Processing math: 55%
Research article Topical Sections

Time-varying delays in electrophysiological wave propagation along cardiac tissue and minimax control problems associated with uncertain bidomain type models

  • Motivated by topics and issues critical to human health, the problem studied in this work derives from the modeling and stabilizing control of electrical cardiac activity in order to maximize the efficiency and safety of treatment for cardiac disease. In this paper we consider nonlinear minimax control problems constrained by an uncertain modified bidomain model of cardiac tissue electrophysiology system, in order to take into account the influence of noises in data and time-delays in signal transmission. The state system is a degenerate nonlinear coupled system of reaction-diffusion equations in the shape of a set of delay differential equations coupled with a set of delay partial differential equations with multiple time-varying delays. The concept of our minimax control approach consists in setting the problem in the worst-case disturbances which leads to the game theory in which the controls and disturbances play antagonistic roles. The proposed strategy consists in controlling these instabilities by acting on certain data to maintain the system in a desired state. First, the mathematical model is introduced and its well-posedness is studied. Second, the minimax control problem is formulated. Afterwards the Fréchet differentiability of nonlinear solution map from the couple control-disturbance input to the solution of state system is assessed as well as stability of the derived sensitive system. The existence of an optimal solution is proved and first-order necessary optimality conditions are established by using sensitivity and adjoint calculus.

    Citation: Aziz Belmiloudi. Time-varying delays in electrophysiological wave propagation along cardiac tissue and minimax control problems associated with uncertain bidomain type models[J]. AIMS Mathematics, 2019, 4(3): 928-983. doi: 10.3934/math.2019.3.928

    Related Papers:

    [1] Aziz Belmiloudi . Cardiac memory phenomenon, time-fractional order nonlinear system and bidomain-torso type model in electrocardiology. AIMS Mathematics, 2021, 6(1): 821-867. doi: 10.3934/math.2021050
    [2] Binaya Tuladhar, Hana M. Dobrovolny . Testing the limits of cardiac electrophysiology models through systematic variation of current. AIMS Mathematics, 2020, 5(1): 140-157. doi: 10.3934/math.2020009
    [3] Folashade Agusto, Daniel Bond, Adira Cohen, Wandi Ding, Rachel Leander, Allis Royer . Optimal impulse control of West Nile virus. AIMS Mathematics, 2022, 7(10): 19597-19628. doi: 10.3934/math.20221075
    [4] Pierluigi Colli, Gianni Gilardi, Jürgen Sprekels . Distributed optimal control of a nonstandard nonlocal phase field system. AIMS Mathematics, 2016, 1(3): 225-260. doi: 10.3934/Math.2016.3.225
    [5] Biwen Li, Qiaoping Huang . Synchronization issue of uncertain time-delay systems based on flexible impulsive control. AIMS Mathematics, 2024, 9(10): 26538-26556. doi: 10.3934/math.20241291
    [6] Li Wan, Qinghua Zhou, Hongbo Fu, Qunjiao Zhang . Exponential stability of Hopfield neural networks of neutral type with multiple time-varying delays. AIMS Mathematics, 2021, 6(8): 8030-8043. doi: 10.3934/math.2021466
    [7] Kunting Yu, Yongming Li . Adaptive fuzzy control for nonlinear systems with sampled data and time-varying input delay. AIMS Mathematics, 2020, 5(3): 2307-2325. doi: 10.3934/math.2020153
    [8] N. Jayanthi, R. Santhakumari, Grienggrai Rajchakit, Nattakan Boonsatit, Anuwat Jirawattanapanit . Cluster synchronization of coupled complex-valued neural networks with leakage and time-varying delays in finite-time. AIMS Mathematics, 2023, 8(1): 2018-2043. doi: 10.3934/math.2023104
    [9] Hongguang Fan, Jihong Zhu, Hui Wen . Comparison principle and synchronization analysis of fractional-order complex networks with parameter uncertainties and multiple time delays. AIMS Mathematics, 2022, 7(7): 12981-12999. doi: 10.3934/math.2022719
    [10] Ravi P. Agarwal, Snezhana Hristova . Stability of delay Hopfield neural networks with generalized proportional Riemann-Liouville fractional derivative. AIMS Mathematics, 2023, 8(11): 26801-26820. doi: 10.3934/math.20231372
  • Motivated by topics and issues critical to human health, the problem studied in this work derives from the modeling and stabilizing control of electrical cardiac activity in order to maximize the efficiency and safety of treatment for cardiac disease. In this paper we consider nonlinear minimax control problems constrained by an uncertain modified bidomain model of cardiac tissue electrophysiology system, in order to take into account the influence of noises in data and time-delays in signal transmission. The state system is a degenerate nonlinear coupled system of reaction-diffusion equations in the shape of a set of delay differential equations coupled with a set of delay partial differential equations with multiple time-varying delays. The concept of our minimax control approach consists in setting the problem in the worst-case disturbances which leads to the game theory in which the controls and disturbances play antagonistic roles. The proposed strategy consists in controlling these instabilities by acting on certain data to maintain the system in a desired state. First, the mathematical model is introduced and its well-posedness is studied. Second, the minimax control problem is formulated. Afterwards the Fréchet differentiability of nonlinear solution map from the couple control-disturbance input to the solution of state system is assessed as well as stability of the derived sensitive system. The existence of an optimal solution is proved and first-order necessary optimality conditions are established by using sensitivity and adjoint calculus.


    The heart is an electrically controlled mechanical pump which drives blood flow through the circulatory system vessels (through deformation of its walls), where electrical impulses trigger mechanical contraction (of various chambers of heart) and whose dysfunction is incompatible with life. The electrical system of a normal heart is highly organized in a steady rhythmic pattern. This normal heartbeat is called sinus rhythm. Irregular or abnormal heartbeats, called arrhythmias, are caused by a change in the propagation and/or formation of electrical impulses, that regulate a steady heartbeat, causing a heartbeat that is too fast or too slow, that can remain stable or become chaotic (irregular and disorganized). Many times, arrhythmias are harmless and can occur in healthy people without heart disease; however, some of these rhythms can be serious and require special and efficiency treatments. Fibrillation is one type of arrhythmia and is considered the most serious cardiac rhythm disturbance. It occurs when the heart beats with rapid, erratic electrical impulses (highly disorganized almost chaotic activation). This causes the heart's chambers to quiver (or fibrillate) uselessly instead of contracting normally. Then the heart loses its ability to pump enough blood through the circulatory system. The treatment therapy of these diseases, when it becomes troublesome or when it can present a danger, often uses electrical impulses to stabilize cardiac function and restore the sinus rhythm, by implanting the patients with active cardiac devices (electrotherapy). For example, in case of cardiac rhythms that are too slow, the devices transmit electronic impulses and ensure that periodic contractions of heart are maintained at a hemodynamically sufficient rate; and in the case of a fast heart rate or irregular, the devices monitor the heart rate and, if needed, treat episodes of tachyarrhythmia (including tachycardia and/or fibrillation) by transmitting automatically impulses to either give defibrillation shocks or cause overstimulation (via an ICDs*) or synchronize the contraction of left and right ventricles. Although ICD electrotherapy has been shown to be an effective treatment against lethal cardiac arrhythmias, it remains a highly non-optimal therapy since the administrated strong shocks required for defibrillation can cause significant extra-cardiac stimulation, resulting in (physical and psychological) pains and long-term tissue damage. It is then necessary to optimize the defibrillation shock impulse in order to achieve the lowest energy necessary to successfully cardiovert a patient and, consequently, a maximum result with minimal detrimental side effects.

    *The so-called implantable cardioverter defibrillators

    Then, efficient tools for the assistance of patient specific treatment of cardiac disorders is of great scientific and socio-economical interest. The evaluation of the bioelectrical activity in the heart is a very complex process which uses different phenomenological mechanism and subject to various perturbations, and physiological and pathophysiological variations. Consequently, this has greatly emphasized the need for methodologies capable of predicting, understanding and optimizing different complex phenomena occurring in these fields, despite different sources of uncertainty like the absence of complete or reliable data (e.g., stimulus currents, measurement data), neglected dynamics, or intrinsic physical variability. The challenge here is e.g., to reduce the uncertainty and increase the reliability of model predictions in treatment of cardiac disease.

    The goal of the present paper is to investigate minimax control problems for a bidomain type system, commonly used for modeling the propagation of electrophysiological waves in the myocardium, with disturbances (perturbation or noise) and controls in which multiple time-varying delays appear in the state system. The objective of a minimax control is to compensate the undesirable effects of system disturbances through control actions such that a cost function achieves its minimum for the worst disturbances: i.e. to find the best control which takes into account the worst-case disturbance. From the standpoint of our specific application, the main goal is to regulate and stabilize the optimal external applied current via transmembrane potential sensor.

    Tissue-level cardiac electrophysiology, which can provide a bridge between electrophysiological cell models at smaller scales, and tissue mechanics, metabolism and blood flow at larger scales, is usually modeled using the coupled bidomain equations, originally derived in [67], which represent a homogenization of the intracellular and extracellular medium, where electrical currents are governed by Ohm's law (see also e.g. [44] for a review and an introduction to this field). The model was modified and extended to include heart tissue surrounded by a conductive bath or a conductive body (see e.g. [56] and [65]). From mathematical viewpoint, the classical bidomain system (Figure 1) is commonly formulated in terms of intracellular and extracellular electrical potentials of anisotropic cardiac tissue (macroscale), ϕi and ϕe, (or, equivalently, extracellular potential ϕe and the transmembrane voltage ϕ=φiφe) coupled with cellular state variables u describing cellular membrane dynamics. This is a system of non-linear partial differential equations (PDEs) coupled with ordinary differential equations (ODEs), in the physical region Ω (occupied by excitable cardiac tissue, which is an open, bounded, and connected subset of d-dimensional Euclidean space Rd, d3). The PDEs describe the propagation of the electrical potentials and ODEs describe the electrochemical processes.

    Figure 1.  Bidomain system is defined on heart domain Ω, while Ξ is the rest of the body.

    Time delays in signal transmission are inevitable and a small delay can affect considerably the resulting electrical activity in heart and thus the cardiac disorders therapeutic treatment. It is then necessary to introduce the impact of delays on dynamical behaviors of such a system. Delay terms can lead to change the stability of dynamics and give rise to highly complex behavior including oscillations and chaos. Motivated by above discussions, to take into account the effect of time-delays in propagation of electrophysiological waves in heart, together with other critical cardiac material parameters, we have developed a new bidomain model by incorporating multiple time delays in [6].

    In this new model, in order to take into account the influence of time-delays in signal transmission and inward movement of u into the cell which prolongs the depolarization phase of action potential, classical bidomain model has been modified by using multiple time-delays functions in operators representing the ionic activity in myocardium. More precisely, the derived system, is a nonlinear coupled reaction-diffusion model in shape of a set of delay differential equations (DDE) coupled with a set of delay partial differential equations, in the heart's spatial domain Ω which is a bounded open subset with a sufficiently regular boundary Γ=Ω, and during the final fixed time horizon T>0, as follows (for more detail to derive this model see [6])

    cmϕt+I(.;ϕ,u)div(Kiϕ)=div(Kiφe)+H(.;ϕτ,uτ)+Ii,inQ=Ω×(0,T)div((Ke+Ki)φe)=div(Kiϕ)+I,inQut+G(.;ϕ,u)=E(.;ϕτ,uτ),inQsubject to initial and past conditionsϕ(.,t=0)=ϕ0,u(.,t=0)=u0,inΩϕ=ϕpast,u=upast,inQ0=Ω×[δ(0),0[and boundary conditions(Ki(ϕ+φe))n=0,onΣ=Ω×(0,T)(Keφe)n=0,onΣ (1.1)

    where ϕ=φiφe, φe and φi are the transmembrane, extracellular and intracellular potentials, respectively; Ki and Ke are the conductivity tensors describing anisotropic intracellular and extracellular conductive media and cm(x)=κCm(x)>0, where Cm is the membrane capacitance per unit area and κ is the surface area-to-volume ratio. The tissue is assumed to be passive, so the capacitance Cm can be assumed to be not a function of the state variables. The function cm is assumed to be space variable and satisfies 0<c_mcm=b2m¯cm (where c_m and ¯cm are positive constants). The electrophysiological ionic state u describes a cumulative way of the effects of the ion transport through the cell membranes (which describe e.g., the dynamics of ion-channel and ion concentrations in different cellular compartments). The operator I=κIion, where the nonlinear operator Iion describes the sum of transmembrane ionic currents across cell membrane with u. The nonlinear operator G is representing the ionic activity in myocardium. Functional forms for I and G are determined by an electrophysiological cell model (which can found in the CellMl Repository). The source terms are Ii=κfi, Ie=κfe and I=IiIe, where fi and fe describe intracellular and extracellular stimulation currents, respectively. The operators H and E are time-delay operators and the functions ϕτ and uτ are delayed states corresponding to ϕ and u respectively, and n is the outward normal to Γ=Ω. Here, the unknowns are the potentials ϕ, φe and a single ionic variable u (e.g. gating variable, concentration, etc.).

    http://models.cellml.org

    In absence of a grounded electrode, the bidomain equations are a naturally singular problem since φe only appears in the equations and boundary conditions through its gradient. Moreover, the state φe is only defined up to a constant. Such problems have compatibility conditions determining whether there are any solution to the PDEs. This is easily found by integrating the second equation of (1.1) over the domain and using the divergence theorem with boundary conditions. Then the following conservation of the total current is derived (a.e.in(0,T))

    ΩIdx=0. (1.2)

    Consequently, we must choose I such that the compatibility condition (1.2) is satisfied. Moreover, the function φe is defined within a class of equivalence, regardless of a time-dependent function. This function can be fixed, for example by setting the Gauge condition (a.e. in (0, T))

    Ωφedx=0a.e.in(0,T). (1.3)

    Remark 1.1. 1. Condition (1.3) is a common condition for pressure in fluid mechanics (in Navier-Stokes systems).

    2. The functions Ki, Ke, H, G and cm depend on the fiber extension ratio.

    3. If we assume that I is only dependent on time and is of the form

    I(x,t)=θ(t)(χΩ1(x)χΩ2(x)), (1.4)

    where χΩi is the characteristic function of set Ωi, i=1,2, then condition (1.2) is satisfied if mes(Ω1)=mes(Ω2). The support regions Ω1 and Ω2 can be considered to represent an anode (positive electrode) and a cathode (negative electrode) respectively.

    In recent years, various problems concerning biological rhythmic phenomena and delayed processes have been studied (see e.g., [8,13,14,16,20,21,22,23,38,42,43,55,60,61,64,72] and the references therein). For problems associated with bidomain models with time-delay, the literature is limited, to our knowledge, to [6,30]. Concerning problems associated with bidomain models without time-delays various methods and technique, as evolution variational inequalities approach, semi-group theory, Faedo-Galerkin method and others, the studies of the well-posedness of solutions have been derived in the literature (see e.g., [9,15,18,27,69] and the references therein); for development of multiscale mathematical and computational modeling of bioelectrical activity in myocardial tissue and their numerical simulations, which are based on methods as finite difference method, finite element method or lattice Boltzmann method, have been receiving a significant amount of attention (see e.g., [4,17,24,25,26,28,29,31,32,33,34,36,40,44,46,57,63,65,70,71] and the references therein), with a particular attention to the formation of cardiac disorders (as arrhythmias) and their therapeutic treatment (see e.g., [3,41,58,68] and the references therein). For control problems associated with the electrocardiology, we can mention [2,9,19,45,53].

    The new feature introduced in this work concerns the study of nonlinear minimax control problem for a bidomain model with time-delays of cardiac tissue electrophysiology system, in order to take into account the influence of noises in data. The minimax control problem and the necessary optimality conditions are new for these types of equations studied here. This study is motivated by the applications, for example, in determining the best optimal current to be applied (taking into account the influence of disturbances in data), so that the peaks in the transmembrane potential are damped. In this context, it is possible to consider the specific application of implantable Cardioverter defibrillators, which are used to treat patients with life-threatening ventricular arrhythmias, in order to maximize both cardiac performance and additionally the lifetime of the device. Our approach is based on the results of existence and characterization of saddle points in infinite-dimensional (for more details see [10] and for minimax control see [11,12]).

    The paper is organized as follows. In next section, first we give some preliminaries and well-posedness of the state equations results. Then some regularity results of the solution as well as the input-to-state stability estimate are derived, under extra assumptions. In Section 3, first we formulate the minimax control problem and we study rigorously the Fréchet differentiability of the solution operator of the problem. Second, we study the minimax control problem corresponding to obtain the saddle point of cost function J. The functional J is depending on disturbance and control in the domain Ω over the time interval under consideration [0,T]. We prove the existence of an optimal solution and give necessary optimality conditions. The optimality system is corresponding to identify the gradient of the cost function that is necessary to develop a numerical computation in order to solve the minimax control problem.

    We use the standard notation for Sobolev spaces (see [1]), denoting the norm of Wm,p(Ω) (mIN, p[1,]) by .Wm,p. In the special case p=2, we use Hm(Ω) instead of Wm,2(Ω). The duality pairing of a Banach space X with its dual space X is given by .,.X,X. For a Hilbert space Y the inner product is denoted by (.,.)Y and the inner product in L2(Ω) is denoted by (.,.). For any pair of real numbers r,s0, we introduce the Sobolev space Hr,s(Q) defined by Hr,s(Q)=L2(0,T;Hr(Ω))Hs(0,T;L2(Ω)), which is a Hilbert space normed by

    (v2L2(0,T;Hr(Ω))+v2Hs(0,T;L2(Ω)))1/2,

    where Hs(0,T;L2(Ω)) denotes the Sobolev space of order s of functions defined on (0,T) and taking values in L2(Ω), and defined by, for θ(0,1),s=(1θ)m with m an integer, (see e.g., [48]) Hs(0,T;L2(Ω))=[Hm(0,T,L2(Ω)),L2(Q)]θ, Hm(0,T;L2(Ω))={vL2(Q)|jvtjL2(Q),for 1jm}. For a given Banach space X, with norm .X, of functions integrable on Ω, we define its subspace X|IR={uX,Ωu=0} that is a Banach space with norm .X, and we denote by [u] the projection of uX on X|IR such that [u]=u1mes(Ω)Ωudx (with mes(Ω) standing for Lebesgue measure of the domain Ω). Finally, we introduce the spaces:

    H=L2(Ω) and V=H1(Ω) endowed with their usual norms,

    U=V|IR.

    We will denote by V (resp. U) the dual of V (resp. of U). We have the following continuous embeddings (see e.g. [1,47]), where p2 if d=2 and 2p6 if d=3, p is such that 1p+1p=1

    VHVUH|IRU,VLp(Ω)H(H)Lp(Ω)V (2.1)

    and the injections VH and UH|IR are compact. We can now introduce the following spaces: H(Q)=L(0,T;L2(Ω)), V(Q)=L2(0,T;V), ˜V(Q)=L2(0,T;U) and, for q>1, the space Wq(Q)={wV(Q)|wtLq(0,T,V)}.

    Remark 2.1. If uWq(Q)H(Q), then u is a weakly continuous function on [0,T] with values in L2(Ω) i.e. uCw([0,T];L2(Ω)) (see e.g. [47]).

    Remark 2.2. Let ΩIRm, m1, be an open and bounded set with a smooth boundary and q be a nonnegative integer. We have the following results (see e.g. [1])

    (i) Hq(Ω)Lp(Ω), p[1,2mm2q], with continuous embedding (with the exception that if 2q=m, then p[1,+[ and if 2q>m, then p[1,+]).

    (ii) (Gagliardo-Nirenberg inequalities) There exists C>0 such that

    vLpCvθHqv1θL2,vHq(Ω),

    where 0θ<1 and p=2mm2θq (with the exception that if qm/2 is a nonnegative integer, then θ is restricted to 0).

    Remark 2.3. The spaces W(i)=H1(0,T;Hi2(Ω))L2(0,T;Hi(Ω)) satisfy the following embedding:

    (i) W(i), for i=1,3, is compactly embedded into L2(0,T,Hi1(Ω)) (see e.g. [66]).

    (ii) W(i)C0([0,T];Hi1(Ω)), for i=1,3 (see e.g. [48]).

    Definition 2.1. A real valued function H defined on D×IRq, q1, is a Carathéodory function iff H(.;v) is measurable for all vIRq and H(y;.) is continuous for almost all yD.

    Lemma 2.1. (Poincaré–Wirtinger inequality) Assume that 1p and that Ω is a bounded connected open subset of IRd with a sufficiently regular boundary Ω (e.g., a Lipschitz boundary). Then there exists a Poincaré constant C, depending only on Ω and p, such that for every function u in Sobolev space W1,p(Ω)

    [u]Lp(Ω)CuLp(Ω).

    Remark 2.4. From the Poincaré–Wirtinger inequality, we can deduce that the H1 semi-norm and the H1 norm are equivalent in the space U.

    Our study involves the following fundamental inequalities, which are repeated here for review:

    (ⅰ) Hölder's inequality: DΠi=1,kfidxΠi=1,kfiLqi(D),

    where fiLqi(D)=(Dfiqidx)1/qiand1ik1qi=1.

    (ⅱ) Young's inequality (a,b>0 and ϵ>0): abϵpap+ϵq/pqbq,forp,q]1,+[and1p+1q=1.

    (ⅲ) Minkowski's integral inequality:

    [Ω(t0f(x,s)ds)pdx]1/pt0(Ωf(x,s)pdx)1/pds,forp]1,+[andt>0.

    (ⅳ) Gronwall's Lemma:

    Ifdψdtg(t)ψ(t)+h(t),t0thenψ(t)ψ(0)exp(t0g(s)ds)+t0h(s)exp(tsg(τ)dτ)ds,t0.

    Finally, we denote by L(A;B) the set of linear and continuous operators from a vectorial space A into a vectorial space B, and by R the adjoint operator to a linear operator R between Banach spaces.

    From now on, we assume that the following assumptions hold for the nonlinear operators and tensor functions appearing in our model.

    (H1) We assume that the conductivity tensor functions KθW1,(¯Ω), θ{i,e} are symmetric, positive definite matrix functions and that they are uniformly elliptic, i.e., there exist constants 0<K1<K2 such that

    K1ψ2ψTKθψK2ψ2in¯Ω,ψIRd. (2.2)

    Remark 2.5. We can emphasize a specificity of the tensors Ke and Ki (see e.g., [29]).

    1. The tensors Ke(x) and Ki(x) have the same basis of eigenvectors Q(x)=(qk(x))1kd in IRd, which reflect the organization of muscle in fibers, and consequently Ki(x)=Q(x)Λi(x)Q(x)T and Ke(x)=Q(x)Λe(x)Q(x)T, where Λi(x)=diag((λi,k)1kd) and Λe(x)=diag((λe,k)1kd).

    2. The muscle fibers are tangent to Γ so that (for θ{i,e}) : Kθn=λθ,dn,a.e.,inΓ, with λθ,d(x)λ>0, λ a constant.

    The operators I and G which describe electrophysiological behavior of the system can be taken as follows (affine functions with respect to u)

    I(x,t;ϕ,u)=I0(x,t;ϕ)+I1(x,t;ϕ)u,G(x,t;ϕ,u)=I2(x,t;ϕ)+(x,t)u, (2.3)

    where is a sufficiently regular function. Moreover, the operators I0, I1 and I2 appearing in I and G, are supposed to satisfy the following assumptions.

    (H2) The operators I0, I1 and I2 are Carathéodory functions from (Ω×IR)×IR into IR and continuous on ϕ (as in Belmiloudi [9]). Furthermore, for some p2 if d=2 and p[2,6] if d=3 (for more details see [18]), the following requirements hold

    (ⅰ) there exist constants βi0(i=1,,6) such that for any vIR

    |I0(.;v)|β1+β2|v|p1, (2.4)
    |I1(.;v)|β3+β4|v|p/21, (2.5)
    |I2(.;v)|β5+β6|v|p/2. (2.6)

    (ⅱ) there exist constants μ1>0,μ2>0,μ30,μ40 such that for any (v,w)IR2:

    μ1vI(.;v,w)+wG(.;v,w)μ2|v|pμ3(μ1|v|2+|w|2)μ4. (2.7)

    In order to assure the uniqueness of solution we assume that

    (H3) The Nemytskii operators I and G satisfy Carathéodory conditions and there exists some μ>0 such the operator Fμ:IR2IR2 defined by

    Fμ(.;v)=(μ(I(.;v))G(.;v)),v=(v,w)IR2, (2.8)

    satisfies a one-sided Lipschitz condition (see e.g. Seidman et al. [62], Belmiloudi [14]): there exists a constant CL>0 such that (vi=(vi,wi)IR2,i=1,2)

    (Fμ(.;v1)Fμ(.;v2))(v1v2)CLv1v22. (2.9)

    Finally, we assume that the operators H and E which describe multiple time-delays related to ϕ and u are defined as in Belmiloudi [14] i.e.,

    H(x,t;ϕτ,uτ)=n1k=1ak(x,t)ϕ(x,tξk(t))+n2l=1bl(x,t)u(x,tηl(t)),E(x,t;ϕτ,uτ)=n1k=1ck(x,t)ϕ(x,tξk(t))+n2l=1dl(x,t)u(x,tηl(t)), (2.10)

    where ak,ck, bl and dl (for 1kn1 and 1ln2) are C functions. For the functions ξk and ηl (for 1kn1 and 1ln2), we suppose that (as in [14]):

    (RC) t[0,T)(rk(t)=tξk(t),1kn1) and t[0,T)(pl(t)=tηl(t),1ln2) are strictly increasing functions and (ξk(t),1kn1) and (ηl(t),1ln2) are C1 non-negative functions on [0,T). So we have the existence of inverse functions (ek)k of (rk)k and (ql)l of (pl)l, respectively. We also define the following subdivision: s1=δ(0)=max1kn1max1ln2(ξk(0),ηl(0)), s0=0 and jIN, sj=min1kn1min1ln2(ek(sj1),ql(sj1)), and we denote Tj as Tj=sjsj1, jIN. We introduce the following notations: Ij=(s1,sj) and Qj=Ω×Ij for jIN.

    Remark 2.6. According to hypotheses (RC), we prove easily that:

    (i) the sequences (sj)jIN is strictly increasing and sjT,j0,

    (ii) for j2, if t(sj1,sj) then i=1,n, ri(t)sj1, pi(t)sj1,

    (iii) if t(s0,s1) then i=1,n, ri(t)(s1,s0), pi(t)(s1,s0).

    Remark 2.7. The functions ak,ck,bk and dk are diffusion coefficients which represent the strength of each associated time-delay. A zero coefficient means that the associated previous state doesn't impact the system. Time-delays come from biological inhomogeneous properties of heart region. Electrical waves go through muscles, bones or fat which induce time-delays in their interaction in regards to ionical channels behavior.

    Lemma 2.2. ([6]) Assume that Fμ is differentiable with respect to (ϕ,u) and denote by λ1(ϕ,u)λ2(ϕ,u) the eigenvalues of the symmetrical part of Jacobian matrix Fμ(ϕ,u):

    Qμ(ϕ,u)=12(Fμ(ϕ,u)T+Fμ(ϕ,u)).

    If there exist a constant CF independent of ϕ and u such as:

    CFλ1(ϕ,u)λ2(ϕ,u), (2.11)

    then Fμ satisfies the hypothesis (H3).

    Lemma 2.3. ([6]) Let assumptions (2.3), (H1) and (H2) be fulfilled. For (ϕ,u)Lp(Ω)×H and a.e., t, there exist constants Ci>0 (i=1,6) such that

    I(.,t;ϕ,u)Lp(Ω)C1+C2ϕp/pLp(Ω)+C3u2/pH, (2.12)
    G(.,t;ϕ,u)L2(Ω)C4+C5ϕp/2Lp(Ω)+C6uH, (2.13)

    where p is such that 1p+1p=1.

    In the sequel we will always denote C some positive constant which may be different at each occurrence.

    We now define the following forms

    Ai(ψ,v)=ΩKiψvdx,Ae(ψ,v)=ΩKeψvdx. (2.14)

    Proposition 2.1. (i) Ai and Ae are symmetric bilinear continuous forms on V and U, respectively.

    (ii) Ai and Ae are coercive on V and U, respectively (we denote by αi and αe their coercivity coefficients).

    Proof. (ⅰ) and (ⅱ) are easily obtained providing that properties of tensors Ki and Ke and (2.2) are satisfied.

    We can now write the weak formulation of problem (1.1) (for all vV,veU and ρH)

    cmϕt,vV,V+ΩI(.;ϕ,u)vdx+Ai(ϕ+φe,v)=Ii,vV,V+ΩH(.,ϕτ,uτ)vdx,Ai(ϕ+φe,ve)+Ae(φe,ve)=I,veV,V,(ut,ρ)H+ΩG(.;ϕ,u)ρdx=ΩE(.;ϕτ,uτ)ρdx,ϕ(.,t=0)=ϕ0,u(.t=0)=u0,ϕ(.,t)=ϕpast(.,t),u(.,t)=upast(.,t),t[δ(0),0[. (2.15)

    Theorem 2.1. ([18]) Let gV and φU be given. The variational equations

    (Ai+Ae)(φ_e,ve)+Ai(φ,ve)=0,veU (2.16)

    and

    (Ai+Ae)(¯φe,ve)=g,veV,V,veU (2.17)

    have unique solutions φ_e,¯φeU. Moreover we have that the operator A_i:(φ,v)(U)2A_i(φ,v)=Ai(φ,v)+Ai(φ_e,v) is symmetric bilinear continuous forms on U.

    Introduce the following spaces for S0<Sf be fixed real values (where QS=Ω×(S0,Sf), p2 and 1p+1p=1)

    Dp(S0,Sf)=Lp(QS)+L2(S0,Sf;V)Lp(S0,Sf;V),Wp(S0,Sf)={uLp(QS)L2(S0,Sf;V)such thatutDp(S0,Sf)}.

    Lemma 2.4. ([6,18]) Let πm be a sequence converging toward π in Wp(S0,Sf) weakly and in L2(QS) strongly and Vm be a sequence converging toward V in L2(QS)H1(S0,Sf;H) weakly. Then we have the following convergence results:

    (i) I0(.;πm)I0(.;π) weakly in Lp(QS)

    (ii) I2(.;πm)I2(.;π) weakly in L2(QS)

    (iii) I1(.;πm)VmI1(.;π)V weakly in L2(QS).

    The considered functions Ii, in this paper, include the three classical type models in which these assumptions are satisfied (for the proof, we use similar arguments as in [18]) namely the Rogers-McCulloch [51] (RM), Fitz-Hugh-Nagumo [37] (FHN) and Aliev-Panfilov [54](LAP) models as follows. The function I0 is defined by a cubic reaction term of the form I0(.;v)=b1(.)v(vr)(v1), and the functions I1 and I2 are given by

    (a) for RM type model:I1(.;v)=b2(.)v,I2(;,v)=b3(.)v,(b) for FHN type model:I1(.;v)=b2(.),I2(;,v)=b3(.)v,(c) for LAP type model:I1(.;v)=b2(.)v,I2(;,v)=b3(.)v(r+1v),

    where biW1,(Q), i=1,3, are sufficiently regular functions from Q into IR+, and r[0,1]. We obtain easily the following Lemma.

