-HF inequality for exponential type convex fuzzy-I-V-F through fuzzy order relation, which is said to be 1st fuzzy fractional H-HF inequality.
Theorem 4.2. Let ß:[\ltimes_{1}, \ltimes_{2}]\rightarrow \prod_{0} be an exponential type convex fuzzy I-V-F with \ltimes_{1} < \ltimes_{2} , whose \varsigma- levels define the family of I-V-Fs ß_{\varsigma}:[\ltimes_{1}, \ltimes_{2}]\subset\Re\rightarrow \Pi_{c}^{+} are given by ß_{\varsigma}(\ltimes) = [ß_{*}(\ltimes, \varsigma), ß^{*}(\ltimes, \varsigma)] for all \ltimes\in[\ltimes_{1}, \ltimes_{2}] and \varsigma\in[0, 1]. If ß\in L([\ltimes_{1}, \ltimes_{2}], \prod_{0}) and \bot:[\ltimes_{1}, \ltimes_{2}]\rightarrow \Re\;, \; 0\leq\bot(\ltimes) symmetric with respect to \dfrac{\ltimes_{1}+\ltimes_{2}}{2} , then
\begin{align} \frac{1}{(\varrho^{\frac{1}{2}}-1)}ß\bigg(\dfrac{\ltimes_{1}+\ltimes_{2}}{2}, \varsigma\bigg)[\Finv_{\ltimes_{1}^{+}}^{\rightthreetimes}\bot(\ltimes_{2})+\Finv_{\ltimes_{2}^{-}}^{\rightthreetimes}\bot(\ltimes_{1})] \preceq[\Finv_{\ltimes_{1}^{+}}^{\rightthreetimes}ß\bot(\ltimes_{2})\oplus\Finv_{\ltimes_{2}^{-}}^{\rightthreetimes}ß\bot(\ltimes_{1})]. \end{align} | (4.3) |
Proof. Since, ß:[\ltimes_{1}, \ltimes_{2}]\rightarrow \prod_{0} is an exponential type convex fuzzy I-V-F on [\ltimes_{1}, \ltimes_{2}] , then
\begin{equation*} \dfrac{1}{(\varrho^{\frac{1}{2}}-1)}ß\bigg(\dfrac{\ltimes_{1}+\ltimes_{2}}{2}\bigg)\preceq[ß(\intercal\ltimes_{1}+(1-\intercal)\ltimes_{2})\oplusß((1-\intercal)\ltimes_{1}+\intercal\ltimes_{2})]. \end{equation*} |
For every \varsigma\in[0, 1] , we get
\begin{equation*} \dfrac{1}{(\varrho^{\frac{1}{2}}-1)}ß_{*}\bigg(\dfrac{\ltimes_{1}+\ltimes_{2}}{2}, \varsigma\bigg)\leq[ß_{*}(\intercal\ltimes_{1}+(1-\intercal)\ltimes_{2}, \varsigma)+ß_{*}((1-\intercal)\ltimes_{1}+\intercal\ltimes_{2}, \varsigma)]. \end{equation*} |
Since, \bot((1-\intercal)\ltimes_{1}+\intercal\ltimes_{2}) = \bot(\intercal\ltimes_{1}+(1-\intercal)\ltimes_{2}) , so multiplying by \intercal^{\rightthreetimes-1}\bot((1-\intercal)\ltimes_{1}+\intercal\ltimes_{2}) and then integrating, we get
\begin{align*} & \dfrac{1}{(\varrho^{\frac{1}{2}}-1)}ß_{*}\bigg(\dfrac{\ltimes_{1}+\ltimes_{2}}{2}, \varsigma\bigg)\int_{0}^{1}\intercal^{\rightthreetimes-1}\bot((1-\intercal)\ltimes_{1}+\intercal\ltimes_{2})d\intercal\\ &\leq\int_{0}^{1}\intercal^{\rightthreetimes-1}ß_{*}(\intercal\ltimes_{1}+(1-\intercal)\ltimes_{2}, \varsigma)\bot((1-\intercal)\ltimes_{1}+\intercal\ltimes_{2})d\intercal\\ &+\int_{0}^{1}\intercal^{\rightthreetimes-1}ß_{*}((1-\intercal)\ltimes_{1}+\intercal\ltimes_{2}, \varsigma)\bot((1-\intercal)\ltimes_{1}+\intercal\ltimes_{2})d\intercal. \end{align*} |
Taking \ltimes = ((1-\intercal)\ltimes_{1}+\intercal\ltimes_{2} , we get
\begin{align*} & \dfrac{1}{(\varrho^{\frac{1}{2}}-1)}ß_{*}\bigg(\dfrac{\ltimes_{1}+\ltimes_{2}}{2}, \varsigma\bigg)\int_{0}^{1}\intercal^{\rightthreetimes-1}\bot((1-\intercal)\ltimes_{1}+\intercal\ltimes_{2})d\intercal\\ & \leq\int_{\ltimes_{1}}^{\ltimes_{2}}\bigg(\dfrac{\ltimes-\ltimes_{1}}{\ltimes_{2}-\ltimes_{1}}\bigg)^{\rightthreetimes-1}ß_{*}(\ltimes_{1}+\ltimes_{2}-\ltimes, \varsigma)\bot(\ltimes)\dfrac{d\ltimes}{\ltimes_{2}-\ltimes_{1}}\\ &+\int_{\ltimes_{1}}^{\ltimes_{2}}\bigg(\dfrac{\ltimes-\ltimes_{1}}{\ltimes_{2}-\ltimes_{1}}\bigg)^{\rightthreetimes-1}ß_{*}(\ltimes, \varsigma)\bot(\ltimes)\dfrac{d\ltimes}{\ltimes_{2}-\ltimes_{1}}\\ &\leq\int_{\ltimes_{1}}^{\ltimes_{2}}\bigg(\dfrac{\ltimes_{2}-\ltimes}{\ltimes_{2}-\ltimes_{1}}\bigg)^{\rightthreetimes-1}ß_{*}(\ltimes)\bot(\ltimes_{1}+\ltimes_{2}-\ltimes, \varsigma)\dfrac{d\ltimes}{\ltimes_{2}-\ltimes_{1}}\\ &+\int_{\ltimes_{1}}^{\ltimes_{2}}\bigg(\dfrac{\ltimes-\ltimes_{1}}{\ltimes_{2}-\ltimes_{1}}\bigg)^{\rightthreetimes-1}ß_{*}(\ltimes, \varsigma)\bot(\ltimes)\dfrac{d\ltimes}{\ltimes_{2}-\ltimes_{1}}\\ & \leq\dfrac{\Gamma(\rightthreetimes)}{(\ltimes_{2}-\ltimes_{1})^{\rightthreetimes}}[\Finv_{\ltimes_{1}^{+}}^{\rightthreetimes}ß_{*}\bot(\ltimes_{2})+\Finv_{\ltimes_{2}^{-}}^{\rightthreetimes}ß_{*}\bot(\ltimes_{1})]. \end{align*} |
Similarly,
