Research article Special Issues

New generalized integral inequalities with applications

  • The authors have proved an identity for a generalized integral operator via differentiable function. By applying the established identity, the generalized trapezium type integral inequalities have been discovered. It is pointed out that the results of this research provide integral inequalities for almost all fractional integrals discovered in recent past decades. Various special cases have been identified. Some applications of presented results have been analyzed.

    Citation: Artion Kashuri, Rozana Liko, Silvestru Sever Dragomir. New generalized integral inequalities with applications[J]. AIMS Mathematics, 2019, 4(3): 984-996. doi: 10.3934/math.2019.3.984

    Related Papers:

    [1] Shuang-Shuang Zhou, Saima Rashid, Muhammad Aslam Noor, Khalida Inayat Noor, Farhat Safdar, Yu-Ming Chu . New Hermite-Hadamard type inequalities for exponentially convex functions and applications. AIMS Mathematics, 2020, 5(6): 6874-6901. doi: 10.3934/math.2020441
    [2] Hong Yang, Shahid Qaisar, Arslan Munir, Muhammad Naeem . New inequalities via Caputo-Fabrizio integral operator with applications. AIMS Mathematics, 2023, 8(8): 19391-19412. doi: 10.3934/math.2023989
    [3] Haoliang Fu, Muhammad Shoaib Saleem, Waqas Nazeer, Mamoona Ghafoor, Peigen Li . On Hermite-Hadamard type inequalities for n-polynomial convex stochastic processes. AIMS Mathematics, 2021, 6(6): 6322-6339. doi: 10.3934/math.2021371
    [4] M. Emin Özdemir, Saad I. Butt, Bahtiyar Bayraktar, Jamshed Nasir . Several integral inequalities for (α, s,m)-convex functions. AIMS Mathematics, 2020, 5(4): 3906-3921. doi: 10.3934/math.2020253
    [5] Tekin Toplu, Mahir Kadakal, İmdat İşcan . On n-Polynomial convexity and some related inequalities. AIMS Mathematics, 2020, 5(2): 1304-1318. doi: 10.3934/math.2020089
    [6] Saad Ihsan Butt, Erhan Set, Saba Yousaf, Thabet Abdeljawad, Wasfi Shatanawi . Generalized integral inequalities for ABK-fractional integral operators. AIMS Mathematics, 2021, 6(9): 10164-10191. doi: 10.3934/math.2021589
    [7] Muhammad Imran Asjad, Waqas Ali Faridi, Mohammed M. Al-Shomrani, Abdullahi Yusuf . The generalization of Hermite-Hadamard type Inequality with exp-convexity involving non-singular fractional operator. AIMS Mathematics, 2022, 7(4): 7040-7055. doi: 10.3934/math.2022392
    [8] Maimoona Karim, Aliya Fahmi, Shahid Qaisar, Zafar Ullah, Ather Qayyum . New developments in fractional integral inequalities via convexity with applications. AIMS Mathematics, 2023, 8(7): 15950-15968. doi: 10.3934/math.2023814
    [9] Soubhagya Kumar Sahoo, Fahd Jarad, Bibhakar Kodamasingh, Artion Kashuri . Hermite-Hadamard type inclusions via generalized Atangana-Baleanu fractional operator with application. AIMS Mathematics, 2022, 7(7): 12303-12321. doi: 10.3934/math.2022683
    [10] Mustafa Gürbüz, Yakup Taşdan, Erhan Set . Ostrowski type inequalities via the Katugampola fractional integrals. AIMS Mathematics, 2020, 5(1): 42-53. doi: 10.3934/math.2020004
  • The authors have proved an identity for a generalized integral operator via differentiable function. By applying the established identity, the generalized trapezium type integral inequalities have been discovered. It is pointed out that the results of this research provide integral inequalities for almost all fractional integrals discovered in recent past decades. Various special cases have been identified. Some applications of presented results have been analyzed.


    Theorem 1.1. Let f:IRR be convex, a1,a2I and a1<a2. Then

    f(a1+a22)1a2a1a2a1f(x)dxf(a1)+f(a2)2. (1.1)

    This inequality (1.1) is called Hermite-Hadamard inequality.