    Lemma 2.5. The following properties hold:

    1. For all v1, v2 in IR we have

    I0(.;v1)I0(.;v2)=b1(v1v2)(v21+v22+v1v2(r+1)(v1+v2)+r)and(a) for RM type model:I1(.;v1)I1(.;v2)=b2(v1v2),I2(.;v1)I2(.;v2)=b3(v1v2),(b) for FHN type model:I1(.;v1)I1(.;v2)=0,I2(.;v1)I2(.;v2)=b3(v1v2),(c) for LAP type model:I1(.;v1)I1(.;v2)=b2(v1v2),I2(.;v1)I2(.;v2)=b3(v1v2)((r+1)v1v2).

    2. The partial derivative of the function I0 is given by I0v(.;v)=b1(3v22(r+1)v+r) and these of the functions I1 and I2 are given by

    (a) for RM type model:I1v(.;v)=b2,I2v(.;v)=b3,(b) for FHN type model:I1v(.;v)=0,I2v(.;v)=b3,(c) for LAP type model:I1v(.;v)=b2,I2v(.;v)=b3(r+12v).

    Remark 2.8. According to Lemma 2.5, the partial derivatives of I and G are given by

    (a) for RM type model:

    Iϕ=b1(3ϕ22(1+r)ϕ+r)+b2u,Iu=b2ϕ,Gϕ=b3,Gu=, (2.18)

    (b) for FHN type model:

    Iϕ=b1(3ϕ22(1+r)ϕ+r),Iu=b2,Gϕ=b3,Gu=, (2.19)

    (c) for LAP type model:

    Iϕ=b1(3ϕ22(1+r)ϕ+r)+b2u,Iu=b2ϕ,Gϕ=b3(r+12ϕ),Gu=. (2.20)

    Consequently, Ii (for i=0,2) and the partial derivatives of I and G for this three models are of the form

    I0=11ϕ312ϕ2+13ϕ,I1=ϵ121ϕ+22,I2=ϵ231ϕ2+(2ϵ21)32ϕ,Iϕ=I0ϕ+uI1ϕ=311ϕ2212ϕ+13+ϵ121u,Iu=I1=ϵ121ϕ+22,Gϕ=I2ϕ=2ϵ231ϕ+(2ϵ21)32,Gu=, (2.21)

    where ij and are sufficiently regular and bounded functions from Q into [h0,+[, with h0IR+, and (ϵ1,ϵ2){(1,0),(0,0),(1,1)}.

    For delay operators we have the following estimates.

    Lemma 2.6. Let (v,ρ) be in (Lq(0,T;Lσ(Ω)))2, with σ,q[1,[, such that on the domain Q0, (v,ρ)=(vpast,ρpast)(Lq(δ(0),0;Lσ(Ω)))2. Then the following estimates hold.

    (i) There exists a constant C,0>0 (depending on ak,ck, bl,dl, 1kn1, 1ln2) such that

    H(vτ,ρτ)Lσ(Ω)C,0(n1k=1v(.,rk(t))Lσ(Ω)+n2l=1ρ(.,pl(t))Lσ(Ω)),E(vτ,ρτ)Lσ(Ω)C,0(n1k=1v(.,rk(t))Lσ(Ω)+n2l=1ρ(.,pl(t))Lσ(Ω)). (2.22)

    (ii) There exists a constant C,1>0 (depending on ak,ck, ak,ck, bl,dl, bl,dl, 1kn1, 1ln2) such that

    H(vτ,ρτ)Lq(0,t;Lσ(Ω))C,1(vLq(0,t;Lσ(Ω))+ρLq(0,t;Lσ(Ω))+vpastLq(δ(0),0;Lσ(Ω))+ρpastLq(δ(0),0;Lσ(Ω))),E(vτ,ρτ)Lq(0,t;Lσ(Ω))C,1(vLq(0,t;Lσ(Ω))+ρLq(0,t;Lσ(Ω))+vpastLq(δ(0),0;Lσ(Ω))+ρpastLq(δ(0),0;Lσ(Ω))), (2.23)

    Proof. (ⅰ) According to regularity of (ak)1kn1, (ck)1kn1, (bl)1ln2, (cl)1ln2and to Remark 2.6, we obtain (for 1kn1, 1ln2 and Tt0)

    Ω˜ak(x,t)v(x,rk(t))σdx˜akσv(.,rk(t))σLσ(Ω),(for ˜ak=ak or ck)Ω˜bl(x,t)ρ(x,pl(t))σdx˜blσρ(.,pl(t))σLσ(Ω),(for ˜bl=bl or dl) (2.24)

    Then, from the expression of H and E, we can deduce that

    H(vτ(.,t),ρτ(.,t))Lσ(Ω)D1,0(n1k=1v(.,rk(t))Lσ(Ω)+n2l=1ρ(.,pl(t))Lσ(Ω)),E(vτ(.,t),ρτ(.,t))Lσ(Ω)D2,0(n1k=1v(.,rk(t))Lσ(Ω)+n2l=1ρ(.,pl(t))Lσ(Ω)), (2.25)

    where D1,0=max(max1kn1ak,max1ln2bl),D2,0=max(max1kn1ck,max1ln2dl).

    (ⅱ) Setting θ=rk(s) (resp. θ=pl(s)), we have s=ek(θ) (resp. s=ql(θ)) and then ds=ek(θ)dθ (resp. ds=ql(θ)dθ). So

    v(.,rk(.))qLq(0,t;Lσ(Ω))=t0v(.,rk(s))qLσ(Ω)dsek(tξk(t)ξk(0)v(.,θ)qLσ(Ω)dθ),ρ(.,rk(.))qLq(0,t;Lσ(Ω))=t0ρ(.,pl(s))qLσ(Ω)dsql(tηl(t)ηl(0)ρ(.,θ)qLσ(Ω)dθ). (2.26)

    Since δ(0)ξk(0), δ(0)ηk(0), tξk(t)t and tηk(t)t we can deduce that (since v=vpast,ρ=ρpast,onQ0)

    v(.,rk(.))qLq(0,t;Lσ(Ω))ek(t0v(.,θ)qLσ(Ω)dθ+0δ(0)vpast(.,s)qLσ(Ω)ds)max1kn1(ek)(vqLq(0,t;Lσ(Ω))+vpastqLq(δ(0),0;Lσ(Ω))),ρ(.,rk(.))qLq(0,t;Lσ(Ω))ql(t0ρ(.,θ)qLσ(Ω)dθ+0δ(0)ρpast(.,s)qLσ(Ω)ds)max1ln2(ql)(ρqLq(0,t;Lσ(Ω))+ρpastqLq(δ(0),0;Lσ(Ω))), (2.27)

    and then, from (2.25) and Jensen inequality, we can deduce the result (ⅱ) of Lemma. This completes the proof.

    For the sake of simplicity, we shall write Ii(ψ), I(ψ,v) and G(ψ,v) in place of Ii(x,t;ψ), I(x,t;ψ,v) and G(x,t;ψ,v), respectively (for i=0,2).

    The results of this section concern the existence, uniqueness and regularity of solution of (1.1).

    Theorem 2.2. ([6]) Let assumptions (H1)-(H3) and (RC) be fulfilled. Let be given (ϕ0,u0)(L2(Ω))2, (ϕpast,upast)(L2(Q0))2 and (Ii,I)(L2(0,T;V))2. Then there exists a solution (ϕ,φe,u) of (2.15) verifying : ϕL2(0,T;V)Lp(Q)L(0,T;H),φeL2(0,T;U)anduC0([0,T];H) with the following a priori estimate

    ϕ2L2(0,T;V)L(0,T;H)+u2L(0,T;H)+φe2L2(0,T;U)C(1+Ii2L2(0,T;V)+I2L2(0,T;V)+ϕpast2L2(Q0)+upast2L2(Q0)+ϕ02H+u02H). (2.28)

    Moreover the Lipschitz continuity relation is satisfied, i.e., for any element (ϕ0j,u0j)(L2(Ω))2, (I(j)i,I(j))(L2(0,T;V))2 and (ϕj,past,uj,past)(L2(Q0))2, for j=1,2, we have

    ϕ1ϕ22L2(0,T;V)L(0,T;H)+u1u22L(0,T;H)+φe,1φe,22L2(0,T;U)C(I(1)iI(2)i2L2(0,T;V)+I(1)I(2)2L2(0,T;V)+ϕ1,pastϕ2,past2L2(Q0)+u1,pastu2,past2L2(Q0)+ϕ01ϕ022H+u01u022H), (2.29)

    where (ϕj,uj,φe,j) is solution of (2.15), which corresponds to data (ϕ0j,u0j), (ϕj,past,uj,past) and (I(j)i,I(j)).

    Theorem 2.3. Consider the case of p=4. Assume that (u0,upast,ϕpast,ϕ0) is given such that (ϕpast,upast)(L2(δ(0),0;L3(Ω)))2, u0L3(Ω) and ϕ(t=0)=φi(t=0)φe(t=0)=φ(0)iφ(0)e=ϕ0 with (ϕ0,φ(0)e)(L2(Ω))2.

    (i) If IiL2(Q) and IL2(Q), we have u belongs even to C0([0,T],L3(Ω)) and it holds that

    u(.,t)L3(Ω)C(1+ϕpastL2(δ(0),0;L3(Ω))+upastL2(δ(0),0;L3(Ω))+IiL2(Q)+IL2(Q)+u0L3(Ω)+ϕ0L2(Ω)). (2.30)

    (ii) Moreover if I2 satisfies the following assumption

    (H4) there exist constants βi0 (i=7,...,9) such that, for any (v,w)IR2,

    I2(.;v)I2(.;w)∣≤∣vw(β7+β8v+β9w),

    we have for any element (I(j)i,I(j))(L2(Q))2, for j=1,2,

    u(.,t)L3(Ω)C(IiL2(Q)+IL2(Q)), (2.31)

    where (ϕj,uj,φe,j) is solution of (2.15), which corresponds to data (ϕ0,u0), (ϕpast,upast) and (I(j)i,I(j)), and ϕ=ϕ1ϕ2, u=u1u2, φe=φe,1φe,2, I=I(1)I(2), Ii=I(1)iI(2)i.

    (iii) Assume now that (ϕ0,φ(0)e)(H1(Ω))2 and the primitive ˜I0 of I0 satisfies the assumptions

    (H5) there exist constants βi0 (i=10,...,15) such that, for any vIR,

    ˜I0(v)β10v4β11v2,˜I0t(v)β12v4β13v2,˜I0(v)∣≤β14+β15v4.

    Then

    (a) if IiL2(Q) and I is in the space

    Uc={vL2(Q)such thatvtL2(Q)}C0([0,T];L2(Ω))(see Remark 2.3),

    then (ϕ,φe)(L(0,T;H1(Ω)))2, ϕtL2(Q) and uC0([0,T];L3(Ω)).

    (b) Moreover if I0 and I1 satisfy the following assumption

    (H6) there exist constants βi0 (i=16,...,19) such that, for any (v,w)IR2,

    I0(.;v)I0(.;w)∣≤∣vw(β16+β17v2+β18w2),I1(.;v)I1(.;w)∣≤β19vw,

    we have, for any element (I(j)i,I(j))L2(Q)×Uc (for j=1,2),

    ϕt2L2(Q)+ut2L2(0,T;L3(Ω))+ϕ2L(0,T;H1(Ω))+φe2L(0,T;H1(Ω))C(Ii2L2(Q)+I2Uc). (2.32)

    where (ϕj,uj,φe,j) is solution of (2.15), which corresponds to data (ϕ0,u0), (ϕpast,upast) and (I(j)i,I(j)), and ϕ=ϕ1ϕ2, u=u1u2, φe=φe,1φe,2, I=I(1)I(2), Ii=I(1)iI(2)i.

    Proof. (ⅰ) Since u satisfies the equation

    ut=I2(.;ϕ)u+E(ϕτ,uτ),inQ (2.33)

    where E(ϕτ,uτ)=n1k=1ck(x,t)ϕ(x,tξk(t))+n2l=1dl(x,t)u(x,tηl(t)), then we have (for all t)

    u(x,t)=u0t0I2(x,s;ϕ)dst0u(x,s)ds+n1k=1t0ck(x,s)ϕ(x,sξk(s))ds+n2l=1t0dl(x,s)u(x,sηl(s))ds. (2.34)

    Consequently (as in (2.26))

    u(x,t)=u0t0I2(x,s;ϕ)dst0u(x,s)ds+n1k=1tξk(t)ξk(0)ek(θ)ck(x,ek(θ))ϕ(x,θ)dθ+n2l=1tηl(t)ηl(0)ql(θ)dl(x,ql(θ))u(x,θ)dθ. (2.35)

    Since δ(0)ξk(0), δ(0)ηk(0), tξk(t)t and tηk(t)t we can deduce that (according to the regularity of ck, dl and )

    u(x,t)∣≤C(u0+t0I2(x,s;ϕ)ds+t0u(x,s)ds+tδ(0)ϕ(x,θ)dθ+tδ(0)u(x,θ)dθ) (2.36)

    and then (since from the assumption (2.6) we have I2(.;ϕ)∣≤β5+β6ϕ2)

    u(x,t)∣≤C(1+t0ϕ(x,s)2ds+t0u(x,s)ds+t0ϕ(x,θ)dθ+u0+0δ(0)ϕpast(x,θ)dθ+0δ(0)upast(x,θ)dθ). (2.37)

    This implies

    (Ωu(x,t)3dx)1/3C(1+u0L3(Ω)+[Ω(t0u(x,s)ds)3dx]1/3+[Ω(t0ϕ(x,s)2ds)3dx]1/3+[Ω(t0ϕ(x,θ)dθ)3dx]1/3+[Ω(0δ(0)ϕpast(x,θ)dθ)3dx]1/3+[Ω(0δ(0)upast(x,θ)dθ)3dx]1/3) (2.38)

    and then (using Minkowski inequality)

    (Ωu(x,t)3dx)1/3C(1+u0L3(Ω)+t0(Ωu(x,s)3dx)1/3ds+t0(Ωϕ(x,s)6dx)1/3ds+t0(Ωϕ(x,θ)3dx)1/3dθ+0δ(0)(Ωϕpast(x,θ)3dx)1/3dθ+0δ(0)(Ωupast(x,θ)3dx)1/3dθ). (2.39)

    Since ϕL2(0,T,H1(Ω))L2(0,T,Lr(Ω)) (r[1,6]), then

    u(.,t)L3(Ω)C1(1+u0L3(Ω)+ϕpastL2(δ(0),0;L3(Ω))+upastL2(δ(0),0;L3(Ω)))+C2ϕL2(0,T;H1(Ω))+C3ϕ2L2(0,T;H1(Ω))+C4t0u(.,s)L3(Ω)ds. (2.40)

    According to (2.28), we can deduce that

    u(.,t)L3(Ω)C5(1+u0L3(Ω)+ϕpastL2(δ(0),0;L3(Ω))+upastL2(δ(0),0;L3(Ω))+IiL2(Q)+IL2(Q)+ϕ0H)+C6t0u(.,s)L3(Ω)ds.

    Consequently (by using Gronwall lemma)

    u(.,t)L3(Ω)C(1+u0L3(Ω)+ϕpastL2(δ(0),0;L3(Ω))+upastL2(δ(0),0;L3(Ω))+IiL2(Q)+IL2(Q)+ϕ0H).

    Since

    (u0,ϕ0,I,Ii,upast,ϕpast)L3(Ω)×L2(Ω)×L2(Q)×L2(Q)×L2(δ(0),0;L3(Ω))×L2(δ(0),0;L3(Ω)), then, u(.,t)L3(Ω) (for all t(0,T)).

    (ⅱ) From (2.33), we have (for all t)

    u(x,t)=u0t0(I2(x,s;ϕ1)I2(x,s;ϕ2))dst0u(x,s)ds+n1k=1t0ck(x,s)ϕ(x,sξk(s))ds+n2l=1t0dl(x,s)u(x,sηl(s))ds. (2.41)

    Consequently,

    u(x,t)=u0t0(I2(x,s;ϕ1)I2(x,s;ϕ2))dst0u(x,s)ds+n1k=1tξk(t)ξk(0)ck(x,ek(θ))ek(θ)ϕ(x,θ)dθ+n2l=1tηl(t)ηl(0)dl(x,ql(θ))ql(θ)u(x,θ)dθ. (2.42)

    Since δ(0)ξk(0), δ(0)ηk(0), tξk(t)t and tηk(t)t we can deduce that (according to the regularity of ck, dl and )

    u(x,t)∣≤t0I2(x,s;ϕ1)I2(x,s;ϕ2)ds+u0+C(t0u(x,s)ds+t0ϕ(x,θ)dθ+0δ(0)ϕ(x,θ)dθ+0δ(0)u(x,θ)dθ) (2.43)

    and then (since from (H4) we have I2(.;ϕ1)I2(.;ϕ2)∣≤Cϕ(1+ϕ1+ϕ2))

    u(x,t)∣≤C(t0ϕ(x,s)∣∣ϕ1(x,s)ds+t0ϕ(x,s)∣∣ϕ2(x,s)ds+t0u(x,s)ds+t0ϕ(x,s)ds+u0+0δ(0)ϕpast(x,θ)dθ+0δ(0)upast(x,θ)dθ). (2.44)

    Consequently

    (Ωu(x,t)3dx)1/3C(u0L3(Ω)+[Ω(t0u(x,s)ds)3dx]1/3+[Ω(t0ϕ(x,s)ds)3dx]1/3+[Ω(t0ϕ(x,t)ϕ2(x,s)ds)3dx]1/3+[Ω(t0ϕ(x,s)ϕ1(x,s)ds)3dx]1/3+[Ω(0δ(0)ϕpast(x,θ)dθ)3dx]1/3+[Ω(0δ(0)upast(x,θ)dθ)3dx]1/3). (2.45)

    This implies (by using Hölder's and Minkowski inequalities)

    u(.,t)L3(Ω)C(t0(Ωu(x,s)3dx)1/3ds+t0(Ωϕ(x,θ)3dx)1/3dθ+t0(Ωϕ(x,s)6dx)1/6(Ωϕ1(x,s)6dx)1/6ds+t0(Ωϕ(x,s)6dx)1/6(Ωϕ2(x,s)6dx)1/6ds+u0L3(Ω)+0δ(0)(Ωϕpast(x,θ)3dx)1/3dθ+0δ(0)(Ωupast(x,θ)3dx)1/3dθ). (2.46)

    Since ϕL2(0,T,H1(Ω))L2(0,T,Lr(Ω)) (r[1,6]), then

    u(.,t)L3(Ω)C1(u0L3(Ω)+ϕpastL2(δ(0),0;L3(Ω))+upastL2(δ(0),0;L3(Ω)))+C2ϕL2(0,T;H1(Ω))(1+ϕ1L2(0,T;H1(Ω))+ϕ2L2(0,T;H1(Ω)))+C3t0u(.,s)L3(Ω)ds. (2.47)

    According to (2.29), we can deduce that

    u(.,t)L3(Ω)C4(u0L3(Ω)+ϕpastL2(δ(0),0;L3(Ω))+upastL2(δ(0),0;L3(Ω)))+C5(IiL2(Q)+IL2(Q)+ϕ0H)+C6t0u(.,s)L3(Ω)ds.

    Consequently (by using Gronwall lemma)

    u(.,t)L3(Ω)C(u0L3(Ω)+ϕpastL2(δ(0),0;L3(Ω))+upastL2(δ(0),0;L3(Ω))+IiL2(Q)+IL2(Q)+ϕ0H). (2.48)

    (ⅲ).a. Put S1=H(.,ϕτ,uτ), then from Lemma 2.6, we can deduce that

    S1L2(0,t;L2(Ω))C(ϕL2(0,t;L2(Ω))+uL2(0,t;L2(Ω))+ϕpastL2(δ(0),0;L2(Ω))+upastL2(δ(0),0;L2(Ω))).

    Since (ϕ,u)(L2(0,T;L2(Ω)))2 and (ϕpast,upast)(L2(δ(0),0;L2(Ω)))2, we can deduce that

    S1L2(Q).

    From (2.15), we can deduce that (ϕ,u) satisfies (for all vV,veU)

    cmϕt,vV,V+ΩI(.;ϕ,u)vdx+Ai(ϕ+φe,v)=Ω(Ii+S1)vdx,Ai(ϕ+φe,ve)+Ae(φe,ve)=ΩIvedx. (2.49)

    In order to derive the result of (a), we will just sketch the proof based on suitable a priori estimates. From (2.49) with (v,ve)=(ϕt,φet) (since cm=b2m)

    bmϕt2L2(Ω)+ΩI0(ϕ)ϕtdx+Ai(ϕ+φe,ϕt)+ΩI1(ϕ)uϕtdx=ΩIiϕtdx+ΩS1ϕtdx,Ai(ϕ+φe,φet)+Ae(φe,φet)=ΩIφetdx. (2.50)

    Then

    bmϕt2L2(Ω)+ddt(Ω˜I0(ϕ)dx)+Ω˜I0t(ϕ)dx+ΩI1(ϕ)uϕtdx+d2dtAi(ϕ+φe,ϕ+φe)+d2dtAi(φe,φe)=ΩφeItdx+ddt(ΩIφedx)+ΩIiϕtdx+ΩS1ϕtdx. (2.51)

    Since IUcC0([0,T];L2(Ω)), then I(0)L2(Ω) and we have I(0)2L2(Ω)CI2Uc. Consequently, by integrating (2.51) by time we can deduce (from (2.4), (2.5), (H5), the boundedness of bm and, the coercivity and continuity of Ai and Ae)

    2c_mt0ϕt2L2(Ω)ds+αiϕ(t)2H1(Ω)+(αe+αi)φe(t)2H1(Ω)+2β12t0ϕ4L4(Ω)ds+2β10ϕ(t)4L4(Ω)δ0t0ϕt2L2(Ω)ds+δ1φe(t)2H1(Ω)+C0t0u2L3(Ω)ϕ2H1(Ω)ds+C1(Ii2L2(Q)+S12L2(Q)+I2Uc)+C2(1+ϕ02H1(Ω)+φ(0)e2H1(Ω)+ϕ02L2(Ω))+Ω˜I0(ϕ0)dx+C3(ϕ4L4(Q)+ϕ2L(0,T;L2(Ω))+φe2L2(Q)). (2.52)

    From (H5) we can deduce that Ω˜I0(ϕ0)dxC(1+ϕ04L4(Ω))C(1+ϕ04H1(Ω)) and then (by choosing δ0=c_m and δ1=(αe+αi)/2)

    c_mt0ϕt2L2(Ω)ds+αiϕ(t)2H1(Ω)+(αe+αi)/2φe(t)2H1(Ω)+2β12t0ϕ4L4(Ω)ds+2β10ϕ(t)4L4(Ω)C4t0u2L3(Ω)ϕ2H1(Ω)ds+C5(Ii2L2(Q)+S12L2(Q)+I2Uc)+C6(1+ϕ02H1(Ω)+φ(0)e2H1(Ω)+ϕ04H1(Ω))+C7(ϕ4L4(Q)+ϕ2L(0,T;L2(Ω))+φe2L2(Q)). (2.53)

    Consequently (since IUc, ϕL4(Q)L(0,T;L2(Ω))L2(0,T;H1(Ω)), φeL2(Q), uL(0,T;L3(Ω)), (ϕpast,upast)(L2(Q0))2, (Ii,S1)(L2(Q))2 and (ϕ0,φ(0)e)(H1(Ω))2),

    t0ϕt2L2(Ω)ds+ϕ(t)2H1(Ω)+φe(t)2H1(Ω)C (2.54)

    and then ϕtL2(Q) and (ϕ,φe)L(0,T;H1(Ω)).

    The proof of (a) can be completed by implementing the classical Faedo-Galerkin method and by taking advantage of the above estimates. So we omit the details.

    Prove now that uC0([0,T];L3(Ω)). Let S=I2(.;ϕ)u+E(ϕτ,uτ) be the right hand side of (2.33). According to the expression of I2, we can deduce that (since ϕL(0,T;H1(Ω)) and uL(0,T;L3(Ω)))

    SL3(Ω)C(1+ϕ2L(0,T;H1(Ω))+uL(0,T;L3(Ω))+E(ϕτ,uτ)L3(Ω))

    and then (from Lemma 2.6)

    SL2(0,T;L3(Ω))C(1+ϕ2L(0,T;H1(Ω))+uL(0,T;L3(Ω))+ϕL2(0,T;L3(Ω))+uL2(0,T;L3(Ω))+ϕpastL2(δ(0),0;L3(Ω))+upastL2(δ(0),0;L3(Ω))). (2.55)

    Consequently, since (ϕpast,upast)(L2(δ(0),0;L3(Ω)))2, we can deduce that SL2(0,T;L3(Ω)) and then utL2(0,T;L3(Ω)). Since uL2(0,T;L3(Ω)) and utL2(0,T;L3(Ω)) then, from Remark 2.3, uC0([0,T];L3(Ω)).

    (ⅲ).b. Prove now the estimate relation. Let (ϕj,φe,j,uj) (for j=1,2) be two solutions corresponding to (I(j)i,I(j))L2(Q)×Uc with (ϕ1ϕ2,φe,1φe,2,u1u2)(t=0)=(0,0,0) and (ϕpast,upast)=(ϕpast,1ϕpast,2,upast,1upast,2)=(0,0). Then (ϕ,φe,u)=(ϕ1ϕ2,φe,1φe,2,u1u2) satisfies, from (2.15) with (v,ve)=(ϕt,φet)

    bmϕt2L2(Ω)+Ω(I0(.;ϕ1)I0(.;ϕ2))ϕtdx+Ai(ϕ+φe,ϕt)+Ω(u1I1(.;ϕ1)u2I2(.;ϕ2))ϕtdx=ΩIiϕtdx+ΩH(.,ϕτ,uτ)ϕtdx,Ai(ϕ+φe,φet)+Ae(φe,φet)=ΩIφetdx,ut=(I2(.;ϕ1)I2(.;ϕ2))u+E(ϕτ,uτ). (2.56)

    Then

    bmϕt2L2(Ω)+d2dtAi(ϕ+φe,ϕ+φe)+d2dtAi(φe,φe)=Ω(I0(.;ϕ1)I0(.;ϕ2))ϕtdxΩuI1(.;ϕ1)ϕtdxΩu2(I1(.;ϕ1)I1(.;ϕ2))ϕtdxΩφeItdx+ddt(ΩIφedx)+ΩIiϕtdx+ΩH(.,ϕτ,uτ)ϕtdx,ut=(I2(.;ϕ1)I2(.;ϕ2))u+E(ϕτ,uτ). (2.57)

    According to assumptions (H2), (H4) and (H6), we can deduce that (from the boundedness of bm)

    c_mϕt2L2(Ω)+d2dtAi(ϕ+φe,ϕ+φe)+d2dtAi(φe,φe)C1(Ωϕ(ϕ12+ϕ22+1)ϕtdx+Ωu(1+ϕ1)ϕtdx)+C2Ωϕ∣∣u2∣∣ϕtdx+Ωφe∣∣Itdx+ddt(ΩIφedx)+ΩIi∣∣ϕtdx+ΩH(.,ϕτ,uτ)∣∣ϕtdx,utL3(Ω)C3(ϕL6(Ω)ϕ1L6(Ω)+ϕL6(Ω)ϕ2L6(Ω)+ϕL3(Ω)+uL3(Ω))+C4E(ϕτ,uτ)L3(Ω). (2.58)

    Integrating by time we obtain (according to the coercivity and continuity of Ai and Ae, and to the estimate of H(.;ϕτ,uτ) and E(.;ϕτ,uτ) given by Lemma 2.6)

    2c_mt0ϕt2L2(Ω)ds+αiϕ(t)2H1(Ω)+(αe+αi)φe(t)2H1(Ω)C5ϕ2L2(0,T;H1(Ω)(ϕ12L(0,T;H1(Ω))+ϕ22L(0,T;H1(Ω))+u22L(0,T;L3(Ω)))+C6u2L(0,T;L3(Ω))ϕ12L(0,T;H1(Ω))+δ0t0ϕt2L2(Ω)ds+δ1φe(t)2H1(Ω)+C7(ϕ2L2(Q)+u2L2(Q)+Ii2L2(Q)+I2Uc+φe2L2(Q)),utL2(0,T;L3(Ω))C8ϕL(0,T;H1(Ω))(ϕ1L(0,T;H1(Ω))+ϕ2L(0,T;H1(Ω)))+C9(ϕL2(0,T;L3(Ω))+uL2(0,T;L3(Ω))).

    Since (ϕj,uj)L(0,T;H1(Ω))×L(0,T;L3(Ω)) (for j=1,2) we can deduce that (by choosing δ0=c_m and δ1=(αe+αi)/2)

    c_mt0ϕt2L2(Ω)ds+αiϕ(t)2H1(Ω)+αe+αi2φe(t)2H1(Ω)C10(u2L(0,T;L3(Ω))+ϕ2L2(0,T;H1(Ω))+Ii2L2(Q)+φe2L2(Q)+I2Uc)ut2L2(0,T;L3(Ω))C11(ϕ2L(0,T;H1(Ω))+ϕ2L2(0,T;L3(Ω))+u2L2(0,T;L3(Ω))). (2.59)

    Consequently (from the estimates (2.29)–(2.48))

    ϕt2L2(Q)+ut2L2(0,T;L3(Ω))+ϕ2L(0,T;H1(Ω))+φe2L(0,T;H1(Ω))C(Ii2L2(Q)+I2Uc). (2.60)

    This completes the proof.

    According to previous Theorems, we can derive the following results.

    Theorem 2.4. Consider the case of p=4. Let assumptions (H1)-(H6) and (RC) be fulfilled. For (u0,upast,ϕpast,ϕ0) and (I,Ii) given such that (ϕpast,upast)(L2(δ(0),0;L3(Ω)))2, u0L3(Ω), φ(0)iφ(0)e=ϕ0 with (ϕ0,φ(0)e)(H1(Ω))2, and (Ii,I)L2(Q)×Uc, there exists a unique solution (ϕ,φe,u) of problem (2.15) verifying (ϕ,φe,u)D, with

    D=A×L(0,T;U)×Bsuch thatA=L(0,T;V)H1(0,T;H)C0([0,T];H)andB=C0([0,T];L3(Ω))H1(0,T;L3(Ω)),equipped with ((v,ve,ρ)D)(v,ve,ρ)2D=v2A+ve2L(0,T;U)+ρ2B, (2.61)

    and it holds that

    (ϕ,φe,u)2DC(1+Ii2L2(Q)+I2Uc). (2.62)

    Moreover the Lipschitz continuity relation is satisfied, i.e., for any element (I(j)i,I(j))L2(Q)×Uc for j=1,2, we have

    (ϕ1ϕ2,φe,1φe,2,u1u2)2DC(I(1)iI(2)i2L2(Q)+I(1)I(2)2Uc), (2.63)

    where (ϕj,uj,φe,j) is the solution of (2.15), which corresponds to data (ϕ0,u0), (ϕpast,upast) and (I(j)i,I(j)) (for j=1,2).

    In this section, we formulate the minimax control problem and discuss the existence and necessary optimality conditions for an optimal solution.

