In this note, our purpose is to introduce the concept of n-polynomial convex stochastic processes and study some of their algebraic properties. We establish new refinements for integral version of Hölder and power mean inequality. Also, we are concerned to extend several Hermite-Hadamard type inequalities for n-polynomial convex stochastic processes by using Hölder, Hölder-İşcan, power mean and improved power mean integral inequalities. Moreover, we give comparison of obtained results.
Citation: Haoliang Fu, Muhammad Shoaib Saleem, Waqas Nazeer, Mamoona Ghafoor, Peigen Li. On Hermite-Hadamard type inequalities for n-polynomial convex stochastic processes[J]. AIMS Mathematics, 2021, 6(6): 6322-6339. doi: 10.3934/math.2021371
[1] | Faik Babadağ, Ali Atasoy . On hyper-dual vectors and angles with Pell, Pell-Lucas numbers. AIMS Mathematics, 2024, 9(11): 30655-30666. doi: 10.3934/math.20241480 |
[2] | Faik Babadağ . A new approach to Jacobsthal, Jacobsthal-Lucas numbers and dual vectors. AIMS Mathematics, 2023, 8(8): 18596-18606. doi: 10.3934/math.2023946 |
[3] | Waleed Mohamed Abd-Elhameed, Amr Kamel Amin, Nasr Anwer Zeyada . Some new identities of a type of generalized numbers involving four parameters. AIMS Mathematics, 2022, 7(7): 12962-12980. doi: 10.3934/math.2022718 |
[4] | Tingting Du, Li Wang . On the power sums problem of bi-periodic Fibonacci and Lucas polynomials. AIMS Mathematics, 2024, 9(4): 7810-7818. doi: 10.3934/math.2024379 |
[5] | Utkal Keshari Dutta, Prasanta Kumar Ray . On the finite reciprocal sums of Fibonacci and Lucas polynomials. AIMS Mathematics, 2019, 4(6): 1569-1581. doi: 10.3934/math.2019.6.1569 |
[6] | Waleed Mohamed Abd-Elhameed, Omar Mazen Alqubori . New expressions for certain polynomials combining Fibonacci and Lucas polynomials. AIMS Mathematics, 2025, 10(2): 2930-2957. doi: 10.3934/math.2025136 |
[7] | Andrew Calcan, Scott B. Lindstrom . The ADMM algorithm for audio signal recovery and performance modification with the dual Douglas-Rachford dynamical system. AIMS Mathematics, 2024, 9(6): 14640-14657. doi: 10.3934/math.2024712 |
[8] | Chun Ge Hu, Xiao Guang Li, Xiao Long Xin . Dual ideal theory on L-algebras. AIMS Mathematics, 2024, 9(1): 122-139. doi: 10.3934/math.2024008 |
[9] | Yulei Chen, Yingming Zhu, Dongwei Guo . Combinatorial identities concerning trigonometric functions and Fibonacci/Lucas numbers. AIMS Mathematics, 2024, 9(4): 9348-9363. doi: 10.3934/math.2024455 |
[10] | Kritkhajohn Onphaeng, Prapanpong Pongsriiam . Exact divisibility by powers of the integers in the Lucas sequence of the first kind. AIMS Mathematics, 2020, 5(6): 6739-6748. doi: 10.3934/math.2020433 |
In this note, our purpose is to introduce the concept of n-polynomial convex stochastic processes and study some of their algebraic properties. We establish new refinements for integral version of Hölder and power mean inequality. Also, we are concerned to extend several Hermite-Hadamard type inequalities for n-polynomial convex stochastic processes by using Hölder, Hölder-İşcan, power mean and improved power mean integral inequalities. Moreover, we give comparison of obtained results.
