Loading [MathJax]/jax/output/SVG/jax.js
Research article

Hermite-Hadamard-Fejér type fractional inequalities relating to a convex harmonic function and a positive symmetric increasing function

  • Received: 13 October 2021 Revised: 21 November 2021 Accepted: 24 November 2021 Published: 17 December 2021
  • MSC : 26A51, 26A33, 26D07, 26D10, 26D15

  • The purpose of this article is to discuss some midpoint type HHF fractional integral inequalities and related results for a class of fractional operators (weighted fractional operators) that refer to harmonic convex functions with respect to an increasing function that contains a positive weighted symmetric function with respect to the harmonic mean of the endpoints of the interval. It can be concluded from all derived inequalities that our study generalizes a large number of well-known inequalities involving both classical and Riemann-Liouville fractional integral inequalities.

    Citation: Muhammad Amer Latif, Humaira Kalsoom, Zareen A. Khan. Hermite-Hadamard-Fejér type fractional inequalities relating to a convex harmonic function and a positive symmetric increasing function[J]. AIMS Mathematics, 2022, 7(3): 4176-4198. doi: 10.3934/math.2022232

    Related Papers:

    [1] Thongchai Botmart, Soubhagya Kumar Sahoo, Bibhakar Kodamasingh, Muhammad Amer Latif, Fahd Jarad, Artion Kashuri . Certain midpoint-type Fejér and Hermite-Hadamard inclusions involving fractional integrals with an exponential function in kernel. AIMS Mathematics, 2023, 8(3): 5616-5638. doi: 10.3934/math.2023283
    [2] Yousaf Khurshid, Muhammad Adil Khan, Yu-Ming Chu . Conformable integral version of Hermite-Hadamard-Fejér inequalities via η-convex functions. AIMS Mathematics, 2020, 5(5): 5106-5120. doi: 10.3934/math.2020328
    [3] Muhammad Bilal Khan, Muhammad Aslam Noor, Thabet Abdeljawad, Bahaaeldin Abdalla, Ali Althobaiti . Some fuzzy-interval integral inequalities for harmonically convex fuzzy-interval-valued functions. AIMS Mathematics, 2022, 7(1): 349-370. doi: 10.3934/math.2022024
    [4] Sabila Ali, Shahid Mubeen, Rana Safdar Ali, Gauhar Rahman, Ahmed Morsy, Kottakkaran Sooppy Nisar, Sunil Dutt Purohit, M. Zakarya . Dynamical significance of generalized fractional integral inequalities via convexity. AIMS Mathematics, 2021, 6(9): 9705-9730. doi: 10.3934/math.2021565
    [5] Muhammad Amer Latif . Fejér type inequalities for harmonically convex functions. AIMS Mathematics, 2022, 7(8): 15234-15257. doi: 10.3934/math.2022835
    [6] Eze R. Nwaeze, Muhammad Adil Khan, Ali Ahmadian, Mohammad Nazir Ahmad, Ahmad Kamil Mahmood . Fractional inequalities of the Hermite–Hadamard type for m-polynomial convex and harmonically convex functions. AIMS Mathematics, 2021, 6(2): 1889-1904. doi: 10.3934/math.2021115
    [7] Xiuzhi Yang, G. Farid, Waqas Nazeer, Muhammad Yussouf, Yu-Ming Chu, Chunfa Dong . Fractional generalized Hadamard and Fejér-Hadamard inequalities for m-convex functions. AIMS Mathematics, 2020, 5(6): 6325-6340. doi: 10.3934/math.2020407
    [8] Jorge E. Macías-Díaz, Muhammad Bilal Khan, Muhammad Aslam Noor, Abd Allah A. Mousa, Safar M Alghamdi . Hermite-Hadamard inequalities for generalized convex functions in interval-valued calculus. AIMS Mathematics, 2022, 7(3): 4266-4292. doi: 10.3934/math.2022236
    [9] Hari Mohan Srivastava, Soubhagya Kumar Sahoo, Pshtiwan Othman Mohammed, Bibhakar Kodamasingh, Kamsing Nonlaopon, Khadijah M. Abualnaja . Interval valued Hadamard-Fejér and Pachpatte Type inequalities pertaining to a new fractional integral operator with exponential kernel. AIMS Mathematics, 2022, 7(8): 15041-15063. doi: 10.3934/math.2022824
    [10] Yanping Yang, Muhammad Shoaib Saleem, Waqas Nazeer, Ahsan Fareed Shah . New Hermite-Hadamard inequalities in fuzzy-interval fractional calculus via exponentially convex fuzzy interval-valued function. AIMS Mathematics, 2021, 6(11): 12260-12278. doi: 10.3934/math.2021710
  • The purpose of this article is to discuss some midpoint type HHF fractional integral inequalities and related results for a class of fractional operators (weighted fractional operators) that refer to harmonic convex functions with respect to an increasing function that contains a positive weighted symmetric function with respect to the harmonic mean of the endpoints of the interval. It can be concluded from all derived inequalities that our study generalizes a large number of well-known inequalities involving both classical and Riemann-Liouville fractional integral inequalities.



    We recall that an interval χR is convex if for all x, yχ, we have tx+(1t)yχ, where t[0,1] and a function f:χR is convex if for all x, yχ, the inequality

    f(tx+(1t)y)tf(x)+(1t)f(y) (1.1)

    holds. A function f:χR is concave if the inequality (1.1) holds in opposite direction.

    Convexity is essential to understanding and solving problems pertaining to fractional integral inequalities because of its properties and definition, and it has recently gained in importance. Convex functions have yielded several new integral inequalities, as evidenced by [2,3,8,11,14,15,21,24,43,45,46,47,48]. Hermite-integral Hadamard's inequalities are most commonly encountered when searching for comprehensive inequalities:

    f(u+v2)1vuvuf(x)dxf(u)+f(v)2, (1.2)

    where the function f:χR is convex on χ and fL1([u,v]).

    There are the following two classical fractional integral inequalities which are defined by Hermite-Hadamard type inequalities:

    f(u+v2)Γ(ν+1)2(v+u)ν[Jνu+f(v)+Jνvf(u)]f(u)+f(v)2, (1.3)

    where the function f:χR is positive, convex on χ and fL1([u,v]).

    The left-sided and right-sided Riemann-Liouville fractional integrals Jνu+f(v) and Jνvf(u) of order ν>0 in (1.3), are defined respectively as (see [5,22]):

    Jνu+f(x):=1Γ(ν)xu(xt)ν1f(t)dt,0u<x<v

    and

    Jνvf(x):=1Γ(ν)vx(tx)ν1f(t)dt0u<x<v.

    The extended inequalities for (1.2) and (1.5) are fractional integral inequalities of the Fejér and Hermite-Hadamard-Fejér types, and the results are as follows:

    f(u+v2)vuζ(x)dxvuf(x)ζ(x)dxf(u)+f(v)2vuζ(x)dx (1.4)

    and

    f(u+v2)[Jνu+ζ(v)+Jνvζ(u)]Γ(ν+1)2(v+u)ν[Jνu+(fζ)(v)+Jνv(fζ)(u)]f(u)+f(v)2[Jνu+ζ(v)+Jνvζ(u)] (1.5)

    respectively, where f is as defined above, the function ζ:[u,v][0,) is integrable symmetric with respect to u+v2, that is

    ζ(u+vx)=ζ(x) for all x[u,v]

    and Γ(ν) is the Gamma function defined as Γ(ν)=0xν1exdx, Re(ν)>0.