    Our problem in this section is to find the best admissible source function ξ in presence of the admissible disturbance in the function π. In order to illustrate our minimax control problem, we assume here that the control ξ is in I and the disturbance π is in Ii (which act on control domain Ωc and disturbance domain Ωd, respectively), i.e., I=B1ξ and Ii=B2π+f, where fL2(Q), support(ξ)Ωc×(0,T) and support(π)Ωd×(0,T), and the operators BiL(L2(Ω);L2(Ω)), with BiθL2(Ω)CθL2(Ω), for all θ (for i=1,2). Therefore, the function (ϕ,φe,u) is assumed to be related to the disturbance π and control ξ through the problem (under conditions (1.3) and (1.2) for φe and B1ξ, respectively)

    cmϕt+I(ϕ,u)div(Ki(ϕ+φe))=H(ϕτ,uτ)+B2π+f,inQdiv(Kiϕ)div((Ki+Ke)φe)=B1ξ,inQut+G(ϕ,u)=E(ϕτ,uτ),inQ(Kiϕ).n+(Kiφe).n=0,onΣ(Keφe).n=0,onΣϕ(.,t=0)=ϕ0,u(.,t=0)=u0,inΩϕ=ϕpast,u=upast,inQ0 (3.1)

    under pointwise constraints

    ξ∣≤τ1a.e.inQ,π∣≤τ2a.e.inQ. (3.2)

    Let Uad and Vad be convex, closed, non-empty and bounded subsets of Uc and L2(Q), respectively, and describing constraints (3.2) and compatibility condition (1.2) such that

    Uad={ξUc:support(ξ)Ωc×(0,T),ΩB1ξdx=0,ξ∣≤τ1a.e.inQ},Vad={πL2(Q):support(π)Ωd×(0,T),π∣≤τ2a.e.inQ}.

    Although Uad and Vad are subsets of L(Q), we prefer to use standard norms of space L2(Q). the reason is that we would like to take advantages of differentiability of the latter norms away from the origin to perform our variational analysis. Moreover the spaces Uad and Vad form closed, convex, weak-star sequentially compact subsets of spaces L(0,T;L2(Ω)) (for weak-star sequential compactness see e.g. [59] and for similar result see e.g. [45]). For operator B1, we can consider, for example, the operator

    θL2(Ω)B1θ=θ(1mes(Ωc)Ωθdx)χΩc. (3.3)

    Then ΩB1θdx=0 and if support(θ)Ωc we have ΩcB1θdx=0. Moreover the operator B1 is autoadjoint on the domain {θL2(Ω):support(θ)Ωc}. The studied control problem is to find a saddle point of cost function J which measures the distance between known observations (a nominal desired states) and the prognostic variables ϕ. We assume that we have observations on some domain Ωobs at certain times tk, k=1;...;Nobs or at final time T. Precisely we will study the following control problem (SP).

    Find an admissible control-disturbance (ξ,π)Uad×Vad such that cost functional (in the reduced form)

    J(ξ,π)=m12T0Υ(t)ϕϕobs2L2(Ωobs)dt+m22ϕ(T)ψobs2L2(Ωobs)+α2ξ2Ucβ2T0π2L2(Ωd)dt, (3.4)

    is minimized with respect to ξ and maximized with respect to π subject to problem (3.1), where the weight function Υ is given by (with ϖ>0 large enough)

    Υ(t)=Nobsk=1exp(ϖ(ttk)2), (3.5)

    α,β>0 and mi0 (i=1,2) are fixed such that m1+m2>0, the functions ϕobsL2(0,T;Ωobs) and ψobsL2(Ωobs) are the observations (given), ΩobsΩ is the observation domain, ΩcΩ is the control domain and ΩdΩ is the disturbance domain. Clearly, find (ξ,π)Uad×Vad (a saddle point for the functional J) such that ((ξ,π)Uad×Vad)

    J(ξ,π)J(ξ,π)J(ξ,π). (3.6)

    Remark 3.1. (i) The coefficient α>0 can be interpreted as the measure of price of control (that the engineer can afford) and the coefficient β>0 can be interpreted as the measure of price of disturbance (that the environment can afford).

    (ii) Operators Bi, i=1,2, also include the quantification of source profiles, inside the considered area, which results of change in disturbance and control variables.

    In the sequel of this paper, we restrict our analysis to a generalized form of the three models mentioned at the beginning of article, namely : Rogers-McCulloch model, Fitzhugh-Nagumo model and Aliev-Panfilov model. More precisely:

    (HMC) p=4 and the operators I and G are supposed to be of the form given in (2.21).

    Remark 3.2. According to expression (2.21) of operators I and G, we verify easily that hypotheses (H5)-(H6) are satisfied.

    In this section, we study the Fréchet differentiability of the nonlinear operator solution and derive some necessary estimates. For a given fL2(Q), initial condition (ϕ0,φ(0)e,u0) in (H1(Ω))2×L3(Ω) and past condition (ϕpast,upast)(L2(δ0,0;L3(Ω)))2, let us introduce the following mapping F:Uad×Vad D, which maps the source term (ξ,π)Uad×Vad of (3.1) into the corresponding solution X=(ϕ,φe,u) in D, where D is defined by (2.61).

    Before proceeding with investigation of Fréchet differentiability of operator F, we study the following linear parabolic problem, for (h1,h2)Uc×L2(Ωd),

    cmΨt+Iϕ(ϕ,u).Ψ+Iu(ϕ,u).wdiv(Ki(Ψ+ψe))=H(Ψτ,wτ)+B2h2,inQdiv(KiΨ)div((Ki+Ke)ψe)=B1h1,inQwt+Gϕ(ϕ,u).Ψ+Gu(ϕ,u).w=E(Ψτ,wτ),inQ(KiΨ).n+(Kiψe).n=0,onΣ(Keψe).n=0,onΣΨ(.,t=0)=0,w(.,t=0)=0,inΩΨ=0,w=0,inQ0 (3.7)

    and under conditions (1.3) and (1.2) for ψe and B1h1, respectively.

    The weak formulation of Problem (3.7) can be written as follows ((v,ve,ρ)V×U×H and a.e. in (0,T))

    cmΨt,vV,V+ΩKiΨvdx+ΩKiψevdx+ΩIϕΨvdx+ΩIuwvdx=ΩH(Ψτ,wτ)vdx+ΩB2h2vdx,Ω(Ki+Ke)ψevedx+ΩKiΨvedx=ΩB1h1vedx,(wt,ρ)H+ΩGϕ.Ψρdx+Ωwρdx=ΩE(Ψτ,wτ)ρdx. (3.8)

    We are now going to prove the existence and uniqueness result of problem (3.8). To this end, we begin by proving the following necessary Lemma, which correspond to the existence, uniqueness and some regularity properties for the following nondelayed problem on QS=Ω×(S0,Sf) (with 0S0<SfT)

    cmΠt+Iϕ(ϕ,u).Π+Iu(ϕ,u).Vdiv(Ki(Π+πe))=g1,div((Ke+Ki)πe)div(KiΠ)=B1h1Uc,Vt+Gϕ(ϕ,u).Π+Gu(ϕ,u).V=g2,with initial and boundary conditions(Ki(Π+πe))n=0,onΣS=Ω×(S0,Sf)(Keπe)n=0,onΣSΠ(t=S0)=Π0,V(t=S0)=V0,onΩ. (3.9)

    Lemma 3.1. Let assumptions (H1)-(H4) and (HMC) be fulfilled. Suppose that (ϕ,φe,u)D and h1Uc, then the following results hold.

    1. For (V0,Π0)(L2(Ω))2 and (g1,g2)(L2(QS))2 given, there exists a unique solution (Π,πe,V) of problem (3.9) verifying the following regularity

    (Π,πe,V)W(QS),(Πt,Vt)L4/3(S0,Sf;V)×L2(QS),(Π,V)(C0([S0,Sf];L2(Ω)))2,

    where W(QS)=(L2(S0,Sf;V)L(S0,Sf;H))×L2(S0,Sf;U)×L(S0,Sf;L2(Ω)).

    2. For (V0,Π0) and (g1,g2) given such that V0L3(Ω), π(0)iπ(0)e=Π0 with (Π0,π(0)e)(H1(Ω))2 and (g_{1}, g_{2})\in L^2({\cal Q}_{S})\times L^{2}(S_{0}, S_{f}; L^{3}(\Omega)) , the solution (\Pi, \pi_{e}, V) of (3.9) is in \mathbb{D}({\cal Q}_{S}) , where

    \mathbb{D}({\cal Q}_{S}) = \mathbb{A}_{S}\times L^{\infty}(S_{0}, S_{f}; \mathbb{U})\times \mathbb{B}_{S} , with \mathbb{A}_{S} = L^{\infty}(S_{0}, S_{f}; \mathbb{V})\cap H^{1}(S_{0}, S_{f}; \mathbb{H})\cap C^{0}([S_{0}, S_{f}]; \mathbb{H}) and \mathbb{B}_{S} = C^{0}([S_{0}, S_{f}]; L^{3}(\Omega))\cap H^{1}(S_{0}, S_{f}; L^{3}(\Omega)) .

    Proof. We will just sketch the proof based on suitable a priori estimates. The weak formulation of Problem (3.9) can be written as follows ( \forall (v, v_{e}, \rho)\in \mathbb{V}\times\mathbb{U}\times \mathbb{H} and a.e. in (S_0, S_f) )

    \begin{equation} \begin{array}{lcr} \big\langle \mathfrak{c}_{m}\frac{\partial \Pi}{\partial t}, v \big\rangle_{\mathbb{V}', \mathbb{V}} +\int_{\Omega}\mathcal{K}_{i}\nabla \Pi\nabla v d{\bf{x}} +\int_{\Omega}\mathcal{K}_{i}\nabla \pi_{e}\nabla v d{\bf{x}} \quad +\int_{\Omega}\frac{\partial {\cal I}}{\partial \phi}\Pi v d{\bf{x}}\\ \quad +\int_{\Omega}\frac{\partial {\cal I}}{\partial u}V vd{\bf{x}} = \int_{\Omega}g_{1} vd{\bf{x}}, \\ \int_{\Omega}(\mathcal{K}_{i}+\mathcal{K}_{e})\nabla\pi_{e}\nabla v_{e} d{\bf{x}} +\int_{\Omega}\mathcal{K}_{i}\nabla \Pi\nabla v_{e} d{\bf{x}} = \int_{\Omega}B_{1}h_{1}v_{e} d{\bf{x}}, \\ \big( \frac{\partial V}{\partial t}, \rho \big)_{\mathbb{H}}+\int_{\Omega}\frac{\partial {\cal G}}{\partial \phi}.\Pi \rho d{\bf{x}} +\int_{\Omega}\hbar V \rho d{\bf{x}} = \int_{\Omega}g_{2}\rho d{\bf{x}}. \end{array} \end{equation} (3.10)

    According to Theorem 2.1, we have then

    \begin{equation} \begin{array}{lcr} \big\langle \mathfrak{c}_{m}\frac{\partial \Pi}{\partial t}, v \big\rangle_{\mathbb{V}', \mathbb{V}} +\underline{A}_{i}(\Pi, v) \quad +\int_{\Omega}\frac{\partial {\cal I}}{\partial \phi}\Pi v d{\bf{x}}\\ \quad +\int_{\Omega}\frac{\partial {\cal I}}{\partial u}V vd{\bf{x}} = \int_{\Omega}g_{1} vd{\bf{x}}-\int_{\Omega}\mathcal{K}_{i}\nabla \overline{\pi}_{e}\nabla v d{\bf{x}}, \\ \big(\frac{\partial V}{\partial t}, \rho \big)_{\mathbb{H}}+\int_{\Omega}\frac{\partial {\cal G}}{\partial \phi}.\Pi \rho d{\bf{x}} +\int_{\Omega}\hbar V \rho d{\bf{x}} = \int_{\Omega}g_{2}\rho d{\bf{x}}, \end{array} \end{equation} (3.11)

    where \underline{\pi}_e and \overline{\pi}_e are the unique solutions of

    \begin{equation} (A_i + A_e)(\underline{\pi}_e, v_e) +A_i(\Pi, v_e) = 0, \; \; \forall v_e \in \mathbb{U} \end{equation} (3.12)

    and

    \begin{equation} (A_i + A_e)(\overline{\pi}_e, v_e) = \langle {\cal B}_{1}h_{1}, v_{e}\rangle_{\mathbb{V}', \mathbb{V}}, \; \; \forall v_e \in \mathbb{U}. \end{equation} (3.13)

    From (3.13), we can deduce that (by taking v_e = \overline{\pi}_e )

    \begin{equation} \left\| { \overline{\pi}_e } \right\| _{\mathbb{V}}\leq C \left\| { h_{1} } \right\| _{L^{2}(\Omega)} \end{equation} (3.14)

    and then

    \begin{equation} \begin{array}{lcr} \mid \int_{\Omega}g_{1} vd{\bf{x}}-\int_{\Omega}\mathcal{K}_{i}\nabla \overline{\pi}_{e}\nabla v d{\bf{x}}\mid \leq C_{1}\left\| { h_{1} } \right\| _{L^{2}(\Omega)}\left\| { v} \right\| _{\mathbb{V}}+ C_{2}\left\| { g_{1} } \right\| _{L^{2}(\Omega)}\left\| { v} \right\| _{\mathbb{V}}\\ \quad \leq C_{3}(\left\| { h_{1} } \right\| ^{2}_{L^{2}(\Omega)}+\left\| { g_{1} } \right\| ^{2}_{L^{2}(\Omega)})+ \epsilon_{0}\left\| { v} \right\| ^{2}_{\mathbb{V}} \end{array} \end{equation} (3.15)

    where \epsilon_{0} can be chosen. For (v, \rho) = (\Pi, V) , we have

    \begin{equation} \begin{array}{lcr} \frac{1}{2}\frac{d}{dt} \left\| { \mathfrak{b}_{m}\Pi} \right\| _{L^{2}(\Omega)}^{2}+\underline{A}_{i}(\Pi, \Pi) \quad +\int_{\Omega}\frac{\partial {\cal I}}{\partial \phi}\Pi^{2} d{\bf{x}}\\ \quad +\int_{\Omega}\frac{\partial {\cal I}}{\partial u}V \Pi d{\bf{x}} = \int_{\Omega}g_{1} \Pi d{\bf{x}}-\int_{\Omega}\mathcal{K}_{i}\nabla \overline{\pi}_{e}\nabla \Pi d{\bf{x}}, \\ \frac{1}{2}\frac{d}{dt} \left\| { V} \right\| _{L^{2}(\Omega)}^{2} +\int_{\Omega}\frac{\partial {\cal G}}{\partial \phi}.\Pi V d{\bf{x}}+\int_{\Omega}\hbar V^{2} d{\bf{x}} = \int_{\Omega}g_{2} V d{\bf{x}}. \end{array} \end{equation} (3.16)

    According to the partial derivatives of {\cal I} and {\cal G} given by (2.21), we can deduce from (3.16) that (with \hbar_{11} > 0 )

    \begin{equation} \begin{array}{lcr} \frac{1}{2}\frac{d}{dt} \left\| { \mathfrak{b}_{m}\Pi} \right\| _{L^{2}(\Omega)}^{2}+\underline{\alpha}_{i}\left\| { \Pi} \right\| _{\mathbb{V}}^{2}+\int_{\Omega}3\hbar_{11}\Pi^{2}\phi^{2}d{\bf{x}}\\ \quad \leq C_{4}\big(\left\| { h_{1} } \right\| ^{2}_{L^{2}(\Omega)}+\left\| { g_{1} } \right\| ^{2}_{L^{2}(\Omega)}\big)+ \epsilon_{0}\left\| { \Pi} \right\| ^{2}_{\mathbb{V}} \\ \quad +C_{5}\left(\int_{\Omega}\Pi^{2}\mid \phi\mid d{\bf{x}}+\int_{\Omega}\Pi^{2}\mid u\mid d{\bf{x}}+\int_{\Omega}\Pi^{2}d{\bf{x}} +\int_{\Omega}V^{2}d{\bf{x}}+\int_{\Omega} \mid u\mid \mid V\mid \mid \Pi\mid d{\bf{x}}\right), \\ \frac{1}{2}\frac{d}{dt} \left\| { V} \right\| _{L^{2}(\Omega)}^{2} \leq C_{6}\left(\int_{\Omega}\mid\Pi\mid \mid \phi\mid \mid V\mid d{\bf{x}}+\int_{\Omega}\mid\Pi\mid \mid V\mid d{\bf{x}}\right)\\ \quad +C_{7}\big(\left\| { V} \right\| _{L^{2}(\Omega)}^{2}+\left\| { g_{2}} \right\| _{L^{2}(\Omega)}^{2}\big). \end{array} \end{equation} (3.17)

    Then

    \begin{equation} \begin{array}{lcr} \frac{1}{2}\frac{d}{dt} \left\| { \mathfrak{b}_{m}\Pi} \right\| _{L^{2}(\Omega)}^{2}+\underline{\alpha}_{i}\left\| { \Pi} \right\| _{\mathbb{V}}^{2}+\int_{\Omega}3\hbar_{11}\Pi^{2}\phi^{2}d{\bf{x}}\\ \quad \leq C_{4}\big(\left\| { h_{1} } \right\| ^{2}_{L^{2}(\Omega)}+\left\| { g_{1} } \right\| ^{2}_{L^{2}(\Omega)}\big)+ \epsilon_{0}\left\| { \Pi} \right\| ^{2}_{\mathbb{V}}\\ \quad +C_{8}\left\| { \Pi} \right\| _{L^{2}(\Omega)}\big(\left\| { \phi} \right\| _{L^{4}(\Omega)}\left\| { \Pi} \right\| _{L^{4}(\Omega)}+\left\| { u} \right\| _{L^{3}(\Omega)}\left\| { \Pi} \right\| _{L^{6}(\Omega)}\big)\\ \quad +C_{9}\big(\left\| { \Pi } \right\| ^{2}_{L^{2}(\Omega)}+\left\| { u } \right\| _{L^{3}(\Omega)}\left\| { \Pi} \right\| _{L^{6}(\Omega)} \left\| { V} \right\| _{L^{2}(\Omega)}+\left\| { V} \right\| ^{2}_{L^{2}(\Omega)}\big), \\ \frac{1}{2}\frac{d}{dt} \left\| { V} \right\| _{L^{2}(\Omega)}^{2} \leq C_{10}\left\| { \phi } \right\| _{L^{4}(\Omega)}\left\| { \Pi} \right\| _{L^{4}(\Omega)} \left\| { V} \right\| _{L^{2}(\Omega)}\\ \quad +C_{11}\big(\left\| { \Pi} \right\| _{L^{2}(\Omega)}^{2}+\left\| { V} \right\| _{L^{2}(\Omega)}^{2}+\left\| { g_{2}} \right\| _{L^{2}(\Omega)}^{2}\big). \end{array} \end{equation} (3.18)

    Since L^{r}(\Omega)\subset H^{1}(\Omega) for r\leq 6 , then

    \begin{equation} \begin{array}{lcr} \frac{1}{2}\frac{d}{dt} \left\| { \mathfrak{b}_{m}\Pi} \right\| _{L^{2}(\Omega)}^{2}+\underline{\alpha}_{i}\left\| { \Pi} \right\| _{\mathbb{V}}^{2} \quad +\int_{\Omega}3\hbar_{11}\Pi^{2}\phi^{2}d{\bf{x}}\\ \quad \leq C_{4}(\left\| { h_{1} } \right\| ^{2}_{\mathbb{V}'}+\left\| { g_{1} } \right\| ^{2}_{L^{2}(\Omega)})+ (\epsilon_{0}+\epsilon_{1})\left\| { \Pi} \right\| ^{2}_{\mathbb{V}} \\ \quad +C_{12}\left\| { \Pi} \right\| ^{2}_{L^{2}(\Omega)}\big(1+\left\| { \phi} \right\| ^{2}_{L^{4}(\Omega)}+\left\| { u} \right\| ^{2}_{L^{3}(\Omega)}\big) +C_{13}\big(1+\left\| { u } \right\| ^{2}_{L^{3}(\Omega)}\big)\left\| { V} \right\| ^{2}_{L^{2}(\Omega)}, \\ \frac{1}{2}\frac{d}{dt} \left\| { V} \right\| _{L^{2}(\Omega)}^{2} \leq \epsilon_{2}\left\| { \Pi} \right\| ^{2}_{\mathbb{V}}+C_{14}\left\| { V} \right\| ^{2}_{L^{2}(\Omega)}\big(1+\left\| { \phi } \right\| ^{2}_{L^{4}(\Omega)}\big)\\ \quad +C_{15}\left\| { \Pi} \right\| _{L^{2}(\Omega)}^{2}+C_{16}\left\| { g_{2}} \right\| _{L^{2}(\Omega)}^{2}. \end{array} \end{equation} (3.19)

    By adding the first and second equation of previous system we obtain

    \begin{equation} \begin{array}{lcr} \frac{1}{2}\left(\frac{d}{dt} \left\| { \mathfrak{b}_{m}\Pi} \right\| _{L^{2}(\Omega)}^{2}+\frac{d}{dt} \left\| { V} \right\| _{L^{2}(\Omega)}^{2}\right) +\underline{\alpha}_{i}\left\| { \Pi} \right\| _{\mathbb{V}}^{2} +\int_{\Omega}3\hbar_{11}\Pi^{2}\phi^{2}d{\bf{x}}\\ \quad \leq (\epsilon_{0}+\epsilon_{1}+\epsilon_{2})\left\| { \Pi} \right\| ^{2}_{\mathbb{V}} +C_{17}\big(\left\| { h_{1} } \right\| ^{2}_{L^{2}(\Omega)}+\left\| { g_{1} } \right\| ^{2}_{L^{2}(\Omega)}+\left\| { g_{2}} \right\| _{L^{2}(\Omega)}^{2}\big) \\ \quad +C_{18}\big(\left\| { V} \right\| ^{2}_{L^{2}(\Omega)}+\left\| { \Pi} \right\| ^{2}_{L^{2}(\Omega)}\big)\big(1+\left\| { \phi } \right\| ^{2}_{L^{4}(\Omega)}+\left\| { u } \right\| ^{2}_{L^{3}(\Omega)}\big). \end{array} \end{equation} (3.20)

    By choosing \epsilon_{i} such that (\epsilon_{0}+\epsilon_{1}+\epsilon_{2}) = \frac{1}{2}\underline{\alpha}_{i} , we can deduce that

    \begin{equation} \begin{array}{lcr} \left(\frac{d}{dt} \left\| { \mathfrak{b}_{m}\Pi} \right\| _{L^{2}(\Omega)}^{2}+\frac{d}{dt} \left\| { V} \right\| _{L^{2}(\Omega)}^{2}\right) +\left\| { \Pi} \right\| _{\mathbb{V}}^{2}+\int_{\Omega}\Pi^{2}\phi^{2}d{\bf{x}}\\ \quad \leq C_{19}\big(\left\| { h_{1} } \right\| ^{2}_{L^{2}(\Omega)}+\left\| { g_{1} } \right\| ^{2}_{L^{2}(\Omega)}+\left\| { g_{2}} \right\| _{L^{2}(\Omega)}^{2}\big)\\ \quad +C_{20}\big(\left\| { V} \right\| ^{2}_{L^{2}(\Omega)}+\left\| { \mathfrak{b}_{m} \Pi} \right\| ^{2}_{L^{2}(\Omega)}\big)\big(1+\left\| { \phi } \right\| ^{2}_{L^{4}(\Omega)}+\left\| { u } \right\| ^{2}_{L^{3}(\Omega)}\big). \end{array} \end{equation} (3.21)

    Then, Gronwall's lemma yields (for all t\in (S_0, S_f) )

    \left\| { V(t)} \right\| ^{2}_{L^{2}(\Omega)}+\left\| { \mathfrak{b}_{m}\Pi(t)} \right\| ^{2}_{L^{2}(\Omega)} \leq \Big(\left\| { V_{0}} \right\| ^{2}_{L^{2}(\Omega)}+\left\| { \Pi_{0}} \right\| ^{2}_{L^{2}(\Omega)}\Big)e^{G(t)}+e^{G(t)}\int_{S_0}^{S_f}e^{-G(s)}F(s)ds,

    where the functions

    \begin{equation*} \begin{array}{lcr} G(s) = \int_{0}^{s}C_{20}(1+\left\| { \phi } \right\| ^{2}_{L^{4}(\Omega)}+\left\| { u } \right\| ^{2}_{L^{3}(\Omega)})d\tau, \\ F(s) = C_{19}\big(\left\| { h_{1} } \right\| ^{2}_{L^{2}(\Omega)}+\left\| { g_{1} } \right\| ^{2}_{L^{2}(\Omega)}+\left\| { g_{2}} \right\| _{L^{2}(\Omega)}^{2}\big), \end{array} \end{equation*}

    exist (since (h_{1}, g_{1}, g_{2}, u, \phi)\in L^{2}({\cal Q}_{S})\times L^{2}({\cal Q}_{S})\times L^{2}({\cal Q}_{S})\times L^{2}(S_0, S_f; L^{3}(\Omega))\times L^{4}({\cal Q}_{S})) . Consequently, according to the boundedness of \mathfrak{b}_{m} (for all t\in (S_0, S_f) )

    \begin{equation} \begin{array}{lcr} \left\| { V(t)} \right\| ^{2}_{L^{2}(\Omega)}+\left\| { \Pi(t)} \right\| ^{2}_{L^{2}(\Omega)} \leq C\Big(\left\| { V_{0}} \right\| ^{2}_{L^{2}(\Omega)}+\left\| { \Pi_{0}} \right\| ^{2}_{L^{2}(\Omega)}\\ \quad +\left\| { h_{1} } \right\| ^{2}_{L^{2}({\cal Q}_{S})}+\left\| { g_{1} } \right\| ^{2}_{L^{2}({\cal Q}_{S})}+\left\| { g} \right\| _{L^{2}({\cal Q}_{S})}^{2}\Big). \end{array} \end{equation} (3.22)

    Then according to (3.21), we can deduce that

    \begin{equation} \begin{array}{lcr} \left\| { \Pi} \right\| ^{2}_{L^{2}(S_0, S_f;\mathbb{V})} \leq C\Big(\left\| { V_{0}} \right\| ^{2}_{L^{2}(\Omega)}+\left\| { \Pi_{0}} \right\| ^{2}_{L^{2}(\Omega)}\\ \quad +\left\| { h_{1} } \right\| ^{2}_{L^{2}({\cal Q}_{S})}+\left\| { g_{1} } \right\| ^{2}_{L^{2}({\cal Q}_{S})}+\left\| { g_{2}} \right\| _{L^{2}({\cal Q}_{S})}^{2}\Big), \\ \int_{S_0}^{S_f}\int_{\Omega}\Pi^{2}\phi^{2}d{\bf{x}}dt = \left\| { \Pi \phi} \right\| ^{2}_{L^{2}({\cal Q}_{S})} \leq C\Big(\left\| { V_{0}} \right\| ^{2}_{L^{2}(\Omega)}+\left\| { \Pi_{0}} \right\| ^{2}_{L^{2}(\Omega)}\\ \quad +\left\| { h_{1} } \right\| ^{2}_{L^{2}({\cal Q}_{S})}+\left\| { g_{1} } \right\| ^{2}_{L^{2}({\cal Q}_{S})}+\left\| { g_{2}} \right\| _{L^{2}({\cal Q}_{S})}^{2}\Big). \end{array} \end{equation} (3.23)

    From the second equation of (3.10) and relation (3.23), we can deduce that

    \begin{equation} \left\| { \pi_{e}} \right\| ^{2}_{L^{2}(S_0, S_f;\mathbb{V})} \leq C\Big(\!\left\| { V_{0}} \right\| ^{2}_{L^{2}(\Omega)}\!+\!\left\| { \Pi_{0}} \right\| ^{2}_{L^{2}(\Omega)}\!+\!\left\| { h_{1} } \right\| ^{2}_{L^{2}({\cal Q}_{S})}\!+\! \left\| { g_{1} } \right\| ^{2}_{L^{2}({\cal Q}_{S})}\!+\!\left\| { g_{2}} \right\| _{L^{2}({\cal Q}_{S})}^{2}\! \Big). \end{equation} (3.24)

    According to (3.22), (3.23) and (3.24), we can conclude that

    \begin{equation} (\Pi, V) \in (L^{\infty}(S_{0}, S_{f};L^{2}(\Omega)))^{2}, \; \; (\Pi, \pi_{e}) \in (L^{2}(S_0, S_f;\mathbb{V}))^{2}\; \; \text{and}\; \; \Pi \phi\in L^{2}({\cal Q}_{S}). \end{equation} (3.25)

    From (3.10), we can deduce that

    \begin{equation} \begin{array}{lcr} \mid \big\langle \mathfrak{c}_{m}\frac{\partial \Pi}{\partial t}, v \big\rangle_{\mathbb{V}', \mathbb{V}}\mid \leq C_{1} \left\| { v } \right\| _{\mathbb{V}}\big(\left\| { \Pi } \right\| _{\mathbb{V}}+\left\| { \pi_{e} } \right\| _{\mathbb{V}}+\left\| { g_{1} } \right\| _{L^{2}(\Omega)}\big)\\ \quad +C_{2}\int_{\Omega}\mid \phi\mid \mid \phi \Pi\mid \mid v\mid d{\bf{x}}\\ \quad +C_{3}\big(\int_{\Omega} \mid \phi\mid \mid \Pi\mid \mid v\mid d{\bf{x}}+ \int_{\Omega} \mid u\mid\mid \Pi\mid \mid v\mid d{\bf{x}}+\int_{\Omega} \mid \phi\mid \mid V\mid \mid v\mid d{\bf{x}}\big), \\ \mid \big(\frac{\partial V}{\partial t}, \rho \big)_{\mathbb{H}}\mid\leq C_{4}\left\| { \rho } \right\| _{L^{2}(\Omega)}\big(\left\| { \Pi } \right\| _{L^{2}(\Omega)}+\left\| { V } \right\| _{L^{2}(\Omega)}+\left\| { g_{2} } \right\| _{L^{2}(\Omega)}\big)\\ \quad +C_{5}\int_{\Omega} \mid \phi\mid \mid \Pi\mid \mid \rho\mid d{\bf{x}}, \end{array} \end{equation} (3.26)

    and then

    \begin{equation} \begin{array}{lcr} \left\| { \frac{\partial \Pi}{\partial t}} \right\| _{\mathbb{V}'}\leq C_{6}\big(\left\| { \Pi } \right\| _{\mathbb{V}}+\left\| { \pi_{e} } \right\| _{\mathbb{V}}+\left\| { g_{1} } \right\| _{L^{2}(\Omega)}\big)+C_{7}\left\| { V } \right\| _{L^{2}(\Omega)}\left\| { \phi } \right\| _{L^{4}(\Omega)}\\ \quad +C_{8}\big(\left\| { \phi \Pi} \right\| _{L^{2}(\Omega)}\left\| { \phi } \right\| _{L^{4}(\Omega)}+ \left\| { \phi } \right\| _{L^{2}(\Omega)}\left\| { \Pi } \right\| _{\mathbb{V}}+ \left\| { u } \right\| _{L^{2}(\Omega)}\left\| { \Pi } \right\| _{\mathbb{V}}\big), \\ \left\| { \frac{\partial V}{\partial t}} \right\| _{L^{2}(\Omega)}\leq C_{9}\big(\left\| { V} \right\| _{L^{2}(\Omega)}+\left\| { \Pi } \right\| _{L^{2}(\Omega)}+\left\| { \phi \Pi} \right\| _{L^{2}(\Omega)}+\left\| { g_{2} } \right\| _{L^{2}(\Omega)}\big). \end{array} \end{equation} (3.27)

    Consequently

    \begin{equation*} \begin{array}{lcr} \int_{S_0}^{S_f}\left\| { \frac{\partial \Pi}{\partial t}} \right\| ^{4/3}_{\mathbb{V}'} dt \leq C_{10}\big(\left\| { \Pi } \right\| ^{4/3}_{L^{2}(S_0, S_f;\mathbb{V})}+\left\| { \pi_{2} } \right\| ^{4/3}_{L^{2}(S_0, S_f;\mathbb{V})}+ \left\| { g_{1} } \right\| ^{4/3}_{L^{2}({\cal Q}_{S})}\big)\\ \quad +C_{11}\big(\left\| { \phi \Pi} \right\| ^{4/3}_{L^{2}({\cal Q}_{S})}\left\| { \phi } \right\| ^{4/3}_{L^{4}(S_0, S_f;L^{4}(\Omega))}+\left\| { V } \right\| ^{4/3}_{L^{2}({\cal Q}_{S})}\left\| { \phi } \right\| ^{4/3}_{L^{4}(S_0, S_f;L^{4}(\Omega))}\big)\\ \quad +C_{12}\big(\left\| { \Pi} \right\| ^{4/3}_{L^{2}(S_0, S_f;\mathbb{V})}\left\| { u } \right\| ^{4/3}_{L^{4}(S_0, S_f;L^{2}(\Omega))}+\left\| { \Pi} \right\| ^{4/3}_{L^{2}(S_0, S_f;\mathbb{V})}\left\| { \phi} \right\| ^{4/3}_{L^{4}(S_0, S_f;L^{2}(\Omega))}\big), \\ \int_{S_0}^{S_f}\left\| { \frac{\partial V}{\partial t}} \right\| ^{2}_{L^{2}(\Omega)}dt\leq C_{13}\big(\left\| { \Pi } \right\| ^{2}_{L^{2}({\cal Q}_{S})}+\left\| { V } \right\| ^{2}_{L^{2}({\cal Q}_{S})}+ \left\| { \phi \Pi } \right\| ^{2}_{L^{2}({\cal Q}_{S})}+\left\| { g } \right\| ^{2}_{L^{2}({\cal Q}_{S})}\big) \end{array} \end{equation*}

    and then (according to (3.22), (3.23) and (3.24))

    \begin{equation} \begin{array}{lcr} \left\| { \frac{\partial \Pi}{\partial t}} \right\| _{L^{4/3}(S_0, S_f;\mathbb{V}')}+\left\| { \frac{\partial V}{\partial t}} \right\| _{L^{2}(S_0, S_f;L^{2}(\Omega))}\\ \quad \leq C\left(\left\| { V_{0}} \right\| _{L^{2}(\Omega)}+\left\| { \Pi_{0}} \right\| _{L^{2}(\Omega)}+\left\| { h_{1} } \right\| _{L^{2}({\cal Q}_{S})}+\left\| { g_{1} } \right\| _{L^{2}({\cal Q}_{S})}+\left\| { g_{2}} \right\| _{L^{2}({\cal Q}_{S})}\right). \end{array} \end{equation} (3.28)

    We can conclude that \frac{\partial \Pi}{\partial t}\in L^{4/3}(S_0, S_f; \mathbb{V}') \; \; \text{and}\; \; \frac{\partial V}{\partial t} \in L^{2}({\cal Q}_{S}). The proof of Theorem can be completed by implementing the Galerkin method and by taking advantage of the above estimates, (3.22)–(3.24) and (3.28), and Lemma 2.4 and Remark 2.1. So we omit the details. Since the problem is linear, then from the estimates (3.22)–(3.24) and (3.28) we can deduce the Lipschitz continuity result and then the uniqueness of solution.