    Authors of recent decades have studied (1.1) in the premises of newly invented definitions due to motivation of convex function. Interested readers see the references [1,2,3,4,5,6,7,8,9,10,11,12,13,14,15,16,17,18,19,20]. It is important to summarize the study of fractional integrals as follow:

    Definition 1.2. The k-gamma function, where kR+ and xC, is defined by

    Γk(x)=limnn!kn(nk)xk1(x)n,k. (1.2)

    Its integral representation is given by

    Γk(α)=0tα1etkkdt. (1.3)

    One can note that

    Γk(α+k)=αΓk(α). (1.4)

    Definition 1.3. [11] Let fL[a1,a2]. Then k-fractional integrals of order α,k>0, where a10 is given as

    Iα,ka+1f(x)=1kΓk(α)xa1(xt)αk1f(t)dt,x>a1

    and

    Iα,ka2f(x)=1kΓk(α)a2x(tx)αk1f(t)dt,a2>x. (1.5)

    Let ϕ:[0,)[0,) and

    10ϕ(t)tdt<, (1.6)
    1Aϕ(s)ϕ(r)Afor12sr2 (1.7)
    ϕ(r)r2Bϕ(s)s2forsr (1.8)
    |ϕ(r)r2ϕ(s)s2|C|rs|ϕ(r)r2for12sr2 (1.9)

    where A,B,C>0 are independent of r,s>0. If ϕ(r)rα is increasing for some α0 and ϕ(r)rβ is decreasing for some β0, then ϕ satisfies (1.6)–(1.9), see [15]. Therefore, the left-sided and right-sided generalized integral operators are defined as follows:

    a+1Iϕf(x)=xa1ϕ(xt)xtf(t)dt,x>a1, (1.10)
    a2Iϕf(x)=a2xϕ(tx)txf(t)dt,x<a2. (1.11)

    For other feature of generalized integrals, see [14].

    The main objective of this paper is to discover in Section 2, an interesting identity in order to study some new bounds regarding trapezium type integral inequalities. By using the established identity as an auxiliary result, some new estimates for trapezoidal type integral inequalities via generalized integrals are obtained. In Section 3, some applications are given. At the end, a briefly conclusion is provided as well.

    Let a1<a2 and m(0,1] be a fixed number. Throughout this study, for brevity, we define

    Λm(t):=t0ϕ((a2ma1)u)udu<,t[0,1],xP=[ma1,a2]. (2.1)

    The following lemma is crucial:

    Lemma 2.1. Let f:PR be a differentiable mapping on (ma1,a2). If fL(P) and λ(0,1], then

    f(ma1+λ2(a2ma1))12Λm(λ2)×[(ma1+λ2(a2ma1))+Iϕf(ma1(1λ)+a2λ)+(ma1+λ2(a2ma1))Iϕf(ma1)]=λ(a2ma1)2Λm(λ2)×{120Λm(λt)f(ma1+(λt)(a2ma1))dt112Λm((1t)λ)f(ma1+(λt)(a2ma1))dt}. (2.2)

    We denote

    Tf,Λm(λ;a1,a2):=λ(a2ma1)2Λm(λ2)×{120Λm(λt)f(ma1+(λt)(a2ma1))dt112Λm((1t)λ)f(ma1+(λt)(a2ma1))dt}. (2.3)

    Proof. Integrating by parts Eq (2.3), we get

    Tf,Λm(λ;a1,a2)=λ(a2ma1)2Λm(λ2)×{Λm(λt)f(ma1+(λt)(a2ma1))λ(a2ma1)|1201(a2ma1)×120ϕ((a2ma1)(λt))λtf(ma1+(λt)(a2ma1))dtΛm((1t)λ)f(ma1+(λt)(a2ma1))λ(a2ma1)|1121(a2ma1)×112ϕ((a2ma1)(1t)λ)(1t)λf(ma1+(λt)(a2ma1))dt}=λ(a2ma1)2Λm(λ2)×{Λm(λ2)f(ma1+λ2(a2ma1))λ(a2ma1)1(a2ma1)×(ma1+λ2(a2ma1))Iϕf(ma1)+Λm(λ2)f(ma1+λ2(a2ma1))λ(a2ma1)1(a2ma1)×(ma1+λ2(a2ma1))+Iϕf(ma1(1λ)+a2λ)}=f(ma1+λ2(a2ma1))12Λm(λ2)×[(ma1+λ2(a2ma1))+Iϕf(ma1(1λ)+a2λ)+(ma1+λ2(a2ma1))Iϕf(ma1)].