\begin{equation*} \int_{0}^{1}\intercal^{\rightthreetimes-1}\bot((1-\intercal)\ltimes_{1}+\intercal\ltimes_{2})d\intercal = \dfrac{\Gamma(\rightthreetimes)}{(\ltimes_{2}-\ltimes_{1})^{\rightthreetimes}}[\Finv_{\ltimes_{1}^{+}}^{\rightthreetimes}\bot(\ltimes_{2})+\Finv_{\ltimes_{2}^{-}}^{\rightthreetimes}\bot(\ltimes_{1})]. \end{equation*} |
So,
\begin{align*} \dfrac{\Gamma(\rightthreetimes)}{(\varrho^{\frac{1}{2}}-1)(\ltimes_{2}-\ltimes_{1})^{\rightthreetimes}}ß_{*}\bigg(\dfrac{\ltimes_{1}+\ltimes_{2}}{2}, \varsigma\bigg)[\Finv_{\ltimes_{1}^{+}}^{\rightthreetimes}\bot(\ltimes_{2})+\Finv_{\ltimes_{2}^{-}}^{\rightthreetimes}\bot(\ltimes_{1})] \leq\dfrac{\Gamma(\rightthreetimes)}{(\ltimes_{2}-\ltimes_{1})^{\rightthreetimes}}[\Finv_{\ltimes_{1}^{+}}^{\rightthreetimes}ß_{*}\bot(\ltimes_{2})+\Finv_{\ltimes_{2}^{-}}^{\rightthreetimes}ß_{*}\bot(\ltimes_{1})]. \end{align*} |
Similarly,
\begin{align*} \dfrac{\Gamma(\rightthreetimes)}{(\varrho^{\frac{1}{2}}-1)(\ltimes_{2}-\ltimes_{1})^{\rightthreetimes}}ß^{*}\bigg(\dfrac{\ltimes_{1}+\ltimes_{2}}{2}, \varsigma\bigg)[\Finv_{\ltimes_{1}^{+}}^{\rightthreetimes}\bot(\ltimes_{2})+\Finv_{\ltimes_{2}^{-}}^{\rightthreetimes}\bot(\ltimes_{1})] \leq\dfrac{\Gamma(\rightthreetimes)}{(\ltimes_{2}-\ltimes_{1})^{\rightthreetimes}}[\Finv_{\ltimes_{1}^{+}}^{\rightthreetimes}ß^{*}\bot(\ltimes_{2})+\Finv_{\ltimes_{2}^{-}}^{\rightthreetimes}ß^{*}\bot(\ltimes_{1})]. \end{align*} |
Combining both left and right end point functions, we get
\begin{align*} &\frac{\Gamma(\rightthreetimes)}{(\varrho^{\frac{1}{2}}-1)(\ltimes_{2}-\ltimes_{1})^{\rightthreetimes}}\bigg[ß_{*}\bigg(\dfrac{\ltimes_{1}+\ltimes_{2}}{2}, \varsigma\bigg), ß^{*}\bigg(\dfrac{\ltimes_{1}+\ltimes_{2}}{2}, \varsigma\bigg)\bigg] \times[\Finv_{\ltimes_{1}^{+}}^{\rightthreetimes}\bot(\ltimes_{2})+\Finv_{\ltimes_{2}^{-}}^{\rightthreetimes}\bot(\ltimes_{1})]\\ & \leq{I}\frac{\Gamma(\rightthreetimes)}{(\ltimes_{2}-\ltimes_{1})^{\rightthreetimes}}\bigg[[\Finv_{\ltimes_{1}^{+}}^{\rightthreetimes}ß_{*}\bot(\ltimes_{2})+\Finv_{\ltimes_{2}^{-}}^{\rightthreetimes}ß_{*}\bot(\ltimes_{1})], [\Finv_{\ltimes_{1}^{+}}^{\rightthreetimes}ß^{*}\bot(\ltimes_{2})+\Finv_{\ltimes_{2}^{-}}^{\rightthreetimes}ß^{*}\bot(\ltimes_{1})]\bigg]. \end{align*} |
Thus, we get
\begin{align*} \frac{1}{(\varrho^{\frac{1}{2}}-1)}ß\bigg(\dfrac{\ltimes_{1}+\ltimes_{2}}{2}, \varsigma\bigg)[\Finv_{\ltimes_{1}^{+}}^{\rightthreetimes}\bot(\ltimes_{2})+\Finv_{\ltimes_{2}^{-}}^{\rightthreetimes}\bot(\ltimes_{1})] \preceq[\Finv_{\ltimes_{1}^{+}}^{\rightthreetimes}ß\bot(\ltimes_{2})\oplus\Finv_{\ltimes_{2}^{-}}^{\rightthreetimes}ß\bot(\ltimes_{1})]. \end{align*} |
Corollary 4.3. Combining (4.1) and (4.3), we get
\begin{align*} & \frac{1}{(\varrho^{\frac{1}{2}}-1)}ß\bigg(\dfrac{\ltimes_{1}+\ltimes_{2}}{2}, \varsigma\bigg)[\Finv_{\ltimes_{1}^{+}}^{\rightthreetimes}\bot(\ltimes_{2})+\Finv_{\ltimes_{2}^{-}}^{\rightthreetimes}\bot(\ltimes_{1})]\\ &\preceq[\Finv_{\ltimes_{1}^{+}}^{\rightthreetimes}ß\bot(\ltimes_{2})\oplus\Finv_{\ltimes_{2}^{-}}^{\rightthreetimes}ß\bot(\ltimes_{1})]\\&\preceq\; M\; \dfrac{(\ltimes_{2}-\ltimes_{1})^{\rightthreetimes}}{\Gamma(\rightthreetimes)}[ß(\ltimes_{1})\oplusß(\ltimes_{2})]. \end{align*} |
Theorem 4.4. Let ß_{1}, ß_{2}:[\ltimes_{1}, \ltimes_{2}]\rightarrow \prod_{0} be exponential type convex fuzzy I-V-Fs with \ltimes_{1} < \ltimes_{2} , whose \varsigma- levels define the family of I-V-Fs ß_{1\varsigma}, ß_{2\varsigma}:[\ltimes_{1}, \ltimes_{2}]\subset\Re\rightarrow \Pi_{c}^{+} are given by ß_{1\varsigma}(\ltimes) = [ß_{1*}(\ltimes, \varsigma), ß_{1}^{*}(\ltimes, \varsigma)] and ß_{2\varsigma}(\ltimes) = [ß_{2*}(\ltimes, \varsigma), ß_{1}^{*}(\ltimes, \varsigma)] for all \ltimes\in[\ltimes_{1}, \ltimes_{2}] and \varsigma\in[0, 1]. If ß_{1}, ß_{2}, ß_{1}\otimesß_{2}\in L([\ltimes_{1}, \ltimes_{2}], \prod_{0}) , then
\begin{align} \dfrac{\Gamma(\rightthreetimes)}{(\ltimes_{2}-\ltimes_{1})^{\rightthreetimes}}[\Finv_{\ltimes_{1}^{+}}^{\rightthreetimes}ß_{1}(\ltimes_{2})\otimesß_{2}(\ltimes_{2})\oplus\Finv_{\ltimes_{2}^{-}}^{\rightthreetimes}ß_{1}(\ltimes_{1})\otimesß_{2}(\ltimes_{1})] \preceq K_{1}\triangle_{1}((\ltimes_{1}, \ltimes_{2})) \\ +2K_{2}\triangle_{2}((\ltimes_{1}, \ltimes_{2})) \end{align} | (4.4) |
where