    (ⅱ) Prove first that V\in L^{2}(S_0, S_f; L^{3}(\Omega)) . Since V satisfies the equation

    \begin{equation} \frac{\partial V }{\partial t}\! = \! -\frac{\partial \mathcal{I}_{2}}{\partial \phi}(.;\phi)\Pi-\hbar V +g_{2}. \end{equation} (3.29)

    Since (3.29) is similar as (3.39), then by using similar argument to derive (3.43) we obtain

    \begin{equation} \begin{array}{lcr} \left\| { V(., t)} \right\| _{L^{3}(\Omega)} \leq C_{1}\int_{S_0}^{t} \left\| { V(., s)} \right\| _{L^{3}(\Omega)} ds\\ \quad +C_{2}\left(\left\| { g_{2}} \right\| _{L^{2}(S_0, S_f;L^{3}(\Omega))} +\left\| { \phi} \right\| _{L^{2}(S_0, S_f;L^{6}(\Omega))}\left\| { \Pi} \right\| _{L^{2}(S_0, S_f;L^{6}(\Omega))} \right). \end{array} \end{equation} (3.30)

    Since \Pi and \phi are in L^{2}(0, T, H^{1})\subset L^{2}(0, T, L^{r}) ( r\in [1, 6] ) and g_{2}\in L^{2}(S_0, S_f; L^{3}(\Omega)) , then

    \begin{equation} \begin{array}{lcr} \left\| { V(., t)} \right\| _{L^{3}(\Omega)}\leq C_{3}+C_{4}\int_{S_0}^{t}\left\| { V(., s)} \right\| _{L^{3}(\Omega)}ds. \end{array} \end{equation} (3.31)

    Consequently, by using Gronwall lemma, \left\| { V(., t)} \right\| _{L^{3}(\Omega)}\leq C and then V\in L^{\infty}(S_0, S_f; L^{3}(\Omega)) .

    Prove now that (\Pi, \pi_{e})\in (L^{\infty}(S_0, S_f; H^{1}(\Omega)))^{2} . For this we will just sketch the proof based on suitable a priori estimates. From (3.10) with (v, v_{e}) = (\frac{\partial \Pi}{\partial t}, \frac{\partial \pi_{e}}{\partial t}) (put \tilde{h}_{1} = B_{1} h_{1} )

    \begin{equation} \begin{array}{lcr} \left\| { \mathfrak{b}_{m}\frac{\partial \Pi}{\partial t}} \right\| ^{2}_{L^{2}(\Omega)}+A_i(\Pi+\pi_e, \frac{\partial \Pi}{\partial t}) +\int_{\Omega}\frac{\partial {\cal I}}{\partial \phi}\Pi \frac{\partial \Pi}{\partial t} d{\bf{x}} +\int_{\Omega}\frac{\partial {\cal I}}{\partial u}V \frac{\partial \Pi}{\partial t} d{\bf{x}} = \int_{\Omega} {g}_{1}\frac{\partial \Pi}{\partial t}d{\bf{x}}, \\ A_i(\Pi + \pi_e, \frac{\partial \pi_{e}}{\partial t})+ A_e(\pi_e, \frac{\partial \pi_{e}}{\partial t}) = \int_{\Omega}\tilde{h}_{1} \frac{\partial \pi_{e}}{\partial t}d{\bf{x}}. \end{array} \end{equation} (3.32)

    Then

    \begin{equation} \begin{array}{lcr} \left\| { \mathfrak{b}_{m}\frac{\partial \Pi}{\partial t}} \right\| ^{2}_{L^{2}(\Omega)} + \frac{d}{2dt}A_i(\Pi+\pi_e, \Pi+\pi_e) +\frac{d}{2dt}A_i(\pi_e, \pi_e)\\ \quad = -\int_{\Omega}\frac{\partial {\cal I}}{\partial \phi}\Pi \frac{\partial \Pi}{\partial t} d{\bf{x}} -\int_{\Omega}\frac{\partial {\cal I}}{\partial u}V\frac{\partial \Pi}{\partial t} d{\bf{x}}\\ \quad +\int_{\Omega} g_{1}\frac{\partial \Pi}{\partial t}d{\bf{x}}+\int_{\Omega} \pi_{e}\frac{\partial \tilde{h}_{1}}{\partial t} d{\bf{x}}+\frac{d}{dt}\big(\int_{\Omega} \tilde{h}_{1} \pi_{e} d{\bf{x}}\big). \end{array} \end{equation} (3.33)

    Since {h}_{1}\in U_{c} then \tilde{h}_{1}\in U_{c}\subset C^{0}([S_0, S_f]; L^{2}(\Omega)) . So, \tilde{h}_{1}(S_0)\in L^{2}(\Omega) and we have \left\| { \tilde{h}_{1}(S_0)} \right\| ^{2}_{L^{2}(\Omega)}\leq C_{1} \left\| { \tilde{h}_{1}} \right\| ^{2}_{U_{c}} . Consequently, by integrating (3.33) by time, we can deduce (from (2.21), the boundedness of \mathfrak{b}_{m} , coercivity and continuity of A_{i} and A_{e} , and regularity H^{1} of (\Pi_{0}, \pi_{e}^{(0)}) )

    \begin{equation} \begin{array}{lcr} 2\underline{c}_{m}\int_{S_0}^{t}\left\| { \frac{\partial \Pi}{\partial t}} \right\| ^{2}_{L^{2}(\Omega)}ds+ \alpha_{i}\left\| { \Pi(t)} \right\| ^{2}_{H^{1}(\Omega)}+(\alpha_{e}+\alpha_{i})\left\| { \pi_e(t)} \right\| ^{2}_{H^{1}(\Omega)}\\ \quad \leq C_{0}\Big( \int_{S_0}^{t}\int_{\Omega}\mid \phi \mid ^{4}\mid \Pi \mid^{2} d{\bf{x}} ds+\int_{S_0}^{t}\int_{\Omega}\mid \phi \mid ^{2}\mid \Pi \mid^{2} d{\bf{x}} ds\Big)\\ \quad +C_{1}\Big(\int_{S_0}^{t}\int_{\Omega}\mid u \mid ^{2}\mid \Pi \mid^{2} d{\bf{x}} ds+\int_{S_0}^{t}\int_{\Omega}\mid \phi \mid ^{2}\mid V \mid^{2} d{\bf{x}} ds\Big)\\ \quad +C_{2} \Big(\int_{S_0}^{t}\int_{\Omega}\mid \Pi \mid^{2} d{\bf{x}} ds+\int_{S_0}^{t}\int_{\Omega}\mid V\mid^{2} d{\bf{x}} ds+\int_{S_0}^{t}\int_{\Omega}\mid \pi_{e}\mid^{2} d{\bf{x}} ds\Big)\\ \quad +\delta_{0}\int_{S_0}^{t}\left\| { \frac{\partial \Pi}{\partial t}} \right\| ^{2}_{L^{2}(\Omega)}ds+\delta_{1}\left\| { \pi_{e}(t)} \right\| ^{2}_{H^{1}(\Omega)} +C_{3}\big(1+\left\| { g_{1} } \right\| ^{2}_{L^{2}({\cal Q}_{S})}+\left\| { \tilde{h}_{1}} \right\| ^{2}_{U_{c}}\big). \end{array} \end{equation} (3.34)

    Since \phi is in L^{\infty}(0, T, H^{1})\subset L^{\infty}(0, T, L^{r}) ( r\in [1, 6] ), then (by choosing \delta_{0} = \underline{c}_{m} , \delta_{1} = (\alpha_{e}+\alpha_{i})/2 )

    \begin{equation} \begin{array}{lcr} \int_{S_0}^{t}\left\| { \frac{\partial \Pi}{\partial t}} \right\| ^{2}_{L^{2}(\Omega)}ds+ \left\| { \Pi(t)} \right\| ^{2}_{H^{1}(\Omega)}+\left\| { \pi_e(t)} \right\| ^{2}_{H^{1}(\Omega)}\\ \quad \leq C_{4}\big(\left\| { \phi } \right\| ^{4}_{L^{\infty}(0, T;H^{1}(\Omega))}+\left\| { \phi } \right\| ^{2}_{L^{\infty}(0, T;H^{1}(\Omega))} +\left\| { u } \right\| ^{2}_{L^{\infty}(0, T;L^{3}(\Omega))}\big)\int_{S_0}^{t}\left\| { \Pi } \right\| ^{2}_{H^{1}(\Omega)}ds\\ \quad +C_{5} \big(\left\| { \phi } \right\| ^{2}_{L^{\infty}(0, T;H^{1}(\Omega))}\left\| { V } \right\| ^{2}_{L^{\infty}(S_0, S_f;L^{3}(\Omega))} +\left\| { \Pi } \right\| ^{2}_{L^{2}({\cal Q}_{S})}+\left\| { \pi_{e} } \right\| ^{2}_{L^{2}({\cal Q}_{S})}+\left\| { V } \right\| ^{2}_{L^{2}({\cal Q}_{S})}\big)\\ \quad +C_{6}\big(1+\left\| { g_{1} } \right\| ^{2}_{L^{2}({\cal Q}_{S})}+\left\| { \tilde{h}_{1}} \right\| ^{2}_{U_{c}}\big). \end{array} \end{equation} (3.35)

    From the regularity of (\Pi, \pi_{e}, V, g_{1}, \tilde{h}_{1}) , estimation of (\Pi, \pi_{e}) in L^{\infty}(S_0, S_f; H^{1}(\Omega)) and and estimation of V in L^{\infty}(S_0, S_f; L^{3}(\Omega)) , respectively, we can deduce that

    \begin{equation} \begin{array}{lcr} \int_{S_0}^{t}\left\| { \frac{\partial \Pi}{\partial t}} \right\| ^{2}_{L^{2}(\Omega)}ds+ \left\| { \Pi(t)} \right\| ^{2}_{H^{1}(\Omega)}+\left\| { \pi_e(t)} \right\| ^{2}_{H^{1}(\Omega)} \leq C \end{array} \end{equation} (3.36)

    and then \frac{\partial \Pi}{\partial t}\in L^{2}({\cal Q}_{S}) and (\Pi, \pi_{e})\in L^{\infty}(S_0, S_f; H^{1}(\Omega)) .

    The proof of the result can be completed by implementing the classical Faedo-Galerkin method and by taking advantage of above estimates. So we omit the details.

    Finally we prove that V\in C^{0}([S_0, S_f], L^{3}(\Omega)) . Let R = -\frac{\partial \mathcal{I}_{2}}{\partial \phi}-\hbar V+g_{2} be the right hand side of equation (3.29). Since \frac{\partial \mathcal{I}_{2}}{\partial \phi} is a polynomial of degree 1 on \phi , we can deduce that (since (\phi, \Pi)\in (L^{\infty}(S_{0}, S_{f}; H^{1}(\Omega)))^{2} and V\in L^{\infty}(S_{0}, S_{f}; L^{3}(\Omega)) )

    \begin{equation*} \begin{array}{lcr} \left\| { R } \right\| _{L^{3}(\Omega)}\leq C\left(\left\| { \Pi} \right\| _{L^{\infty}(S_{0}, S_{f}; H^{1}(\Omega))}\big(1+\left\| { \phi} \right\| _{L^{\infty}(S_{0}, S_{f}; H^{1}(\Omega))}\big)+\left\| { V} \right\| _{L^{\infty}(S_{0}, S_{f}; L^{3}(\Omega))}+ \left\| { g_{2}} \right\| _{L^{3}(\Omega)}\right). \end{array} \end{equation*}

    Since g_{2}\in L^{2}(S_{0}, S_{f}; L^{3}(\Omega)) , then \left\| { R } \right\| _{L^{2}(S_{0}, S_{f}; L^{3}(\Omega))}\leq C . Consequently, R\in L^{2}(S_{0}, S_{f}; L^{3}(\Omega)) and then, from (3.29), \frac{\partial V }{\partial t}\in L^{2}(S_{0}, S_{f}; L^{3}(\Omega)) . As V\in L^{2}(S_{0}, S_{f}; L^{3}(\Omega)) and \frac{\partial V}{\partial t}\in L^{2}(S_{0}, S_{f}; L^{3}(\Omega)) we can conclude, from Remark 2.3, that V\in C^{0}([S_{0}, S_{f}]; L^{3}(\Omega)) . This completes the proof.

    We can now prove the well-posedness of problem (3.7).

    Theorem 3.1. Let assumptions (H1)-(H4), (HMC) and (RC) be fulfilled. Suppose that (\phi, \varphi_{e}, u) \in \mathbb{D} , then the following results hold.

    (i) For any (h_{1}, h_{2})\in U_{c}\times L^2({\cal Q}) under the compatibility condition (1.2), there exists a unique weak solution (\Psi, \psi_{e}, w)\in \mathbb{D} , of the linear problem (3.7).

    (ii) Let (h_{1, i}, h_{2, i}) , i = 1, 2 be given in U_{c}\times L^2({\cal Q}) . If (\Psi_{i}, \psi_{e, i}, w_{i}) is the solution of (3.7) corresponding to data (h_{1, i}, h_{2, i}) , for i = 1, 2 , then

    \begin{equation} \begin{array}{lcr} \left\| { (\Psi, \psi_{e}, w)} \right\| ^{2}_{\mathbb{D}} \leq C\left(\Vert h_{1}\Vert_{U_{c}}^2 + \Vert h_{2}\Vert_{L^2({\cal Q})}^2 \right), \end{array} \end{equation} (3.37)

    where (\Psi, \psi_{e}, w) = (\Psi_{1}-\Psi_{2}, \psi_{e, 1}-\psi_{e, 2}, w_{1}-w_{2}) and (h_{1}, h_{2}) = (h_{1, 1}-h_{1, 2}, h_{2, 1}-h_{2, 2}) .

    Proof. To prove the existence of a unique solution on {\cal Q} , we first establish the existence of a unique solution on \tilde{\cal Q}_{j} = \Omega\times (s_{0}, s_{j}), j\geq1 and obtain some estimations.

    We solve the problem on \tilde{\cal Q}_{1} and obtain the existence of a unique solution on \tilde{\cal Q}_{1} . Then, the existence of a unique solution on \tilde{\cal Q}_{2} is proved by using the solution on \tilde{\cal Q}_{1} to generate the initial data at s_{1} . This advancing process is repeated for \tilde{\cal Q}_{3}, \tilde{\cal Q}_{4}, ... until the final set is reached. Hereafter, the solution on \tilde{\cal Q}_{j} will be denoted by (\Psi_j, \psi_{e, j}, w_j) for j = 1, ... .

    Now we introduce the following problems ({\cal P}_{j}) for j\in \mbox{IN}^{{}}-\{0\} (for ({\bf x}, t)\in \Omega\times (s_{j-1}, s_{j}) )

    \begin{equation} \begin{array}{lcr} \mathfrak{c}_{m}\frac{\partial \Pi_j }{\partial t}+\frac{\partial {\cal I}}{\partial \phi}(\phi, u).\pi_j+\frac{\partial {\cal I}}{\partial u}(\phi, u).V_j-div(\mathcal{K}_{i}\nabla (\Pi_j+\pi_{e, j})) = g_{1, j}, \\ -div\left((\mathcal{K}_{e}+\mathcal{K}_{i})\nabla \pi_{e, j}\right)-div(\mathcal{K}_{i}\nabla \Pi_j) = {\cal B}_{1}h_{1}, \\ \frac{\partial V_j }{\partial t}+\frac{\partial {\cal G}}{\partial \phi}(\phi, u).\Pi_j+\frac{\partial {\cal G}}{\partial u}(\phi, u).V_j = g_{2, j}, \\ \big(\mathcal{K}_{i}\nabla (\Pi_j + \pi_{e, j})\big) \cdot{\bf{n}} = 0, \; \text{on}\; \partial\Omega\times(s_{j-1}, s_{j}) \\ \big(\mathcal{K}_{e}\nabla \pi_{e, j}\big)\cdot{\bf{n}} = 0, \; \text{on}\; \partial\Omega\times(s_{j-1}, s_{j}) \\ \Pi_j({\bf{x}}, s_{j-1}) = \Psi_{j-1}({\bf{x}}, s_{j-1})\in L^{2}(\Omega), \\ V_j({\bf{x}}, s_{j-1}) = w_{j-1}({\bf{x}}, s_{j-1})\in L^{2}(\Omega) \end{array} \end{equation} (3.38)

    where (\Psi_{j-1}, w_{j-1})\in (L^{2}(\tilde{\cal Q}_{j-1}))^{2} and

    \begin{eqnarray*} g_{1, j}({\bf x}, t) = {\cal B}_{2}h_{2}+\sum\limits_{k = 1}^{n_{1}} a_k({\bf{x}}, t) \Psi_{j-1}({\bf{x}}, t-\xi_{k}(t))+\sum\limits_{l = 1}^{n_{2}}b_l({\bf{x}}, t) w_{j-1}({\bf{x}}, t-\eta_{l}(t)), \\ g_{2, j}({\bf x}, t) = \sum\limits_{k = 1}^{n_{1}} c_k({\bf{x}}, t) \Psi_{j-1}({\bf{x}}, t-\xi_{k}(t))+\sum\limits_{l = 1}^{n_{2}}d_l({\bf{x}}, t) w_{j-1}({\bf{x}}, t-\eta_{l}(t)). \end{eqnarray*}

    Since B_{2}h_{2} \in L^{2}({\cal Q}) , (\Psi_{j-1}, w_{j-1})\in L^{2}(\tilde{\cal Q}_{j-1}) and a_{k}, c_{k}, b_l, d_l (for 1\leq k\leq n_{1} and 1\leq l\leq n_{2} ) are in {\cal C}^{\infty}(\overline{\cal Q}) , then, according to Lemma 2.6, we have that g_{1, j} and g_{2, j} are in L^{2}(\tilde{\cal Q}_{j}) . Then using Lemma 3.1 we have that the problem ({\cal P}_{j}) admits a unique solution (\Pi_{j}, \pi_{e, j}, V_{j}) \in {\cal W}(\Omega\times (s_{j-1}, s_{j})) and verifying (\frac{\partial \Pi_{j}}{\partial t}, \frac{\partial V_{j}}{\partial t})\in L^{4/3}(s_{j-1}, s_{j}; \mathbb{V}')\times L^{2}(s_{j-1}, s_{j}; L^{2}(\Omega))) and (\Pi_{j}, V_{j})\in (C^{0}([s_{j-1}, s_{j}]; L^{2}(\Omega)))^{2} . Then, we can extend the result to the cylinder set \tilde{\cal Q}_{j+1} by taking (\Psi_{j}, \psi_{e, j}, w_{j}) = (\Psi_{j-1}, \psi_{e, j-1}, w_{j-1}) on \tilde{\cal Q}_{j-1} and (\Psi_{j}, \psi_{e, j}, w_{j}) = (\Pi_{j}, \pi_{e, j}, V_{j}) on \Omega\times(s_{j-1}, s_{j}) .

    We observe that for j = 1, we have (according to the initial condition in (3.7))

    \begin{eqnarray*} g_{1, 1}({\bf x}, t) = {\cal B}_{2}h_{2}, \; \; \text{and}\; \; g_{2, 1}({\bf x}, t) = 0 \end{eqnarray*}

    and then g_{1, 1}, g_{2, 1}\in L^{2}(\tilde{\cal Q}_{1}) . By using the previous result, the problem ({\cal P}_{1}) admits a unique solution (\Pi_{1}, \pi_{e, 1}, V_{1}) and then the solution (\Psi_{1}, \psi_{e, 1}, w_{1}) . We inject now (\Psi_{1}, \psi_{e, 1}, w_{1}) in the problem ({\cal P}_{2}) and by using the same approach, we obtain the existence and uniqueness of (\Pi_{2}, \pi_{e, 2}, V_{2}) (solution of ({\cal P}_{2}) ).

    We can now iterate the process for any domain \tilde{\cal Q}_{j}, for \; j\geq 1 and we obtain the existence and uniqueness of (\Pi_{j}, \pi_{e, j}, V_{j}) solution of ({\cal P}_{j}) .

    We deduce then the existence and uniqueness of the solution (\Psi, \psi_{e}, w)\in{\cal W}({\cal Q}) of (3.8) (verifying (\frac{\partial \Psi}{\partial t}, \frac{\partial w}{\partial t})\in L^{4/3}(0, T; \mathbb{V}')\times L^{2}(0, T; L^{2}(\Omega))) and (\Psi, w)\in (C^{0}([0, T]; L^{2}(\Omega)))^{2} ) such that (\Psi, \psi_{e}, w)|_{\tilde{\cal Q}_{j}} = (\Psi_{j}, \psi_{e, j}, w_{j}), j\geq 1 .

    Prove now that the unique solution (\Psi, \psi_{e}, w) satisfies the following regularity: (\Psi, \psi_{e}, w)\in (L^{\infty}(0, T, ; H^{1}(\Omega)))^{2}\times C^{0}([0, T]; L^{3}(\Omega)) and (\frac{\partial \Psi}{\partial t}, \frac{\partial w}{\partial t})\in L^{2}({\cal Q})\times L^{2}(0, T; L^{3}(\Omega))) .

    Step1. Prove first that w\in L^{2}(0, T; L^{3}(\Omega)) . Since w satisfies the equation

    \begin{equation} \frac{\partial w }{\partial t}\! = \! -\frac{\partial \mathcal{I}_{2}}{\partial \phi}(.;\phi)\Psi-\hbar w +\mathcal{E}(\Psi_{\tau}, w_{\tau}). \end{equation} (3.39)

    Then for all t we have (since w(t = 0) = 0 )

    \begin{equation} \begin{array}{lcr} w({\bf{x}}, t) \! = \! -\int_{0}^{t} \frac{\partial \mathcal{I}_{2}}{\partial \phi}({\bf{x}}, s;\phi)\Psi ds-\int_{0}^{t}\hbar w({\bf{x}}, s)ds+\int_{0}^{t}\mathcal{E}(\Psi_{\tau}, w_{\tau}) ds. \end{array} \end{equation} (3.40)

    Consequently,

    \begin{equation} \begin{array}{lcr} \mid w({\bf{x}}, t)\mid \leq C\left(\int_{0}^{t}\mid \frac{\partial \mathcal{I}_{2}}{\partial \phi}({\bf{x}}, s;\phi)\mid \mid \Psi\mid ds+\int_{0}^{t}\mid w({\bf{x}}, s)\mid ds\right)+\int_{0}^{t}\mid \mathcal{E}(\Psi_{\tau}, w_{\tau})\mid ds \end{array} \end{equation} (3.41)

    and then (since \frac{\partial \mathcal{I}_{2}}{\partial \phi}({\bf{x}}, s; \phi) is linear operator)

    \begin{equation} \begin{array}{lcr} \mid w({\bf{x}}, t)\mid \leq C\left(\int_{0}^{t}\mid w({\bf{x}}, s)\mid ds+\int_{0}^{t}\mid \Psi({\bf{x}}, s)\mid \mid \phi({\bf{x}}, s)\mid ds\right)+\int_{0}^{t}\mid \mathcal{E}(\Psi_{\tau}, w_{\tau})\mid ds. \end{array}\ \end{equation} (3.42)

    This implies

    \begin{equation*} \begin{array}{lcr} \left(\int_{\Omega}\mid w({\bf{x}}, t)\mid^{3} d{\bf{x}}\right)^{1/3} \leq C\left(\big(\int_{\Omega}\big(\int_{0}^{t}\mid w({\bf{x}}, s)\mid ds\big)^{3}d{\bf{x}}\big)^{1/3}\right.\\ \quad \left.+\big(\int_{\Omega}\big(\int_{0}^{t}\mid \mathcal{E}(\Psi_{\tau}, w_{\tau})\mid ds\big)^{3}d{\bf{x}}\big)^{1/3} \right.\\ \quad \left.+\big(\int_{\Omega}\big(\int_{0}^{t}\mid \Psi({\bf{x}}, s)\mid \mid \phi({\bf{x}}, s)\mid ds\big)^{3}d{\bf{x}}\big)^{1/3}\right) \end{array} \end{equation*}

    and then (using Minkowski inequality)

    \begin{equation} \begin{array}{lcr} \left(\int_{\Omega}\mid w({\bf{x}}, t)\mid^{3} d{\bf{x}}\right)^{1/3} \leq C\Big(\int_{0}^{t}\!\!\!\big(\int_{\Omega}\mid w({\bf{x}}, s)\mid^{3} d{\bf{x}}\big)^{1/3}ds\\ \quad +\int_{0}^{t}\!\!\!\big(\int_{\Omega}\mid \mathcal{E}(\Psi_{\tau}, w_{\tau})\mid^{3} d{\bf{x}}\big)^{1/3}ds \\ \quad +\int_{0}^{t}\!\!\!\big(\int_{\Omega}\mid \Psi({\bf{x}}, s)\mid^{3}\mid \phi({\bf{x}}, s)\mid^{3} d{\bf{x}}\big)^{1/3}ds \Big). \end{array} \end{equation} (3.43)

    According to Lemma 2.6 and the fact that (\Psi_{past}, w_{past}) = (0, 0) , we can deduce that

    \begin{equation} \begin{array}{lcr} \left\| { w(., t)} \right\| _{L^{3}(\Omega)} \leq C_{1}\int_{0}^{t} \left\| { w(., s)} \right\| _{L^{3}(\Omega)} ds\\ \quad +C_{2}\left(\left\| { \Psi} \right\| _{L^{2}(0, T;L^{3}(\Omega))} +\left\| { \phi} \right\| _{L^{2}(0, T;L^{6}(\Omega)}\left\| { \Psi} \right\| _{L^{2}(0, T;L^{6}(\Omega)} \right). \end{array} \end{equation} (3.44)

    Since \Psi and \phi are in L^{2}(0, T, H^{1}(\Omega))\subset L^{2}(0, T, L^{r}(\Omega)) ( r\in [1, 6] ), then

    \begin{equation} \begin{array}{lcr} \left\| { w(., t)} \right\| _{L^{3}(\Omega)}\leq C_{3}+C_{4}\int_{0}^{t}\left\| { w(., s)} \right\| _{L^{3}(\Omega)}ds. \end{array} \end{equation} (3.45)

    Consequently, by using Gronwall lemma, \left\| { w(., t)} \right\| _{L^{3}(\Omega)}\leq C and then w\in L^{\infty}(0, T; L^{3}(\Omega)) .

    Step2. Prove now that (\Psi, \psi_{e})\in (L^{\infty}(0, T; H^{1}(\Omega)))^{2} and w\in C^{0}([0, T]; L^{3}(\Omega)) .

    Put g_{1} = \mathcal{H}(\Psi_{\tau}, w_{\tau})+{\cal B}_{2}h_{2} and g_{2} = \mathcal{E}(\Psi_{\tau}, w_{\tau}) . Since w\in L^{\infty}(0, T; L^{3}(\Omega)) and \Psi \in L^{2}(0, T; H^{1}(\Omega)) then, according to Lemma 2.6, g_{1}\in L^{2}({\cal Q}) and g_{2}\in L^{2}(0, T, L^{3}(\Omega)) . Since (\Psi, \psi_{e}, w) is a solution of (3.9) which correspond to data (g_{1}, g_{2}, h_{1}) and (\Psi, w)(t = 0) = (0, 0) with (S_0, S_{f}) = (0, T) , we can deduce from Lemma 3.1 that (\Psi, \psi_{e})\in (L^{\infty}(0, T; H^{1}(\Omega)))^{2} and w\in C^{0}([0, T]; L^{3}(\Omega)) .