    In addition to being able to be generalized, convexity and convex functions have several generalizations. One of those generalizations is the concept of harmonic convexity and harmonic convex functions, which can be defined as follows:

    Definition 1.1. Define χR{0} as an interval of real numbers. A function f from χ to the real numbers is considered to be harmonically convex, if

    f(xytx+(1t)y)tf(y)+(1t)f(x) (1.6)

    for all x,yχ and t[0,1]. Harmonically concave f is defined as the inequality in (1.6) reversed.

    Using harmonic-convexity, the Hermite-Hadamard type yields the following result.

    Theorem 1.2. Let f:χR{0}R be a harmonically convex function and u,vχ with u<v.If fL([u,v]) then the followinginequalities hold:

    f(2uvu+v)uvvuuvf(x)x2dxf(u)+f(v)2. (1.7)

    Harmonic symmetricity of a function is given in the definition below.

    Definition 1.3. A function ζ:[u,v]R{0}R is harmonically symmetric with respect to 2uvu+v if

    ζ(x)=ζ(11u+1v1x)

    holds for all x[u,v].

    Fejér type inequalities using harmonic convexity and the notion of harmonic symmetricity were presented in Chan and Wu [7].

    Theorem 1.4. Let f:χR{0}R be a harmonically convex function and u,vχ with u<v.If fL([u,v]) and ζ:[u,v]R{0}R is nonnegative, integrable and harmonically symmetric withrespect to 2uvu+v, then

    f(2uvu+v)uvζ(x)dxuvvuuvf(x)ζ(x)x2dxf(u)+f(v)2uvζ(x)dx. (1.8)

    Hermite-Hadamard's inequalities for harmonically convex functions in fractional integral form were proved in [19].

    Theorem 1.5. Let f:χ(0,)R be afunction such that fL([u,v]), whereu,vχ with u<v. If f is a harmonically convex function on [u,v], then the following inequalities for fractional integrals hold:

    f(2uvu+v)Γ(ν+1)2(uvvu)ν{Jν1u(fg)(1v)+Jν1v+(fg)(1u)}f(u)+f(v)2 (1.9)

    with ν>0 and g(x)=1x.

    Hermite-Hadamard-Fejér inequality for harmonically convex function in fractional integral form were obtained by İşcan et al. in [18].

    Theorem 1.6. Let f:[u,v]R be a harmonically convexfunction with u<v and fL([u,v]). Ifζ:[u,v]R is nonnegative, integrableand harmonically symmetric with respect to 2uvu+v, then thefollowing inequalities for fractional integrals holds:

    f(2uvu+v){Jν1u(ζg)(1v)+Jν1v+(fg)(1u)}Jν1u(fζg)(1v)+Jν1v+(fζg)(1u)f(u)+f(v)2{Jν1u(ζg)(1v)+Jν1v+(fg)(1u)} (1.10)

    with ν>0 and g(x)=1x, x[1v,1u].

    Left-sided and right-sided Riemann-Liouville fractional integrals are generalized in the definition given below:

    Definition 1.7. [20] Let τ(x) be an increasing positive and monotonic function on the interval (u,v] with a continuous derivative τ(x) on the interval (u,v) with τ(x)=0, 0[u,v]. Then, the left-side and right-side of the weighted fractional integrals of a function f with respect to another function τ(x) on [u,v] of order ν>0 are defined by:

    (ζJν;τu+f)(x)=ζ1(x)Γ(ν)xuτ(t)(τ(x)τ(t))ν1f(t)ζ(t)dt (1.11)

    and

    (ζJν;τvf)(x)=ζ1(x)Γ(ν)vxτ(t)(τ(t)τ(x))ν1f(t)ζ(t)dt, (1.12)

    where ζ1(x)=1ζ(x),ζ(x)0.

    The following observations are obvious from the above definition:

    ● If τ(x)=x and ζ(x)=1, then the weighted fractional integral operators in the Definition 1.7 reduce to the classical Riemann-Liouville fractional integral operators.

    ● If ζ(x)=1, we get the fractional integral operators of a function f with respect to another function τ(x) of order ν>0, defined in [1,38] as follows:

    (Jν;τu+f)(x)=1Γ(ν)xuτ(t)(τ(x)τ(t))ν1f(t)dt

    and

    (Jν;τvf)(x)=1Γ(ν)vxτ(t)(τ(t)τ(x))ν1f(t)dt.

    The study analyzes several inequalities of the Hermite-Hadamard-Fejér type through weighted fractional operators with positive symmetric weight function in the kernel.

    Throughout this paper, R denotes the set of all real numbers, χR denotes an interval. In addition. for u,vJ with u<v, the functions θu,v,θv,u:[0,1]R are defined as:

    θu,v(t)=uvtu+(1t)v,θv,u(t)=uvtv+(1t)u.

    We start this section with the following Lemma which will be used repeatedly in the sequel.

    Lemma 2.1. The following results hold:

    (i) If ζ:[u,v](0,)[0,) be an integrable function and symmetric with respect to2uvu+v, then we have

    ζ(θu,v(t))=ζ(θv,u(t)) (2.1)

    for each t[0,1],

    (ii) If ζ:[u,v](0,)[0,) be an integrable and symmetric function with respect to2uvu+v, then we have for ν>0

    Jν;ττ1(1v)+(ζhτ)(τ1(1u))=Jν;ττ1(1u)(ζhτ)(τ1(1v))=12[Jν;ττ1(1v)+(ζhτ)(τ1(1u))+Jν;ττ1(1u)(ζhτ)(τ1(1v))]. (2.2)

    where h(x)=1x, x[1v,1u].

    Proof. (ⅰ) Let x=θu,v(t)=uvtu+(1t)v. It is clear that x[u,v] for each t[0,1] and then

    11u+1v1x=uvtv+(1t)u=θv,u(t).

    Hence by the definition of harmonic symmetry, we obtain

    ζ(θu,v(t))=ζ(x)=ζ(11u+1v1x)=ζ(θv,u(t)).

    (ⅱ) By using the harmonic symmetric property of ζ, we have

    (ζτ)(t)=ζ(τ(t))=ζ(11u+1v1τ(t)),

    for all t[τ1(1v),τ1(1u)].

    From this and by setting 1τ(x)=11u+1vτ(t), it follows that

    Jν;ττ1(1v)+(ζhτ)(τ1(1u))=1Γ(ν)τ1(1u)τ1(1v)(τ(x)1v)ν1(ζhτ)(x)τ(x)dx=1Γ(ν)τ1(1u)τ1(1v)(τ(x)1v)ν1(ζhτ)(1u+1vt)τ(t)dt=1Γ(ν)τ1(1u)τ1(1v)(1uτ(t))ν1(ζhτ)(t)τ(t)dt=Jν;ττ1(1v)(ζhτ)(τ1(1v)).