    The proof of Lemma 2.1 is completed.

    Remark 2.2. Taking λ=1 and ϕ(t)=t in Lemma 2.1, we have

    Tf(a1,a2):=f(ma1+a22)1(a2ma1)a2ma1f(t)dt=(a2ma1){120tf(ma1+t(a2ma1))dt112(1t)f(ma1+t(a2ma1))dt}. (2.4)

    Theorem 2.3. Let f:PR be a differentiable mapping on (ma1,a2). If |f|q is convex on P and λ(0,1] for q>1 and p1+q1=1, then

    |Tf,Λm(λ;a1,a2)|λ(a2ma1)2q8Λm(λ2)pBΛm(λ;p)×{q(4λ)|f(ma1)|q+λ|f(a2)|q+q(43λ)|f(ma1)|q+3λ|f(a2)|q}, (2.5)

    where

    BΛm(λ;p):=120[Λm(λt)]pdt. (2.6)

    Proof. Using Lemma 2.1, convexity of |f|q and Hölder inequality, we get

    |Tf,Λm(λ;a1,a2)|λ(a2ma1)2Λm(λ2)×{120Λm(λt)|f(ma1+(λt)(a2ma1))|dt+112Λm((1t)λ)|f(ma1+(λt)(a2ma1))|dt}λ(a2ma1)2Λm(λ2)×{(120[Λm(λt)]pdt)1p(120|f(ma1+(λt)(a2ma1))|qdt)1q+(112[Λm((1t)λ)]pdt)1p(112|f(ma1+(λt)(a2ma1))|qdt)1q}λ(a2ma1)2Λm(λ2)pBΛm(λ;p)×{(120[(1λt)|f(ma1)|q+(λt)|f(a2)|q]dt)1q+(112[(1λt)|f(ma1)|q+(λt)|f(a2)|q]dt)1q}=λ(a2ma1)2q8Λm(λ2)pBΛm(λ;p)×{q(4λ)|f(ma1)|q+λ|f(a2)|q+q(43λ)|f(ma1)|q+3λ|f(a2)|q}.

    The proof of Theorem 2.3 is completed.

    Corollary 2.4. For p=q=2 in Theorem 2.3, we get

    |Tf,Λm(λ;a1,a2)|λ(a2ma1)42Λm(λ2)BΛm(λ;2)×{(4λ)|f(ma1)|2+λ|f(a2)|2+(43λ)|f(ma1)|2+3λ|f(a2)|2}. (2.7)

    Corollary 2.5. For ϕ(t)=t in Theorem 2.3, we have

    |Tf,Λm(λ;a1,a2)|λ(a2ma1)q8p2p+1(p+1)×{q(4λ)|f(ma1)|q+λ|f(a2)|q+q(43λ)|f(ma1)|q+3λ|f(a2)|q}. (2.8)

    Remark 2.6. For λ=1 in Corollary 2.5, we obtain

    |Tf(a1,a2)|(a2ma1)q8p2p+1(p+1)×{q3|f(ma1)|q+|f(a2)|q+q|f(ma1)|q+3|f(a2)|q}. (2.9)

    Corollary 2.7. For ϕ(t)=tαΓ(α) in Theorem 2.3, we get

    |Tf,Λm(λ;a1,a2)|2α1λ(a2ma1)q8p2pα+1(pα+1)×{q(4λ)|f(ma1)|q+λ|f(a2)|q+q(43λ)|f(ma1)|q+3λ|f(a2)|q}. (2.10)

    Corollary 2.8. For ϕ(t)=tαkkΓk(α) in Theorem 2.3, we have

    |Tf,Λm(λ;a1,a2)|2αk1λ(a2ma1)q8p2pαk+1(pαk+1)×{q(4λ)|f(ma1)|q+λ|f(a2)|q+q(43λ)|f(ma1)|q+3λ|f(a2)|q}. (2.11)