    We are now going to prove the estimation given in theorem.

    Let (\Psi_{i}, \psi_{e, i}, w_{i})_{i = 1, 2} be two solutions of (3.8), corresponding to data (h_{i, 1}, h_{i, 2})_{i = 1, 2} , respectively. We denote \Psi = \Psi_{1}-\Psi_{2} , w = w_{1}-w_{2} , \psi_{e} = \psi_{e, 1}-\psi_{e, 2} , h_{1} = h_{1, 1}-h_{2, 1} , h_{2} = h_{1, 2}-h_{2, 2} . Then according to (3.8) and setting (v, u, v_{e}) = (\Psi, w, \psi_{e}) we can deduce that (since delay operators are linear)

    \begin{equation} \begin{array}{lcr} \frac{d}{2dt}\Vert \mathfrak{b}_{m}\Psi\Vert^{2}_{L^{2}(\Omega)} +\int_{\Omega}\mathcal{K}_{i}\nabla \Psi\nabla \Psi d{\bf{x}} +\int_{\Omega}\mathcal{K}_{i}\nabla \psi_{e}\nabla \Psi d{\bf{x}} +\int_{\Omega}\frac{\partial {\cal I}}{\partial \phi}(\phi, u)\Psi^{2} d{\bf{x}}\\ \quad +\int_{\Omega}\frac{\partial {\cal I}}{\partial u}(\phi, u)w \Psi d{\bf{x}} = \int_{\Omega}\mathcal{H}(\Psi_{\tau}, w_{\tau}) \Psi d{\bf{x}}+\int_{\Omega}{\cal B}_{2}h_{2} \Psi d{\bf{x}}, \\ \int_{\Omega}(\mathcal{K}_{i}+\mathcal{K}_{e})\nabla\psi_{e}\nabla \psi_{e} d{\bf{x}} +\int_{\Omega}\mathcal{K}_{i}\nabla \Psi\nabla \psi_{e} d{\bf{x}} = \int_{\Omega}{\cal B}_{1}h_{1}\psi_{e} d{\bf{x}}, \\ \frac{d}{2dt}\Vert w\Vert^{2}_{L^{2}(\Omega)}+\int_{\Omega}\frac{\partial {\cal G}}{\partial \phi}(\phi, u)\Psi w d{\bf{x}} +\int_{\Omega}\hbar w^{2} d{\bf{x}} = \int_{\Omega}\mathcal{E}(\Psi_{\tau}, w_{\tau})w d{\bf{x}}\\ \Psi(., t = 0) = 0, \; \; \; w(., t = 0) = 0, \; \; \text{in}\; \; \Omega\\ \Psi = 0, \; \; \; w = 0, \; \; \text{in}\; \; {\cal Q}_{0}. \end{array} \end{equation} (3.46)

    Consequently (from the expression of the derivatives of {\cal I} and {\cal G} )

    \begin{equation} \begin{array}{lcr} \frac{d}{2dt}\big(\Vert \mathfrak{b}_{m} \Psi\Vert^{2}_{L^{2}(\Omega)}+\Vert w\Vert^{2}_{L^{2}(\Omega)}\big) +A_{i}(\Psi+\psi_{e}, \Psi+\psi_{e})+A_{e}(\psi_{e}, \psi_{e})\\ \quad +\int_{\Omega}(\hbar_{11} \phi^{2}-\hbar_{12} \phi + \hbar_{13} + \epsilon_{1}\hbar_{21} u)\Psi^{2} d{\bf{x}}+\int_{\Omega}\hbar w^{2} d{\bf{x}}\\ +\int_{\Omega}(\epsilon_{1}\hbar_{21}\phi+h_{22})w \Psi d{\bf{x}}+\int_{\Omega}(-\epsilon_{2}\hbar_{31}\phi+(2\epsilon_{2}-1)h_{32})\Psi w d{\bf{x}} \\ = \int_{\Omega}\mathcal{H}(\Psi_{\tau}, w_{\tau}) \Psi d{\bf{x}}+\int_{\Omega}\mathcal{E}(\Psi_{\tau}, w_{\tau})w d{\bf{x}}+\int_{\Omega}{\cal B}_{1}h_{1}\psi_{e} d{\bf{x}}+\int_{\Omega}{\cal B}_{2}h_{2} \Psi d{\bf{x}}, \\ \Psi(., t = 0) = 0, \; \; \; w(., t = 0) = 0, \; \; \text{in}\; \; \Omega\\ \Psi = 0, \; \; \; w = 0, \; \; \text{in}\; \; {\cal Q}_{0}. \end{array} \end{equation} (3.47)

    Using the boundedness of the function \hbar_{ij} and \hbar , coercivity of A_i and A_e , and the assumption concerning the operators {\cal B}_{i} , i = 1, 2 ), we obtain

    \begin{equation} \begin{array}{lcr} \frac{d}{2dt}\big(\Vert \mathfrak{b}_{m}\Psi\Vert^{2}_{L^{2}(\Omega)}+\Vert w\Vert^{2}_{L^{2}(\Omega)}\big) +\alpha_{i}\Vert \Psi+\psi_{e}\Vert^{2}_{\mathbb{V}}+\alpha_{e}\Vert \psi_{e}\Vert^{2}_{\mathbb{V}} +\int_{\Omega}\hbar_{11} \phi^{2}\Psi^{2} d{\bf{x}}\\ \quad \leq C_{1}\left(\int_{\Omega}(\mid \phi \mid + 1+ \mid u\mid )\Psi^{2} d{\bf{x}}+\int_{\Omega}w^{2} d{\bf{x}}+\int_{\Omega}(\mid \phi \mid + 1)\mid w\mid \mid \Psi\mid d{\bf{x}}\right)\\ \quad + \left\| { \mathcal{H}(\Psi_{\tau}, w_{\tau})} \right\| _{L^{2}(\Omega)} \left\| { \Psi} \right\| _{L^{2}(\Omega)}+\left\| { \mathcal{E}(\Psi_{\tau}, w_{\tau})} \right\| _{L^{2}(\Omega)} \left\| { w} \right\| _{L^{2}(\Omega)}\\ \quad +C_{0}\left(\left\| { h_{2}} \right\| _{L^{2}(\Omega)} \left\| { \Psi} \right\| _{L^{2}(\Omega)}+\left\| { h_{1}} \right\| _{L^{2}(\Omega)} \left\| { \psi_{e}} \right\| _{L^{2}(\Omega)}\right) \end{array} \end{equation} (3.48)

    and then

    \begin{equation*} \begin{array}{lcr} \frac{d}{2dt}\big(\Vert \mathfrak{b}_{m} \Psi\Vert^{2}_{L^{2}(\Omega)}+\Vert w\Vert^{2}_{L^{2}(\Omega)}\big) +\alpha_{i}\Vert \Psi+\psi_{e}\Vert^{2}_{\mathbb{V}}+\alpha_{e}\Vert \psi_{e}\Vert^{2}_{\mathbb{V}} +\int_{\Omega}\hbar_{11} \phi^{2}\Psi^{2} d{\bf{x}}\\ \quad \leq C_{2}\left\| { \Psi} \right\| _{L^{2}(\Omega)}\big(\left\| { \phi} \right\| _{L^{4}(\Omega)}\left\| { \Psi} \right\| _{L^{4}(\Omega)}+\left\| { u} \right\| _{L^{3}(\Omega)}\left\| { \Psi} \right\| _{L^{6}(\Omega)}\big)\\ \quad +C_{3}\left\| { \phi } \right\| _{L^{4}(\Omega)}\left\| { \Psi} \right\| _{L^{4}(\Omega)} \left\| { w} \right\| _{L^{2}(\Omega)}\\ \quad + C_{4}(\left\| { \mathcal{H}(\Psi_{\tau}, w_{\tau})} \right\| ^{2}_{L^{2}(\Omega)} +\left\| { \mathcal{E}(\Psi_{\tau}, w_{\tau})} \right\| ^{2}_{L^{2}(\Omega)})\\ \quad +C_{5}\big(\left\| { h_{2}} \right\| ^{2}_{L^{2}(\Omega)} +\left\| { h_{1}} \right\| ^{2}_{L^{2}(\Omega)}\big)+C_{6}\big(\left\| { \Psi} \right\| ^{2}_{L^{2}(\Omega)} +\left\| { w} \right\| ^{2}_{L^{2}(\Omega)}\big). \end{array} \end{equation*}

    Consequently (since \Vert \Psi\Vert_{\mathbb{V}}\leq \Vert \Psi+\psi_{e}\Vert_{\mathbb{V}}+\Vert \psi_{e}\Vert_{\mathbb{V}} )

    \begin{equation} \begin{array}{lcr} \frac{d}{2dt}\big(\Vert \mathfrak{b}_{m} \Psi\Vert^{2}_{L^{2}(\Omega)}+\Vert w\Vert^{2}_{L^{2}(\Omega)}\big) +\min(\alpha_{i}, \alpha_{e})\big(\Vert \Psi+\psi_{e}\Vert^{2}_{\mathbb{V}}+\Vert \psi_{e}\Vert^{2}_{\mathbb{V}}\big)\\ \quad +\int_{\Omega}\hbar_{11} \phi^{2}\Psi^{2} d{\bf{x}} \leq \frac{1}{2}\min(\alpha_{i}, \alpha_{e})\big(\Vert \Psi+\psi_{e}\Vert^{2}_{\mathbb{V}}+\Vert \psi_{e}\Vert^{2}_{\mathbb{V}}\big)\\ \quad +C_{6}\big(\left\| { \mathcal{H}(\Psi_{\tau}, w_{\tau})} \right\| ^{2}_{L^{2}(\Omega)} +\left\| { \mathcal{E}(\Psi_{\tau}, w_{\tau})} \right\| ^{2}_{L^{2}(\Omega)})\\ \quad +C_{7}\big(\left\| { h_{2}} \right\| ^{2}_{L^{2}(\Omega)} +\left\| { h_{1}} \right\| ^{2}_{L^{2}(\Omega)})\\ \quad +C_{8}\big(\left\| { \Psi} \right\| ^{2}_{L^{2}(\Omega)}+\left\| { w} \right\| ^{2}_{L^{2}(\Omega)}\big)\big(1+\left\| { \phi } \right\| ^{2}_{L^{4}(\Omega)}+\left\| { u} \right\| ^{2}_{L^{3}(\Omega)}\big). \end{array} \end{equation} (3.49)

    By integrating in time between 0 and t (since \Psi(0) = w(0) = 0 ), we can deduce that (according to the boundedness of \mathfrak{b}_{m} )

    \begin{equation} \begin{array}{lcr} \Vert \Psi(., t)\Vert^{2}_{L^{2}(\Omega)}+\Vert w(., t)\Vert^{2}_{L^{2}(\Omega)} +\int_{0}^{t}\big(\Vert \Psi+\psi_{e}\Vert^{2}_{\mathbb{V}}+\Vert \psi_{e}\Vert^{2}_{\mathbb{V}}\big)ds +\int_{0}^{T}\int_{\Omega}\phi^{2}\Psi^{2} d{\bf{x}} ds\\ \quad \leq C_{9}\left(\int_{0}^{t}\left\| { \mathcal{H}(\Psi_{\tau}, w_{\tau})} \right\| ^{2}_{L^{2}(\Omega)}ds +\int_{0}^{t}\left\| { \mathcal{E}(\Psi_{\tau}, w_{\tau})} \right\| ^{2}_{L^{2}(\Omega)}ds \right)\\ \quad +C_{10}\left(\int_{0}^{T}\left\| { h_{2}} \right\| ^{2}_{L^{2}(\Omega)}ds +\int_{0}^{T}\left\| { h_{1}} \right\| ^{2}_{L^{2}(\Omega)}ds\right)\\ \quad +C_{11}\int_{0}^{t}\big(\left\| { \Psi} \right\| ^{2}_{L^{2}(\Omega)}+\left\| { w} \right\| ^{2}_{L^{2}(\Omega)}\big)\big(1+\left\| { \phi } \right\| ^{2}_{L^{4}(\Omega)}+\left\| { u} \right\| ^{2}_{L^{3}(\Omega)}\big)ds. \end{array} \end{equation} (3.50)

    According to Lemma 2.6, we can deduce that

    \begin{equation} \begin{array}{lcr} \int_{0}^{t}\left(\left\| { \mathcal{H}(\Psi_{\tau}, w_{\tau})} \right\| ^{2}_{L^{2}(\Omega)} +\left\| { \mathcal{E}(\Psi_{\tau}, w_{\tau})} \right\| ^{2}_{L^{2}(\Omega)}\right)ds\leq C\int_{0}^{t}\left(\left\| { \Psi} \right\| ^{2}_{L^{2}(\Omega)}+\left\| { w} \right\| ^{2}_{L^{2}(\Omega)}\right)ds. \end{array} \end{equation} (3.51)

    From (3.51), (3.50) becomes (since \Vert \Psi\Vert_{\mathbb{V}}\leq \Vert \Psi+\psi_{e}\Vert_{\mathbb{V}}+\Vert \psi_{e}\Vert_{\mathbb{V}} )

    \begin{equation} \begin{array}{lcr} (\Vert \Psi(., t)\Vert^{2}_{L^{2}(\Omega)}+\Vert w(., t)\Vert^{2}_{L^{2}(\Omega)}) +\int_{0}^{t}(\Vert \Psi\Vert^{2}_{\mathbb{V}}+\Vert \psi_{e}\Vert^{2}_{\mathbb{V}})ds +\int_{0}^{T}\int_{\Omega}\phi^{2}\Psi^{2} d{\bf{x}} ds\\ \quad \leq C_{12}(\int_{0}^{T}\left\| { h_{2}} \right\| ^{2}_{L^{2}(\Omega)}ds +\int_{0}^{T}\left\| { h_{1}} \right\| ^{2}_{L^{2}(\Omega)}ds)\\ \quad +C_{13}\int_{0}^{t}(\left\| { \Psi} \right\| ^{2}_{L^{2}(\Omega)}+\left\| { w} \right\| ^{2}_{L^{2}(\Omega)})(1+\left\| { \phi } \right\| ^{2}_{L^{4}(\Omega)}+\left\| { u} \right\| ^{2}_{L^{3}(\Omega)})ds \end{array} \end{equation} (3.52)

    and then

    \begin{equation} \begin{array}{lcr} (\Vert \Psi(., t)\Vert^{2}_{L^{2}(\Omega)}+\Vert w(., t)\Vert^{2}_{L^{2}(\Omega)}) \leq C_{12}(\int_{0}^{T}\left\| { h_{2}} \right\| ^{2}_{L^{2}(\Omega)}ds +\int_{0}^{T}\left\| { h_{1}} \right\| ^{2}_{L^{2}(\Omega)}ds)\\ \quad +C_{13}\int_{0}^{t}(\left\| { \Psi} \right\| ^{2}_{L^{2}(\Omega)}+\left\| { w} \right\| ^{2}_{L^{2}(\Omega)})(1+\left\| { \phi } \right\| ^{2}_{L^{4}(\Omega)}+\left\| { u} \right\| ^{2}_{L^{3}(\Omega)})ds. \end{array} \end{equation} (3.53)

    By first using Gronwall lemma in (3.53), we can deduce that

    \begin{equation*} \begin{array}{lcr} \Vert \Psi(., t)\Vert^{2}_{L^{2}(\Omega)}+\Vert w(., t)\Vert^{2}_{L^{2}(\Omega)}\\ \leq C(\int_{0}^{T}\left\| { h_{2}} \right\| ^{2}_{L^{2}(\Omega)}ds +\int_{0}^{T}\left\| { h_{1}} \right\| ^{2}_{L^{2}(\Omega)}ds) \exp(\left\| { \phi } \right\| ^{2}_{L^{2}(0, T;L^{4}(\Omega))}+\left\| { u} \right\| ^{2}_{L^{2}(0, T;L^{3}(\Omega))}), \end{array} \end{equation*}

    and then from (3.52), we easily deduce the following estimates

    \begin{array}{l} \left\| { \Psi} \right\|^{2}_{L^{\infty}(0, T;L^{2}(\Omega))}+\left\| { w} \right\|^{2}_{L^{\infty}(0, T;L^{2}(\Omega))} \leq C\big(\left\| { h_{2}} \right\| ^{2}_{L^{2}({\cal Q})} +\left\| { h_{1}} \right\| ^{2}_{L^{2}({\cal Q})}\big), \\ \left\| { \Psi} \right\|^{2}_{L^{2}(0, T;\mathbb{V})}+\left\| { \psi_{e}} \right\|^{2}_{L^{2}(0, T;\mathbb{V})}\leq C\big(\left\| { h_{2}} \right\| ^{2}_{L^{2}({\cal Q})} +\left\| { h_{1}} \right\| ^{2}_{L^{2}({\cal Q})}\big), \\ \left\| {\phi \Psi } \right\|_{{L^2}({\cal Q})}^2 \le C(\left\| {{h_2}} \right\|_{{L^2}({\cal Q})}^2 + \left\| {{h_1}} \right\|_{{L^2}({\cal Q})}^2). \end{array} (3.54)

    Derive now the estimate of results, for the solution (\Psi, \psi_{e}, w) , in the following space: (L^{\infty}(0, T; H^{1}(\Omega))\cap H^{1}(0, T; L^{2}(\Omega)))\times L^{\infty}(0, T; H^{1}(\Omega))\times (L^{\infty}(0, T; H^{1}(\Omega))\cap H^{1}(0, T; L^{3}(\Omega))) .

    Since w satisfies: \frac{\partial w }{\partial t}\! = \! -\frac{\partial \mathcal{I}_{2}}{\partial \phi}(.; \phi)\Psi-\hbar w +\mathcal{E}(\Psi_{\tau}, w_{\tau}) , then for all t we have (since w(t = 0) = 0 )

    \begin{equation} \begin{array}{lcr} w({\bf{x}}, t) \! = \! -\int_{0}^{t} \frac{\partial \mathcal{I}_{2}}{\partial \phi}({\bf{x}}, s;\phi)\Psi ds-\int_{0}^{t}\hbar w({\bf{x}}, s)ds+\int_{0}^{t}\mathcal{E}(\Psi_{\tau}, w_{\tau})ds. \end{array} \end{equation} (3.55)

    Since relation (3.55) is similar to (3.40), then we can use similar argument as to derive (3.44) and we obtain (since \psi and \phi are in L^{2}(0, T, H^{1})\subset L^{2}(0, T, L^{r}) , for r\in [1, 6] )

    \begin{equation} \begin{array}{lcr} \left\| { w(., t)} \right\| _{L^{3}(\Omega)} \leq C_{1}\int_{0}^{t} \left\| { w(., s)} \right\| _{L^{3}(\Omega)} ds\\ \quad +C_{2}\left(\left\| { \Psi} \right\| _{L^{2}(0, T;L^{3}(\Omega))}+\left\| { \phi} \right\| _{L^{2}(0, T;H^{1}(\Omega))}\left\| { \Psi} \right\| _{L^{2}(0, T;H^{1}(\Omega))} \right). \end{array} \end{equation} (3.56)

    According to (3.54), we can deduce that

    \begin{equation*} \begin{array}{lcr} \left\| { w(., t)} \right\| _{L^{3}(\Omega)}\leq C_{3}\int_{0}^{t} \left\| { w(., s)} \right\| _{L^{3}(\Omega)} ds+ C_{4}\big(\Vert h_{1}\Vert_{L^2({\cal Q})}+ \Vert h_{2}\Vert_{L^2({\cal Q})}\big). \end{array} \end{equation*}

    Consequently (by using Gronwall lemma)

    \begin{equation} \begin{array}{lcr} \left\| { w(., t)} \right\| _{L^{3}(\Omega)}\leq C\left(\Vert h_{1}\Vert_{L^2({\cal Q})}+ \Vert h_{2}\Vert_{L^2({\cal Q})}\right). \end{array} \end{equation} (3.57)

    Finally, from (3.10) with (v, v_{e}) = (\frac{\partial \Psi}{\partial t}, \frac{\partial \psi_{e}}{\partial t}) (put \tilde{h}_{i} = {\cal B}_{i} h_{i} )

    \begin{equation} \begin{array}{lcr} \left\| { \mathfrak{b}_{m}\frac{\partial \Psi}{\partial t}} \right\| ^{2}_{L^{2}(\Omega)} +A_i(\Psi+\psi_e, \frac{\partial \Psi}{\partial t}) +\int_{\Omega}\frac{\partial {\cal I}}{\partial \phi}\Psi \frac{\partial \Psi}{\partial t} d{\bf{x}}\\ \quad +\int_{\Omega}\frac{\partial {\cal I}}{\partial u}w \frac{\partial \Psi}{\partial t} d{\bf{x}} = \int_\Omega \mathcal{H}(., \phi_\tau, u_\tau) \frac{\partial \phi}{\partial t}d{\bf{x}}+\int_{\Omega} \tilde{h}_{2}\frac{\partial \Psi}{\partial t}d{\bf{x}}, \\ A_i(\Psi + \psi_e, \frac{\partial \psi_{e}}{\partial t})+ A_e(\psi_e, \frac{\partial \psi_{e}}{\partial t}) = \int_{\Omega}\tilde{h}_{1} \frac{\partial \psi_{e}}{\partial t}d{\bf{x}}, \\ \frac{\partial w }{\partial t}\! = \! -\frac{\partial \mathcal{I}_{2}}{\partial \phi}(.;\phi)\Psi-\hbar w +\mathcal{E}(\Psi_{\tau}, w_{\tau}). \end{array} \end{equation} (3.58)

    Then (since \frac{\partial \mathcal{I}_{2}}{\partial \phi}(.; \phi) is a polynomial of degree 1 on \phi )

    \begin{equation} \begin{array}{lcr} \left\| { \mathfrak{b}_{m}\frac{\partial \Psi}{\partial t}} \right\| ^{2}_{L^{2}(\Omega)} + \frac{d}{2dt}A_i(\phi+\varphi_e, \phi+\varphi_e) +\frac{d}{2dt}A_i(\varphi_e, \varphi_e) = \\ \quad -\int_{\Omega}\frac{\partial {\cal I}}{\partial \phi}\Psi \frac{\partial \Psi}{\partial t} d{\bf{x}} -\int_{\Omega}\frac{\partial {\cal I}}{\partial u}w \frac{\partial \Psi}{\partial t} d{\bf{x}}\\ \quad +\int_{\Omega} \tilde{h}_{2}\frac{\partial \Psi}{\partial t}d{\bf{x}}+\int_{\Omega} \psi_{e}\frac{\partial \tilde{h}_{1}}{\partial t} d{\bf{x}}+\frac{d}{dt}(\int_{\Omega} \tilde{h}_{1} \psi_{e} d{\bf{x}})+\int_\Omega \mathcal{H}(., \Psi_\tau, w_\tau) \frac{\partial \Psi}{\partial t}d{\bf{x}}, \\ \left\| { \frac{\partial w }{\partial t}} \right\| _{L^{3}(\Omega)}\leq C\big(\left\| { \Psi } \right\| _{L^{\infty}(0, T;H^{1}(\Omega))}(1+\left\| { \phi } \right\| _{L^{\infty}(0, T;H^{1}(\Omega))})+ \left\| { w} \right\| _{L^{\infty}(0, T;L^{3}(\Omega))}\big)\\ \quad +\left\| { \mathcal{E}(\Psi_{\tau}, w_{\tau})} \right\| _{L^{3}(\Omega)}. \end{array} \end{equation} (3.59)

    Since \tilde{h}_{1}\in U_{c}\subset C^{0}([0, T]; L^{2}(\Omega)) , then \tilde{h}_{1}(0)\in L^{2}(\Omega) and we have \left\| { \tilde{h}_{1}(0)} \right\| ^{2}_{L^{2}(\Omega)}\leq C \left\| { \tilde{h}_{1} } \right\| ^{2}_{U_{c}} . Consequently, by integrating (3.59) by time, we can deduce (from (2.21), the boundedness of \mathfrak{b}_{m} , the coercivity and continuity of A_{i} and A_{e} , and the estimate of \mathcal{H} and \mathcal{E} given by Lemma 2.6)

    \begin{equation} \begin{array}{lcr} 2\underline{c}_{m}\int_{0}^{t}\left\| { \frac{\partial \Psi}{\partial t}} \right\| ^{2}_{L^{2}(\Omega)}ds+ \alpha_{i}\left\| { \Psi(t)} \right\| ^{2}_{H^{1}(\Omega)}+(\alpha_{e}+\alpha_{i})\left\| { \psi_e(t)} \right\| ^{2}_{H^{1}(\Omega)}\\ \leq C_{1}\left( \int_{0}^{t}\int_{\Omega}\mid \phi \mid ^{4}\mid \Psi \mid^{2} d{\bf{x}} ds+\int_{0}^{t}\int_{\Omega}\mid \phi \mid ^{2}\mid \Psi \mid^{2} d{\bf{x}} ds+\int_{0}^{t}\int_{\Omega}\mid u \mid ^{2}\mid \Psi \mid^{2} d{\bf{x}} ds\right)\\ \quad +C_{2} \left(\int_{0}^{t}\int_{\Omega}\mid \Psi \mid^{2} d{\bf{x}} ds+\int_{0}^{t}\int_{\Omega}\mid w\mid^{2} d{\bf{x}} ds+\int_{0}^{t}\int_{\Omega}\mid \psi_{e}\mid^{2} d{\bf{x}} ds\right)\\ \quad +C_{3}\int_{0}^{t}\int_{\Omega}\mid \phi \mid ^{2}\mid w \mid^{2} d{\bf{x}} ds+\delta_{0}\int_{0}^{t}\left\| { \frac{\partial \Psi}{\partial t}} \right\| ^{2}_{L^{2}(\Omega)}ds+\delta_{1}\left\| { \psi_{e}(t)} \right\| ^{2}_{H^{1}(\Omega)}\\ \quad +C_{4}\left(\left\| { \tilde{h}_{2} } \right\| ^{2}_{L^{2}({\cal Q})}+\left\| { \tilde{h}_{1}} \right\| ^{2}_{U_{c}}\right), \\ \left\| { \frac{\partial w }{\partial t}} \right\| _{L^{2}(0, T;L^{3}(\Omega))}\!\leq \! C_{5}\left(\left\| { \Psi } \right\| _{L^{\infty}(0, T;H^{1}(\Omega))}(1+\left\| { \phi } \right\| _{L^{\infty}(0, T;H^{1}(\Omega))})+ \left\| { w} \right\| _{L^{\infty}(0, T;L^{3}(\Omega))}\right). \end{array} \end{equation} (3.60)

    Since \phi is in L^{\infty}(0, T, H^{1})\subset L^{\infty}(0, T, L^{r}) ( r\in [1, 6] ), then (by choosing \delta_{0} = \underline{c}_{m} , \delta_{1} = (\alpha_{e}+\alpha_{i})/2 )

    \begin{equation} \begin{array}{lcr} \underline{c}_{m}\int_{0}^{t}\left\| { \frac{\partial \Psi}{\partial t}} \right\| ^{2}_{L^{2}(\Omega)}ds+ \alpha_{i}\left\| { \Psi(t)} \right\| ^{2}_{H^{1}(\Omega)}+(\alpha_{e}+\alpha_{i})/2\left\| { \psi_e(t)} \right\| ^{2}_{H^{1}(\Omega)}\\ \quad \leq C_{6}\left(\left\| { \phi } \right\| ^{4}_{L^{\infty}(0, T;H^{1}(\Omega))}+\left\| { \phi } \right\| ^{2}_{L^{\infty}(0, T;H^{1}(\Omega))} +\left\| { u } \right\| ^{2}_{L^{\infty}(0, T;L^{3}(\Omega))}\right)\int_{0}^{t}\left\| { \Psi } \right\| ^{2}_{H^{1}(\Omega)}ds\\ \quad +C_{7} \left(\left\| { \phi } \right\| ^{2}_{L^{\infty}(0, T;H^{1}(\Omega))}\left\| { w } \right\| ^{2}_{L^{\infty}(0, T;L^{3}(\Omega))} +\left\| { \Psi } \right\| ^{2}_{L^{2}({\cal Q})}+\left\| { \psi_{e} } \right\| ^{2}_{L^{2}({\cal Q})}+\left\| { w } \right\| ^{2}_{L^{2}({\cal Q})}\right)\\ \quad +C_{8}\left(\left\| { \tilde{h}_{2} } \right\| ^{2}_{L^{2}({\cal Q})}+\left\| { \tilde{h}_{1}} \right\| ^{2}_{U_{c}}\right), \\ \left\| { \frac{\partial w }{\partial t}} \right\| _{L^{2}(0, T;L^{3}(\Omega))}\leq \! C_{5}\left(\left\| { \Psi } \right\| _{L^{\infty}(0, T;H^{1}(\Omega))}(1+\left\| { \phi } \right\| _{L^{\infty}(0, T;H^{1}(\Omega))})+ \left\| { w} \right\| _{L^{\infty}(0, T;L^{3}(\Omega))}\right). \end{array} \end{equation} (3.61)

    From the regularity of (\phi, \varphi_{e}, u) , estimation of (\Psi, \psi_{e}) in L^{2}({\cal Q}) and estimation of w in L^{\infty}(0, T; L^{3}(\Omega)) (see the estimates (3.54)–(3.57)), we can deduce that (according to the assumption concerning the operators {\cal B}_{i} , i = 1, 2 )

    \begin{equation} \begin{array}{lcr} \left\| { \frac{\partial \Psi}{\partial t}} \right\| ^{2}_{L^{2}({\cal Q})}+ \left\| { \Psi(t)} \right\| ^{2}_{L^{\infty}(0, T;H^{1}(\Omega))}+\left\| { \psi_e(t)} \right\| ^{2}_{L^{\infty}(0, T;H^{1}(\Omega))}+\left\| { \frac{\partial w }{\partial t}} \right\| _{L^{2}(0, T;L^{3}(\Omega))}\\ \quad \leq C\left(\left\| { {h}_{2} } \right\| ^{2}_{L^{2}({\cal Q})}+\left\| { {h}_{1}} \right\| ^{2}_{U_{c}}\right). \end{array} \end{equation} (3.62)

    This completes the proof.

    We are now going to study the Fréchet differentiability of {\cal F} .

    Theorem 3.2. Let assumptions (H1)-(H4), (HMC) and (RC) be fulfilled. Suppose that (\phi, \varphi_{e}, u) \in \mathbb{D} , then the following results hold (for all (\xi, \pi)\in {\cal U}_{ad}\times {\cal V}_{ad} ).