    Theorem 2.2. Let f:I(0,)R be an L1 convex function with 0<u<v, u,vI andζ:[u,v]R be an integrable, positiveand weighted symmetric function with respect to 2uvu+v. If τis an increasing and positive function on [u,v) andτ(x) is continuous on (u,v), then, wehave for ν>0:

    f(2uvu+v)[(Jν;ττ1(1v)+(ζhτ))(τ1(1u))+(Jν;ττ1(1u)(ζhτ))(τ1(1v))]ζ(1u)(ζτJν;ττ1(1v)+(fhτ)(τ1(1u)))+ζ(1v)(ζτJν;ττ1(1u)(fhτ)(τ1(1v)))f(u)+f(v)2[Jν;ττ1(1v)+(ζhτ)(τ1(1u))+Jν;ττ1(1u)(ζhτ)(τ1(1v))]. (2.3)

    Proof. Since f is a harmonic convex function on [u,v], we have

    f(2xyx+y)f(x)+f(y)2,x,y[u,v].

    Choosing x=ζ(θu,v(t)) and y=ζ(θv,u(t)), we obtain

    2f(2uvu+v)f(ζ(θu,v(t)))+f(ζ(θv,u(t))).

    Multiplying both the sides by tν1ζ(θu,v(t)) and then integrating the resultant with respect to "t" over [0,1], we obtain

    2f(2uvu+v)10tν1ζ(θu,v(t))dt10tν1f(ζ(θu,v(t)))ζ(θu,v(t))dt+10tν1f(ζ(θv,u(t)))ζ(θu,v(t))dt. (2.4)

    To prove the first inequality in (2.3), we need to use (2.2)

    Γ(ν)2(1u1v)ν[Jν;ττ1(1v)+(ζhτ)(τ1(1u))+Jν;ττ1(1u)(ζhτ)(τ1(1v))]=Γ(ν)(uvvu)ν(Jν;ττ1(1v)+(ζhτ)(τ1(1u)))=(uvvu)ντ1(1u)τ1(1v)(1uτ(x))ν1(ζhτ)(x)τ(x)dx=τ1(1u)τ1(1v)(1uτ(x)1u1v)ν1(ζhτ)(x)τ(x)dx1u1v=10tν1ζ(θu,v(t))dt, (2.5)

    where t=1uτ(x)1u1v.

    By evaluating the weighted fractional operator, one can observe that

    ζ(1u)(ζτJν;ττ1(1v)+(fhτ)(τ1(1u)))+ζ(1v)(ζτJν;ττ1(1u)(fhτ))(τ1(1v))=ζ(1u)(ζτ)1(τ1(1u))Γ(ν)×τ1(1u)τ1(1v)(1uτ(x))ν1(fhτ)(x)(ζhτ)(x)τ(x)dx+ζ(1v)(ζτ)1(τ1(1v))Γ(ν)×τ1(1u)τ1(1v)(τ(x)1v)ν1(fhτ)(x)(ζhτ)(x)τ(x)dx=1Γ(ν)τ1(1u)τ1(1v)(1uτ(x))ν1(fhτ)(x)(ζhτ)τ(x)dx+1Γ(ν)τ1(1u)τ1(1v)(τ(x)1v)ν1(fhτ)(x)(ζhτ)τ(x)dx=(1u1v)νΓ(ν)τ1(1u)τ1(1v)(1uτ(x)1u1v)ν1×(fhτ)(x)(ζhτ)τ(x)dx1u1v+(1u1v)νΓ(ν)×τ1(1u)τ1(1v)(τ(x)1v1u1v)ν1(fhτ)(x)(ζhτ)τ(x)dx1u1v.

    Setting t1=1uτ(x)1u1vand t2=τ(x)1v1u1v and using (2.1)

    ζ(1u)(ζτJν;ττ1(1v)+(fhτ)(τ1(1u)))+ζ(1v)(ζτJν;ττ1(1u)(fhτ)(τ1(1v)))=(1u1v)νΓ(ν)10tν11f(ζ(θu,v(t1)))ζ(θu,v(t1))dt1+(1u1v)νΓ(ν)10tν12f(ζ(θv,u(t2)))ζ(θv,u(t2))dt2=(1u1v)νΓ(ν)10tν1f(ζ(θu,v(t)))ζ(θu,v(t))dt+(1u1v)νΓ(ν)10tν1f(ζ(θv,u(t)))ζ(θu,v(t))dt. (2.6)

    Using (2.5) and (2.6) in (2.4), we obtain

    f(2uvu+v)[Jν;ττ1(1v)+(ζτ)(τ1(1u))+Jν;ττ1(1u)(ζτ)(τ1(1v))]ζ(1u)(ζτJν;ττ1(1v)+(fτ))(τ1(1u))+ζ(1v)(ζτJν;ττ1(1u)(fτ))(τ1(1v)). (2.7)

    Thus the first inequality is proved.

    To prove the second inequality we use the convexity of f

    f(ζ(θu,v(t)))+f(ζ(θv,u(t)))f(u)+f(v). (2.8)

    Multiplying both the sides by tν1ζ(θu,v(t)) and then integrating the resultant with respect to "t" over [0,1], we obtain

    10tν1f(ζ(θu,v(t)))ζ(θu,v(t))dt+10tν1f(ζ(θv,u(t)))ζ(θu,v(t))dt[f(u)+f(v)]10tν1ζ(θu,v(t))dt. (2.9)

    Then by using (2.1) and (2.5) in (2.8), we obtain (2.3).

    Remark 1. (more specifically), if we utilize Theorem 1 in Theorem 2.2, then

    (1) τ(x)=x, then (2.3) takes the form

    f(2uvu+v)[Jν1v+(ζh)(1u)+Jν1u(ζh)(1v)]ζ(1u)(ζJν1v+(fh)(1u))+ζ(1v)(ζJν1u(fh)(1v))f(u)+f(v)2[Jν1v+(ζh)(1u)+Jν1u(ζh)(1v)], (2.10)

    where ζJνu+ and ζJνv are the left and right weighted Riemann-Liouville fractional operators of order ν>0, defined by

    (ζJνu+f)(x)=1Γ(ν)xu(xt)ν1f(t)ζ(t)dt

    and

    (ζJνvf)(x)=1Γ(ν)vx(tx)ν1f(t)ζ(t)dt.

    (2) τ(x)=x and ν=1, then inequality (2.3) transforms into inequality (1.8).

    (3) τ(x)=x and ζ(x)=1, then inequality (2.3) reduces to the inequality (1.9).

    (4) τ(x)=x, ζ(x)=1 and ν=1, then inequality (2.3) becomes the inequality (1.7).

    Lemma 2.3. Let f:I(0,)R be an L1 function with fL1 for0<u<v, u,vI and ζ:[u,v]R be an integrable, positive and weighted symmetric function withrespect to 2uvu+v. If τ is an increasing and positive functionon [u,v) and τ(x) is continuous on(u,v), then, we have for ν>0:

    1Γ(ν)τ1(1u)τ1(1v)[tτ1(1v)τ(x)(1uτ(x))ν1(ζhτ)(x)dx]×(fhτ)(t)τ(t)dt1Γ(ν)τ1(1u)τ1(1v)[τ1(1u)tτ(x)(τ(x)1v)ν1(ζhτ)(x)dx]×(fhτ)(t)τ(t)dt=[f(u)+f(v)2][Jν;ττ1(1v)+(ζhτ)(τ1(1u))+Jν;ττ1(1u)+(ζhτ)(τ1(1v))][ζ(1u)(ζτJν;ττ1(1v)+(fhτ)(τ1(1u)))+ζ(1v)(ζτJν;ττ1(1u)(fhτ)(τ1(1v)))] (2.11)

    where h(x)=1x, x[1v,1u].

