Research article Special Issues

Optimal impulse control of West Nile virus

  • Received: 30 June 2022 Revised: 21 August 2022 Accepted: 31 August 2022 Published: 05 September 2022
  • MSC : 49N25, 49K15, 92D30, 92B05

  • We construct a West Nile virus epidemic model that includes the interaction between the bird hosts and mosquito vectors, mosquito life stages (eggs, larvae, adults), and the dynamics of both larvicide and adulticide. We derive the basic reproduction number for the epidemic as the spectral radius of the next generation matrix. We formulate two impulsive optimal control problems which seek to balance the cost of insecticide applications (both the timing and application level) with the benefit of (1) vector control: reducing the number of mosquitoes or (2) disease control: reducing the disease burden. We reformulate these impulsive optimal control problems as nonlinear optimization problems and derive associated necessary conditions for the optimal controls. Numerical simulations are used to address three questions: How does the control and its impact on the system vary with the objective type? Is it beneficial to optimize the treatment timing? How does the control and its impact on the population vary with the type of pesticide used?

    Citation: Folashade Agusto, Daniel Bond, Adira Cohen, Wandi Ding, Rachel Leander, Allis Royer. Optimal impulse control of West Nile virus[J]. AIMS Mathematics, 2022, 7(10): 19597-19628. doi: 10.3934/math.20221075

    Related Papers:

  • We construct a West Nile virus epidemic model that includes the interaction between the bird hosts and mosquito vectors, mosquito life stages (eggs, larvae, adults), and the dynamics of both larvicide and adulticide. We derive the basic reproduction number for the epidemic as the spectral radius of the next generation matrix. We formulate two impulsive optimal control problems which seek to balance the cost of insecticide applications (both the timing and application level) with the benefit of (1) vector control: reducing the number of mosquitoes or (2) disease control: reducing the disease burden. We reformulate these impulsive optimal control problems as nonlinear optimization problems and derive associated necessary conditions for the optimal controls. Numerical simulations are used to address three questions: How does the control and its impact on the system vary with the objective type? Is it beneficial to optimize the treatment timing? How does the control and its impact on the population vary with the type of pesticide used?