\begin{align} K_{1}& = \bigg[\dfrac{2^\rightthreetimes-\mathrm{e}\rightthreetimes\left(\mathrm{e}\operatorname{\Gamma}\left(\rightthreetimes, 2\right)-2^{\rightthreetimes+1}\operatorname{\Gamma}\left(\rightthreetimes, 1\right)+2^{\rightthreetimes+1}\operatorname{\Gamma}\left(\rightthreetimes\right)-\mathrm{e}\operatorname{\Gamma}\left(\rightthreetimes\right)+2^{\rightthreetimes+1}\right)}{\rightthreetimes{\cdot}2^\rightthreetimes} +\dfrac{\mathrm{e}^2+5}{2}\bigg], \end{align} | (4.5) |
\begin{align} K_{2}& = \mathrm{e}\operatorname{\Gamma}\left(\rightthreetimes, 1\right)+\dfrac{\operatorname{\Gamma}\left(\rightthreetimes, -1\right)}{\left(-1\right)^\rightthreetimes}-\dfrac{\operatorname{\Gamma}\left(\rightthreetimes\right)}{\left(-1\right)^\rightthreetimes}-\mathrm{e}\operatorname{\Gamma}\left(\rightthreetimes\right)+\dfrac{\mathrm{e}}{\rightthreetimes}+\dfrac{1}{\rightthreetimes}, \end{align} | (4.6) |
\begin{align} \triangle_{1}(\ltimes_{1}, \ltimes_{2})& = [\triangle_{1*}((\ltimes_{1}, \ltimes_{2}), \varsigma), \triangle_{1}^{*}((\ltimes_{1}, \ltimes_{2}), \varsigma)] \end{align} | (4.7) |
\begin{align} & = [(ß_{1*}(\ltimes_{1}, \varsigma)\timesß_{2*}(\ltimes_{1}, \varsigma)+ß_{1*}(\ltimes_{2}, \varsigma)\timesß_{2*}(\ltimes_{2}, \varsigma)), \end{align} | (4.8) |
\begin{align} (ß_{1}^{*}(\ltimes_{1}, \varsigma)\timesß_{2}^{*}(\ltimes_{1}, \varsigma)+ß_{1}^{*}(\ltimes_{2}, \varsigma)\timesß_{2}^{*}(\ltimes_{2}, \varsigma))], \end{align} | (4.9) |
\begin{align} \triangle_{2}(\ltimes_{1}, \ltimes_{2})& = [\triangle_{2*}((\ltimes_{1}, \ltimes_{2}), \varsigma), \triangle_{2}^{*}((\ltimes_{1}, \ltimes_{2}), \varsigma)] \end{align} | (4.10) |
\begin{align} & = [(ß_{1}^{*}(\ltimes_{1}, \varsigma)\timesß_{2}^{*}(\ltimes_{2}, \varsigma)+ß_{1}^{*}(\ltimes_{2}, \varsigma)\timesß_{2}^{*}(\ltimes_{1}, \varsigma)), \end{align} | (4.11) |
\begin{align} (ß_{1}^{*}(\ltimes_{1}, \varsigma)\timesß_{2}^{*}(\ltimes_{2}, \varsigma)+ß_{1}^{*}(\ltimes_{2}, \varsigma)\timesß_{2}^{*}(\ltimes_{1}, \varsigma))]. \end{align} | (4.12) |
Proof. Since both ß_{1}, ß_{2} are exponential type convex fuzzy I-V-Fs, then for all \varsigma\in[0, 1] , we have
\begin{equation*} ß_{1*}(\intercal\ltimes_{1}+(1-\intercal)\ltimes_{2}, \varsigma) \leq((\varrho^{\intercal}-1)ß_{1*}(\ltimes_{1}, \varsigma)+(\varrho^{(1-\intercal)}-1)ß_{1*}(\ltimes_{2}, \varsigma)), \end{equation*} |
and
\begin{equation*} ß_{2*}(\intercal\ltimes_{1}+(1-\intercal)\ltimes_{2}, \varsigma) \leq((\varrho^{\intercal}-1)ß_{2*}(\ltimes_{1}, \varsigma)+(\varrho^{(1-\intercal)}-1)ß_{2*}(\ltimes_{2}, \varsigma)). \end{equation*} |
Since 0\preceqß_{1}(\ltimes), ß_{2}(\ltimes) , we get
\begin{align*} & ß_{1*} (\intercal\ltimes_{1}+(1-\intercal)\ltimes_{2}, \varsigma)\timesß_{2*}(\intercal\ltimes_{1}+(1-\intercal)\ltimes_{2}, \varsigma)\\ &\leq((\varrho^{\intercal}-1)ß_{1*}(\ltimes_{1}, \varsigma)+(\varrho^{(1-\intercal)}-1)ß_{1*}(\ltimes_{2}, \varsigma))\\ &\times((\varrho^{\intercal}-1)ß_{2*}(\ltimes_{1}, \varsigma)+(\varrho^{(1-\intercal)}-1)ß_{2*}(\ltimes_{2}, \varsigma))\\ &\leq(\varrho^{\intercal}-1)^{2}ß_{1*}(\ltimes_{1}, \varsigma)\timesß_{2*}(\ltimes_{1}, \varsigma)+(\varrho^{1-\intercal}-1)^{2}ß_{1*}(\ltimes_{2}, \varsigma)\timesß_{2*}(\ltimes_{2}, \varsigma)\\ &+(\varrho^{\intercal}-1)(\varrho^{1-\intercal}-1)ß_{1*}(\ltimes_{1}, \varsigma)\timesß_{2*}(\ltimes_{2}, \varsigma)\\ &+(\varrho^{\intercal}-1)(\varrho^{1-\intercal}-1)ß_{1*}(\ltimes_{2}, \varsigma)\timesß_{2*}(\ltimes_{1}, \varsigma). \end{align*} |
Similarly,
\begin{align*} & ß_{1*}((1-\intercal)\ltimes_{1}+\intercal\ltimes_{2}, \varsigma)\timesß_{2*}((1-\intercal)\ltimes_{1}+\intercal\ltimes_{2}, \varsigma)\\ & \leq(\varrho^{1-\intercal}-1)^{2}ß_{1*}(\ltimes_{1}, \varsigma)\timesß_{2*}(\ltimes_{1}, \varsigma)+(\varrho^{\intercal}-1)^{2}ß_{1*}(\ltimes_{2}, \varsigma)\timesß_{2*}(\ltimes_{2}, \varsigma)\\ & +(\varrho^{1-\intercal}-1)(\varrho^{\intercal}-1)ß_{1*}(\ltimes_{1}, \varsigma)\timesß_{2*}(\ltimes_{2}, \varsigma)\\ &+(\varrho^{1-\intercal}-1)(\varrho^{\intercal}-1)ß_{1*}(\ltimes_{2}, \varsigma)\timesß_{2*}(\ltimes_{1}, \varsigma). \end{align*} |
By adding, we get