    Proof. Setting

    1Γ(ν)τ1(1u)τ1(1v)[tτ1(1v)τ(x)(1uτ(x))ν1(ζhτ)(x)dx]×(fhτ)(t)τ(t)dt1Γ(ν)τ1(1u)τ1(1v)[τ1(1u)tτ(x)(τ(x)1v)ν1(ζhτ)(x)dx]×(fhτ)(t)τ(t)dt=χ1+χ2. (2.12)

    By integration by parts, making use of Lemma 2.1, and definitions (1.11) and (1.12), we obtain

    χ1=1Γ(ν)τ1(1u)τ1(1v)[tτ1(1v)τ(x)(1uτ(x))ν1(ζhτ)(x)dx]×d[(fhτ)(t)]=f(u)Γ(ν)τ1(1u)τ1(1v)τ(x)(1uτ(x))ν1(ζhτ)(x)τ(x)dx1Γ(ν)τ1(1u)τ1(1v)τ(t)(1uτ(t))ν1(ζhτ)(t)(fhτ)(t)dt=f(u)Γ(ν)τ1(1u)τ1(1v)τ(x)(1uτ(x))ν1(ζhτ)(x)dxζ(1u)(ζτ)1(τ1(1u))Γ(ν)×τ1(1u)τ1(1v)τ(t)(1uτ(t))ν1(ζhτ)(t)(fhτ)(t)dt=f(u)(Jν;ττ1(1v)+(ζhτ))(τ1(1u))ζ(1u)(ζτJν;ττ1(1v)+(fhτ))(τ1(1u)),

    and

    χ2=1Γ(ν)τ1(1u)τ1(1v)[τ1(1u)tτ(x)(τ(x)1v)ν1(ζhτ)(x)dx]×d[(fhτ)(t)]=f(v)(Jν;ττ1(1u)(ζhτ))(τ1(1v))ζ(1v)(ζτJν;ττ1(1u)(fhτ))(τ1(1v)).

    Now

    χ1+χ2=f(u)(Jν;ττ1(1v)+(ζhτ)(τ1(1u)))ζ(1u)(ζτJν;ττ1(1v)+(fhτ))(τ1(1u))+f(v)(Jν;ττ1(1u)(ζhτ)(τ1(1v)))ζ(1v)(ζτJν;ττ1(1u)(fhτ)(τ1(1v))). (2.13)

    Since

    Jν;ττ1(1v)+(ζhτ)(τ1(1u))=Jν;ττ1(1u)(ζhτ)(τ1(1v))=12[Jν;ττ1(1v)+(ζhτ)(τ1(1u))+Jν;ττ1(1u)(ζhτ)(τ1(1v))].

    Thus, we obtain from (2.13) that

    χ1+χ2=[f(u)+f(v)2][Jν;ττ1(1v)+(ζhτ)(τ1(1u))+[Jν;ττ1(1u)+(ζhτ)(τ1(1v))][ζ(1u)(ζτJν;ττ1(1v)+(fhτ)(τ1(1u)))+ζ(1v)(ζτJν;ττ1(1u)(fhτ)(τ1(1v)))]. (2.14)

    Which is the required result.

    Remark 2. Particularly, in Lemma 2.3, if we take:

    (1) τ(x)=x, then equality (2.11) becomes

    1Γ(ν)1u1v[t1v(1ux)ν1(ζh)(x)dx](fh)(t)dt1Γ(ν)1u1v[1ut(x1v)ν1(ζh)(x)dx](fh)(t)dt=[f(u)+f(v)2][Jν1v+(ζh)(1u)+Jν1u+(ζh)(1v)][ζ(1u)(ζJν1v+(fh)(1u))+ζ(1v)(ζJν1u(fh)(1v))]. (2.15)

    where ζJνu+ and ζJνv are defined in Remark 1.

    (2) τ(x)=x and ζ(x)=1, then equality (2.11) becomes

    12(uvvu)[10(1tν)(fh)(tu+(1t)vuv)dt10(1tν)(fh)(tv+(1t)uuv)dt]=f(u)+f(v)2Γ(ν+1)2(uvvu)ν[Jν1v+(fh)(1u)+Jν1u(fh)(1v)]. (2.16)

    (3) τ(x)=x, ζ(x)=1 and ν=1, we obtain

    uv(vu)210(12t)(t+u(1t)v)2f(uvt+u(1t)v)dt=f(u)+f(v)2(uvvu)vuf(x)x2dx. (2.17)

    We will use the following notations for the rest of this section:

    ζχν;τ(u,v)=[f(u)+f(v)2][Jν;ττ1(1v)+(ζhτ)(τ1(1u))+Jν;ττ1(1u)+(ζhτ)(τ1(1v))][ζ(1u)(ζτJν;ττ1(1v)+(fhτ)(τ1(1u)))+ζ(1v)(ζτJν;ττ1(1u)(fhτ)(τ1(1v)))]. (2.18)

    Theorem 2.4. Let f:I(0,)R be an L1 function with fL1 for0<u<v, u,vI and ζ:[u,v]R be an integrable, positive and weighted symmetric function withrespect to 2uvu+v. If |(fh)| is harmonic convex on [u,v], τis an increasing and positive function on [u,v), andτ(x) is continuous on (u,v), then, wehave for ν>0:

    |ζχν;τ(u,v)|ζhτ[uτ(ν,u,v)|(fh)(1u)|+vτ(ν,u,v)|(fh)(1v)|]Γ(ν+1), (2.19)

    where h(x)=1x, x[1v,1u],

    uτ(ν,u,v)=τ1(1u)+τ1(1v)2τ1(1v)u(τ(t)v)τ(t)(vu)×[(1uτ(t))ν(1uτ(τ1(1u)+τ1(1v)τ(t)))ν]τ(t)dt+τ1(1u)τ1(1u)+τ1(1v)2u(τ(t)v)τ(t)(vu)×[(1uτ(τ1(1u)+τ1(1v)t))ν(1uτ(t))ν]τ(t)dt

    and

    vτ(ν,u,v)=τ1(1u)+τ1(1v)2τ1(1v)v(uτ(t))τ(t)(vu)×[(1uτ(t))ν(1uτ(τ1(1u)+τ1(1v)t))ν]τ(t)dt+τ1(1u)τ1(1u)+τ1(1v)2v(uτ(t))τ(t)(vu)×[(1uτ(τ1(1u)+τ1(1v)t))ν(1uτ(t))ν]τ(t)dt.

    Proof. According to (2.11) of Lemma 2.3, we obtain

    |ζχν;τ(u,v)|1Γ(ν)τ1(1u)τ1(1v)|tτ1(1v)τ(x)(1uτ(x))ν1×(ζhτ)(x)dxτ1(1u)tτ(x)(τ(x)1v)ν1(ζhτ)(x)dx|×|(fhτ)(t)|τ(t)dt (2.20)

    We know that ζ is a harmonic symmetric with respect to 2uvu+v, we observed that

    τ1(1u)tτ(x)(τ(x)1v)ν1(ζhτ)(x)dx=τ1(1u)tτ(x)(τ(x)1v)ν1(ζhτ)(τ1(1u)+τ1(1v)x)dx=τ1(1u)+τ1(1v)tτ1(1v)τ(x)(1uτ(x))ν1(ζhτ)(x)dx.