    加载中


    [1] A. Abdelrazec, S. Lenhart, H. Zhu, Transmission dynamics of West Nile virus in mosquitoes and corvids and non-corvids, J. Math. Biol., 68 (2014), 1553–1582. https://doi.org/10.1007/s00285-013-0677-3 doi: 10.1007/s00285-013-0677-3
    [2] A. Abdelrazec, S. Lenhart, H. Zhu, Dynamics and Optimal Control of a West Nile Virus Model with Seasonality, Can. Appl. Math. Q., 23 (2015), 12–33.
    [3] J. F. Anderson, A. J. Main, Importance of Vertical and Horizontal Transmission of West Nile Virus by Culex pipiens in the Northeastern United States, J. Infect. Dis., 194 (2006), 1577–1579. https://doi.org/10.1086/508754 doi: 10.1086/508754
    [4] R. Bellini, H. Zeller, W. V. Bortel, A review of the vector management methods to prevent and control outbreaks of West Nile virus infection and the challenge for Europe, Parasites Vectors, 7 (2014), 1006–1028. https://doi.org/10.1186/1756-3305-7-323 doi: 10.1186/1756-3305-7-323
    [5] J. A. S. Bonds, Ultra-low-volume space sprays in mosquito control: a critical review, Med. Vet. Entomol., 26 (2012), 121–130. https://doi.org/10.1111/j.1365-2915.2011.00992.x doi: 10.1111/j.1365-2915.2011.00992.x
    [6] K. W. Blaynehm, A. B. Gumel, S. Lenhart, T. Clayton, Backward Bifurcation and Optimal Control in Transmission Dynamics of West Nile Virus, Bull. Math. Biol., 72 (2010), 1006–1028. https://doi.org/10.1007/s11538-009-9480-0 doi: 10.1007/s11538-009-9480-0
    [7] C. Bowman, A. B. Gumel, P. Van den Driessche, J. Wu, H. Zhu, A mathematical model for assessing control strategies against West Nile virus, Bull. Math. Biol., 67 (2005), 1107–1133. https://doi.org/10.1016/j.bulm.2005.01.002 doi: 10.1016/j.bulm.2005.01.002
    [8] M. D. Canon, C. D. Cullum, E. Polak, Theory of Optimal Control and Mathematical Programming, McGraw-Hill, 1969.
    [9] M. Carrieri, M. Bacchi, R. Bellini, S. Maini, On the competition occurring between Aedes albopictus and Culex pipiens (Diptera: Culicidae) in Italy, Environ. Entomol., 32, (2003), 1313–1321. https://doi.org/10.1603/0046-225X-32.6.1313 doi: 10.1603/0046-225X-32.6.1313
    [10] Centers for Disease Control and Prevention (CDC), West Nile Virus. Available from: https://www.cdc.gov/westnile/index.html
    [11] Center for Disease Control and Prevention (CDC), Life Cycle of Culex Species Mosquitoes. Available from: https://www.cdc.gov/mosquitoes/about/life-cycles/culex.html
    [12] Centers for Disease Control and Prevention (CDC), West Nile Virus & Dead Birds. Available from: https://www.cdc.gov/westnile/dead-birds/index.html
    [13] Centers for Disease Control and Prevention (CDC), West Nile Virus, Preliminary Maps & Data for 2021. Available from: https://www.cdc.gov/westnile/statsmaps/preliminarymapsdata2021/index.html
    [14] Centers for Disease Control and Prevention (CDC), Final Cumulative Maps & Data for 1999–2019. Available from: https://www.cdc.gov/westnile/statsmaps/cumMapsData.html#three
    [15] J. Chen, J. Huang, J. C. Beier, R. S. Cantrell, C. Cosner, D. O. Fuller, et al., Modeling and control of local outbreaks of West Nile virus in the United States, Discrete Contin. Dyn. Syst. Ser. B, 21 (2016), 2423–2449. https://doi.org/10.3934/dcdsb.2016054 doi: 10.3934/dcdsb.2016054
    [16] A. T. Ciota, A. C. Matacchiero, A. M. Kilpatrick, L. D. Kramer, The effect of temperature on life history traits of Culex mosquitoes, J. Med. Entomol., 51 (2014), 55–62. https://doi.org/10.1515/biolet-2015-0006 doi: 10.1515/biolet-2015-0006
    [17] P. Clergeau, J. L. Savard, G. Mennechez, G. Falardeau, Bird abundance and diversity along an urban-rural gradient: a comparative study between two cities on different continents, Condor, 100 (1998), 413–425. https://doi.org/10.2307/1369707 doi: 10.2307/1369707
    [18] European Centre for Disease Prevention and Control, Culex pipiens - Factsheet for experts. Available from: https://www.ecdc.europa.eu/en/all-topics-z/disease-vectors/facts/mosquito-factsheets/culex-pipiens-factsheet-experts
    [19] U. Fillinger, H. Sombroek, S. Majambere, E. van Loon, W. Takken, S. W. Lindsay, Identifying the most productive breeding sites for malaria mosquitoes in The Gambia, Malar. J., 8 (2009), 1–14. https://doi.org/10.1186/1475-2875-8-62 doi: 10.1186/1475-2875-8-62