\begin{align*} & ß_{1*}(\intercal\ltimes_{1}+(1-\intercal)\ltimes_{2}, \varsigma)\timesß_{2*}(\intercal\ltimes_{1}+(1-\intercal)\ltimes_{2}, \varsigma)\\ &+ß_{1*}((1-\intercal)\ltimes_{1}+\intercal\ltimes_{2}, \varsigma)\timesß_{2*}((1-\intercal)\ltimes_{1}+\intercal\ltimes_{2}, \varsigma)\\ & \leq[(\varrho^{1-\intercal}-1)^{2}+(\varrho^{\intercal}-1)^{2}](ß_{1*}(\ltimes_{1}, \varsigma)\timesß_{2*}(\ltimes_{1}, \varsigma)+ß_{1*}(\ltimes_{2}, \varsigma)\timesß_{2*}(\ltimes_{2}, \varsigma))\\ & +2(\varrho^{1-\intercal}-1)(\varrho^{\intercal}-1)(ß_{1*}(\ltimes_{1}, \varsigma)\timesß_{2*}(\ltimes_{2}, \varsigma)+ß_{1*}(\ltimes_{2}, \varsigma)\timesß_{2*}(\ltimes_{1}, \varsigma)). \end{align*} |
Multiplying by \intercal^{\rightthreetimes-1} , integrating and using (4.7) and (4.10) give
\begin{align*} & \int_{0}^{1}\intercal^{\rightthreetimes-1}ß_{1*}(\intercal\ltimes_{1}+(1-\intercal)\ltimes_{2}, \varsigma)\timesß_{2*}(\intercal\ltimes_{1}+(1-\intercal)\ltimes_{2}, \varsigma)d\intercal\\ & +\int_{0}^{1}\intercal^{\rightthreetimes-1}ß_{1*}((1-\intercal)\ltimes_{1}+\intercal\ltimes_{2}, \varsigma)\timesß_{2*}((1-\intercal)\ltimes_{1}+\intercal\ltimes_{2}, \varsigma)d\intercal\\ & \leq\triangle_{1*}((\ltimes_{1}, \ltimes_{2}), \varsigma)\int_{0}^{1}\intercal^{\rightthreetimes-1}[(\varrho^{1-\intercal}-1)^{2}+(\varrho^{\intercal}-1)^{2}]d\intercal\\ &+2\triangle_{2*}((\ltimes_{1}, \ltimes_{2}), \varsigma)\int_{0}^{1}\intercal^{\rightthreetimes-1}(\varrho^{1-\intercal}-1)(\varrho^{\intercal}-1)d\intercal. \end{align*} |
From (4.5) and (4.6), we have
\begin{align*} & \dfrac{\Gamma(\rightthreetimes)}{(\ltimes_{2}-\ltimes_{1})^{\rightthreetimes}}[\Finv_{\ltimes_{1}^{+}}^{\rightthreetimes}ß_{1*}(\ltimes_{2}, \varsigma)\timesß_{2*}(\ltimes_{2}, \varsigma)+\Finv_{\ltimes_{2}^{-}}^{\rightthreetimes}ß_{1*}(\ltimes_{1}, \varsigma)\timesß_{2*}(\ltimes_{1}, \varsigma)]\\ & \leq K_{1}\triangle_{1*}((\ltimes_{1}, \ltimes_{2}), \varsigma) +2K_{2}\triangle_{2*}((\ltimes_{1}, \ltimes_{2}), \varsigma). \end{align*} |
Similarly,
\begin{align*} & \dfrac{\Gamma(\rightthreetimes)}{(\ltimes_{2}-\ltimes_{1})^{\rightthreetimes}}[\Finv_{\ltimes_{1}^{+}}^{\rightthreetimes}ß_{1}^{*}(\ltimes_{2}, \varsigma)\timesß_{2}^{*}(\ltimes_{2}, \varsigma)+\Finv_{\ltimes_{2}^{-}}^{\rightthreetimes}ß_{1}^{*}(\ltimes_{1}, \varsigma)\timesß_{2}^{*}(\ltimes_{1}, \varsigma)]\\ & \leq K_{1}\triangle_{1}^{*}((\ltimes_{1}, \ltimes_{2}), \varsigma) +2K_{2}\triangle_{2}^{*}((\ltimes_{1}, \ltimes_{2}), \varsigma). \end{align*} |
Combining both left and right end point functions, we attain
\begin{align*} & \dfrac{\Gamma(\rightthreetimes)}{(\ltimes_{2}-\ltimes_{1})^{\rightthreetimes}}[\Finv_{\ltimes_{1}^{+}}^{\rightthreetimes}ß_{1*}(\ltimes_{2}, \varsigma)\timesß_{2*}(\ltimes_{2}, \varsigma)+\Finv_{\ltimes_{2}^{-}}^{\rightthreetimes}ß_{1*}(\ltimes_{1}, \varsigma)\timesß_{2*}(\ltimes_{1}, \varsigma), \\ &\Finv_{\ltimes_{1}^{+}}^{\rightthreetimes}ß_{1}^{*}(\ltimes_{2}, \varsigma)\timesß_{2}^{*}(\ltimes_{2}, \varsigma)+\Finv_{\ltimes_{2}^{-}}^{\rightthreetimes}ß_{1}^{*}(\ltimes_{1}, \varsigma)\timesß_{2}^{*}(\ltimes_{1}, \varsigma)]\\ & \leq{I} K_{1}[\triangle_{1*}((\ltimes_{1}, \ltimes_{2}), \varsigma), \triangle_{1}^{*}((\ltimes_{1}, \ltimes_{2}), \varsigma)] +2K_{2}[\triangle_{2*}((\ltimes_{1}, \ltimes_{2}), \varsigma), \triangle_{2}^{*}((\ltimes_{1}, \ltimes_{2}), \varsigma)]. \end{align*} |
Thus
\begin{align*} \dfrac{\Gamma(\rightthreetimes)}{(\ltimes_{2}-\ltimes_{1})^{\rightthreetimes}}[\Finv_{\ltimes_{1}^{+}}^{\rightthreetimes}ß_{1}(\ltimes_{2})\otimesß_{2}(\ltimes_{2})\oplus\Finv_{\ltimes_{2}^{-}}^{\rightthreetimes}ß_{1}(\ltimes_{1})\otimesß_{2}(\ltimes_{1})] \preceq K_{1}\triangle_{1}((\ltimes_{1}, \ltimes_{2})) +2K_{2}\triangle_{2}((\ltimes_{1}, \ltimes_{2})). \end{align*} |
Theorem 4.5. Let ß_{1}, ß_{2}:[\ltimes_{1}, \ltimes_{2}]\rightarrow \prod_{0} be exponential type convex fuzzy I-V-Fs with \ltimes_{1} < \ltimes_{2} , whose \varsigma- levels define the family of I-V-Fs ß_{1\varsigma}, ß_{2\varsigma}:[\ltimes_{1}, \ltimes_{2}]\subset\Re\rightarrow \Pi_{c}^{+} are given by ß_{1\varsigma}(\ltimes) = [ß_{1*}(\ltimes, \varsigma), ß_{1}^{*}(\ltimes, \varsigma)] and ß_{2\varsigma}(\ltimes) = [ß_{2*}(\ltimes, \varsigma), ß_{1}^{*}(\ltimes, \varsigma)] for all \ltimes\in[\ltimes_{1}, \ltimes_{2}] and \varsigma\in[0, 1]. If ß_{1}, ß_{2}, ß_{1}\otimesß_{2}\in L([\ltimes_{1}, \ltimes_{2}], \prod_{0}) , then