    Corollary 2.9. For ϕ(t)=t(a2t)α1 for α(0,1) in Theorem 2.3, we obtain

    |Tf,Λm(λ;a1,a2)|λα(a2ma1)2q8[aα2((ma1a2)λ2+a2)α]pBΛm(λ;p)×{q(4λ)|f(ma1)|q+λ|f(a2)|q+q(43λ)|f(ma1)|q+3λ|f(a2)|q}, (2.12)

    where

    BΛm(λ;p):=1λαp(a2ma1)a2(ma1a2)λ2+a2(aα2tα)pdt. (2.13)

    Corollary 2.10. For ϕ(t)=tαexp[(1αα)t] for α(0,1) in Theorem 2.3, we get

    |Tf,Λm(λ;a1,a2)|λ(α1)(a2ma1)2q8{exp[(1αα)(a2ma1)λ2]1}pBΛm(λ;p)×{q(4λ)|f(ma1)|q+λ|f(a2)|q+q(43λ)|f(ma1)|q+3λ|f(a2)|q}, (2.14)

    where

    BΛm(λ;p):=αλ(α1)p+1(a2ma1)exp[(1αα)(a2ma1)λ2]10tpt+1dt. (2.15)

    Theorem 2.11. Let f:PR be a differentiable mapping on (ma1,a2). If |f|q is convex on P and λ(0,1] for q1, then

    |Tf,Λm(λ;a1,a2)|λ(a2ma1)2Λm(λ2)(BΛm(λ;1))11q×{q[BΛm(λ;1)λCΛm(λ)]|f(ma1)|q+λCΛm(λ)|f(a2)|q+q[(1λ)BΛm(λ;1)λCΛm(λ)]|f(ma1)|q+λ[BΛm(λ;1)CΛm(λ)]|f(a2)|q}, (2.16)

    where

    CΛm(λ):=120tΛm(λt)dt (2.17)

    and BΛm(λ;1) is defined as in Theorem 2.3.

    Proof. Using Lemma 2.1, convexity of |f|q and power mean inequality, we get

    |Tf,Λm(λ;a1,a2)|λ(a2ma1)2Λm(λ2)×{120Λm(λt)|f(ma1+(λt)(a2ma1))|dt+112Λm((1t)λ)|f(ma1+(λt)(a2ma1))|dt}λ(a2ma1)2Λm(λ2)×{(120Λm(λt)dt)11q(120Λm(λt)|f(ma1+(λt)(a2ma1))|qdt)1q+(112Λm((1t)λ)dt)11q(112Λm((1t)λ)|f(ma1+(λt)(a2ma1))|qdt)1q}λ(a2ma1)2Λm(λ2)(BΛm(λ;1))11q×{(120Λm(λt)[(1λt)|f(ma1)|q+(λt)|f(a2)|q]dt)1q+(112Λm((1t)λ)[(1λt)|f(ma1)|q+(λt)|f(a2)|q]dt)1q}=λ(a2ma1)2Λm(λ2)(BΛm(λ;1))11q×{q[BΛm(λ;1)λCΛm(λ)]|f(ma1)|q+λCΛm(λ)|f(a2)|q+q[(1λ)BΛm(λ;1)λCΛm(λ)]|f(ma1)|q+λ[BΛm(λ;1)CΛm(λ)]|f(a2)|q}.

    The proof of Theorem 2.11 is completed.

    Corollary 2.12. For q=1 in Theorem 2.11, we get

    |Tf,Λm(λ;a1,a2)|λ(a2ma1)2Λm(λ2)×{[(2λ)BΛm(λ;1)2λCΛm(λ)]|f(ma1)|+λBΛm(λ;1)|f(a2)|}. (2.18)

    Corollary 2.13. For ϕ(t)=t in Theorem 2.11, we have

    |Tf,Λm(λ;a1,a2)|λ(a2ma1)8q3×{q(3λ)|f(ma1)|q+λ|f(a2)|q+q(4λ3)|f(ma1)|q+2λ|f(a2)|q}. (2.19)

    Remark 2.14. For λ=1 in Corollary 2.13, we obtain

    |Tf(a1,a2)|(a2ma1)8q3×{q2|f(ma1)|q+|f(a2)|q+q|f(ma1)|q+2|f(a2)|q}. (2.20)