    [20] T. L. George, R. J. Harrigan, J. A. LaManna, D. F. DeSante, J. F. Saracco, T. B. Smith, Persistent impacts of West Nile virus on North American bird populations, Proc. Natl. Acad. Sci. U.S.A., 112 (2015), 14290–14294. https://doi.org/10.1073/pnas.1507747112 doi: 10.1073/pnas.1507747112
    [21] Y. Han, Z. Bai, Threshold dynamics of a West Nile virus model with impulsive culling and incubation period, Discrete Contin. Dyn. Syst. Ser. B, 21 (2021), 2423–2449. https://doi.org/10.3934/dcdsb.2021239 doi: 10.3934/dcdsb.2021239
    [22] Illinois Department of Public Health, Prevention and Control, Mosquitoes and Disease. Available from: http://www.idph.state.il.us/envhealth/pcmosquitoes.htm
    [23] Infection Prevention and Control Canada, West Nile Virus Resources. Available from: https://ipac-canada.org/west-nile-virus-resources
    [24] C. E. Jones, L. P. Lounibos, P. P. Marra, A. M. Kilpatrick, Rainfall Influences Survival of Culex pipiens (Diptera: Culicidae) in a Residential Neighborhood in the Mid-Atlantic United States, J. Med. Entomol., 49 (2012), 467–473. https://doi.org/10.1603/me11191 doi: 10.1603/me11191
    [25] M. P. Kain, B. M. Bolker, Predicting West Nile virus transmission in North American bird communities using phylogenetic mixed effects models and eBird citizen science data, Parasites Vectors, 12 (2019), 1–22.
    [26] A. M. Kilpatrick, S. S. Wheeler, Impact of West Nile Virus on Bird Populations: Limited Lasting Effects, Evidence for Recovery, and Gaps in Our Understanding of Impacts on Ecosystems, J. Med. Entomol., 56 (2019), 1491–1497. https://doi.org/10.1093/jme/tjz149 doi: 10.1093/jme/tjz149
    [27] C. J. M. Koenraadt, L. C. Harrington, Flushing effect of rain on container-inhabiting mosquitoes Aedes aegypti and Culex pipiens (Diptera: Culicidae), J. Med. Entomol., 45 (2008), 28–35. https://doi.org/10.1093/jmedent/45.1.28 doi: 10.1093/jmedent/45.1.28
    [28] N. Komar, S. Langevin, S. Hinten, N. Nemeth, E. Edwards, D. Hettler, et al., Experimental Infection of North American Birds with the New York 1999 Strain of West Nile Virus, Emerg. Infect. Dis., 9 (2003), 311–22. https://doi.org/10.3201/eid0903.020628 doi: 10.3201/eid0903.020628
    [29] C. R. Lesser, Field trial efficacy of Anvil 10+10 and Biomist 31:66 against Ochlerotatus sollicitans in Delaware, J. Am. Mosq. Control Assoc., 18 (2002), 36–39.
    [30] S. Lenhart, J. T. Workman, Optimal Control Applied to Biological Models, CRC Press, Boca Raton, 2007. https://doi.org/10.1201/9781420011418
    [31] T. Malik, A discrete time west nile virus transmission model with optimal bird- and vector-specific controls, Math. Biosci., 305 (2018), 60–70. https://doi.org/10.1016/j.mbs.2018.08.008 doi: 10.1016/j.mbs.2018.08.008
    [32] G. Marini, R. Rosá, A. Pugliese, H. Heesterbeek, Exploring vector-borne infection ecology in multi-host communities: A case study of West Nile virus, J. Theor. Biol., 415 (2017), 58–69. https://doi.org/10.1016/j.jtbi.2016.12.009 doi: 10.1016/j.jtbi.2016.12.009
    [33] K. M. McClure, C. Lawrence, A. M. Kilpatrick, Land use and larval habitat increase Aedes albopictus (Diptera: Culicidae) and Culex quinquefasciatus (Diptera: Culicidae) abundance in lowland Hawaii, J. Med. Entomol., 55 (2018), 1509–1516. https://doi.org/10.1093/jme/tjy117 doi: 10.1093/jme/tjy117
    [34] G. Ower, S. A. Juliano, Effects of larval density on a natural population of Culex restuans (Diptera: Culicidae): No evidence of compensatory mortality, Ecol. Entomol., 44 (2019), 197–205. https://doi.org/10.1111/een.12689 doi: 10.1111/een.12689
    [35] Kemi Swedish Chemicals Agency, Product Assessment Report Related to product authorisation under Regulation (EU) No 528/2012 VectoBac G and VectoBac GR, 2015.
    [36] Rankine Mosquito Management, Shire of Busselton Mosquito Management Plan, August 18, 2010. Available from: http://epbcnotices.environment.gov.au/_entity/annotation/59388137-229f-e611-abed-005056ba00a7/a71d58ad-4cba-48b6-8dab-f3091fc31cd5?t=1495843200341
    [37] S. E. Ronca, J. C. Ruff, K. O. Murray, A 20-year historical review of West Nile virus since its initial emergence in North America: Has West Nile virus become a neglected tropical disease? PLoS Negl. Trop. Dis., 15 (2021), e0009190. https://doi.org/10.1371/journal.pntd.0009190 doi: 10.1371/journal.pntd.0009190