\begin{align} & \frac{1}{\rightthreetimes}ß_{1}\bigg(\dfrac{\ltimes_{1}+\ltimes_{2}}{2}\bigg)\otimesß_{2}\bigg(\dfrac{\ltimes_{1}+\ltimes_{2}}{2}\bigg) \\ &\preceq\dfrac{\Gamma(\rightthreetimes+1)(\varrho^{\frac{1}{2}}-1)^{2}}{(\ltimes_{2}-\ltimes_{1})^{\rightthreetimes}}[\Finv_{\ltimes_{1}^{+}}^{\rightthreetimes}ß_{1}(\ltimes_{2})\otimesß_{2}(\ltimes_{2})\oplus\Finv_{\ltimes_{2}^{-}}^{\rightthreetimes}ß_{1}(\ltimes_{1})\otimesß_{2}(\ltimes_{1})]\\ & +(\varrho^{\frac{1}{2}}-1)^{2}\bigg[K_{1}\triangle_{1}((\ltimes_{1}, \ltimes_{2})) +2K_{2}\triangle_{2}((\ltimes_{1}, \ltimes_{2}))\bigg]. \end{align} | (4.13) |
Proof. Since both ß_{1}, ß_{2} are exponential type convex fuzzy I-V-Fs, then for all \varsigma\in[0, 1] , we have
\begin{equation*} ß_{1*}\bigg(\dfrac{\ltimes_{1}+\ltimes_{2}}{2}, \varsigma\bigg) \leq(\varrho^{\frac{1}{2}}-1)[ß_{1*}(\intercal\ltimes_{1}+(1-\intercal)\ltimes_{2}, \varsigma)+ß_{1*}((1-\intercal)\ltimes_{1}+\intercal\ltimes_{2}, \varsigma)], \end{equation*} |
and
\begin{equation*} ß_{2*}\bigg(\dfrac{\ltimes_{1}+\ltimes_{2}}{2}, \varsigma\bigg) \leq(\varrho^{\frac{1}{2}}-1)[ß_{2*}(\intercal\ltimes_{1}+(1-\intercal)\ltimes_{2}, \varsigma)+ß_{2*}((1-\intercal)\ltimes_{1}+\intercal\ltimes_{2}, \varsigma)]. \end{equation*} |
So
\begin{align*} & ß_{1*}\bigg(\dfrac{\ltimes_{1}+\ltimes_{2}}{2}, \varsigma\bigg)\timesß_{2*}\bigg(\dfrac{\ltimes_{1}+\ltimes_{2}}{2}, \varsigma\bigg)\\ &\leq(\varrho^{\frac{1}{2}}-1)^{2}\bigg[ß_{1*}(\intercal\ltimes_{1}+(1-\intercal)\ltimes_{2}, \varsigma)\timesß_{2*}(\intercal\ltimes_{1}+(1-\intercal)\ltimes_{2}, \varsigma)\\ & +ß_{1*}(\intercal\ltimes_{1}+(1-\intercal)\ltimes_{2}, \varsigma)\timesß_{2*}((1-\intercal)\ltimes_{1}+\intercal\ltimes_{2}, \varsigma)\bigg]\\ & +(\varrho^{\frac{1}{2}}-1)^{2}\bigg[ß_{1*}((1-\intercal)\ltimes_{1}+\intercal\ltimes_{2}, \varsigma)\timesß_{2*}(\intercal\ltimes_{1}+(1-\intercal)\ltimes_{2}, \varsigma)\\ & +ß_{1*}((1-\intercal)\ltimes_{1}+\intercal\ltimes_{2}, \varsigma)\timesß_{2*}((1-\intercal)\ltimes_{1}+\intercal\ltimes_{2}, \varsigma)\bigg]\\ & \leq(\varrho^{\frac{1}{2}}-1)^{2}\bigg[ß_{1*}(\intercal\ltimes_{1}+(1-\intercal)\ltimes_{2}, \varsigma)\timesß_{2*}(\intercal\ltimes_{1}+(1-\intercal)\ltimes_{2}, \varsigma)\\ & +ß_{1*}((1-\intercal)\ltimes_{1}+\intercal\ltimes_{2}, \varsigma)\timesß_{2*}((1-\intercal)\ltimes_{1}+\intercal\ltimes_{2}, \varsigma)\bigg]\\ & +(\varrho^{\frac{1}{2}}-1)^{2}\bigg[\bigg((\varrho^{\intercal}-1)ß_{1*}(\ltimes_{1}, \varsigma)+(\varrho^{1-\intercal}-1)ß_{1*}(\ltimes_{2}, \varsigma)\bigg)\\ &\times\bigg((\varrho^{1-\intercal}-1)ß_{2*}(\ltimes_{1}, \varsigma)+(\varrho^{\intercal}-1)ß_{2*}(\ltimes_{2}, \varsigma)\bigg)\\ & +\bigg((\varrho^{1-\intercal}-1)ß_{1*}(\ltimes_{1}, \varsigma)+(\varrho^{\intercal}-1)ß_{1*}(\ltimes_{2}, \varsigma)\bigg)\\ & \times\bigg((\varrho^{\intercal}-1)ß_{2*}(\ltimes_{1}, \varsigma)+(\varrho^{1-\intercal}-1)ß_{2*}(\ltimes_{2}, \varsigma)\bigg)\bigg]. \end{align*} |
From (4.7) and (4.10), we have
\begin{align*} & \leq(\varrho^{\frac{1}{2}}-1)^{2}\bigg[ß_{1*}(\intercal\ltimes_{1}+(1-\intercal)\ltimes_{2}, \varsigma)\timesß_{2*}(\intercal\ltimes_{1}+(1-\intercal)\ltimes_{2}, \varsigma)\\ & +ß_{1*}((1-\intercal)\ltimes_{1}+\intercal\ltimes_{2}, \varsigma)\timesß_{2*}((1-\intercal)\ltimes_{1}+\intercal\ltimes_{2}, \varsigma)\bigg]\\ & +(\varrho^{\frac{1}{2}}-1)^{2}\bigg[\bigg((\varrho^{\intercal}-1)^{2}+(\varrho^{1-\intercal}-1)^{2}\bigg)\triangle_{2*}((\ltimes_{1}, \ltimes_{2}), \varsigma)\\ & +2\bigg((\varrho^{\intercal}-1)(\varrho^{1-\intercal}-1)\bigg)\triangle_{1*}((\ltimes_{1}, \ltimes_{2}), \varsigma)\bigg]. \end{align*} |
From (4.5) and (4.6), multiplying by \intercal^{\rightthreetimes-1} and then integrating over [0, 1], we achieve