    Hence

    |tτ1(1v)τ(x)(1uτ(x))ν1(ζhτ)(x)dxτ1(1u)tτ(x)(τ(x)1v)ν1(ζhτ)(x)dx|=|τ1(1u)+τ1(1v)ttτ(x)(1uτ(x))ν1(ζhτ)(x)dx|. (2.21)

    From (2.21) we get

    |tτ1(1v)τ(x)(1uτ(x))ν1(ζhτ)(x)dxτ1(1u)tτ(x)(τ(x)1v)ν1(ζhτ)(x)dx|=|τ1(1u)+τ1(1v)ttτ(x)(1uτ(x))ν1(ζhτ)(x)dx|τ1(1u)+τ1(1v)ttτ(x)(1uτ(x))ν1(ζhτ)(x)dx (2.22)

    for t[τ1(1v),τ1(1u)+τ1(1v)2] or

    |tτ1(1v)τ(x)(1uτ(x))ν1(ζhτ)(x)dxτ1(1u)t|τ(x)|(τ(x)1v)ν1(ζhτ)(x)dx|=|τ1(1u)+τ1(1v)ttτ(x)(1uτ(x))ν1(ζhτ)(x)dx|tτ1(1u)+τ1(1v)tτ(x)(1uτ(x))ν1(ζhτ)(x)dx (2.23)

    for t[τ1(1u)+τ1(1v)2,τ1(1u)].

    By applying the harmonic convexity of |f| on [u,v] for t[τ1(1v),τ1(1u)], we get

    |(fhτ)(t)|u(τ(t)v)τ(t)(vu)|(fh)(1u)|+v(uτ(t))τ(t)(vu)|(fh)(1u)|. (2.24)

    Applying (2.22)–(2.24) in (2.20), we obtain

    |ζχν;τ(u,v)|ζhτΓ(ν)×τ1(1u)+τ1(1v)2τ1(1v)(τ1(1u)+τ1(1v)ttτ(x)(1uτ(x))ν1dx)×(u(τ(t)v)τ(t)(vu)|(fh)(u)|+v(uτ(t))τ(t)(vu)|(fh)(v)|)τ(t)dt+ζhτΓ(ν)τ1(1u)τ1(1u)+τ1(1v)2(tτ1(1u)+τ1(1v)tτ(x)(1uτ(x))ν1dx)×(u(τ(t)v)τ(t)(vu)|(fh)(1u)|+v(uτ(t))τ(t)(vu)|(fh)(1u)|)τ(t)dt. (2.25)

    Let us evaluate the first integral in (2.25)

    τ1(1u)+τ1(1v)2τ1(1v)(τ1(1u)+τ1(1v)tt(1uτ(x))ν1d(τ(x)))×(u(τ(t)v)τ(t)(vu)|(fh)(u)|+v(uτ(t))τ(t)(vu)|(fh)(v)|)τ(t)dt=1ντ1(1u)+τ1(1v)2τ1(1v)[(1uτ(t))ν(1uτ(τ1(1u)+τ1(1v)t))ν]×(u(τ(t)v)τ(t)(vu)|(fh)(1u)|+v(uτ(t))τ(t)(vu)|(fh)(1u)|)τ(t)dt (2.26)

    and the value of the second integral in (2.25) is given below

    τ1(1u)τ1(1u)+τ1(1v)2(tτ1(1u)+τ1(1v)tτ(x)(1uτ(x))ν1dx)×(u(τ(t)v)τ(t)(vu)|(fh)(u)|+v(uτ(t))τ(t)(vu)|(fh)(v)|)τ(t)dt=1ντ1(1u)τ1(1u)+τ1(1v)2[(1uτ(τ1(1u)+τ1(1v)t))ν(1uτ(t))ν]×(u(τ(t)v)τ(t)(vu)|(fh)(1u)|+v(uτ(t))τ(t)(vu)|(fh)(1u)|)τ(t)dt. (2.27)

    Applying (2.21)–(2.27) in (2.20) to obtain the desired inequality (2.19).

    Remark 3. Particularly, in Theorem 2.4, if we take

    (1) τ(x)=x, we have

    |ζχν(u,v)|=|[f(u)+f(v)2][Jν1v+(ζh)(1u)+Jν1u+(ζh)(1v)][ζ(1u)(ζJν1v+(fh)(1u))+ζ(1v)(ζJν1u(fh)(1v))]|ζh[u(ν,u,v)|(fh)(1u)|+v(ν,u,v)|(fh)(1v)|]Γ(ν+1), (2.28)

    where

    u(ν,u,v)=u+v2uv1vu(tv)t(vu)[(1ut)ν(t1v)ν]dt+1uu+v2uvu(tv)t(vu)[(t1v)ν(1ut)ν]dt

    and

    v(ν,u,v)=u+v2uv1vv(ut)t(vu)[(1ut)ν(t1v)ν]dt+1uu+v2uvv(ut)t(vu)[(t1v)ν(1uτ(t))ν]dt.

    (2) τ(x)=x and ζ(x)=1, we get

    |χν(u,v)|=|f(u)+f(v)2Γ(ν+1)2(uvvu)ν×[Jν1v+(fh)(1u)+Jν1u(fh)(1v)]|(uvvu)ν[u(ν,u,v)|(fh)(1u)|+v(ν,u,v)|(fh)(1v)|]2, (2.29)

    where u(ν,u,v) and v(ν,u,v) are defined as above.

    (3) τ(x)=x, ζ(x)=1 and ν=1, we obtain

    |χ(u,v)|=|f(u)+f(v)2(uvvu)1u1vf(x)dx|(uvvu)[u(u,v)|(fh)(1u)|+v(u,v)|(fh)(1v)|]2, (2.30)
    u(u,v)=vu2uv2+log[4uv(u+v)2]

    and

    v(u,v)=uv2u2v+log[4uv(u+v)2].

    Theorem 2.5. Let f:I(0,)R be an L1 function with fL1 for0<u<v, u,vI and ζ:[u,v]R be an integrable, positive and weighted symmetric function withrespect to u+v2. If |f|q isharmonic convex on [u,v] for q1, τ is anincreasing and positive function on [u,v), and τ(x) is continuous on (u,v), then, we have for ν>0:

    |ζχν;τ(u,v)|ζhτΓ(ν+1)(Cτ(ν,u,v))11q[uτ(ν,u,v)|(fh)(1u)|q+vτ(ν,u,v)|(fh)(1v)|q]1q, (2.31)

    where h(x)=1x, x[1v,1u],

    Cτ(ν,u,v)=2ν+1[(1u1v)ν+1(1uτ(τ1(1u)+τ1(1v)2))ν+1]τ1(1u)+τ1(1v)2τ1(1v)(1uτ(τ1(1u)+τ1(1v)t))ντ(t)dt+τ1(1u)τ1(1u)+τ1(1v)2(1uτ(τ1(1u)+τ1(1v)t))ντ(t)dt

    and uτ(ν,u,v), vτ(ν,u,v) aredefined as in Theorem 2.4.