    (i) Let (\xi, \pi+h_{2})\in {\cal U}_{ad}\times {\cal V}_{ad} , with h_{2}\in L^{\infty}({\cal Q}) such that \pi+h_{2}\in {\cal V}_{ad} and, {\cal F}(\xi, \pi) and {\cal F}(\xi, \pi+h_{2}) being the corresponding solutions of (3.1). Then

    \begin{equation} \begin{array}{lcr} \left\| { {\cal F}(\xi, \pi+h_{2})-{\cal F}(\xi, \pi)- {\cal F}'_{\pi}(\xi, \pi)h_{2}} \right\| _{\mathbb{D}}\leq C\left\| { h_{2}} \right\| ^{2}_{L^{2}({\cal Q})}, \end{array} \end{equation} (3.63)

    where {\cal F}'_{\pi}(\xi, \pi):L^{\infty}({\cal Q}) \to \ \mathbb{D} is a linear operator, and (\Psi, \psi_{e}, w) = {\cal F}'_{\pi}(\xi, \pi)h is the solution of problem (3.7) with h_{1} = 0 (we denote this problem by ({\bf{\cal P}}_{FP}) ). Moreover \forall (\xi_{i}, \pi_{i})\in {\cal U}_{ad}\times {\cal V}_{ad} ( i = 1, 2 ), we have the following estimate

    \begin{equation} \begin{array}{lcr} \left\| { {\cal F}'_{\pi}(\xi_{1}, \pi_{1})h_{2}-{\cal F}'_{\pi}(\xi_{2}, \pi_{2})h_{2}} \right\| _{\mathbb{D}} \leq C_{e}\left\| { h_{2}} \right\| _{L^{2}({\cal Q})}\left\| { X_{h}} \right\| _{U_{c}\times L^{2}({\cal Q})}, \end{array} \end{equation} (3.64)

    where X_{h} = (\xi, \pi) = (\xi_{1}-\xi_{2}, \pi_{1}-\pi_{2}) .

    (ii) Let (\xi+h_{1}, \pi)\in {\cal U}_{ad}\times {\cal V}_{ad} , with h_{1}\in L^{\infty}({\cal Q})\cap U_{c} such that \xi+h_{1}\in {\cal U}_{ad} and, {\cal F}(\xi, \pi) and {\cal F}(\xi+h_{1}, \pi) being the corresponding solutions of (3.1). Then

    \begin{equation} \begin{array}{lcr} \left\| { {\cal F}(\xi+h_{1}, \pi)-{\cal F}(\xi, \pi)- {\cal F}'_{\xi}(\xi, \pi)h_{1}} \right\| _{\mathbb{D}}\leq C\left\| { h_{1}} \right\| ^{2}_{U_{c}}, \end{array} \end{equation} (3.65)

    where {\cal F}'_{\xi}(\xi, \pi):L^{\infty}({\cal Q})\cap U_{c} \to \ \mathbb{D} is a linear operator, and (\Psi, \psi_{e}, w) = {\cal F}'_{\xi}(\xi, \pi)h is the solution of the problem (3.7) with h_{2} = 0 (we denote this problem by ({\bf{\cal P}}_{FX}) ). Moreover \forall (\xi_{i}, \pi_{i})\in {\cal U}_{ad}\times {\cal V}_{ad} ( i = 1, 2 ), we have the following estimate

    \begin{equation} \begin{array}{lcr} \left\| { {\cal F}'_{\xi}(\xi_{1}, \pi_{1})h_{1}-{\cal F}'_{\xi}(\xi_{2}, \pi_{2})h_{1}} \right\| _{\mathbb{D}} \leq C_{e}\left\| { h_{1}} \right\| _{U_{c}}\left\| { X_{h}} \right\| _{U_{c}\times L^{2}({\cal Q})}, \end{array} \end{equation} (3.66)

    where X_{h} = (\xi, \pi) = (\xi_{1}-\xi_{2}, \pi_{1}-\pi_{2}) .

    Proof. According to Theorem 3.1 the problems ({\cal P}_{FP}) , ({\cal P}_{FX}) have a unique solution in \mathbb{D} .

    (ⅰ) Let Y = (\phi, \varphi_{e}, u) = {\cal F}(\xi, \pi) and Y_{h} = (\phi_{h}, \varphi_{e, h}, u_{h}) = {\cal F}(\xi, \pi+h_{2}) . From the stability estimate in Theorem 2.4, we know that

    \begin{equation} \left\| { Y-Y_{h}} \right\| ^{2}_{\mathbb{D}}\leq C\left\| { h_{2}} \right\| ^{2}_{L^{2}({\cal Q})}. \end{equation} (3.67)

    Denote by \Phi_{h} = \phi_{h}-\phi , \Pi_{e, h} = \varphi_{e, h}-\varphi_{e} , U_{h} = u_{h}-u , \phi^{*} = \Phi_{h}-\Psi , \varphi^{*}_{e} = \Pi_{e, h}-\psi_{e} and u^{*} = U_{h}-w . It is easy to see that (\phi^{*}, \varphi^{*}_{e}, u^{*}) satisfies the linear problem

    \begin{equation} \begin{array}{lcr} \mathfrak{c}_{m}\frac{\partial \phi^{*}}{\partial t}-div(\mathcal{K}_{i}\nabla (\phi^{*}+\varphi^{*}_{e})) +\frac{\partial \mathcal{I}}{\partial u}u^{*}+\frac{\partial \mathcal{I}}{\partial \phi}\phi^{*} = S_{1}+\mathcal{H}(\phi^{*}_{\tau}, u^{*}_{\tau}), \; \; \text{in}\; \; {\cal Q}\\ -div(\mathcal{K}_{i}\nabla \phi^{*})-div((\mathcal{K}_{i}+\mathcal{K}_{e})\varphi^{*}_{e}) = 0, \; \; \text{in}\; \; {\cal Q}\\ \frac{\partial u^{*}}{\partial t}+\hbar u^{*}+\frac{\partial \mathcal{G}}{\partial \phi}\phi^{*} = S_{2}+\mathcal{E}(\phi^{*}_{\tau}, u^{*}_{\tau}), \; \; \text{in}\; \; {\cal Q}\\ \big(\mathcal{K}_{i}\nabla \phi^{*}\big).{\bf{n}} + \big(\mathcal{K}_{i}\nabla \varphi^{*}_{e}\big).{\bf{n}} = 0, \; \; \text{on}\; \; \Sigma\\ \big(\mathcal{K}_{e}\nabla \varphi^{*}_{e}\big).{\bf{n}} = 0, \; \; \text{on}\; \; \Sigma\\ \phi^{*} (., t = 0) = 0, \; \; \; u^{*}(., t = 0) = 0, \; \; \text{in}\; \; \Omega\\ \phi^{*} = 0, \; \; \; u^{*} = 0, \; \; \text{in}\; \; {\cal Q}_{0} \end{array} \end{equation} (3.68)

    where the condition (1.3) for \varphi^{*}_{e} holds and

    \begin{equation} \begin{array}{lcr} S_{1} = -(g_{0}+ug_{1})-U_{h}\big(\mathcal{I}_{1}(\phi_{h})-\mathcal{I}_{1}(\phi)\big), \; \; \; \; S_{2} = -g_{2}, \end{array} \end{equation} (3.69)

    with g_{i} = \big(\mathcal{I}_{i}(\phi_{h})-\mathcal{I}_{i}(\phi)-\mathcal{I}_{i}'(\phi).\Phi_{h}\big) and \mathcal{I}_{i}'(\phi) = \frac{\partial \mathcal{I}_{i}}{\partial \phi} , for i = 0, 2. Now we have to derive some estimates necessary to prove the result of theorem. By using a simple manipulation we obtain that

    g_{i} = \int_{0}^{1}\big(\mathcal{I}_{i}'(\phi)-\mathcal{I}_{i}'(\phi+s\Phi_{h})\big)\Phi_{h} ds\; \; \text{(for $i = 0, 1, 2$)}.

    Since \mathcal{I}_{0}'(\phi) = \hbar_{11}\phi^{2}-\hbar_{12}\phi+\hbar_{13} , \mathcal{I}_{1}'(\phi) = \epsilon_{1}\hbar_{21} , \mathcal{I}_{2}'(\phi) = -\epsilon_{2}\hbar_{31}\phi+(\epsilon_{2}-1)\hbar_{32} and \mathcal{I}_{1}(\phi_{h})-\mathcal{I}_{1}(\phi) = \epsilon_{1}\hbar_{21}\Phi_{h} then

    \begin{equation} \begin{array}{lcr} g_{0} = \int_{0}^{1}-s^{2}\Phi_{h}^{2} (\hbar_{11}(2\phi+s\Phi_{h})-\hbar_{12})ds = \frac{-2\hbar_{11}}{3}\Phi_{h}^{2}\phi-\frac{\hbar_{11}}{4}\Phi_{h}^{3}+\frac{\hbar_{12}}{3}\Phi_{h}^{2}, \\ g_{1} = 0, \\ g_{2} = \int_{0}^{1}s\Phi_{h}^{2} \epsilon_{2}\hbar_{32} ds = \frac{\epsilon_{2}\hbar_{32}}{2}\Phi_{h}^{2}. \end{array} \end{equation} (3.70)

    According to the regularity of \hbar_{ij} we can deduce that

    \begin{equation} \begin{array}{lcr} \mid S_{1}\mid^{2} \leq C\left(\mid \Phi_{h}\mid^{6}+\mid \phi \mid^{2}\mid \Phi_{h}\mid^{4}+\mid \Phi_{h}\mid^{4}+ \mid U_{h}\mid^{2} \mid \Phi_{h}\mid^{2}\right), \\ \mid S_{2}\mid^{3} \leq C\mid \Phi_{h}\mid^{6} \end{array} \end{equation} (3.71)

    Integrating by space and using Young's formula, we can deduce

    \begin{equation*} \begin{array}{lcr} \int_{\Omega}\mid S_{1}\mid^{2} d{\bf{x}} \leq C\left(\left\| { \Phi_{h}} \right\| ^{6}_{L^{6}(\Omega)}\!+\!\left\| { \Phi_{h}} \right\| ^{4}_{L^{6}(\Omega)}\left\| { \phi} \right\| ^{2}_{L^{6}(\Omega)} \!+\!\left\| { \Phi_{h}} \right\| ^{4}_{L^{4}(\Omega)}\!+\!\left\| { \Phi_{h}} \right\| ^{2}_{L^{6}(\Omega)}\left\| { U_{h}} \right\| ^{2}_{L^{3}(\Omega)}\right), \\ \int_{\Omega}\mid S_{2}\mid^{3} d{\bf{x}}\leq C\left\| { \Phi_{h}} \right\| ^{6}_{L^{6}(\Omega)}. \end{array} \end{equation*}

    From Gagliardo-Nirenberg inequality, we have, for all v\in H^{1}(\Omega) , \left\| { v} \right\| _{L^{r}(\Omega)}\leq C\left\| { v} \right\| _{H^{1}(\Omega)} , for r\in [2, 6] , we have (since \phi, U_{h}, \Phi_{h}\in L^{\infty}(0, T; H^{1}(\Omega)) )

    \begin{equation} \begin{array}{lcr} \int_{\Omega}\mid S_{1}\mid^{2}d{\bf{x}} \leq C\left(\left\| { \Phi_{h}} \right\| ^{4}_{L^{\infty}(0, T;H^{1}(\Omega))}+\left\| { U_{h}} \right\| ^{4}_{L^{\infty}(0, T;L^{3}(\Omega))}\right), \\ \int_{\Omega}\mid S_{2}\mid^{3} d{\bf{x}}\leq C\left\| { \Phi_{h}} \right\| ^{6}_{L^{\infty}(0, T;H^{1}(\Omega))}. \end{array} \end{equation} (3.72)

    We can deduce that (according to the estimate (3.67))

    \begin{equation} \begin{array}{lcr} \left\| { S_{1}} \right\| _{L^{\infty}(0, T; L^{2}(\Omega))}\leq C\left\| { h_{2}} \right\| ^{2}_{L^{2}({\cal Q})}, \\ \left\| { S_{2}} \right\| _{L^{\infty}(0, T; L^{3}(\Omega))}\leq C\left\| { h_{2}} \right\| ^{2}_{L^{2}({\cal Q})}. \end{array} \end{equation} (3.73)

    We can conclude that source term (S_{1}, S_{2}) in (3.68) is in L^{2}(0, T; L^{2}(\Omega))\times L^{2}(0, T; L^{3}(\Omega)) and satisfies estimates (3.73). Since (3.68) is similar as system (3.7) with source term (S_{1}, S_{2}) then from Theorem 3.1 we can deduce that

    \begin{equation*} \begin{array}{lcr} \left\| { (\phi^{*}, \varphi_{e}^{*}, u^{*})} \right\| ^{2}_{\mathbb{D}} \leq C\left(\left\| { S_{1}} \right\| ^{2}_{L^{2}({\cal Q})}+\left\| { S_{2}} \right\| ^{2}_{L^{2}(0, T; L^{3}(\Omega))}\right) \end{array} \end{equation*}

    and then according to estimates (3.73), we can deduce estimate (3.63).

    Prove now the second part of (ⅰ). Let (\xi_{i}, \pi_{i})\in {\cal U}_{ad}\times {\cal V}_{ad} , i = 1, 2 be given and {\bf{w}} _{i} = (\Psi_{i}, \psi_{e, i}, w_{i}) = {\cal F}_{\pi}'(\xi_{i}, \pi_{i}).h_{2} solution of ({\cal P}_{FP}) (we denote by Y_{i} = (\phi_{i}, \varphi_{e, i}, u_{i}) = {\cal F}(\xi_{i}, \pi_{i}) and by (\phi, \varphi_{e}, u) = Y_{1}-Y_{2} ). Set {\bf{w}} = (\Psi, \psi_{e}, w) = {\bf{w}} _{1}-{\bf{w}} _{2} , (\xi, \pi) = (\xi_{1}-\xi_{2}, \pi_{1}-\pi_{2}) . According to equations satisfied by {\bf{w}} _{1} and {\bf{w}} _{2} we have

    \begin{equation} \begin{array}{lcr} \mathfrak{c}_{m}\frac{\partial \Psi}{\partial t}-div(\mathcal{K}_{i}\nabla (\Psi+\psi_{e})) +\frac{\partial {\cal I}}{\partial \phi}(\phi_{1}, u_{1})\Psi +\frac{\partial {\cal I}}{\partial u}(\phi_{1}, u_{1})w = S_{1}+\mathcal{H}(\Psi_{\tau}, w_{\tau}), \\ -div(K_{i}\nabla \Psi)-div((\mathcal{K}_{i}+\mathcal{K}_{e})\psi_{e}) = 0, \\ \frac{\partial w}{\partial t} +\frac{\partial {\cal G}}{\partial \phi}(\phi_{1}, u_{1})\Psi +\hbar w = S_{2}+\mathcal{E}(\Psi_{\tau}, w_{\tau}), \\ \big(\mathcal{K}_{i}\nabla \Psi\big).{\bf{n}} + \big(\mathcal{K}_{i}\nabla \psi_{e}\big).{\bf{n}} = 0, \; \; \text{on}\; \; \Sigma\\ \big(\mathcal{K}_{e}\nabla \psi_{e}\big).{\bf{n}} = 0, \; \; \text{on}\; \; \Sigma\\ \Psi(., t = 0) = 0, \; \; \; w(., t = 0) = 0, \; \; \text{in}\; \; \Omega\\ \Psi = 0, \; \; \; w = 0, \; \; \text{in}\; \; {\cal Q}_{0} \end{array} \end{equation} (3.74)

    where the condition (1.3) for \psi_{e} holds and

    \begin{equation} \begin{array}{lcr} S_{1} = (\frac{\partial {\cal I}}{\partial \phi}(\phi_{1}, u_{1})-\frac{\partial {\cal I}}{\partial \phi}(\phi_{2}, u_{2}))\Psi_{2} \quad +(\frac{\partial {\cal I}}{\partial u}(\phi_{1}, u_{1})-\frac{\partial {\cal I}}{\partial u}(\phi_{2}, u_{2}))w_{2}, \\ S_{2} = (\frac{\partial {\cal G}}{\partial \phi}(\phi_{1}, u_{1})-\frac{\partial {\cal G}}{\partial \phi}(\phi_{2}, u_{2}))\Psi_{2}. \end{array} \end{equation} (3.75)

    From the expression (2.21) of partial derivatives of \mathcal{I} and \mathcal{G} and Hölder's inequality, we can have (according to regularity of \hbar_{ij} )

    \begin{equation} \begin{array}{lcr} \mid S_{1}\mid \leq C(\mid \phi\mid (1+\mid \phi_{1}\mid +\mid \phi_{2}\mid) +\mid u\mid)) \mid \Psi_{2}\mid+\mid \phi\mid \mid w_{2}\mid, \\ \mid S_{2}\mid \leq C\mid \phi\mid \mid \Psi_{2}\mid. \end{array} \end{equation} (3.76)

    So

    \begin{equation} \begin{array}{lcr} \int_{\Omega}\mid S_{1}\mid^{2} d{\bf{x}}\leq C_{1}(1+\left\| { \phi_{1}} \right\| ^{2}_{L^{6}(\Omega)}+\left\| { \phi_{2}} \right\| ^{2}_{L^{6}(\Omega)})\left\| { \phi} \right\| ^{2}_{L^{6}(\Omega)}\left\| { \Psi_{2}} \right\| ^{2}_{L^{6}(\Omega)}\\ \quad +C_{2}\left\| { u} \right\| ^{2}_{L^{3}(\Omega)}\left\| { \Psi_{2}} \right\| ^{2}_{L^{6}(\Omega)}+C_{3}\left\| { \phi} \right\| ^{2}_{L^{6}(\Omega)}\left\| { w_{2}} \right\| ^{2}_{L^{3}(\Omega)}, \\ \int_{\Omega}\mid S_{2}\mid^{3} d{\bf{x}} \leq C_{4}\left\| { \phi} \right\| ^{3}_{L^{6}(\Omega)}\left\| { \Psi_{2}} \right\| ^{3}_{L^{6}(\Omega)}. \end{array} \end{equation} (3.77)

    According to the regularity of \phi_{i} ( i = 1, 2 ) in L^{\infty}(0, T; L^{6}(\Omega))\subset L^{\infty}(0, T; H^{1}(\Omega)) , we can deduce that

    \begin{equation*} \begin{array}{lcr} \int_{\Omega}\mid S_{1}\mid^{2} d{\bf{x}}\leq C_{5}(\left\| { \phi} \right\| ^{2}_{L^{6}(\Omega)}+\left\| { u} \right\| ^{2}_{L^{3}(\Omega)})\left\| { \Psi_{2}} \right\| ^{2}_{L^{6}(\Omega)} +C_{6}\left\| { \phi} \right\| ^{2}_{L^{6}(\Omega)}\left\| { w_{2}} \right\| ^{2}_{L^{3}(\Omega)}, \\ \int_{\Omega}\mid S_{2}\mid^{3} d{\bf{x}} \leq C_{4}\left\| { \phi} \right\| ^{3}_{L^{6}(\Omega)}\left\| { \Psi_{2}} \right\| ^{3}_{L^{6}(\Omega)} \end{array} \end{equation*}

    and then (from Gagliardo-Nirenberg inequalities)

    \begin{equation} \begin{array}{lcr} \int_{\Omega}\mid S_{1}\mid^{2} d{\bf{x}}\leq C_{5}(\left\| { \phi} \right\| ^{2}_{L^{\infty}(0, T;H^{1}(\Omega))}+\left\| { u} \right\| ^{2}_{L^{\infty}(0, T;L^{3}(\Omega))})\left\| { \Psi_{2}} \right\| ^{2}_{H^{1}(\Omega)}\\ \quad +C_{6}\left\| { \phi} \right\| ^{2}_{L^{\infty}(0, T;H^{1}(\Omega))}\left\| { w_{2}} \right\| ^{2}_{L^{3}(\Omega)}, \\ \int_{\Omega}\mid S_{2}\mid^{3} d{\bf{x}} \leq C_{4}\left\| { \phi} \right\| ^{3}_{L^{\infty}(0, T;H^{1}(\Omega))}\left\| { \Psi_{2}} \right\| ^{3}_{H^{1}(\Omega)}. \end{array} \end{equation} (3.78)

    According to Theorems 2.4 and 3.1, we can deduce that

    \begin{equation} \begin{array}{lcr} \left\| { S_{1}} \right\| _{L^{2}(0, T;L^{2}(\Omega))}\leq C\left\| { h_{2}} \right\| _{L^{2}({\cal Q})}\left\| { (\xi, \pi)} \right\| _{U_{c}\times L^{2}({\cal Q})}, \\ \left\| { S_{2}} \right\| _{L^{2}(0, T;L^{3}(\Omega))} \leq C\left\| { h_{2}} \right\| _{L^{2}({\cal Q})}\left\| { (\xi, \pi)} \right\| _{U_{c}\times L^{2}({\cal Q})}. \end{array} \end{equation} (3.79)

    We can conclude that source term (S_{1}, S_{2}) , in (3.74), is in L^{2}(0, T; L^{2}(\Omega))\times L^{2}(0, T; L^{3}(\Omega)) and satisfies estimates (3.79). Since (3.74) is similar as system (3.7) with source term (S_{1}, S_{2}) then from Theorem 3.1 we can deduce that the result (3.64) of the theorem holds.

    (ⅱ) By using the same technique as in the proof of results of (ⅰ), we have results of (ⅱ). Therefore, we omit the details.

    Theorem 3.3. Assume that assumptions of Theorem 3.2 are satisfied. Then, for \alpha and \beta sufficiently large (i.e. there exist (\alpha_{l}, \beta_{l}) such that \alpha\geq \alpha_{l} and \beta\geq\beta_{l} ) there exist (\xi^{*}, \pi^{*})\in {\cal U}_{ad}\times {\cal V}_{ad} and (\phi^{*}, \varphi_{e}^{*}, u^{*})\in \mathbb{D} such that (\xi^{*}, \pi^{*}) is a saddle point of {\cal J} and (\phi^{*}, \varphi_{e}^{*}, u^{*}) = {\cal F}(\xi^{*}, \pi^{*}) is the solution of (3.1).

    Proof. Let P_{\pi} be the map: \xi \to \ {\cal J}(\xi, \pi) and Q_{\xi} be the map: \pi \to \ {\cal J}(\xi, \pi) . To obtain the existence of minimax control problem we prove that P_{\pi} is convex and lower semicontinuous for all \pi \in {\cal V}_{ad} , Q_{\xi} is concave and upper semicontinuous for all \xi\in {\cal U}_{ad} , and we use the classical minimax theorem in infinite dimensions (see, e.g. [10,35]).

    First we prove, for \alpha and \beta sufficiently large, the convexity of the map P_{\pi} and the concavity of the map Q_{\xi} . In order to prove the convexity, it is sufficient to show that for all (\xi_{1}, \xi_{2})\in {\cal U}_{ad} we have:

    (P_{\pi}'(\xi_{1})-P_{\pi}'(\xi_{2})).\xi\geq 0,

    where \xi = \xi_{1}-\xi_{2} (because P_{\pi} is Fréchet differentiable).

    According to definition of {\cal J} , we have that

    \begin{equation} \begin{array}{lcr} (P_{\pi}'(\xi_{1})-P_{\pi}'(\xi_{2})).\xi = \alpha \left\| { \xi } \right\| ^{2}_{U_{c}}\\ \quad +m_{1}\int_{0}^{T}\!\!\!\int_{\Omega_{obs}}\!\Upsilon(t)(\phi_{1}-\phi_{2})\Psi_{2} d{\bf{x}}dt+m_{2}\int_{\Omega_{obs}}\!(\phi_{1}(T)-\phi_{2}(T))\Psi_{2}(T) d{\bf{x}}\\ \quad +m_{1}\int_{0}^{T}\!\!\!\int_{\Omega_{obs}}\!\Upsilon(t)(\phi_{1}-\phi_{obs})(\Psi_{1}-\Psi_{2}) d{\bf{x}}dt+m_{2}\int_{\Omega_{obs}}\!(\phi_{1}(T)-\psi_{obs})(\Psi_{1}(T)-\Psi_{2}(T)) d{\bf{x}}, \end{array} \end{equation} (3.80)

    where (\phi_{i}, \varphi_{e, i}, u_{i}) = {\cal F}(\xi_{i}, \pi) and function (\Psi_{i}, \psi_{e, i}, w_{i}) = {\cal F}'(\xi_{i}, \pi).(\xi, 0) is the solution of problem (3.7), for i = 1, 2 . According to Theorems 2.4 and 3.1 we can deduce that

    \begin{equation*} \begin{array}{lcr} \mid m_{1}\int_{0}^{T}\!\!\!\int_{\Omega_{obs}}\!\Upsilon(t)(\phi_{1}-\phi_{2})\Psi_{2} d{\bf{x}}dt+m_{2}\int_{\Omega_{obs}}(\phi_{1}(T)-\phi_{2}(T))\Psi_{2}(T) d{\bf{x}}\mid \\ \quad \leq C_{1}\Big(\left\| { \phi_{1}-\phi_{2}} \right\| _{L^{2}(0, T;\Omega_{obs})}\left\| { \psi_{2}} \right\| _{L^{2}(0, T;\Omega_{obs})}\\ \quad +\left\| { \phi_{1}(T)-\phi_{2}(T)} \right\| _{L^{2}(\Omega_{obs})}\left\| { \psi_{2}(T)} \right\| _{L^{2}(\Omega_{obs})}\Big)\\ \quad \leq M_{0}\left\| { \xi } \right\| ^{2}_{U_{c}} \end{array} \end{equation*}

    and

    \begin{equation*} \begin{array}{lcr} \mid m_{1}\int_{0}^{T}\!\!\!\int_{\Omega_{obs}}\!\Upsilon(t)(\phi_{1}-\phi_{obs})(\Psi_{1}-\Psi_{2}) d{\bf{x}}dt+m_{2}\int_{\Omega_{obs}}\!(\phi_{1}(T)-\psi_{obs})(\Psi_{1}(T)-\Psi_{2}(T)) d{\bf{x}}\mid \\ \quad \leq C_{2}\Big(\left\| { \phi_{1}-\phi_{obs}} \right\| _{L^{2}(0, T;\Omega_{obs})}\left\| { \psi_{1}-\psi_{2}} \right\| _{L^{2}(0, T;\Omega_{obs})}\\ \quad +\left\| { \phi_{1}(T)-\psi_{obs}} \right\| _{L^{2}(\Omega_{obs})}\left\| { \psi_{1}(T)-\psi_{2}(T)} \right\| _{L^{2}(\Omega_{obs})}\Big)\\ \quad \leq M_{1}\left\| { \xi } \right\| ^{2}_{U_{c}}. \end{array} \end{equation*}

    From (3.80) and the previous relations we deduce that for \alpha\geq \alpha_{l} such that \alpha_{l}\geq M_{0}+M_{1} we have (P_{\pi}'(\xi_{1})-P_{\pi}'(\xi_{2})).\xi\geq 0 and then the convexity of P_{\pi} . In the same way, we can find \beta_{l} such that for \beta\geq \beta_{l} we have the concavity of Q_{\xi} .

    We prove now that P_{\pi} is lower semicontinuous for all \pi \in {\cal V}_{ad} , and Q_{\xi} is upper semicontinuous for all \xi \in {\cal U}_{ad} .

    Let \xi^{(k)} be a minimizing sequence of {\cal J} i.e. \mathop {\lim \inf }\limits_k{\cal J}(\xi^{(k)}, \pi) = \mathop {\min }\limits_{\xi \in {{\cal U}_{ad}}}{\cal J}(\xi, \pi) \; (\forall \pi\in {\cal V}_{ad} ). Then \xi^{(k)} is uniformly bounded in {\cal U}_{ad} . Set (\phi_{\pi}, \varphi_{e, \pi}, u_{\pi}) = {\cal F}(\xi, \pi) , and (\phi^{(k)}, \varphi^{(k)}_{e}, u^{(k)}) = {\cal F}(\xi^{(k)}, \pi) . In view of Theorem 2.2 and the nature of the operator {\cal B}_{1} , we can deduce that the sequence (\phi^{(k)}, \varphi^{(k)}_{e}, u^{(k)}) is uniformly bounded in \mathcal{W}({\cal Q}) with respect to k . Therefore, we can extract from (\xi^{(k)}, \phi^{(k)}, \varphi^{(k)}_{e}, u^{(k)}) a subsequence also denoted by (\xi^{(k)}, \phi^{(k)}, \varphi^{(k)}_{e}, u^{(k)}) and such that

    \begin{equation*} \begin{array}{lcr} {\cal B}_{1}\xi^{(k)}\rightharpoonup {\cal B}_{1}\xi_{\pi} \; weakly \; in \; U_{c}, \\ (\phi^{(k)}, \varphi^{(k)}_{e}, u^{(k)}) \rightharpoonup (\underline{\phi}_{\pi}, \underline{\varphi}_{e, \pi}, \underline{u}_{\pi})\; weakly\; in \; \mathcal{W}({\cal Q}), \\ (\phi^{(k)}, \varphi^{(k)}_{e}, u^{(k)}) \to \ (\underline{\phi}_{\pi}, \underline{\varphi}_{e, \pi}, \underline{u}_{\pi})\; \; strongly \; in \; L^{2}({\cal Q}). \end{array} \end{equation*}

    Passing to limit in the corresponding system satisfied by (\xi^{(k)}, \phi^{(k)}, \varphi^{(k)}_{e}, u^{(k)}) , we can conclude that (\underline{\phi}_{\pi}, \underline{\varphi}_{e, \pi}, \underline{u}_{\pi}) = {\cal F}(\xi, \pi) and according to uniqueness of solution of (3.1), we have then (\underline{\phi}_{\pi}, \underline{\varphi}_{e, \pi}, \underline{u}_{\pi}) = ({\phi}_{\pi}, {\varphi}_{e, \pi}, {u}_{\pi}) . Therefore, using the sequential weak lower semicontinuous of {\cal J} with respect to convergence and uniform boundedness of sequence \xi^{(k)} (according to structure of {\cal J} ), we conclude that the map P_{\pi}:\xi \to \ {\cal J}(\xi, \pi) is lower semicontinuous for all \pi \in {\cal V}_{ad} . By using the same technique we obtain then Q_{\xi} is upper semicontinuous for all \xi \in {\cal K}_{1} .

    We now turn to necessary optimality conditions which have be satisfied by each solution of the control problem. In order to simplify the presentation we assume that the functions (p_l)_{1\leq l\leq n_{2}} and (r_k)_{1\leq k\leq n_{1}} at final time T satisfy

    \begin{equation} \begin{array}{lcr} p_1(T)\geq ... \geq p_{n_2}(T)\; \; \text{and}\; \; r_1(T)\geq ... \geq r_{n_1}(T), \\ \text{with the convention $r_{n_{1}+1}(T) = 0$ and $p_{n_{2}+1}(T) = 0$}. \end{array} \end{equation} (3.81)

    Since the cost {\cal J} is a composition of F-differentiable maps then {\cal J} is F-differentiable and we have

    \begin{equation} \begin{array}{lcr} {\cal J}'(\xi, \pi).{\bf{h}} = m_{1}\int_{0}^{T}\int_{\Omega_{obs}}\Upsilon(t)(\phi-\phi_{obs})\psi d{\bf{x}}dt+m_{2}\int_{\Omega_{obs}}(\phi(T)-\psi_{obs})\psi(T) d{\bf{x}}\\ \quad +\alpha (\xi, h_{1})_{U_{c}}-\beta \int_{0}^{T}\int_{\Omega_{d}}\pi h_{2} d{\bf{x}}dt \; \text{($\forall {\bf{h}} = (h_{1}, h_{2})\in {\cal U}_{ad}\times {\cal V}_{ad}$)}\; , \end{array} \end{equation} (3.82)

    where (\Psi, \psi_{e}, w) = {\cal F}'(\xi, \pi).{\bf{h}} is solution of problem (3.7).