\begin{align*} &\frac{1}{\rightthreetimes}ß_{1*}\bigg(\dfrac{\ltimes_{1}+\ltimes_{2}}{2}, \varsigma\bigg) \timesß_{2*}\bigg(\dfrac{\ltimes_{1}+\ltimes_{2}}{2}, \varsigma\bigg)\\ & \leq\dfrac{(\varrho^{\frac{1}{2}}-1)^{2}}{(\ltimes_{2}-\ltimes_{1})^{\rightthreetimes}}\bigg[\int_{\ltimes_{1}}^{\ltimes_{2}}(\ltimes_{2}-\ltimes_{11})^{\rightthreetimes-1}ß_{1*}(\ltimes_{11}, \varsigma)\timesß_{2*}(\ltimes_{11}, \varsigma)d\ltimes\\ & +\int_{\ltimes_{1}}^{\ltimes_{2}}(\ltimes_{12}-\ltimes_{1})^{\rightthreetimes-1}ß_{1*}(\ltimes_{12}, \varsigma)\timesß_{2*}(\ltimes_{12}, \varsigma)d\ltimes\bigg]\\ & +(\varrho^{\frac{1}{2}}-1)^{2}\bigg[K_{1}\triangle_{2*}((\ltimes_{1}, \ltimes_{2}), \varsigma) +2K_{2}\triangle_{1*}((\ltimes_{1}, \ltimes_{2}), \varsigma)\bigg]\\ & = \dfrac{\Gamma(\rightthreetimes+1)(\varrho^{\frac{1}{2}}-1)^{2}}{(\ltimes_{2}-\ltimes_{1})^{\rightthreetimes}}[\Finv_{\ltimes_{1}^{+}}^{\rightthreetimes}ß_{1*}(\ltimes_{2}, \varsigma)\timesß_{2*}(\ltimes_{2}, \varsigma)+\Finv_{\ltimes_{2}^{-}}^{\rightthreetimes}ß_{1*}(\ltimes_{1}, \varsigma)\timesß_{2*}(\ltimes_{1}, \varsigma)]\\ & +(\varrho^{\frac{1}{2}}-1)^{2}\bigg[K_{1}\triangle_{2*}((\ltimes_{1}, \ltimes_{2}), \varsigma) +2K_{2}\triangle_{1*}((\ltimes_{1}, \ltimes_{2}), \varsigma)\bigg]. \end{align*} |
Similarly,
\begin{align*} &\frac{1}{\rightthreetimes}ß_{1}^{*}\bigg(\dfrac{\ltimes_{1}+\ltimes_{2}}{2}, \varsigma\bigg)\timesß_{2}^{*}\bigg(\dfrac{\ltimes_{1}+\ltimes_{2}}{2}, \varsigma\bigg)\\ & \leq\dfrac{\Gamma(\rightthreetimes+1)(\varrho^{\frac{1}{2}}-1)^{2}}{(\ltimes_{2}-\ltimes_{1})^{\rightthreetimes}}[\Finv_{\ltimes_{1}^{+}}^{\rightthreetimes}ß_{1}^{*}(\ltimes_{2}, \varsigma)\timesß_{2}^{*}(\ltimes_{2}, \varsigma)+\Finv_{\ltimes_{2}^{-}}^{\rightthreetimes}ß_{1}^{*}(\ltimes_{1}, \varsigma)\timesß_{2}^{*}(\ltimes_{1}, \varsigma)]\\ & +(\varrho^{\frac{1}{2}}-1)^{2}\bigg[K_{1}\triangle_{2}^{*}((\ltimes_{1}, \ltimes_{2}), \varsigma) +2K_{2}\triangle_{1}^{*}((\ltimes_{1}, \ltimes_{2}), \varsigma)\bigg]. \end{align*} |
Combining both left and right end point functions, we have
\begin{align*} & \frac{1}{\rightthreetimes}\bigg[ß_{1*}\bigg(\dfrac{\ltimes_{1}+\ltimes_{2}}{2}, \varsigma\bigg)\timesß_{2*}\bigg(\dfrac{\ltimes_{1}+\ltimes_{2}}{2}, \varsigma\bigg), ß_{1}^{*}\bigg(\dfrac{\ltimes_{1}+\ltimes_{2}}{2}, \varsigma\bigg)\timesß_{2}^{*}\bigg(\dfrac{\ltimes_{1}+\ltimes_{2}}{2}, \varsigma\bigg)\bigg]\\ &\leq{I}\dfrac{\Gamma(\rightthreetimes+1)(\varrho^{\frac{1}{2}}-1)^{2}}{(\ltimes_{2}-\ltimes_{1})^{\rightthreetimes}}\bigg[[\Finv_{\ltimes_{1}^{+}}^{\rightthreetimes}ß_{1*}(\ltimes_{2}, \varsigma)\timesß_{2*}(\ltimes_{2}, \varsigma)+\Finv_{\ltimes_{2}^{-}}^{\rightthreetimes}ß_{1*}(\ltimes_{1}, \varsigma)\timesß_{2*}(\ltimes_{1}, \varsigma)], \end{align*} |
\begin{align*} &[\Finv_{\ltimes_{1}^{+}}^{\rightthreetimes}ß_{1}^{*}(\ltimes_{2}, \varsigma)\timesß_{2}^{*}(\ltimes_{2}, \varsigma)+\Finv_{\ltimes_{2}^{-}}^{\rightthreetimes}ß_{1}^{*}(\ltimes_{1}, \varsigma)\timesß_{2}^{*}(\ltimes_{1}, \varsigma)]\bigg]\\ & +(\varrho^{\frac{1}{2}}-1)^{2}\bigg[K_{1}[\triangle_{2*}((\ltimes_{1}, \ltimes_{2}), \varsigma), \triangle_{2}^{*}((\ltimes_{1}, \ltimes_{2}), \varsigma)] +2K_{2}[\triangle_{1*}((\ltimes_{1}, \ltimes_{2}), \varsigma), \triangle_{1}^{*}((\ltimes_{1}, \ltimes_{2}), \varsigma)]\bigg]. \end{align*} |
Thus, we get
\begin{align*} & \frac{1}{\rightthreetimes}ß_{1}\bigg(\dfrac{\ltimes_{1}+\ltimes_{2}}{2}\bigg)\otimesß_{2}\bigg(\dfrac{\ltimes_{1}+\ltimes_{2}}{2}\bigg)\\ & \preceq\dfrac{\Gamma(\rightthreetimes+1)(\varrho^{\frac{1}{2}}-1)^{2}}{(\ltimes_{2}-\ltimes_{1})^{\rightthreetimes}}[\Finv_{\ltimes_{1}^{+}}^{\rightthreetimes}ß_{1}(\ltimes_{2})\otimesß_{2}(\ltimes_{2})\oplus\Finv_{\ltimes_{2}^{-}}^{\rightthreetimes}ß_{1}(\ltimes_{1})\otimesß_{2}(\ltimes_{1})]\\ & +(\varrho^{\frac{1}{2}}-1)^{2}\bigg[K_{1}\triangle_{2}((\ltimes_{1}, \ltimes_{2})) +2K_{2}\triangle_{1}((\ltimes_{1}, \ltimes_{2}))\bigg]. \end{align*} |
In this paper, we gave some new approaches for Hermite-Hadamard type integral inequalities for exponentially convex fuzzy interval-valued functions. The main findings include some new bounds with error estimations via fuzzy Riemann-Liouville fractional integrals and Hes fractional integrals. We also proved some Fejér type inequalities with the same argument. There are several papers with classical integrals, fundamental concepts of time sclaes and fractional operators in the literature. All of these papers aim to provide new estimations and optimal approaches. But, the main motivation of this paper is that we obtained new method by using fuzzy fractional integrals and derivatives for exponentially convex fuzzy interval-valued functions fractional calculus.