    Proof. Applying power-mean inequality to(2.20) and then using (2.22)–(2.24), we get

    |ζχν;τ(u,v)|1Γ(ν)(τ1(1u)τ1(1v)|tτ1(1v)τ(x)(1uτ(x))ν1)×(ζhτ)(x)dxτ1(1u)tτ(x)(τ(x)1v)ν1(ζhτ)(x)dx|×|(fhτ)(t)|τ(t)dt1Γ(ν)(τ1(1u)τ1(1v)|τ1(1u)+τ1(1v)ttτ(x)(1uτ(x))ν1(ζhτ)(x)dx|τ(t)dt)11q×(τ1(1u)τ1(1v)|τ1(1u)+τ1(1v)ttτ(x)(1uτ(x))ν1(ζhτ)(x)dx||(fhτ)(t)|qτ(t)dt)1q. (2.32)

    Since |(ζhτ)(x)|ζhτ, hence it is easy to observe that

    τ1(1u)τ1(1v)|τ1(1u)+τ1(1v)ttτ(x)(1uτ(x))ν1(ζhτ)(x)dx|τ(t)dtτ1(1u)τ1(1v)(τ1(1u)+τ1(1v)ttτ(x)(1uτ(x))ν1|(ζhτ)(x)|dx)τ(t)dtζhτ[τ1(1u)+τ1(1v)2τ1(1v)(τ1(1u)+τ1(1v)ttτ(x)(1uτ(x))ν1dx)τ(t)dt+τ1(1u)τ1(1u)+τ1(1v)2(tτ1(1u)+τ1(1v)tτ(x)(1uτ(x))ν1dx)τ(t)dt]=ζhτν{2ν+1[(1u1v)ν+1(1uτ(τ1(1u)+τ1(1v)2))ν+1]τ1(1u)+τ1(1v)2τ1(1v)(1uτ(τ1(1u)+τ1(1v)t))ντ(t)dt+τ1(1u)τ1(1u)+τ1(1v)2(1uτ(τ1(1u)+τ1(1v)t))ντ(t)dt}. (2.33)

    Since for q1 and t[τ1(1u),τ1(1v)], |f|q is convex on [u,v], we get

    |(fhτ)(t)|u(τ(t)v)τ(t)(vu)|(fh)(1u)|q+v(uτ(t))τ(t)(vu)|(fh)(1v)|q.

    Thus, now we are able to evaluate the second integral in (2.32)

    τ1(1u)τ1(1v)|τ1(1u)+τ1(1v)ttτ(x)(1uτ(x))ν1(ζhτ)(x)dx|×|(fhτ)(t)|qτ(t)dtτ1(1u)τ1(1v)|τ1(1u)+τ1(1v)ttτ(x)(1uτ(x))ν1(ζhτ)(x)dx|×(u(τ(t)v)τ(t)(vu)|(fh)(1u)|q+v(uτ(t))τ(t)(vu)|(fh)(1v)|q)τ(t)dtζhτν[|(fh)(1u)|q{τ1(1u)+τ1(1u)2τ1(1v)u(τ(t)v)τ(t)(vu)×[(1uτ(t))ν(1uτ(τ1(1u)+τ1(1v)t))ν]τ(t)dt+τ1(1u)τ1(1u)+τ1(1u)2u(τ(t)v)τ(t)(vu)[(1uτ(τ1(1u)+τ1(1v)t))ν(1uτ(t))ν]τ(t)dt}+|(fh)(1v)|q{τ1(1u)+τ1(1u)2τ1(1v)v(uτ(t))τ(t)(vu)×[(1uτ(t))ν(1uτ(τ1(1u)+τ1(1v)t))ν]τ(t)dt+τ1(1u)τ1(1u)+τ1(1u)2v(uτ(t))τ(t)(vu)×[(1uτ(τ1(1u)+τ1(1v)t))ν(1uτ(t))ν]τ(t)dt}]. (2.34)

    Applying (2.33), (2.34) in (2.32), we get (2.31).

    Remark 4. In Theorem 2.5, especially when we take

    (1) τ(x)=x, we have

    |ζχν(u,v)|=|[f(u)+f(v)2][Jν1v+(ζh)(1u)+Jν1u+(ζh)(1v)][ζ(1u)(ζJν1v+(fh)(1u))+ζ(1v)(ζJν1u(fh)(1v))]|ζhΓ(ν+1)(C(ν,u,v))11q[u(ν,u,v)|(fh)(1u)|q+v(ν,u,v)|(fh)(1v)|q]1q, (2.35)

    where h(x)=1x, x[1v,1u],

    C(ν,u,v)=(2ν1)2ν(ν+1)(vuuv)ν+1

    u(ν,u,v) and v(ν,u,v) are defined in (1) of Remark 3.

    (2) τ(x)=x and ζ(x)=1, we get

    |χν(u,v)|=|f(u)+f(v)2Γ(ν+1)2(uvvu)ν×[Jν1v+(fh)(1u)+Jν1u(fh)(1v)]|1Γ(ν+1)(C(ν,u,v))11q[u(ν,u,v)|(fh)(1u)|q+v(ν,u,v)|(fh)(1v)|q]1q, (2.36)

    where h(x)=1x, x[1v,1u], u(ν,u,v), v(ν,u,v) are defined in (1) of Remark 3 and C(ν,u,v) is as defined above.

    (3) τ(x)=x, ζ(x)=1 and ν=1, we obtain

    |χ(u,v)|=|f(u)+f(v)2(uvvu)1u1vf(x)dx|1Γ(ν+1)(C(u,v))11q[u(u,v)|(fh)(1u)|q+v(u,v)|(fh)(1v)|q]1q, (2.37)

    where h(x)=1x, x[1v,1u], u(u,v), v(u,v) are defined in (3) of Remark 3 and C(u,v)=(vu2uv)2.

    In this study, we proved very important and interesting inequalities of Fejér type for a very fascinating generalized class of functions, namely, harmonic convex functions by using general weighted fractional integral operator which depends upon an increasing function. The results of our study not only generalize a number of findings obtained in [17,18,19] but one can obtain a number of new results by choosing a increasing function involved. The results can also be an inspiration for young researchers as well as researcher already working in the field of fractional integral inequalities and can further open up new directions of research in mathematical sciences.

    Princess Nourah bint Abdulrahman University Researchers Supporting Project number (PNURSP2022R8), Princess Nourah bint Abdulrahman University, Riyadh, Saudi Arabia.

    The authors declare that they have no conflicts of interest in this paper.