    Theorem 3.4. Assume that assumptions of Theorem 3.3 are satisfied and \alpha and \beta are sufficiently large. Let (\xi^{*}, \pi^{*})\in {\cal U}_{ad}\times {\cal V}_{ad} be an optimal solution of (3.6) and (\phi^{*}, \varphi_{e}^{*}, u^{*}) = {\cal F}(\xi^{*}, \pi^{*}) \in \mathbb{D} be its corresponding solution. Then ( \forall (\xi, \pi)\in {\cal U}_{ad}\times {\cal V}_{ad} )

    \begin{equation} \begin{array}{lcr} \frac{\partial {\cal J}}{\partial \xi}(\xi^{*} , \pi^{*}).(\xi-\xi^{*}) = \left(\alpha\xi^{*}+ \chi_{\Omega_{c}}\aleph_{1}^{*}\tilde{\varphi}^{*}_{e}, \xi-\xi^{*} \right)_{U_{c}}\geq 0, \\ \frac{\partial {\cal J}}{\partial \phi}(\xi^{*} , \pi^{*}).(\pi -\pi^{*}) = \int_{0}^{T}\!\!\int_{\Omega_{d}}(-\beta\pi^{*}+ {\cal B}_{2}^{*}\tilde{\phi}^{*}) (\pi-\pi^{*})d{\bf{x}}dt\leq 0, \end{array} \end{equation} (3.83)

    where (\tilde{\phi}^{*}, \tilde{\varphi}^{*}_{e}, \tilde{u}^{*}): = {\cal F}^{\bot}(\xi^{*}, \pi^{*}) is the solution of the so-called adjoint problem (3.86) where the condition (1.3) for \tilde{\varphi}_{e} holds (given below), corresponding to (\phi^{*}, \varphi^{*}_{e}, u^{*}) , and with \aleph_{1}^{*} = \Lambda^{-1}{\cal B}_{1}^{*} where \Lambda is the canonical isomorphism : U_{c} \to \ U_{c}' such that

    \begin{equation} \langle g, v\rangle _{U_{c}, U_{c}'} = (\Lambda g, v)_{U_{c}'} = (g, \Lambda^{-1}v)_{U_{c}}, \; \; \forall (g, v)\in U_{c}\times U_{c}'. \end{equation} (3.84)

    Moreover the gradients of {\cal J} at any point (\xi, \pi) , in the weak sense, are given by

    \begin{equation} \begin{array}{lcr} \frac{\partial {\cal J}}{\partial \xi}(\xi , \pi) = \alpha\xi+ \chi_{\Omega_{c}}\aleph_{1}^{*}\tilde{\varphi}_{e}, \; \; \; \; \frac{\partial {\cal J}}{\partial \phi}(\xi , \pi) = -\beta\pi+ \chi_{\Omega_{d}}{\cal B}_{2}^{*}\tilde{\phi}, \end{array} \end{equation} (3.85)

    where (\tilde{\phi}, \tilde{\varphi}_{e}, \tilde{u}) = {\cal F}^{\bot}(\xi, \pi) is the solution of adjoint problem (corresponding to (\phi, \varphi_{e}, u) = {\cal F}(\xi, \pi) )

    \begin{equation} \begin{array}{lcr} -\mathfrak{c}_{m}\frac{\partial \tilde{\phi} }{\partial t}+ \frac{\partial \mathcal{I}}{\partial \phi}(\phi, u)\tilde{\phi} + \frac{\partial \mathcal{G} }{\partial \phi}(\phi, u) \tilde{u}\\ \quad -div(\mathcal{K}_{i}\nabla (\tilde{\phi}+\tilde{\varphi}_e)) = m_1(\phi - \phi_{obs})\Upsilon(t)\chi_{\Omega_{obs}}, \; \; \mathit{\text{in}}\; \; \Omega\times ({r_1(T)}, T)\\ -\mathfrak{c}_{m}\frac{\partial \tilde{\phi} }{\partial t} + \frac{\partial \mathcal{I}}{\partial \phi}(\phi, u)\tilde{\phi}+ \frac{\partial \mathcal{G} }{\partial \phi}(\phi, u) \tilde{u} -div(\mathcal{K}_{i}\nabla (\tilde{\phi}+\tilde{\varphi}_e)) \\ \quad + \sum\limits_{i = 1}^k \left( a_i(., e_i(t)) \tilde{\phi}(., e_i(t)) + c_i(., e_i(t)) \tilde{u}(., e_i(t)) \right) e_i^\prime(t)\\ \quad = m_1(\phi- \phi^{obs})\Upsilon(t)\chi_{\Omega_{obs}}, \; \; \mathit{\text{in $\Omega\times ({r_{k+1}(T)}, {r_{k}(T)})$, $k = n_1, \dots, 1$}}\\ -div(\mathcal{K}_{i}\nabla \tilde{\phi}) - div((\mathcal{K}_{i} + \mathcal{K}_{e})\nabla \tilde{\varphi}_e) = 0, \; \; \mathit{\text{in ${\cal Q}$}}\\ -\frac{\partial \tilde{u}}{\partial t}+ \frac{\partial \mathcal{G} }{\partial u}(\phi, u)\tilde{u}+\frac{\partial \mathcal{I}}{\partial u}(\phi, u) \tilde{\phi} = 0, \; \; \mathit{\text{in $\Omega\times(p_{1}(T), T)$}}\\ -\frac{\partial \tilde{u}}{\partial t}+ \frac{\partial \mathcal{G} }{\partial u}(\phi, u)\tilde{u}+\frac{\partial \mathcal{I}}{\partial u}(\phi, u) \tilde{\phi}\\ \quad +\sum\limits_{i = 1}^{l}\left( b_i(., q_i(t)) \tilde{\phi}(., q_i(t)) + d_i(., q_i(t)) \tilde{u}(., q_i(t))\right) q_i^\prime(t)\\ \quad = 0, \; \; \mathit{\text{in $\Omega\times ({p_{l+1}(T)}, {p_{l}(T)})$, $l = n_2, \dots, 1$, }}\\ \mathit{\text{subject to boundary and final conditions}}\\ (\mathcal{K}_{i}\nabla (\tilde{\phi}+\tilde{\varphi}_{e})).{\bf n} = 0, \; \; (\mathcal{K}_{e}\nabla \tilde{\varphi}_{e}).{\bf n} = 0, \mathit{\; \; \text{on}}\; \; \Sigma, \\ \tilde{\phi}(., T) = \frac{m_2}{\mathfrak{c}_{m}}(\phi(T) - \psi_{obs})\chi_{\Omega_{obs}}, \; \; \tilde{u}(., T) = 0, \mathit{\; \; \text{in }}\; \Omega. \end{array} \end{equation} (3.86)

    Proof. Let \widetilde{\textbf{X}} = (\tilde{\phi}, \tilde{\varphi}_{e}, \tilde{u}) be sufficiently regular such that (\tilde{\phi}, \tilde{u})(T) = (\frac{m_2}{\mathfrak{c}_{m}}(\phi(T)-\psi_{obs})\chi_{\Omega_{obs}}, 0) .

    Now multiplying the system (3.7) by \widetilde{\textbf{X}} and integrating over \mathcal{Q} , we obtain

    \begin{equation} \begin{array}{lrc} \int_0^T\!\!\!\int_\Omega \left(\mathfrak{c}_{m}\frac{\partial \Psi }{\partial t}+\frac{\partial \mathcal{I}}{\partial \phi}(\phi, u)\Psi + \frac{\partial \mathcal{I}}{\partial u}(\phi, u)w\right)\tilde\phi d{\bf{x}} dt- \int_0^T\!\!\!\int_\Omega div(\mathcal{K}_{i}\nabla (\Psi + \psi_e )) \tilde\phi d{\bf{x}} dt\\ = \int_0^T\!\!\!\int_\Omega \left( \sum\limits_{k = 1}^{n_1} a_k({\bf{x}}, t) \Psi({\bf{x}}, r_k(t)) + \sum\limits_{l = 1}^{n_2} b_l({\bf{x}}, t)w({\bf{x}}, p_l(t)) \right)\tilde\phi d{\bf{x}} dt +\int_0^T\!\!\!\int_\Omega \tilde\phi{\cal B}_{2}h_{2} d{\bf{x}} dt, \\ - \int_0^T\!\!\!\int_\Omega div(\mathcal{K}_{i}\nabla \Psi + \left( \mathcal{K}_{i} + \mathcal{K}_{e}\right)\nabla \psi_e)\tilde{\varphi}_e d{\bf{x}} dt = \int_0^T\!\!\!\int_\Omega \tilde{\varphi}_{e}{\cal B}_{1}h_{1} d{\bf{x}} dt, \\ \int_0^T\!\!\!\int_\Omega \left(\frac{\partial w}{\partial t} +\frac{\partial \mathcal{G}}{\partial \phi}(\phi, u) \Psi+ \frac{\partial \mathcal{G} }{\partial u}(\phi, u) w\right)\tilde{u} d{\bf{x}} dt \\ = \int_0^T\!\!\!\int_\Omega \left(\sum\limits_{k = 1}^{n_1} c_k({\bf{x}}, t) \Psi({\bf{x}}, r_k(t)) + \sum\limits_{l = 1}^{n_2} d_l({\bf{x}}, t)w({\bf{x}}, p_l(t))\right)\tilde{u} d{\bf{x}} dt. \end{array} \end{equation} (3.87)

    Using Green's theorem and integrating by part in time, the above system takes the following form (since (\Psi, w)(0) = 0) and according to boundary conditions satisfied by (\Psi, \psi_{e}) )

    \begin{equation} \begin{array}{lcr} \int_0^T\!\!\!\int_\Omega \left(-\mathfrak{c}_{m}\frac{\partial \tilde{\phi}}{\partial t} +\frac{\partial \mathcal{I} }{\partial \phi}(\phi, u)\tilde{\phi}-div(\mathcal{K}_{i}\nabla \tilde{\phi}) \right)\Psi d{\bf{x}} dt+\int_{\Omega_{obs}} m_{2}(\phi(T)-\psi_{obs})\Psi(T) d{\bf{x}}\\ \quad - \int_0^T\!\!\!\int_\Omega div(\mathcal{K}_{i}\nabla \tilde{\phi})\psi_e d{\bf{x}} dt -\int_0^T\!\!\!\int_\Omega \Big(\sum\limits_{k = 1}^{n_1} a_k({\bf{x}}, t)\tilde{\phi} ({\bf{x}}, t) \Psi({\bf{x}}, r_k(t))\Big) d{\bf{x}} dt\\ \quad +\int_0^T\!\!\!\int_\Omega (\frac{\partial \mathcal{I} }{\partial u}(\phi, u)\tilde{\phi})w d{\bf{x}} dt - \int_0^T\!\!\!\int_\Omega \Big(\sum\limits_{l = 1}^{n_2} b_l({\bf{x}}, t)\tilde{\phi}({\bf{x}}, t) w({\bf{x}}, p_l(t))\Big)d{\bf{x}} dt\\ \quad = \int_0^T\!\!\!\int_\Omega \tilde{\phi} {\cal B}_{2}h_{2}d{\bf{x}} dt -\int_0^T\!\int_\Gamma ((\mathcal{K}_{i}\nabla \tilde{\phi}).{\bf n})(\Psi +\psi_e )d\gamma dt, \\ - \int_0^T\!\!\!\int_\Omega div(\mathcal{K}_{i}\nabla\tilde{\varphi}_e)\Psi d{\bf{x}} dt - \int_0^T\!\!\!\int_\Omega div((\mathcal{K}_{i} + \mathcal{K}_{e})\nabla \tilde{\varphi}_e)\psi_e d{\bf{x}} dt\\ \quad = -\int_0^T\!\int_\Gamma \left\{\Big(\big((\mathcal{K}_{i}+\mathcal{K}_{e})\nabla \tilde{\varphi}_{e}\big).{\bf n}\Big)\psi_e+\Big(\big(\mathcal{K}_{i}\nabla \tilde{\varphi}_{e} \big).{\bf n}\Big)\Psi \right\}d\gamma dt +\int_0^T\!\!\!\int_\Omega \tilde{\varphi}_{e} {\cal B}_{1}h_{1}d{\bf{x}} dt, \\ \int_0^T\!\!\!\int_\Omega \left(-\frac{\partial \tilde{u}}{\partial t} + \frac{\partial \mathcal{G} }{\partial u}(\phi, u) \tilde{u}\right)w d{\bf{x}} dt- \int_0^T\!\!\!\int_\Omega \Big(\sum\limits_{l = 1}^{n_2} d_l({\bf{x}}, t)\tilde{u}({\bf{x}}, t) w({\bf{x}}, p_l(t))\Big) d{\bf{x}} dt \\ \quad +\int_0^T\!\!\!\int_\Omega\frac{\partial \mathcal{G}}{\partial \phi}(\phi, u) \tilde{u} \Psi d{\bf{x}} dt - \int_0^T\!\!\!\int_\Omega \Big(\sum\limits_{k = 1}^{n_1} c_k({\bf{x}}, t) \tilde{u}({\bf{x}}, t)\Psi({\bf{x}}, r_k(t))\Big)d{\bf{x}} dt = 0. \end{array} \end{equation} (3.88)

    By summing the three relations of the system (3.88), one obtains

    \begin{equation} \begin{array}{lcr} \int_0^T\!\!\!\int_\Omega \left(-\mathfrak{c}_{m}\frac{\partial \tilde{\phi}}{\partial t} +\frac{\partial \mathcal{I} }{\partial \phi}(\phi, u)\tilde{\phi}+\frac{\partial \mathcal{G} }{\partial \phi}(\phi, u)\tilde{u}-div(\mathcal{K}_{i}\nabla (\tilde{\phi}+\tilde{\varphi}_{e})) \right)\Psi d{\bf{x}} dt\\ \quad -\int_0^T\!\!\!\int_\Omega \Big(\sum\limits_{k = 1}^{n_1} \big(a_k({\bf{x}}, t)\tilde{\phi} ({\bf{x}}, t) +c_k({\bf{x}}, t) \tilde{u}({\bf{x}}, t)\big)\Psi({\bf{x}}, r_k(t))\Big) d{\bf{x}} dt\\ - \int_0^T\!\!\!\int_\Omega \left(div((\mathcal{K}_{i}+ \mathcal{K}_{e})\nabla \tilde{\varphi}_e)+div(\mathcal{K}_{i}\nabla \tilde{\phi})\right)\psi_e d{\bf{x}} dt\\ +\int_0^T\!\!\!\int_\Omega \left(-\frac{\partial \tilde{u}}{\partial t} + \frac{\partial \mathcal{G} }{\partial u}(\phi, u) \tilde{u}+\frac{\partial \mathcal{I} }{\partial u}(\phi, u)\tilde{\phi}\right)w d{\bf{x}} dt+\int_{\Omega_{obs}} m_{2}(\phi(T)-\psi_{obs})\Psi(T) d{\bf{x}}\\ - \int_0^T\!\!\!\int_\Omega \Big(\sum\limits_{l = 1}^{n_2} \big(b_l({\bf{x}}, t)\tilde{\phi}({\bf{x}}, t)+ d_l({\bf{x}}, t)\tilde{u}({\bf{x}}, t) \big)w({\bf{x}}, p_l(t))\Big) d{\bf{x}} dt \\ = \int_0^T\!\!\!\int_\Omega \tilde{\varphi}_{e} {\cal B}_{1}h_{1} d{\bf{x}} dt+\int_0^T\!\!\!\int_\Omega \tilde{\phi} {\cal B}_{2}h_{2} d{\bf{x}} dt -\int_0^T\!\int_\Gamma ((\mathcal{K}_{i}\nabla \tilde{\phi}).{\bf n})(\Psi +\psi_e )d\gamma dt\\ -\int_0^T\!\int_\Gamma \left\{\Big(\big((\mathcal{K}_{i}+\mathcal{K}_{e})\nabla \tilde{\varphi}_{e}\big).{\bf n}\Big)\psi_e+\Big(\big(\mathcal{K}_{i}\nabla \tilde{\varphi}_{e}\big).{\bf n}\Big )\Psi \right\}d\gamma dt. \end{array} \end{equation} (3.89)

    Now we calculate the terms corresponding to delays operators. For this let s = r_{k}(t) (respectively s = p_{l}(t) ), then t = r^{-1}_{k}(s) = e_{k}(s) (respectively t = p^{-1}_{l}(s) = q_{l}(s) ) and dt = e'_{k}(s)ds (respectively dt = q'_{l}(s)ds ). So (for \tilde{a}_{k} = a_{k} or c_{k} , and \tilde{b}_{l} = b_{l} or d_{l} )

    \begin{equation*} \begin{array}{lcr} \int_0^T\! \tilde{a}_k({\bf{x}}, t)\Psi({\bf{x}}, r_k(t))\tilde{\phi}({\bf{x}}, t)dt & = \int_{r_{k}(0)}^{r_{k}(T)} \tilde{a}_k({\bf{x}}, e_k(s)) \Psi({\bf{x}}, s) \tilde{\phi}({\bf{x}}, e_k(s)) e_k^\prime(s)ds, \\ \int_0^T\! \tilde{b}_l({\bf{x}}, t)w({\bf{x}}, p_l(t))\tilde{\phi}({\bf{x}}, t)dt & = \int_{p_{l}(0)}^{p_{l}(T)} \tilde{b}_l({\bf{x}}, q_l(s)) w({\bf{x}}, s) \tilde{\phi}({\bf{x}}, q_l(s)) q_l^\prime(s)ds. \end{array} \end{equation*}

    Since \Psi and w are zero on {\cal Q}_{0} , we can conclude that

    \begin{equation} \begin{array}{lcr} \int_0^T\! \sum\limits_{k = 1}^{n_1}\tilde{a}_k({\bf{x}}, t)\theta({\bf{x}}, r_k(t))\tilde\phi({\bf{x}}, t)dt \! = \! \sum\limits_{i = n_{1}}^{1}\int_{r_{i+1}(T)}^{r_i(T)} \sum\limits_{k = 1}^{i}\tilde{a}_k({\bf{x}}, e_k(s))e_k^\prime(s) \tilde\phi({\bf{x}}, e_k(s)) \Psi({\bf{x}}, s)ds, \\ \int_0^T\! \sum\limits_{l = 1}^{n_2} \tilde{b}_l({\bf{x}}, t)w({\bf{x}}, p_l(t))\tilde\phi({\bf{x}}, t)dt \! = \! \sum\limits_{j = n_{2}}^{1}\int_{p_{j+1}(T)}^{p_j(T)} \sum\limits_{l = 1}^{i} \tilde{b}_l({\bf{x}}, q_l(s))q_l^\prime(s) \tilde\phi({\bf{x}}, q_l(s))w({\bf{x}}, s)ds. \end{array} \end{equation} (3.90)

    According to (3.90), system (3.89) becomes

    \begin{equation*} \begin{array}{lcr} \int_0^T\!\!\!\int_\Omega \left(-\mathfrak{c}_{m}\frac{\partial \tilde{\phi}}{\partial t} +\frac{\partial \mathcal{I} }{\partial \phi}(\phi, u)\tilde{\phi}+\frac{\partial \mathcal{G} }{\partial \phi}(\phi, u)\tilde{u}-div(\mathcal{K}_{i}\nabla (\tilde{\phi}+\tilde{\varphi}_{e})) \right)\Psi d{\bf{x}} dt\\ -\sum\limits_{i = n_{1}}^{1}\int_\Omega\int_{r_{i+1}(T)}^{r_i(T)}\sum\limits_{k = 1}^{i}\Big(a_k({\bf{x}}, e_k(t))\tilde\phi({\bf{x}}, e_k(t)) +c_k({\bf{x}}, e_k(t)) \tilde{u}({\bf{x}}, e_k(t)) \Big)e_k^\prime(t) \Psi({\bf{x}}, t)d{\bf{x}}dt \end{array} \end{equation*}
    \begin{equation*} \begin{array}{lcr} - \int_0^T\!\!\!\int_\Omega \left(div((\mathcal{K}_{i}+ \mathcal{K}_{e})\nabla \tilde{\varphi}_e)+div(\mathcal{K}_{i}\nabla \tilde{\phi})\right)\psi_e d{\bf{x}} dt\\ +\int_0^T\!\!\!\int_\Omega \left(-\frac{\partial \tilde{u}}{\partial t} + \frac{\partial \mathcal{G} }{\partial u}(\phi, u) \tilde{u}+\frac{\partial \mathcal{I} }{\partial u}(\phi, u)\tilde{\phi}\right)wd{\bf{x}} dt\\ - \sum\limits_{j = n_{2}}^{1}\int_\Omega\int_{p_{j+1}(T)}^{p_j(T)}\sum\limits_{l = 1}^{j}\Big(b_l({\bf{x}}, q_l(t))\tilde{\phi}({\bf{x}}, q_l(t)) +d_l({\bf{x}}, q_l(t)) \tilde{u}({\bf{x}}, q_l(t)) \Big)q_l^\prime(t) w({\bf{x}}, t)d{\bf{x}} dt \\ \quad = \int_0^T\!\!\!\int_{\Omega_{c}} \tilde{\varphi}_{e} {\cal B}_{1}h_{1} d{\bf{x}} dt+\int_0^T\!\!\!\int_{\Omega_{d}} \tilde{\phi} {\cal B}_{2}h_{2} d{\bf{x}} dt-\int_{\Omega_{obs}} m_{2}(\phi(T)-\psi_{obs})\Psi(T) d{\bf{x}}\\ \quad -\int_0^T\!\int_\Gamma \big((\mathcal{K}_{i}\nabla \tilde{\phi}).{\bf n}\big)(\Psi +\psi_e )d\gamma dt\\ \quad -\int_0^T\!\int_\Gamma \left\{\Big(\big((\mathcal{K}_{i}+\mathcal{K}_{e})\nabla \tilde{\varphi}_{e}\big).{\bf n}\Big)\psi_e+\Big((\mathcal{K}_{i}\nabla \tilde{\varphi}_{e}).{\bf n}\Big)\Psi \right\}d\gamma dt. \end{array} \end{equation*}

    In order to simplify the previous system, we suppose that (\tilde{\phi}, \tilde{\varphi}_{e}, \tilde{u}) satisfies the following "adjoint" system

    \begin{equation} \begin{array}{lcr} -\mathfrak{c}_{m}\frac{\partial \tilde{\phi} }{\partial t}+ \frac{\partial \mathcal{I}}{\partial \phi}(.;\phi, u)\tilde{\phi} + \frac{\partial \mathcal{G} }{\partial \phi}(.;\phi, u) \tilde{u} \\ \quad -div(\mathcal{K}_{i}\nabla (\tilde{\phi}+\tilde{\varphi}_e)) = m_1(\phi - \phi_{obs})\Upsilon(t)\chi_{\Omega_{obs}}, \; \; \text{in}\; \; \Omega\times ({r_1(T)}, T)\\ -\mathfrak{c}_{m}\frac{\partial \tilde{\phi} }{\partial t} + \frac{\partial \mathcal{I}}{\partial \phi}(.;\phi, U)\tilde{\phi}+ \frac{\partial \mathcal{G} }{\partial \phi}(.;\phi, u) \tilde{u}({\bf{x}}, t) -div(\mathcal{K}_{i}\nabla (\tilde{\phi}+\tilde{\varphi}_e)) \\ \quad + \sum\limits_{i = 1}^k \left( a_i(., e_i(t)) \tilde{\phi}(., e_i(t)) + c_i(., e_i(t)) \tilde{u}(., e_i(t)) \right) e_i^\prime(., t)\\ \quad = m_1(\phi- \phi^{obs})\Upsilon(t)\chi_{\Omega_{obs}}, \; \; \text{in $\Omega\times ({r_{k+1}(T)}, {r_{k}(T)})$, $k = n_1, \dots, 1$}\\ -div\big(\mathcal{K}_{i}\nabla \tilde{\phi}({\bf{x}}, t)\big) - div\big((\mathcal{K}_{i} + \mathcal{K}_{e})\nabla \tilde{\varphi}_e({\bf{x}}, t)\big) = 0, \; \; \text{in ${\cal Q}$}\\ -\frac{\partial \tilde{u}}{\partial t} ({\bf{x}}, t)+ \frac{\partial \mathcal{G} }{\partial u}(.;\phi, u)\tilde{u}({\bf{x}}, t) + \frac{\partial \mathcal{I}}{\partial u}(.;\phi, u) \tilde{\phi}({\bf{x}}, t) = 0, \; \; \text{in $\Omega\times(p_{1}(T), T)$}\\ -\frac{\partial \tilde{u}}{\partial t}+ \frac{\partial \mathcal{G} }{\partial u}(.;\phi, u)\tilde{u}+\frac{\partial \mathcal{I}}{\partial u}(.;\phi, u) \tilde{\phi}\\ \quad +\sum\limits_{i = 1}^{l}\left( b_i(., q_i(t)) \tilde{\phi}(., q_i(t)) + d_i(., q_i(t)) \tilde{u}(., q_i(t))\right) q_i^\prime\\ \quad = 0, \; \; \text{in $\Omega\times ({p_{l+1}(T)}, {p_{l}(T)})$, $l = n_2, \dots, 1$, }\\ (\mathcal{K}_{i}\nabla (\tilde{\phi}+\tilde{\varphi}_{e})).{\bf n} = 0, \; \; (\mathcal{K}_{e}\nabla \tilde{\varphi}_{e}).{\bf n} = 0, \; \; \text{on}\; \; \Sigma, \\ \tilde{\phi}(., T) = \frac{m_2}{\mathfrak{c}_{m}}(\phi(., T) - \psi_{obs})\chi_{\Omega_{obs}}, \; \; \tilde{u}(., T) = 0, \; \; \text{in}\; \; \Omega. \end{array} \end{equation} (3.91)

    Since \int_0^T\!\! = \!\!\sum\limits_{i = n_{1}}^{1}\int_{r_{i+1}(T)}^{r_i(T)}\!+\!\int_{r_{1}(T)}^{T}\! = \!\sum\limits_{j = n_{2}}^{1}\int_{p_{j+1}(T)}^{p_j(T)}\!+\!\int_{p_{1}(T)}^{T} we can then deduce from the two previous systems that

    \begin{equation} \begin{array}{lcr} \int_0^T\!\!\!\int_{\Omega_{obs}} m_1(\phi - \phi_{obs})\Upsilon(t) \Psi d{\bf{x}} dt+\int_{\Omega_{obs}} m_2(\phi(., T) - \phi_{obs})\Psi(., T) d{\bf{x}}\\ \quad = \int_0^T\!\!\!\int_{\Omega_{c}} h_{1} {\cal B}^{*}_{1}\tilde{\varphi}_{e} d{\bf{x}} dt+\int_0^T\!\!\!\int_{\Omega_{d}} h_{2} {\cal B}^{*}_{2}\tilde{\phi} d{\bf{x}} dt. \end{array} \end{equation} (3.92)

    According to (3.92) and (3.84), the expression (3.82) of {\cal J}^\prime takes the form

    \begin{equation} \begin{array}{c} {\cal J}^\prime(\xi, \pi)\cdot (h_{1}, h_{2}) = (h_{1}, \chi_{\Omega_{c}}\aleph_{1}^{*}\tilde{\varphi}_{e} +\alpha \xi)_{U_{c}} +\int_0^T\!\!\!\int_{\Omega_{d}} h_{2} ({\cal B}^{*}_{2}\tilde{\phi}-\beta \pi )d{\bf{x}} dt. \end{array} \end{equation} (3.93)

    Since (\xi^{*}, \pi^{*}) is an optimal solution we have ( \forall (\xi, \pi)\in {\cal U}_{ad}\times {\cal V}_{ad} )

    \begin{equation} \begin{array}{lcr} \frac{\partial {\cal J}}{\partial \xi}(\xi^{*} , \pi^{*}).(\xi-\xi^{*}) = (\chi_{\Omega_{c}}\aleph_{1}^{*}\tilde{\varphi}^{*}_{e} +\alpha \xi^{*}, \xi-\xi^{*})_{U_{c}}\geq 0, \\ \frac{\partial {\cal J}}{\partial \phi}(\xi^{*} , \pi^{*}).(\pi -\pi^{*}) = \int_0^T\!\!\!\int_{\Omega_{d}}(-\beta\pi^{*}+ {\cal B}_{2}^{*}\tilde{\phi}^{*}) (\pi -\pi^{*})d{\bf{x}}dt\leq 0, \\ \end{array} \end{equation} (3.94)

    where (\tilde{\phi}^{*}, \tilde{\varphi}^{*}_{e}, \tilde{u}^{*}) is the solution of (3.91) corresponding to {\cal F}(\xi^{*}, \pi^{*}) . This completes the proof.

    Remark 3.3. By using a standard control argument (see e.g. [10], page 207) concerning the sign of the variations (h_{1}, h_{2}) (depending on the size of (\xi, \pi) ), we obtain that

    \begin{equation} \begin{array}{lcr} \xi^{*} = \max\Big(-\tau_{1}, \min\big(\frac{-\chi_{\Omega_{c}}\aleph_{1}^{*}\tilde{\varphi}_{e}^{*}}{\alpha}, \tau_{1}\big)\Big), \pi^{*} = \max\Big(-\tau_{2}, \min\big(\frac{\chi_{\Omega_{d}}{\cal B}_{2}^{*}\tilde{\phi}^{*}}{\beta}, \tau_{2}\big)\Big). \end{array} \end{equation} (3.95)

    Let us now give the well-posedness of adjoint system (3.86).

    Proposition 3.1. Assume that assumptions of Theorem 3.2 hold and that (\phi, {\varphi}_{e}, u) is in \mathbb{D} . Adjoint problem (3.86) admits one unique solution (\tilde{\phi}, \tilde{\varphi}_{e}, \tilde{u})\in \mathcal{W}({\cal Q}) with (\frac{\partial \tilde{\phi}}{\partial t}, \frac{\partial \tilde{u}}{\partial t})\in L^{4/3}(0, T; \mathbb{V}')\times L^{2}({\cal Q}) and (\tilde{\phi}, \tilde{u})\in (C^{0}([0, T]; L^{2}(\Omega)))^{2} .

    Proof. To prove the existence of a unique solution (\tilde{\phi}, \tilde{\varphi}_{e}, \tilde{u}) of linear problem (3.86), which is backward in time, we transform problem (3.86) into an initial-boundary value problem by reversing the sense of time i.e., t: = T-t . By using the results of Lemma 7 on each time interval, we obtain the existence and uniqueness of the solution.