    Corollary 2.15. For ϕ(t)=tαΓ(α) in Theorem 2.11, we get

    |Tf,Λm(λ;a1,a2)|λ(a2ma1)4Γ(α+1)Γ(α+2)×{q(1λ(α+1)2(α+2))|f(ma1)|q+λ(α+1)2(α+2)|f(a2)|q+q((1λ)λ(α+1)2(α+2))|f(ma1)|q+λ(α+3)2(α+2)|f(a2)|q}. (2.21)

    Corollary 2.16. For ϕ(t)=tαkkΓk(α) in Theorem 2.11, we have

    |Tf,Λm(λ;a1,a2)|λ(a2ma1)4Γk(α+k)Γk(α+k+1)×{q(1λ(αk+1)2(αk+2))|f(ma1)|q+λ(αk+1)2(αk+2)|f(a2)|q+q((1λ)λ(αk+1)2(αk+2))|f(ma1)|q+λ(αk+3)2(αk+2)|f(a2)|q}. (2.22)

    Corollary 2.17. For ϕ(t)=t(a2t)α1 for α(0,1) in Theorem 2.11, we obtain

    |Tf,Λm(λ;a1,a2)|λα(a2ma1)2[aα2((ma1a2)λ2+a2)α](BΛm(λ;1))11q×{q[BΛm(λ;1)λCΛm(λ)]|f(ma1)|q+λCΛm(λ)|f(a2)|q+q[(1λ)BΛm(λ;1)λCΛm(λ)]|f(ma1)|q+λ[BΛm(λ;1)CΛm(λ)]|f(a2)|q}, (2.23)

    where

    CΛm(λ):=1α120t[aα2((ma1a2)λt+a2)α]dt (2.24)

    and BΛm(λ;1) is defined by Eq (2.13) for p=1.

    Corollary 2.18. For ϕ(t)=tαexp[(1αα)t] for α(0,1) in Theorem 2.11, we get

    |Tf,Λm(λ;a1,a2)|λ(α1)(a2ma1)2{exp[(1αα)(a2ma1)λ2]1}pBΛm(λ;1)×{q[BΛm(λ;1)λCΛm(λ)]|f(ma1)|q+λCΛm(λ)|f(a2)|q+q[(1λ)BΛm(λ;1)λCΛm(λ)]|f(ma1)|q+λ[BΛm(λ;1)CΛm(λ)]|f(a2)|q}, (2.25)

    where

    CΛm(λ):=1(α1)120{exp[(1αα)(a2ma1)λt]1}dt. (2.26)

    and BΛm(λ;1) is defined by eq (2.15) for p=1.

    1.

    A:=A(1,2)=1+22,

    2.

    H:=H(1,2)=211+12,

    3.

    L:=L(1,2)=21ln|2|ln|1|,

    4.

    Lr:=Lr(1,2)=[r+12r+11(r+1)(21)]1r;rZ{1,0}.

    From Section 2, we obtain:

    Proposition 3.1. Let m(0,1] and a1,a2R{0}, where a1<a2. Then for rN and r2, where q>1 and p1+q1=1,

    |Ar(ma1,a2)Lrr(ma1,a2)|r(a2ma1)q4p2p+1(p+1)×{qA(3|ma1|q(r1),|a2|q(r1))+qA(|ma1|q(r1),3|a2|q(r1))}. (3.1)

    Proof. Taking λ=1,f(t)=tr and ϕ(t)=t, in Theorem 2.3.

    Proposition 3.2. Let m(0,1] and a1,a2R{0}, where a1<a2. Then for q>1 and p1+q1=1,

    |1A(ma1,a2)1L(ma1,a2)|q34(a2ma1)p2p+1(p+1)×{1qH(3|ma1|2q,|a2|2q)+1qH(|ma1|2q,3|a2|2q)}. (3.2)

    Proof. Taking λ=1,f(t)=1t and ϕ(t)=t, in Theorem 2.3.

    Proposition 3.3. Let m(0,1] and a1,a2R{0}, where a1<a2. Then for rN and r2, where q1,

    |Ar(ma1,a2)Lrr(ma1,a2)|q23r(a2ma1)8×{qA(2|ma1|q(r1),|a2|q(r1))+qA(|ma1|q(r1),2|a2|q(r1))}. (3.3)

    Proof. Taking λ=1,f(t)=tr and ϕ(t)=t, in Theorem 2.11.