The authors declare that they do not have any conflict of interests.
[1] | J. Hadamard, Etude sur les propriétés des fonctions entières et en particulier d'une fonction considérée par Riemann, J. Math. Pures Appl., 58 (1893), 171-215. |
[2] | C. Hermite, Sur deux limites d'une intégrale définie, Mathesis, 3 (1883), 82. |
[3] | M. Z. Sarikaya, E. Set, H. Yaldiz, N. Başak, Hermite-Hadamard's inequalities for fractional integrals and related fractional inequalities, Math. Comput. Modell., 57 (2013), 2403-2407. |
[4] |
M. Kadakal, İ. İşcan, Exponential type convexity and some related inequalities, J. Inequal. Appl., 2020 (2020), 82. doi: 10.1186/s13660-020-02349-1
![]() |
[5] | D. F. Zhao, T. Q. An, G. J. Ye, W. Liu, New Jensen and Hermite-Hadamard type inequalities for h-convex interval-valued functions, J. Inequal. Appl., 2018 (2018), 302. |
[6] | H. Budak, T. Tunş, M. Z. Sarikaya, Fractional Hermite-Hadamard-type inequalities for interval-valued functions, Proc. Am. Math. Soc., 148 (2019), 705-718. |
[7] | T. Allahviranloo, S. Salahshour, S. Abbasbandy, Explicit solutions of fractional differential equations with uncertainty, Soft Comput., 16 (2012), 297-302. |
[8] | S. Wang, H. Zhang, W. W. Zhang, H. M. Zhang, Finite-time projective synchronization of Caputo type fractional complex-valued delayed neural networks, Mathematics, 9 (2021), 1406. |
[9] | W. W. Zhang, H. Zhang, J. D. Cao, H. M. Zhang, D. Y. Chen, Synchronization of delayed fractional-order complex-valued neural networks with leakage delay, Phys. A: Stat. Mech. Appl., 556 (2020), 124710. |
[10] | R. Y. Ye, X. H. Liu, H. Zhang, J. D. Cao, Global Mittag-Leffler synchronization for fractional-order BAM neural networks with impulses and multiple variable delays via delayed-feedback control strategy, Neural Proc. Lett., 49 (2019), 1-18. |
[11] | W. W. Zhang, H. Zhang, J. D. Cao, F. E. Alsaadi, D. Y. Chen, Synchronization in uncertain fractional-order memristive complex-valued neural networks with multiple time delays, Neural Networks, 110 (2019), 186-198. |
[12] | H. Zhang, M. L. Ye, R. Y. Ye, J. D. Cao, Synchronization stability of Riemann-Liouville fractional delay-coupled complex neural networks, Phys. A: Stat. Mech. Appl., 508 (2018), 155-165. |
[13] | A. Ekinci, M. E. Özdemir, Some new integral inequalities via Riemann-Liouville integral operators, Appl. Comput. Math., 3 (2019), 288-295. |
[14] | M. Gürbüz, M. E. Özdemir, On some inequalities for product of different kinds of convex functions, Turk. J. Sci., 5 (2020), 23-27. |
[15] | E. Set, A. O. Akdemir, F. Özata, Grüss type inequalities for fractional integral operator involving the extended generalized Mittag-Leffler function, Appl. Comput. Math., 19 (2020), 402-414. |
[16] | M. U. Awan, M. A. Noor, K. I. Noor, Some integral inequalities via \phi_{\lambda}\eta-preinvex functions, Turkish J. Ineq., 1 (2017), 38-45. |
[17] | S. I. Butt, M. Nadeem, G. Farid, On Caputo fractional derivatives via exponential s-convex functions, Turk. J. Sci., 5 (2020), 140-146. |
[18] |
T. M. Costa, H. Román-Flores, Some integral inequalities for fuzzy-interval-valued functions, Inform. Sci., 420 (2017), 110-125. doi: 10.1016/j.ins.2017.08.055
![]() |
[19] |
O. Kaleva, On fuzzy differential equations, Fuzzy Sets Syst., 24 (1987), 301-317. doi: 10.1016/0165-0114(87)90029-7
![]() |
[20] |
P. O. Mohammed, On new trapezoid type inequalities for h-convex functions via generalized fractional integral, Turk. J. Anal. Number Theory, 6 (2018), 125-128. doi: 10.12691/tjant-6-4-5
![]() |
[21] |
M. B. Khan, P. O. Mohammed, M. A. Noor, Y. S. Hamed, New Hermite-Hadamard inequalities in fuzzy interval fractional calculus and related inequalities, Symmetry, 13 (2021), 673. doi: 10.3390/sym13040673
![]() |
[22] |