    [38] J. E. Ruybal, L. D. Kramer, A. M. Kilpatrick, Geographic variation in the response of Culex pipiens life history traits to temperature, Parasites Vectors, 9 (2016), 116. https://doi.org/10.1186/s13071-016-1402-z doi: 10.1186/s13071-016-1402-z
    [39] M. S. Shocket, A. B. Verwillow, M. G. Numazu, H. Slamani, J. M. Cohen, E. M. Fadoua, et al., Transmission of West Nile and five other temperate mosquito-borne viruses peaks at temperatures between 23 C and 26 C, Elife, 9 (2020), e58511. https://doi.org/10.7554/eLife.58511 doi: 10.7554/eLife.58511
    [40] K. Staples, J. Oosthuizen, M. Lund, Effectiveness of s-methoprene briquets and application method for mosquito control in urban road gullies/catch basins/gully pots in a mediterranean climate: Implications for Ross River virus transmission, J. Am. Mosq. Control Assoc., 32 (2016), 203–209. https://doi.org/10.2987/16-6563.1 doi: 10.2987/16-6563.1
    [41] L. M. Styer, M. A. Meola, L. D. Kramer, West Nile Virus Infection Decreases Fecundity of Culex tarsalis Females, J. Med. Entomol., 44 (2007), 1074–1085. https://doi.org/10.1093/jmedent/44.6.1074 doi: 10.1093/jmedent/44.6.1074
    [42] A. Tran, G. L'ambert, G. Balança, S. Pradier, V. Grosbois, T. Balenghien, et al., An integrative eco-epidemiological analysis of West Nile virus transmission, EcoHealth, 14 (2017), 474–489. https://doi.org/10.1007/s10393-017-1249-6 doi: 10.1007/s10393-017-1249-6
    [43] C. B. F. Vogels, G. P. Göertz, G. P. Pijlman, C. J. M. Koenraadt, Vector competence of northern and southern E uropean Culex pipiens pipiens mosquitoes for West Nile virus across a gradient of temperatures, Med. Vet. Entomol., 31 (2017), 358–364. https://doi.org/10.1111/mve.12251 doi: 10.1111/mve.12251
    [44] C. B. Vogels, N. Hartemink, C. J. Koenraadt, Modelling West Nile virus transmission risk in Europe: effect of temperature and mosquito biotypes on the basic reproduction number, Sci. Rep., 7 (2017), 1–11. https://doi.org/10.1038/s41598-017-05185-4 doi: 10.1038/s41598-017-05185-4
    [45] P. van den Driessche, J. Watmough, Reproduction numbers and sub-threshold endemic equilibria for compartmental models of disease transmission, Math. Biosci., 180 (2002), 29–48. https://doi.org/10.1016/S0025-5564(02)00108-6 doi: 10.1016/S0025-5564(02)00108-6
    [46] F. B. Wang, R. Wu, X. Q. Zhao, A West Nile virus transmission model with periodic incubation periods, SIAM J. Appl. Dyn. Syst., 18 (2019), 1498–1535. https://doi.org/10.1137/18M1236162 doi: 10.1137/18M1236162
    [47] M. J. Wonham, T. de-Camino-Beck, M. A. Lewis, An epidemiological model for West Nile virus: invasion analysis and control applications, Proc. Royal Soc. B, 271 (2004), 501–507. https://doi.org/10.1098/rspb.2003.2608 doi: 10.1098/rspb.2003.2608
    [48] World Health Organization and others, Space spray application of insecticides for vector and public health pest control: a practitioner's guide, World Health Organization, (2003). https://apps.who.int/iris/handle/10665/68057
    [49] G. Wynn, C. J. Paradise, Effects of microcosm scaling and food resources on growth and survival of larval Culex pipiens, BMC Ecol., 1 (2001), 1–9. https://doi.org/10.1186/1472-6785-1-3 doi: 10.1186/1472-6785-1-3
    [50] X. Xu, Y. Xiao, R. A. Cheke, Models of impulsive culling of mosquitoes to interrupt transmission of West Nile virus to birds, Appl. Math. Model., 39 (2015), 3549–3568. https://doi.org/10.1016/j.apm.2014.10.072 doi: 10.1016/j.apm.2014.10.072
    [51] A. A. Yousten, F. J. Genthner, E. F.Benfield, F. Ernest, Fate of Bacillus sphaericus and Bacillus thuringiensis serovar israelensis in the aquatic environment, J. Am. Mosq. Control Assoc., 8 (1992), 143–148.
    [52] W. Zhou, Y. Xiao, J. M. Heffernan, A threshold policy to curb WNV transmission to birds with seasonality, Nonlinear Anal. Real World Appl., 59 (2021), 1498–1535. https://doi.org/10.1016/j.nonrwa.2020.103273 doi: 10.1016/j.nonrwa.2020.103273
  • Reader Comments
  • © 2022 the Author(s), licensee AIMS Press. This is an open access article distributed under the terms of the Creative Commons Attribution License (http://creativecommons.org/licenses/by/4.0)
通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索

Metrics

Article views(910) PDF downloads(62) Cited by(0)

Article outline

Figures and Tables

Figures(12)  /  Tables(5)

/

DownLoad:  Full-Size Img  PowerPoint
Return
Return

Catalog