    Proposition 3.4. Let m(0,1] and a1,a2R{0}, where a1<a2. Then for q1, the following inequality hold:

    |1A(ma1,a2)1L(ma1,a2)|q43(a2ma1)8×{1qH(2|ma1|2q,|a2|2q)+1qH(|ma1|2q,2|a2|2q)}. (3.4)

    Proof. Taking λ=1,f(t)=1t and ϕ(t)=t, in Theorem 2.11.

    Next, we provide some new error estimates for the midpoint formula. Let Q be the partition of a1=0<1<<k=a2 of [a1,a2]. Let consider the following quadrature formula:

    a2a1f(x)dx=M(f,Q)+E(f,Q),

    where

    M(f,Q)=k1i=0f(i+i+12)(i+1i)

    is the midpoint version and E(f,Q) is denote their associated approximation error.

    Proposition 3.5. Let f:[a1,a2]R be a differentiable function on (a1,a2), where a1<a2. If |f|q is convex on [a1,a2] for q>1 and p1+q1=1, then

    |E(f,Q)|1q8p2p+1(p+1)×k1i=0(i+1i)2×{q3|f(i)|q+|f(i+1)|q+q|f(i)|q+3|f(i+1)|q}. (3.5)

    Proof. Applying Theorem 2.3 for λ=m=1 and ϕ(t)=t on [i,i+1](i=0,,k1) of Q, we have

    |f(i+i+12)1(i+1i)i+1if(x)dx|(i+1i)q8p2p+1(p+1)×{q3|f(i)|q+|f(i+1)|q+q|f(i)|q+3|f(i+1)|q}. (3.6)

    Hence from (3.6), we get

    |E(f,Q)|=|a2a1f(x)dxM(f,Q)||k1i=0{i+1if(x)dxf(i+i+12)(i+1i)}|k1i=0|{i+1if(x)dxf(i+i+12)(i+1i)}|1q8p2p+1(p+1)×k1i=0(i+1i)2×{q3|f(i)|q+|f(i+1)|q+q|f(i)|q+3|f(i+1)|q}.

    Proposition 3.6. Let f:[a1,a2]R be a differentiable function on (a1,a2), where a1<a2. If |f|q is convex on [a1,a2] for q1, then

    |E(f,Q)|18q3×k1i=0(i+1i)2×{q2|f(i)|q+|f(i+1)|q+q|f(i)|q+2|f(i+1)|q}. (3.7)

    Proof. The proof is analogous as to that of Proposition 3.5 but use Theorem 2.11.

    Remark 3.7 Applying our Theorems 2.3 and 2.11, where m=1, for appropriate choices of function ϕ(t), we can deduce some new bounds for midpoint formula using above ideas and techniques. The details are left to the interested reader.

    The authors have proved an identity for a generalized integral operator via differentiable function. By applying the established identity, the generalized trapezium type integral inequalities have been discovered. Some applications of presented results have been analyzed. Interested reader can establish new inequalities by using different integral operators and they can be applied in convex analysis, optimization and different area of pure and applied mathematics.

    The authors would like to thank the referees for valuable comments and suggestions for improved our manuscript.

    The authors declare that they have no competing interests.