P. O. Mohammed, T. Abdeljawad, D. Baleanu, A. Kashuri, F. Hamasalh, P. Agarwal, New fractional inequalities of Hermite-Hadamard type involving the incomplete gamma functions, J. Inequal. Appl., 2020 (2020), 263. doi: 10.1186/s13660-020-02538-y
![]() |
[23] |
J. H. He, A tutorial review on fractal spacetime and fractional calculus, Int. J. Theor. Phys., 53 (2014), 3698-3718. doi: 10.1007/s10773-014-2123-8
![]() |
[24] |
J. H. He, A short remark on fractional variational iteration method, Phys. Lett. A, 375 (2011), 3362-3364. doi: 10.1016/j.physleta.2011.07.033
![]() |
[25] | J. H. He, A symptotic methods for solitary solutions and compactons, Abstr. Appl. Anal., 2012 (2012), 916793. |
[26] |
J. H. He, Some asymptotic methods for strongly nonlinear equations, Int. J. Mod. Phys. B, 20 (2006), 1141-1199. doi: 10.1142/S0217979206033796
![]() |
[27] | A. A. Kilbas, H. M. Srivastava, J. J. Trujillo, Theory and applications of fractional differential equations, North-Holland Mathematics Studies, Amsterdam: Elsevier, 2006. |
[28] |
B. Bede, S. G. Gal, Generalizations of the differentiability of fuzzy-number-valued functions with applications to fuzzy differential equations, Fuzzy Sets Syst., 151 (2005), 581-599. doi: 10.1016/j.fss.2004.08.001
![]() |
[29] |
L. Stefanini, A generalization of Hukuhara difference and division for interval and fuzzy arithmetic, Fuzzy Sets Syst., 161 (2010), 1564-1584. doi: 10.1016/j.fss.2009.06.009
![]() |
[30] |
S. Nanda, K. Kar, Convex fuzzy mappings, Fuzzy Sets Syst., 48 (1992), 129-132. doi: 10.1016/0165-0114(92)90256-4
![]() |
[31] |
R. Goetschel Jr., W. Voxman, Elementary fuzzy calculus, Fuzzy Sets Syst., 18 (1986), 31-43. doi: 10.1016/0165-0114(86)90026-6
![]() |
[32] | D. Phil, P. Kloeden, Metric spaces of fuzzy sets: Theory and applications, World Scientific: Singapore, 1994. |
[33] | B. Bede, L. Stefanini, Generalized differentiability of fuzzy-valued functions, Fuzzy Sets Syst., 230 2013,119-141. |
[34] |
R. P. Agarwal, D. Baleanu, J. J. Nieto, D. F. M. Torres, Y. Zhou, A survey on fuzzy fractional differential and optimal control nonlocal evolution equations, J. Comput. Appl. Math., 339 (2018), 3-29. doi: 10.1016/j.cam.2017.09.039
![]() |
[35] | D. Zhang, C. Guo, D. Chen, G. Wang, Jensen's inequalities for set-valued and fuzzy set-valued functions, Fuzzy Sets Syst., 2020 (2020), 1-27. |
[36] |
T. M. Costa, H. Román-Flores, Some integral inequalities for fuzzy-interval-valued functions, Inform. Sci., 420 (2017), 110-125. doi: 10.1016/j.ins.2017.08.055
![]() |
[37] |
T. M. Costa, Jensen's inequality type integral for fuzzy-interval-valued functions, Fuzzy Sets Syst., 327 (2017), 31-47. doi: 10.1016/j.fss.2017.02.001
![]() |
[38] | R. E. Moore, Interval analysis, Englewood Cliffs: Prentice Hall, USA, 1966. |
1. | Bandar Bin-Mohsin, Sehrish Rafique, Clemente Cesarano, Muhammad Zakria Javed, Muhammad Uzair Awan, Artion Kashuri, Muhammad Aslam Noor, Some General Fractional Integral Inequalities Involving LR–Bi-Convex Fuzzy Interval-Valued Functions, 2022, 6, 2504-3110, 565, 10.3390/fractalfract6100565 | |
2. | Yeliang Xiao, Ahsan Fareed Shah, Tariq Javed Zia, Ebenezer Bonyah, Muhammad Gulzar, Positive Weighted Symmetry Function Kernels and Some Related Inequalities for a Generalized Class of Convex Functions, 2022, 2022, 2314-8888, 1, 10.1155/2022/9372629 | |
3. | Nasser Aedh Alreshidi, Muhammad Bilal Khan, Daniel Breaz, Luminita-Ioana Cotirla, New Versions of Fuzzy-Valued Integral Inclusion over p-Convex Fuzzy Number-Valued Mappings and Related Fuzzy Aumman’s Integral Inequalities, 2023, 15, 2073-8994, 2123, 10.3390/sym15122123 | |
4. | Ahsan Fareed Shah, Serap Özcan, Miguel Vivas-Cortez, Muhammad Shoaib Saleem, Artion Kashuri, Fractional Hermite–Hadamard–Mercer-Type Inequalities for Interval-Valued Convex Stochastic Processes with Center-Radius Order and Their Related Applications in Entropy and Information Theory, 2024, 8, 2504-3110, 408, 10.3390/fractalfract8070408 | |
5. | Ahsan Fareed Shah, Salah Mahmoud Boulaaras, Patricia J. Y. Wong, Muhammad Shoaib Saleem, Muhammad Umair Shahzad, Quantum Integral Inequalities Via Different Variants of Parameterized Harmonically Convex Functions on Finite Intervals With Related Applications, 2025, 0170-4214, 10.1002/mma.10792 |