    [1] R. Almeida, A Caputo fractional derivative of a function with respect to another function, Commun. Nonlinear Sci., 44 (2017), 460–481. https://doi.org/10.1016/j.cnsns.2016.09.006 doi: 10.1016/j.cnsns.2016.09.006
    [2] T. Abdeljawad, P. O. Mohammed, A. Kashuri, New modified conformable fractional integral inequalities of Hermite-Hadamard type with applications, J. Funct. Space., 2020 (2020), 4352357. https://doi.org/10.1155/2020/4352357 doi: 10.1155/2020/4352357
    [3] A. O. Akdemir, S. I. Butt, M. Nadeem, M. A. Ragusa, New general variants of Chebyshev type inequalities via generalized fractional integral operators, Mathematics, 9 (2021), 122. https://doi.org/10.3390/math9020122 doi: 10.3390/math9020122
    [4] D. Baleanu, P. O. Mohammed, M. Vivas-Cortez, Y. Rangel-Oliveros, Some modifications in conformable fractional integral inequalities, Adv. Differ. Equ., 2020 (2020), 374. https://doi.org/10.1186/s13662-020-02837-0 doi: 10.1186/s13662-020-02837-0
    [5] C. Bardaro, P. L. Butzer, I. Mantellini, The foundations of fractional calculus in the Mellin transform setting with applications, J. Fourier Anal. Appl., 21 (2015), 961–1017. https://doi.org/10.1007/s00041-015-9392-3 doi: 10.1007/s00041-015-9392-3
    [6] D. Baleanu, P. O. Mohammed, S. Zeng, Inequalities of trapezoidal type involving generalized fractional integrals, Alex. Eng. J., 59 (2020), 2975–2984. https://doi.org/10.1016/j.aej.2020.03.039 doi: 10.1016/j.aej.2020.03.039
    [7] F. Chen, S. Wu, Fejér and Hermite-Hadamard type inqequalities for harmonically convex functions, J. Appl. Math., 2014 (2014). https://doi.org/10.1155/2014/386806 doi: 10.1155/2014/386806
    [8] S. S. Dragomir, C. E. M. Pearce, Selected topics on Hermite-Hadamard inequalities and applications, RGMIA Monographs, Victoria University: Footscray, Australia, 2000.
    [9] S. S. Dragomir, R. P. Agarwal, Two inequalities for differentiable mappings and applications to special means of real numbers and to trapezoidal formula, Appl. Math. Lett., 11 (1998) 91–95. https://doi.org/10.1016/S0893-9659(98)00086-X doi: 10.1016/S0893-9659(98)00086-X
    [10] M. R. Delavar, M. Aslani, M. De La Sen, Hermite-Hadamard-Fejér inequality related to generalized convex functions via fractional integrals, J. Math., 2018 (2018), 5864091. https://doi.org/10.1155/2018/5864091 doi: 10.1155/2018/5864091
    [11] L. Fejér, Über die fourierreihen, Ⅱ, Math. Naturwiss. Anz Ungar. Akad. Wiss, 24 (1906), 369–390. https://doi.org/10.1086/141409 doi: 10.1086/141409
    [12] A. Fernandez, P. O. Mohammed, Hermite-Hadamard inequalities in fractional calculus defined using Mittag-Leffler kernels, Math. Method. Appl. Sci., 44 (2020), 1–18. https://doi.org/10.1002/mma.6188 doi: 10.1002/mma.6188
    [13] B. Gavrea, I. Gavrea, On some Ostrowski type inequalities, Gen. Math., 18 (2010), 33–44. https://doi.org/10.1016/j.mcm.2007.12.004 doi: 10.1016/j.mcm.2007.12.004
    [14] H. Gunawan, Eridani, Fractional integrals and generalized Olsen inequalities, Kyungpook Math. J., 49 (2009), 31–39. https://doi.org/10.5666/KMJ.2009.49.1.031 doi: 10.5666/KMJ.2009.49.1.031
    [15] J. Hadamard, Étude sur les propriétés des fonctions entières en particulier d'une fonction considérée par Riemann, J. Math. Pure. Appl., 58 (1893), 171–215.
    [16] J. Han, P. O. Mohammed, H. Zeng, Generalized fractional integral inequalities of Hermite-Hadamard-type for a convex function, Open Math., 18 (2020), 794–806. https://doi.org/10.1515/math-2020-0038 doi: 10.1515/math-2020-0038
    [17] İ. İşcan, Hermite-Hadamard-Fejér type inequalities for convex functions via fractional integrals, Stud. U. Babes-Bol. Mat., 60 (2015), 355–366.
    [18] İ. İşcan, S. Wu, Hermite-Hadamard type inequalities for harmonically convex functions via fractional integrals, Appl. Math. Comput., 238 (2014), 237–244. https://doi.org/10.1016/j.amc.2014.04.020 doi: 10.1016/j.amc.2014.04.020
    [19] İ. İşcan, M. Kunt, N. Yazici, Hermite-Hadamard-Fejér type inequalities for harmonically convex functions via fractional integrals, New Tre. Math. Sci., 4 (2016), 239–253. http://dx.doi.org/10.20852/ntmsci.2016320378 doi: 10.20852/ntmsci.2016320378
    [20] F. Jarad, T. Abdeljawad, K. Shah, On the weighted fractional operators of a function with respect to another function, Fractals, 28 (2020). https://doi.org/10.1142/S0218348X20400113 doi: 10.1142/S0218348X20400113
    [21] S. Kaijser, L. Nikolova, L. E. Persson, A. Wedestig, A Hardy type inequalities via convexity, Math. Inequal. Appl., 8 (2005), 403–417.
    [22] A. A. Kilbas, H. M. Srivastava, J. J. Trujillo, Theory and applications of fractional differential equations, Elsevier B. V., 204 (2006).
    [23] M. Kunt, İ. İşcan, On new Hermite-Hadamard-Fejér type inequalities for p-convex functions via fractional integrals, CMMA, 2 (2017), 1–15.
    [24] A. Kashuri, T. M. Rassias, New Hermite-Hadamard-Fejer inequalities via k-fractional integrals for di erentiable generalized nonconvex functions, Filomat, 34 (2020), 2549–2558. https://doi.org/10.2298/FIL2008549K doi: 10.2298/FIL2008549K
    [25] P. O. Mohammed, I. Brevik, A new version of the Hermite-Hadamard inequality for Riemann-Liouville fractional integrals, Symmetry, 12 (2020), 610. https://doi.org/10.3390/sym12040610 doi: 10.3390/sym12040610
    [26] P. O. Mohammed, T. Abdeljawad, Opial integral inequalities for generalized fractional operators with nonsingular kernel, J. Inequal. Appl., 2020 (2020), 148. https://doi.org/10.1186/s13660-020-02419-4 doi: 10.1186/s13660-020-02419-4
    [27] H. Kalsoom, M. Vivas-Cortez, M. Amer Latif, H. Ahmad, Weighted midpoint Hermite-Hadamard-Fejér type inequalities in fractional calculus for harmonically convex functions, Fractal Fract., 5 (2021), 252. https://doi.org/10.3390/fractalfract5040252 doi: 10.3390/fractalfract5040252
    [28] H. Kalsoom, H. Budak, H. Kara, M. A. Ali, Some new parameterized inequalities for co-ordinated convex functions involving generalized fractional integrals, Open Math., 19 (2021), 1153–1186. https://doi.org/10.1515/math-2021-0072 doi: 10.1515/math-2021-0072
    [29] P. O. Mohammed, T. Abdeljawad, S. Zeng, A. Kashuri, Fractional Hermite-Hadamard integral inequalities for a new class of convex functions, Symmetry, 12 (2020), 1485. https://doi.org/10.3390/sym12091485 doi: 10.3390/sym12091485
    [30] P. O. Mohammed, T. Abdeljawad, Modification of certain fractional integral inequalities for convex functions, Adv. Differ. Equ., 2020 (2020), 69. https://doi.org/10.1186/s13662-020-2541-2 doi: 10.1186/s13662-020-2541-2
    [31] S. Z. Ullah, M. A. Khan, Z. A. Khan, Y. M. Chu, Coordinate strongly s-convex functions and related results, J. Math. Inequal., 14 (2020), 829–843. https://doi.org/10.17719/jisr.11662 doi: 10.17719/jisr.11662
    [32] Y. Khurshid, M. A. Khan, Y. M. Chu, Z. A. Khan, Hermite-Hadamard Fejér inequalities for conformal fractional integrals via preinvex functions, J. Funct. Space., 2019 (2019), 1–10. https://doi.org/10.1155/2019/4976351 doi: 10.1155/2019/4976351
    [33] Z. A. Khan, R. Gul, K. Shah, On impulsive boundary value problem with Riemann-Liouville fractional order derivative, J. Funct. Space., 2021 (2021), 1–11. https://doi.org/10.1155/2021/8331731 doi: 10.1155/2021/8331731
    [34] P. O. Mohammed, Hermite-Hadamard inequalities for Riemann-Liouville fractional integrals of a convex function with respect to a monotone function, Math. Method. Appl. Sci., 44 (2019), 2314–2324. https://doi.org/10.1002/mma.5784 doi: 10.1002/mma.5784
    [35] P. O. Mohammed, M. Z. Sarikaya, D. Baleanu, On the generalized Hermite-Hadamard inequalities via the tempered fractional integrals, Symmetry, 12 (2020), 595. https://doi.org/10.1039/D0AY90014A doi: 10.1039/D0AY90014A
    [36] I. G. Macdonald, Symmetric functions and orthogonal polynomials, American Mathematical Society, New York, 1997.
    [37] S. Mehmood, F. Zafar, N. Asmin, New Hermite-Hadamard-Fejér type inequalities for (h1, h2)-convex functions via fractional calculus, ScienceAsia, 46 (2020), 102–108. https://doi.org/10.2306/scienceasia1513-1874.2020.S015 doi: 10.2306/scienceasia1513-1874.2020.S015
    [38] T. J. Osler, The fractional derivative of a composite function, SIAM J. Math. Anal., 1 (1970), 288–293. https://doi.org/10.1137/0501026 doi: 10.1137/0501026
    [39] F. Qi, O. P. Mohammed, J. C. Yao, Y. H. Yao, Generalized fractional integral inequalities of Hermite-Hadamard type for (ν, m)-convex functions, J. Inequal. Appl., 2019 (2019), 135. https://doi.org/10.1186/s13660-019-2079-6 doi: 10.1186/s13660-019-2079-6
    [40] M. Z. Sarikaya, H. Yaldiz, On generalization integral inequalities for fractional integrals, Nihonkai Math. J., 25 (2014), 93–104.
    [41] M. Z. Sarikaya, C. C. Bilisik, P. O. Mohammed, Some generalizations of Opial type inequalities, Appl. Math. Inf. Sci., 14 (2020), 809–816. https://doi.org/10.18576/amis/140508 doi: 10.18576/amis/140508
    [42] M. Z. Sarikaya, E. Set, H. Yaldiz, N. Basak, Hermite-Hadamard's inequalities for fractional integrals and related fractional inequalities, Math. Comput. Model., 57 (2013), 2403–2407. https://doi.org/10.1016/j.mcm.2011.12.048 doi: 10.1016/j.mcm.2011.12.048
    [43] Y. Sawano, H. Wadade, On the Gagliardo-Nirenberg type inequality in the critical Sobolev-Morrey space, J. Fourier Anal. Appl., 19 (2013), 20–47. https://doi.org/10.1007/s00041-012-9223-8 doi: 10.1007/s00041-012-9223-8
    [44] D. P. Shi, B. Y. Xi, F. Qi, Hermite-Hadamard type inequalities for Riemann-Liouville fractional integrals of (ν, m)-convex functions, Fract. Differ. Calc., 4 (2014), 31–43.
    [45] M. Vivas-Cortez, T. Abdeljawad, P. O. Mohammed, Y. Rangel-Oliveros, Simpson's integral inequalities for twice differentiable convex functions, Math. Probl. Eng., 2020 (2020), 1936461. https://doi.org/10.1155/2020/1936461 doi: 10.1155/2020/1936461
    [46] C. J. Zhao, W. S. Cheung, On improvements of the Rozanova's inequality, J. Inequal. Appl., 2011 (2011), 33. https://doi.org/10.1186/1029-242X-2011-33 doi: 10.1186/1029-242X-2011-33
    [47] A. Scapellato, Riesz potential, Marcinkiewicz integral and their commutators on mixed Morrey spaces, Filomat, 34 (2020), 931–944. https://doi.org/10.2298/FIL2003931S doi: 10.2298/FIL2003931S
    [48] A. Abdalmonem, A. Scapellato, Fractional operators with homogeneous kernels in weighted Herz spaces with variable exponent, Appl. Anal., 2020. https://doi.org/10.1080/00036811.2020.1789602 doi: 10.1080/00036811.2020.1789602
    [49] T. Y. Zhang, A. P. Ji, F. Qi, On integral inequalities of Hermite-Hadamard type for s-geometrically convex functions, Abstr. Appl. Anal., 2012 (2012), 560586. https://doi.org/10.1155/2012/560586 doi: 10.1155/2012/560586
    [50] T. Y. Zhang, A. P. Ji, F. Qi, Some inequalities of Hermite-Hadamard type for GA-convex functions with applications to means, Le Mat., 68 (2013), 229–239. https://doi.org/10.4418/2013.68.1.17 doi: 10.4418/2013.68.1.17
  • This article has been cited by:

    1. Muhammad Tariq, Hijaz Ahmad, Soubhagya Kumar Sahoo, Artion Kashuri, Taher A. Nofal, Ching-Hsien Hsu, Inequalities of Simpson-Mercer-type including Atangana-Baleanu fractional operators and their applications, 2022, 7, 2473-6988, 15159, 10.3934/math.2022831
    2. Thongchai Botmart, Soubhagya Kumar Sahoo, Bibhakar Kodamasingh, Muhammad Amer Latif, Fahd Jarad, Artion Kashuri, Certain midpoint-type Fejér and Hermite-Hadamard inclusions involving fractional integrals with an exponential function in kernel, 2022, 8, 2473-6988, 5616, 10.3934/math.2023283
    3. Humaira Kalsoom, Zareen A. Khan, Hermite-Hadamard-Fejér Type Inequalities with Generalized K-Fractional Conformable Integrals and Their Applications, 2022, 10, 2227-7390, 483, 10.3390/math10030483
    4. Muhammad Tariq, Sotiris K. Ntouyas, Asif Ali Shaikh, A Comprehensive Review on the Fejér-Type Inequality Pertaining to Fractional Integral Operators, 2023, 12, 2075-1680, 719, 10.3390/axioms12070719
    5. Saad Ihsan Butt, Miguel Vivas-Cortez, Hira Inam, Harmonic conformable refinements of Hermite-Hadamard Mercer inequalities by support line and related applications, 2024, 30, 1387-3954, 385, 10.1080/13873954.2024.2348156
    6. Pshtiwan Mohammed, Arran Fernandez, Integral inequalities in fractional calculus with general analytic kernels, 2023, 37, 0354-5180, 3659, 10.2298/FIL2311659M
  • Reader Comments
  • © 2022 the Author(s), licensee AIMS Press. This is an open access article distributed under the terms of the Creative Commons Attribution License (http://creativecommons.org/licenses/by/4.0)
通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索

Metrics

Article views(2046) PDF downloads(96) Cited by(6)

Other Articles By Authors

/

DownLoad:  Full-Size Img  PowerPoint
Return
Return

Catalog