    Remark 3.4. In this section, our main results investigate Fréchet differentiability properties of solution operator and minimax control problems related to the nonlinear delayed dynamic system (3.1) with an abstract class of ionic models, including some classical models as Rogers-McCulloch, Fitz-Hugh-Nagumo and Aliev-Panfilov. We can consider other ionic model type including Mitchell-Schaeffer model (see [52]). This two-variable model can be defined with operators \mathcal{I} and \mathcal{G} as (for example)

    \begin{equation} \begin{array}{lcr} \mathcal{I}(\phi, u) = -\frac{u}{\tau_{in}}\frac{(\phi-\phi_{min})^2(\phi_{max}-\phi)}{(\phi_{max}-\phi_{min})} - \frac{1}{\tau_{out}}\frac{\phi-\phi_{min}}{(\phi_{max}-\phi_{min})}, \\ \mathcal{G}(\phi, u) = \left\{\begin{array}{ll} \frac{u}{\tau_{open}}-\frac{1}{\tau_{open}(\phi_{max}-\phi_{min})^2} &if \ \phi \lt \phi_{gate}, \\ \frac{u}{\tau_{close}}& if\ \phi\geq\phi_{gate}. \end{array} \right.\\ \end{array} \end{equation} (3.96)

    These operators depend on the change-over voltage \phi_{gate} , the resting potential \phi_{min} , the maximum potential \phi_{max} , and on times constants \tau_{in} , \tau_{out} , \tau_{open} and \tau_{close} . The two times \tau_{open} and \tau_{close} , respectively controlling the durations of the action potential and of the recovery phase, and the two times \tau_{in} and \tau_{out} , respectively controlling the length of depolarization and repolarization phases. This model is well-known to be valid under the assumption \tau_{in}\ll\tau_{out}\ll\min (\tau_{open}, \tau_{close}).

    In order to guarantee the well-posedness of system (3.1) with Mitchell-Schaeffer ionical model, we can use the following regularized version of ionic operator \mathcal{G}

    \begin{equation} \begin{array}{r} \mathcal{G}_{\zeta}(\phi, u) = \left( \frac{1}{\tau_{close}} - \big(\frac{1}{\tau_{close}}-\frac{1}{\tau_{open}}\big) h_\zeta(\phi) \right)\left(u-h_\zeta(\phi) \right)\\ \quad +\frac{1}{\tau_{open}}\left(1-\frac{1}{(\phi_{max}-\phi_{min})^2 }\right)h_\zeta(\phi), \end{array} \end{equation} (3.97)

    where the differentiable function 0\leq h_\zeta \leq 1 is given by

    \begin{equation*} h_\zeta(\phi) = \frac{1}{2}\left(1- \tanh \left(\frac{\phi-\phi_{gate}}{\zeta} \right) \right), \end{equation*}

    with \zeta a positive parameter.

    The operator \mathcal{G}_{\zeta}(\phi, u) can be written as \mathcal{G}_{\zeta}(\phi, u) = \mathcal{I}_{2, \zeta}(\phi)+\hbar_{\zeta}(\phi) u where

    \begin{equation} \begin{array}{ll} \mathcal{I}_{2, \zeta}(\phi) = -\left( \frac{1}{\tau_{close}} - \big(\frac{1}{\tau_{close}}-\frac{1}{\tau_{open}}\big) h_\zeta(\phi) \right)h_\zeta(\phi) +\frac{1}{\tau_{open}}\left(1-\frac{1}{(\phi_{max}-\phi_{min})^2 }\right)h_\zeta(\phi), \\ \hbar_{\zeta}(\phi) = \frac{1}{\tau_{close}} - \Big(\frac{1}{\tau_{close}}-\frac{1}{\tau_{open}}\Big) h_\zeta(\phi) . \end{array} \end{equation} (3.98)

    According to the definition of \tanh , we can deduce that \lim\limits_{\zeta\rightarrow 0} h_{\zeta}(\phi) = \left\{ \begin{array}{ll} 1 \ if\ \phi < \phi_{gate}, \\ 0\ if\ \phi > \phi_{gate} \end{array} \right. and then \lim\limits_{\zeta\rightarrow 0} \mathcal{G}_\zeta(\phi, u) = \mathcal{G}(\phi, u) . The regularized Mitchell-Schaeffer model has a slightly different structure compared to models in (2.3) because in this model, \hbar_{\zeta} depend on \phi through the function h_\zeta . Since h_\zeta is sufficiently regular, the arguments of this paper can be adapted with some necessary modifications to analyse minimax control problems with the regularized Mitchell-Schaeffer ionical model.

    More general, the study developed in this paper remains valid if we consider the operator \mathcal{G} in the form of \mathcal{G}({\bf{x}}, t; \phi, u) = \mathcal{I}_{2}({\bf{x}}, t; \phi)+\hbar({\bf{x}}, t; \phi) u (i.e. a general form of Hodgkin-Huxley model including Beeler-Reuter and Luo-Rudy ionic models described by continuous or regularized discontinuous functions, see [5,49,50]) with \mathcal{G} Carathéodory function from (\Omega \times \mathit{IR}^{{}}) \times \mathit{IR}^{{2}} into \mathit{IR}^{{}} and locally Lipschitz continuous function on (\phi, u) and, \mathcal{I}_{2} and \hbar sufficiently regulars.

    We end this section by a description of a gradient algorithm to solve the minimax control problem, by using adjoint model. The method is formulated in terms of continuous variables which are independent of a specific numerical discretization. For more details concerning some optimization strategies in order to solve minimax control problem, by using the adjoint model, in term of the continuous variables and in terms of discrete variables (based on the discretization of continuous direct, adjoint and sensitive models) see Chapter 9 of [10].

    We present algorithms where the descent direction is calculated by using the adjoint variables, particularly by choosing an admissible step size. For a given observation (\phi_{obs}, \psi_{obs}) , initial states (\phi_{0}, u_{0}) and past states (\phi_{past}, u_{past}) , the resolution of the nonlinear minimax control problem (3.6), with cost functional given by (3.4), by gradient methods requires, at each iteration of the optimization algorithm, the resolution of direct problem (3.1) and its corresponding adjoint problem (3.86).

    The gradient algorithm for the resolution of treated saddle point problems is given by:

    for k\geq 1 , (iteration index) we denote by (\xi_{k}, \pi_{k}) the numerical approximation of the control-disturbance at the kth iteration of the algorithm.

    (1) Initialization: k = 0 and (\xi_{0}, \pi_{0}) (given initial guess).

    (2) Resolution of direct problem (3.1) with source term (\xi_{k}, \pi_{k}) , gives (\phi^{(k)}, \varphi^{(k)}_{e}, u^{(k)}) = {\cal F}(\xi_{k}, \pi_{k}) .

    (3) Resolution of adjoint problem (3.86) (based on (\xi_{k}, \pi_{k}, {\cal F}(\xi_{k}, \pi_{k})) , gives (\tilde{\phi}^{(k)}, \tilde{\varphi}^{(k)}_{e}, \tilde{u}^{(k)}) .

    (4) Local expression of the gradient of {\cal J} at point (\xi_{k}, \pi_{k}) :

    \begin{equation*} ({\bf{GJ}}), \left\{ \begin{array}{lcr} \upsilon_{k}\stackrel{def}{ = }\frac{\partial {\cal J}}{\partial \xi}(\xi_{k}, \pi_{k}) = \alpha\xi_{k}+ \chi_{\Omega_{c}}\aleph_{1}^{*}\tilde{\varphi}_{e, k}, \\ \varpi_{k}\stackrel{def}{ = }\frac{\partial {\cal J}}{\partial \pi}(\xi_{k}, \pi_{k}) = -\beta\pi_{k}+ \chi_{\Omega_{d}}{\cal B}^{*}_{2}\tilde{\phi}_{k}, \\ G_{k} = (\upsilon_{k}, \varpi_{k}). \end{array} \right. \end{equation*}

    (5) Determine (\xi_{k+1}, \pi_{k+1}) :

    \begin{equation*} \left\{ \begin{array}{lcr} \xi_{k+1}: = \xi_{k}-\varsigma_{k}\upsilon_{k}, \\ \pi_{k+1}: = \pi_{k}+\delta_{k}\varpi_{k}, \end{array} \right. \end{equation*}

    where 0 < m\leq \varsigma_{k}, \delta_{k}\leq M are the sequences of step lengths.

    (6) IF the gradient is sufficiently small (convergence) THEN end; ELSE set k: = k+1 and REPEAT from (2) UNTIL convergence.

    The approximation of optimal Solution is: (\xi^{*}, \pi^{*}; \phi^{*}, \varphi^{*}_{e}, u^{*}): = (\xi_{k}, \pi_{k}; \phi^{(k)}, \varphi^{(k)}_{e}, u^{(k)}) . The convergence of the algorithm depends on the second Fréchet derivative of {\cal J} (i.e. m, M depend on the second Fréchet derivative of {\cal J} ).

    In order to obtain an algorithm which is numerically efficient, the best choice of \varsigma_{k}, \delta_{k} will be the result of a line minimization and maximization algorithm, respectively. Otherwise, at each iteration step k of previous algorithm, we solve the one-dimensional optimization problem of parameters \varsigma_{k} and \delta_{k} :

    \begin{equation} \begin{array}{lcr} \varsigma_{k} = \min\limits_{\lambda \gt 0}{\cal J}(\xi_{k}-\lambda \upsilon_{k}, \pi_{k}), \\ \delta_{k} = \min\limits_{\lambda \gt 0}{\cal J}(\xi_{k}, \pi_{k}+\lambda \varpi_{k}). \end{array} \end{equation} (3.99)

    From the numerical computation viewpoint, it is most efficient to compute (\varsigma_{k}, \delta_{k}) only approximately, in order to reduce computational cost. To derive an approximation for a pair (\varsigma_{k}, \delta_{k}) we can use a purely heuristic approach, for example, by taking \varsigma_{k} = min(1, \left\| { \upsilon_{k}} \right\| ^{-1}_{\infty}) and \delta_{k} = min(1, \left\| { \varpi_{k}} \right\| ^{-1}_{\infty}) or by using the linearization of {\cal F}(\xi_{k}-\lambda \upsilon_{k}, \pi_{k}) at \xi_{k} and {\cal F}(\xi_{k}, \pi_{k}+\lambda \varpi_{k}) at \pi_{k} by

    \begin{equation*} \begin{array}{lcr} {\cal F}(\xi_{k}-\lambda \upsilon_{k}, \pi_{k})\approx {\cal F}(\xi_{k}, \pi_{k})-\lambda \frac{\partial {\cal F}}{\partial \xi}(\xi_{k}, \pi_{k}).\upsilon_{k}, \\ {\cal F}(\xi_{k}, \pi_{k}+\lambda \varpi_{k})\approx {\cal F}(\xi_{k}, \pi_{k})+\lambda \frac{\partial {\cal F}}{\partial \pi}(\xi_{k}, \pi_{k}).\varpi_{k}, \end{array} \end{equation*}

    where

    \begin{equation*} \begin{array}{lcr} (\Psi^{(k)}_{c}, \psi^{(k)}_{e, c}, w^{(k)}_{c}) = \frac{\partial {\cal F}}{\partial \xi}(\xi_{k}, \pi_{k}).\upsilon_{k}, \\ (\Psi^{(k)}_{d}, \psi^{(k)}_{e, d}, w^{(k)}_{d}) = \frac{\partial {\cal F}}{\partial \pi}(\xi_{k}, \pi_{k}).\varpi_{k}, \end{array} \end{equation*}

    are solutions of the sensitivity problem (3.7).

    According to the previous approximation, we can approximate the problem (3.99) by

    \begin{equation} \begin{array}{lcr} \varsigma_{k} = \min\limits_{\lambda \gt 0}H(\lambda) \; \text{and}\; \delta_{k} = \max\limits_{\lambda \gt 0}R(\lambda), \end{array} \end{equation} (3.100)

    where H(\lambda) = {\cal J}(\xi_{k}-\lambda \upsilon_{k}, \pi_{k}) and R(\lambda) = {\cal J}(\xi_{k}, \pi_{k}+\lambda \varpi_{k}) . Since H and R are polynomial functions of degree 2 (since the functional {\cal J} is quadratic), then problem (3.100) can be solved exactly. Consequently, we obtain explicitly the value of the parameters \varsigma_{k} and \delta_{k} .

    Remark 3.5. 1. After derived the gradient of functional {\cal J} , by using the adjoint model corresponding to sensitivity state (which corresponds to the direct problem), we can use any other classical optimization strategies (as conjugate gradient method, Lagrange-Newton method) to solve control problem considered in this paper.

    2. In the numerical treatment of minimax control problem, the direct system, adjoint system, sensitivity system and objective functional must be discretized (reduction of infinite-dimensional dynamics to finite-dimensional problems). The discretized formulation for direct, sensitivity and adjoint systems can be performed by combining Galerkin and finite element methods to the variational formulations associated to these coupled problems, for space discretization and semi-implicit backward differentiation schemes with an explicit treatment of ionic current, for time discretization, or by using lattice Boltzmann methods. In objective functional, the integrals with respect to time can be approximated by composition trapezoidal rules (see e.g. [7]).

    3. Despite its apparent complexity, the proposed gradient algorithm is quite easy to implement. The main difficulty, in practical applications, is due to enormous storage requirements of state solution (and control-disturbance variables) for evaluating the adjoint equation over the whole time interval [0, T] , for large time horizons T or fine space-time meshes (because the computation of the discrete gradient by discrete adjoint methods requires one forward solve of the discrete state system and one backward solve of adjoint system in which state trajectory is an input). Fortunately, these storage requirements can be lowered by using e.g. the so-called ``checkpointing'' techniques (see e.g. [39]).

    Modeling and control of electrical cardiac activity represent nowadays a very valuable tool to maximize the efficiency and safety of treatment for cardiac disease. For predicting and acting on phenomena and processes occurring inside and surrounding cardiac medium, we have discussed stabilization and regulation processes in order to determine, from some observations (desired target), the best optimal prognostic values of sources, in presence of disturbance and fluctuations. Coupling the proposed method with technical improvements in Magnetic Resonance Imaging (MRI) measurements and genetic, and ionic measurements, will be very beneficial and great help for diagnostics and treatments in medical practices.

    The well-posedness and regularity of the governing nonlinear systems are discussed. The Fréchet differentiability and some properties of nonlinear operator solution are derived. Afterwards, minimax control problems have been formulated. Under suitable hypotheses, it is shown that one has existence of an optimal solution, and the appropriate necessary optimality conditions for an optimal solution, by introducing adjoint problems, are derived. These conditions (obtained in a Lagrangian form) correspond to identify the gradient of the cost functional that is necessary to develop numerical optimization methods (gradient methods, Newton methods, etc.). Some numerical methods, combining the obtained optimal necessary conditions and gradient-iterative algorithms, are presented in order to solve the minimax control problems.

    It is clear that, in accordance with practical applications and available experimental observations, we can consider other observations, controls and/or disturbances (which can appear in boundary conditions, in initial conditions, in parameters of ionic models or in time-delay functions) in order to take into account at best the influence of uncertainty on the main phenomena and their mutual interactions that take place during the bioelectrical cardiac activity, and we obtain similar results by using similar approach as used in this work (for more details see [10]).

    The author thank the referees for their valuable comments and suggestions to improve the quality of the manuscript.

    The author declares there is no conflicts of interest in this paper.



    [1] R. A. Adams, Sobolev spaces, Academic Press, New-York, 1975.
    [2] B. Ainseba, M. Bendahmane, R. Ruiz-Baier, Analysis of an optimal control problem for the tridomain model in cardiac electrophysiology, J. Math. Anal. Appl., 388 (2012), 231-247. doi: 10.1016/j.jmaa.2011.11.069
    [3] T. Ashihara, J. Constantino, N. A. Trayanova, Tunnel propagation of postshock activations as a hypothesis for fibrillation induction and isoelectric window, Circ. Res., 102 (2008), 737-745. doi: 10.1161/CIRCRESAHA.107.168112
    [4] O. V. Aslanidi, A. P. Benson, M. R. Boyett, et al. Mechanisms of defibrillation by standing waves in the bidomain ventricular tissue with voltage applied in an external bath, Physica D: Nonlinear Phenomena, 238 (2009), 984-991. doi: 10.1016/j.physd.2009.02.003
    [5] G. W. Beeler, H. Reuter, Reconstruction of the action potential of ventricular myocardial fibres, J. Physiol., 268 (1977), 177-210. doi: 10.1113/jphysiol.1977.sp011853
    [6] A. Belmiloudi, S. Corre, Mathematical modeling and analysis of dynamic effects of multiple time-varying delays on electrophysiological wave propagation in the heart, Nonlinear Analysis Series B: Real World Applications, 47 (2019), 18-44. doi: 10.1016/j.nonrwa.2018.09.025
    [7] A. Belmiloudi, Mathematical modeling and optimal control problems in brain tumor targeted drug delivery strategies, Int. J. Biomath., 10 (2017), 1750056.
    [8] A. Belmiloudi, Dynamical behavior of nonlinear impulsive abstract partial differential equations on networks with multiple time-varying delays and mixed boundary conditions involving time-varying delays, J. Dyn. Control Syst., 21 (2015), 95-146. doi: 10.1007/s10883-014-9230-y
    [9] A. Belmiloudi, Robust control problem of uncertain bidomain models in cardiac electrophysiology, Journal of Coupled Systems and Multiscale Dynamics, 1 (2013), 332-350. doi: 10.1166/jcsmd.2013.1023
    [10] A. Belmiloudi, Stabilization, optimal and robust control. Theory and applications in biological and physical sciences, Springer-Verlag, London, 2008.
    [11] A. Belmiloudi, Bilinear minimax control problems for a class of parabolic systems with applications to control of nuclear reactors, J. Math. Anal. Appl., 327 (2007), 620-642. doi: 10.1016/j.jmaa.2006.04.037
    [12] A. Belmiloudi, Minimax control problem of periodic competing parabolic systems with logistic growth terms, Int. J. Control, 79 (2006), 150-161. doi: 10.1080/00207170500483484
    [13] A. Belmiloudi, Nonlinear optimal control problems of degenerate parabolic equations with logistic time varying delays of convolution type, Nonlinear Anal-Theor, 63 (2005), 1126-1152. doi: 10.1016/j.na.2005.05.033
    [14] A. Belmiloudi, Robust control problems associated with time-varying delay nonlinear parabolic equations, IMA J. Math. Control I., 20 (2003), 305-334. doi: 10.1093/imamci/20.3.305
    [15] M. Bendahmane, K. H. Karlsen, Analysis of a class of degenerate reaction-diffusion systems and the bidomain model of cardiac tissue, Netw. Heterog. Media, 1 (2006), 185-218. doi: 10.3934/nhm.2006.1.185
    [16] G. A. Bocharov, F. A. Rihan, Numerical modelling in biosciences using delay differential equations, J. Comput. Appl. Math., 125 (2000), 183-199. doi: 10.1016/S0377-0427(00)00468-4
    [17] M. Boulakia, S. Cazeau, M. A. Fernández, et al. Mathematical Modeling of Electrocardiograms: A Numerical Study, Ann. Biomed. Eng., 38 (2009), 1071-1097.
    [18] Y. Bourgault, Y. Coudiere, C. Pierre, Existence and uniqueness of the solution for the bidomain model used in cardiac electrophysiology, Nonlinear Analysis: Real World Applications, 10 (2009), 458-482. doi: 10.1016/j.nonrwa.2007.10.007
    [19] A. J. V. Brandao, E. Fernandez-Cara, P. M. D. Magalhaes, et al. Theoretical analysis and control results for the FitzHugh-Nagumo equation, Electron. J. Differ. Eq., 164 (2008), 1-20.
    [20] N. Buric, D. Todorovic, Dynamics of FitzHugh-Nagumo excitable systems with delayed coupling, Phys. Rev. E, 67 (2003), 066222.
    [21] N. Buric, K. Todorovic, N. Vasovic, Dynamics of noisy FitzHugh-Nagumo neurons with delayed coupling, Chaos, Solitons and Fractals, 40 (2009), 2405-2413. doi: 10.1016/j.chaos.2007.10.036
    [22] S. A. Campbell, Time delays in neural systems, In: V.K. Jirsa, A.R. McIntosh, (Eds.), Handbookof Brain Connectivity, Understanding Complex Systems, Springer, 65-90, 2007.
    [23] S. R Campbell, D. Wang, Relaxation oscillators with time delay coupling, Physica D, 111 (1998), 151-178. doi: 10.1016/S0167-2789(97)80010-3
    [24] J. O. Campos, R. S. Oliveira, R. W. dos Santos, et al. Lattice Boltzmann method for parallel simulations of cardiac electrophysiology using GPUs, J. Comput. Appl. Math., 295 (2016), 70-82. doi: 10.1016/j.cam.2015.02.008
    [25] R. H. Clayton, O. Bernus, E. M. Cherry, et al. Models of cardiac tissue electrophysiology: Progress, challenges and open questions, Prog. Biophys. Mol. Bio., 104 (2010), 22-48.
    [26] P. Colli-Franzone, L. Guerri, B. Taccardi, Modeling ventricular excitation: Axial and orthotropic anisotropy effects on wavefronts and potentials, Math. Biosci., 188 (2004), 191-205. doi: 10.1016/j.mbs.2003.09.005
    [27] P. Colli Franzone, G. Savaré, Degenerate evolution systems modeling the cardiac electric field at micro- and macroscopic level. In: Evolution Equations, Semigroups and Functional Analysis (eds.A. Lorenzi, B. Ruf), Birkhauser, Basel, 49-78, 2002.
    [28] P. Colli Franzone, L. Guerri, M. Pennacchio, et al. Spread of excitation in 3-D models of the anisotropic cardiac tissue. II: Effects of fiber architecture and ventricular geometry, Math. Biosci., 147 (1998), 131-171. doi: 10.1016/S0025-5564(97)00093-X
    [29] P. Colli Franzone, L. Guerri, S. Tentoni, Mathematical modeling of the excitation process in myocardial tissue: Influence of fiber rotation on wavefront propagation and potential field, Math. Biosci., 101 (1990), 155-235. doi: 10.1016/0025-5564(90)90020-Y
    [30] S. Corre, A. Belmiloudi, Coupled lattice Boltzmann simulation method for bidomaintype models in cardiac electrophysiology with multiple time-delays, Mathematical Modelling of Natural Phenomena (Topical Issues : Mathematical Modelling in Cardiology), In press.
    [31] S. Corre, A. Belmiloudi, Coupled lattice Boltzmann method for numerical simulations of fully coupled Heart and Torso bidomain system in electrocardiology, Journal of Coupled System and Multiscale Dynamics, 4 (2016), 207-229. doi: 10.1166/jcsmd.2016.1109
    [32] S. Corre, A. Belmiloudi, Coupled Lattice Boltzmann Modeling of Bidomain Type Models in Cardiac Electrophysiology, Mathematical and Computational Approaches in Advancing Modern Science and Engineering (eds. J. Bélair, et al.), Springer, 209-221, 2016.
    [33] H. Dal, S. Goktepe, M. Kaliske, et al. A fully implicit finite element method for bidomain models of cardiac electromechanics, Comput. Method. Appl. M., 253 (2013), 323-336. doi: 10.1016/j.cma.2012.07.004
    [34] M. Dupraz, S. Filippi, A. Gizzi, et al. Finite element and finite volume-element simulation of pseudo-ECGs and cardiac alternans, Math. Method. Appl. Sci., 38 (2015), 1046-1058. doi: 10.1002/mma.3127
    [35] I. Ekeland, R. Temam, Convex analysis and variational problems, North-Holland,Amsterdam, 1976.
    [36] F. Fenton, A. Karma, Vortex dynamics in three-dimensional continuous myocardium with fiber rotation: Filament instability and fibrillation, Chaos, 8 (1998), 20-47. doi: 10.1063/1.166311
    [37] R. Fitzhugh, Impulses and physiological states in theoretical models of nerve membrane, Biophys. J., 1 (1961), 445-465. doi: 10.1016/S0006-3495(61)86902-6
    [38] L. Glass, Synchronization and rhythmic processes in physiology, Nature, 410 (2001), 277-284. doi: 10.1038/35065745
    [39] A. Griewank, Achieving logarithmic growth of temporal and spatial complexity in reverse automatic differentiation, Optim. Method. Softw., 1 (1992), 35-54. doi: 10.1080/10556789208805505
    [40] C. Henriquez, Simulating the electrical behavior of cardiac tissue using the bidomain model, Critical Reviews in Biomedical Engineering, 21 (1993), 1-77.
    [41] D. A. Hooks, K. A. Tomlinson, S. G. Marsden, et al. Cardiac microstructure: Implications for electrical propagation and defibrillation in the heart, Circ. Res., 91 (2002), 331-338. doi: 10.1161/01.RES.0000031957.70034.89
    [42] D. A. Israel, D. J. Edell, R. G. Mark, Time delays in propagation of cardiac action potential, Am. J. Physiol., 258 (1990), H1906-17.
    [43] J. Jia, H. Liu, C. Xu, et al. Dynamic effects of time delay on a coupled FitzHugh-Nagumo neural system, Alexandria Engineering Journal, 54 (2015), 241-250. doi: 10.1016/j.aej.2015.03.006
    [44] J. Keener, J. Sneyd, Mathematical Physiology, Springer-Verlag, New York, 2009.
    [45] K. Kunisch, M. Wagner, Optimal control of the bidomain system (III): Existence of minimizers and first-order optimality conditions, ESAIM: Mathematical Modelling and Numerical Analysis, 47 (2013), 1077-1106.
    [46] G. Lines, M. Buist, P. Grottum, et al. Mathematical models and numerical methods for the forward problem in cardiac electrophysiology, Computing and Visualization in Science, 5 (2003), 215-239.
    [47] J. L. Lions, Equations Differentielles Operationnelles, Springer, NewYork, 1961.
    [48] J. L. Lions, E. Magenes, Problèmes aux limites non homogènes et applications, Tome 1&2, Dunod, Paris, 1968.
    [49] C. H. Luo, Y. Rudy, A model of the ventricular cardiac action potential. Depolarization, repolarization, and their interaction, Circ. Res., 68 (1991), 1501-1526. doi: 10.1161/01.RES.68.6.1501
    [50] C. H. Luo, Y. Rudy, A dynamic model of the cardiac ventricular action potential. I. Simulations of ionic currents and concentration changes, Circ. Res., 74 (1994), 1071-1096. doi: 10.1161/01.RES.74.6.1071
    [51] J. Roger, A. McCulloch, A collocation-Galerkin finite element model of cardiac action potential propagation, IEEE T. Biomed. Eng., 41 (1994), 743-757. doi: 10.1109/10.310090
    [52] C. C. Mitchell, D. G. Schaeffer, A two-current model for the dynamics of cardiac membrane, B. Math. Biol., 65 (2003), 767-793. doi: 10.1016/S0092-8240(03)00041-7
    [53] C. Nagaiah, K. Kunisch, G. Plank, Numerical solution for optimal control of the reaction-diffusion equations in cardiac electrophysiology, Comput. Optim. Appl., 49 (2011), 149-178. doi: 10.1007/s10589-009-9280-3
    [54] A. Panfilov, R. Aliev, A simple two-variable model of cardiac excitation, Chaos Solitons and Fractals, 7 (1996), 293-301. doi: 10.1016/0960-0779(95)00089-5
    [55] M. Penet, H. Guéguen, A. Belmiloudi, Artificial blood glucose control using a DDE modelling approach, IFAC Proceedings Volumes, 47 (2014), 2076-2081. doi: 10.3182/20140824-6-ZA-1003.01233
    [56] A. J. Pullan, M. L. Buist, L. K. Cheng, Mathematically modelling the electrical activity of the heart-from cell to body surface and back again, World Scientific, Singapore, 2005.
    [57] A. Quarteroni, R. Sacco, F. Saleri, Numerical Mathematics, Vol. 37 of Texts in Applied Mathematics (2nd ed.), Springer-Verlag, Berlin, 2007.
    [58] B. Roth, Meandering of spiral waves in anisotropic cardiac tissue, Physica D: Nonlinear Phenomena, 150 (2001), 127-136. doi: 10.1016/S0167-2789(01)00145-2
    [59] S. Rolewicz, Funktionalanalysis und Steuerungstheorie, Springer, Berlin, New York, 1976.
    [60] R. F. Sandra, M. A. Savi, An analysis of heart rhythm dynamics using a three-coupled oscillator model, Chaos, Solitons and Fractals, 41 (2009), 2553-2565. doi: 10.1016/j.chaos.2008.09.040
    [61] E. Scholl, G. Hiller, P. Hovel, et al. Time-delayed feedback in neurosystems, Philos. T. R. Soc. A, 367 (2009), 1079-1096. doi: 10.1098/rsta.2008.0258
    [62] T. Seidman, H. Z. Zhou, Existence and uniqueness of optimal controls for a quasilinear parabolic equation, SIAM J. Control Optim., 20 (1982), 747-762. doi: 10.1137/0320054
    [63] O. Sharomi, R. Spiteri, Convergence order vs. parallelism in the numerical simulation of the bidomain equations, Journal of Physics: Conference Series, 385 (2012), 012009.
    [64] H. Smith, An Introduction to Delay Differential Equations with Applications to the Life Sciences, Springer Science&Business Media, 2010.
    [65] J. Sundnes, G. Lines, X. Cai, et al. Computing the electrical activity in the heart, Springer, Berlin, 2006.
    [66] R. Temam, Navier-Stokes equations, North-Holland, Amsterdam, 1984.
    [67] L. Tung, A bi-domain model for describibg ischemic myocardial d-c potentials [Thesis/Dissertation], Massachussets Institute of Technology, 1978.
    [68] K. H. Ten Tusscher, A. V. Panfilov, Alternans and spiral breakup in a human ventricular tissue model, Am. J. Physiol-Heart C., 291 (2006), H1088-H1100.
    [69] M. Veneroni, Reaction-diffusion systems for the macroscopic bidomain model of the cardiac electric field, Nonlinear Anal-Real, 10 (2009), 849-868. doi: 10.1016/j.nonrwa.2007.11.008
    [70] E. J. Vigmond, M. Hughes, G. Plank, Computational tools for modeling electrical activity in cardiac tissue, J. Electrocardiol., 36 (2003), 69-74. doi: 10.1016/j.jelectrocard.2003.09.017
    [71] E. J. Vigmond, R. W. dos Santos, A. J. Prassl, et al. Solvers for the cardiac bidomain equations, Prog. Biophys. Mol. Bio., 96 (2008), 3-18. doi: 10.1016/j.pbiomolbio.2007.07.012
    [72] D. Wu, S. Zhu, Stochastic resonance in FitzHugh-Nagumo system with time-delayed feedback, Phys. Lett. A, 372 (2008), 5299-5304. doi: 10.1016/j.physleta.2008.06.015
  • This article has been cited by:

    1. Aziz Belmiloudi, Cardiac memory phenomenon, time-fractional order nonlinear system and bidomain-torso type model in electrocardiology, 2021, 6, 2473-6988, 821, 10.3934/math.2021050
  • Reader Comments
  • © 2019 the Author(s), licensee AIMS Press. This is an open access article distributed under the terms of the Creative Commons Attribution License (http://creativecommons.org/licenses/by/4.0)
通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索

Metrics

Article views(4829) PDF downloads(502) Cited by(1)

Figures and Tables

Figures(1)

Other Articles By Authors

/

DownLoad:  Full-Size Img  PowerPoint
Return
Return

Catalog