    [1] S. M. Aslani, M. R. Delavar and S. M. Vaezpour, Inequalities of Fejér type related to generalized convex functions with applications, Int. J. Anal. Appl., 16 (2018), 38-49.
    [2] F. X. Chen and S. H. Wu, Several complementary inequalities to inequalities of Hermite-Hadamard type for s-convex functions, J. Nonlinear Sci. Appl., 9 (2016), 705-716. doi: 10.22436/jnsa.009.02.32
    [3] Y. M. Chu, M. A. Khan, T. U. Khan, et al. Generalizations of Hermite-Hadamard type inequalities for MT-convex functions, J. Nonlinear Sci. Appl., 9 (2016), 4305-4316. doi: 10.22436/jnsa.009.06.72
    [4] M. R. Delavar and M. De La Sen, Some generalizations of Hermite-Hadamard type inequalities, SpringerPlus, 5 (2016), 1-9. doi: 10.1186/s40064-015-1659-2
    [5] S. S. Dragomir and R. P. Agarwal, Two inequalities for differentiable mappings and applications to special means of real numbers and trapezoidal formula, Appl. Math. Lett., 11 (1998), 91-95.
    [6] G. Farid and A. U. Rehman, Generalizations of some integral inequalities for fractional integrals, Ann. Math. silesianae, 31 (2017), 14.
    [7] M. A. Khan, Y. M. Chu, A. Kashuri, et al. New Hermite-Hadamard inequalities for conformable fractional integrals, J. Funct. Space., 2018 (2018), Article ID 6928130.
    [8] W. Liu, W. Wen and J. Park, Hermite-Hadamard type inequalities for MT-convex functions via classical integrals and fractional integrals, J. Nonlinear Sci. Appl., 9 (2016), 766-777. doi: 10.22436/jnsa.009.03.05
    [9] C. Luo, T. S. Du, M. A. Khan, et al. Some k-fractional integrals inequalities through generalized λΦm-MT-preinvexity, J. Comput. Anal. Appl., 27 (2019), 690-705.
    [10] M. V. Mihai, Some Hermite-Hadamard type inequalities via Riemann-Liouville fractional calculus, Tamkang J. Math, 44 (2013), 411-416. doi: 10.5556/j.tkjm.44.2013.1218
    [11] S. Mubeen and G. M. Habibullah, k-Fractional integrals and applications, Int. J. Contemp. Math. Sci., 7 (2012), 89-94.
    [12] O. Omotoyinbo and A. Mogbodemu, Some new Hermite-Hadamard integral inequalities for convex functions, Int. J. Sci. Innovation Tech., 1 (2014), 1-12.
    [13] M. E. Özdemir, S. S. Dragomir and C. Yildiz, The Hadamard's inequality for convex function via fractional integrals, Acta Math. Sci., 33 (2013), 153-164.
    [14] M. Z. Sarikaya and F. Ertuğral, On the generalized Hermite-Hadamard inequalities, 2017. Available from: https://www.researchgate.net/publication/321760443.
    [15] M. Z. Sarikaya and H. Yildirim, On generalization of the Riesz potential, Indian J. Math. MathematicalSci., 3 (2007), 231-235.
    [16] E. Set, M. A. Noor, M. U. Awan, et al. Generalized Hermite-Hadamard type inequalities involving fractional integral operators, J. Inequal. Appl., 2017 (2017), 1-10. doi: 10.1186/s13660-016-1272-0
    [17] H. Wang, T. S. Du and Y. Zhang, k-fractional integral trapezium-like inequalities through (h,m)-convex and (α,m)-convex mappings, J. Inequal. Appl., 2017 (2017), 1-20. doi: 10.1186/s13660-016-1272-0
    [18] B. Y. Xi and F. Qi, Some integral inequalities of Hermite-Hadamard type for convex functionswith applications to means, J. Funct. Spaces Appl., 2012 (2012), Article ID 980438.
    [19] X. M. Zhang, Y. M. Chu and X. H. Zhang, The Hermite-Hadamard type inequality of GA-convex functions and its applications, J. Inequal. Appl., 2010 (2010), Article ID 507560.
    [20] Y. Zhang, T. S. Du, H. Wang, et al. Extensions of different type parameterized inequalities for generalized (m,h)-preinvex mappings via k-fractional integrals, J. Inequal. Appl., 2018 (2018), 1-30.
  • This article has been cited by:

    1. S.I. Butt, T. Rasheed, Đ. Pečarić, J. Pečarić, New cyclic Jensen type bounds via weighted HH inequalities and Montgomery identity with application to information inequalities, 2025, 453, 03770427, 116137, 10.1016/j.cam.2024.116137
  • Reader Comments
  • © 2019 the Author(s), licensee AIMS Press. This is an open access article distributed under the terms of the Creative Commons Attribution License (http://creativecommons.org/licenses/by/4.0)
通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索

Metrics

Article views(4201) PDF downloads(400) Cited by(1)

/

DownLoad:  Full-Size Img  PowerPoint
Return
Return

Catalog