Since Kováčik and Rákosník established the theory of variable-exponent function spaces in [1], the subject has attracted extensive attention by many scholars. The theory of the variable-exponent Lebesgue spaces Lp(⋅)(Rn) has been extensively investigated, see [2,3,4,5]. Izuki first introduced the variable-exponent Herz spaces ˙Kα,qp(⋅)(Rn) [6] and considered the boundedness of commutators of fractional integrals in these spaces; for more research about the boundedness of operators in the above spaces, see [7,8]. Subsequently, Izuki generalized the Herz-Morrey spaces M˙Kα,λq,p(Rn) in [9] into the variable-exponent Herz-Morrey spaces M˙Kα,λq,p(⋅)(Rn) [10], for more research about M˙Kα,λq,p(⋅)(Rn), see [11,12,13]. On the other hand, the Muckenhoupt weight theory is a powerful tool in harmonic analysis, [14,15,16,17]. By using the basics on Banach function spaces and the variable-exponent Muckenhoupt theory, Izuki and Noi developed the theory of weighted variable-exponent Herz spaces ˙Kα,qp(⋅)(ω) [18,19,20]. After that, the research for the boundedness of some operators, such as the commutator of bilinear Hardy operators, commutators of fractional integral operators, and fractional Hardy operators achieved good results on weighted variable Herz-Morrey spaces M˙Kα,λq,p(⋅)(ω); for more details, see [21,22,23,24,25,26]. Consequently, many scholars have contributed to the study of function spaces and related differential equations, [27,28].
Motivated by the mentioned works, the main goal of this paper is to establish the boundedness of higher-order commutators Imβ,b generated by the fractional integral operator with BMO functions on grand weighted variable-exponent Herz-Morrey spaces M˙Kα,r),θλ,p(⋅)(ω) and to establish boundedness of the m−order multilinear fractional Hardy operator Hβ,m and its adjoint operator H∗β,m on weighted variable-exponent Herz-Morrey spaces M˙Kα,λq,p(⋅)(ω). The paper is organized as follows: In Section 2, we collect some preliminary definitions and lemmas. Our main results and their proof will be given in Section 3 and Section 4.
Now, let us recall some notations that will be used in this paper.
In [29], Hardy defined the classical Hardy operator as follows:
P(f)(x):=1x∫x0f(t)dt,x>0. | (1.1) |
In [30], Christ and Grafakos defined the n−dimensional Hardy operator as follows:
H(f)(x):=1|x|n∫|t|<|x|f(t)dt,x∈Rn∖{0}, | (1.2) |
and established the boundedness of H(f)(x) in Lp(Rn), obtaining the best constants.
In [31], under the condition of 0≤β<n and |x|=√∑ni=1x2i, Fu et al. defined the n−dimensional fractional Hardy operator and its adjoint operator as follows:
Hβf(x):=1|x|n−β∫|t|<|x|f(t)dt,H∗βf(x):=∫|t|≥|x|f(t)|t|n−βdt,x∈Rn∖{0}, | (1.3) |
and established the boundedness of their commutators in Lebesgue spaces and homogeneous Herz spaces.
Let m and n be positive integers with m≥1, n≥2, and 0≤β<mn, and let L1loc(Rn) be the collection of all locally integrable functions on Rn. Wu and Zhang in [12] defined the m−order multilinear fractional Hardy operator and its adjoint operator as follows:
Hβ,m(→f)(x):=1|x|mn−β∫|t1|<|x|∫|t2|<|x|⋯∫|tm|<|x|f1(t1)f2(t2)⋯fm(tm)dt1dt2⋯dtm, | (1.4) |
H∗β,m(→f)(x):=∫|t1|≥|x|∫|t2|≥|x|⋯∫|tm|≥|x|f1(t1)f2(t2)⋯fm(tm)|(t1,t2,⋯,tm)|mn−βdt1dt2⋯dtm, | (1.5) |
where x∈Rn∖{0}, |(t1,t2,⋯tm)|=√t21+t22+⋯+t2m. →f=(f1,f2,⋯,fm) is a vector-valued function, where fi(i=1,2,⋯,m)∈L1loc(Rn).
Obviously, when m=1, Hβ,m=Hβ, H∗β,m=H∗β. When β=0, Hm indicates a multilinear operator H0,m corresponding to the Hardy operator H, and H∗m indicates a multilinear operator H∗0,m corresponding to the adjoint operator H∗:=H∗0.
Let L1loc(Rn) be the collection of all locally integrable functions on Rn, and given a function b∈L1loc(Rn), the bounded mean oscillation (BMO) space and the BMO norm are defined, respectively, as follows:
BMO(Rn):={b∈L1loc(Rn):‖b‖BMO(Rn)<∞}, | (1.6) |
‖b‖BMO(Rn):=supB:ball1|B|∫B|b(x)−bB|dx. | (1.7) |
where the supremum is taken over all the balls B∈Rn and bB=|B|−1∫Bb(y)dy.
Let b∈BMO(Rn), 0<β<n, and the fractional integral operator Iβ and the commutator of fractional integral operator [b,Iβ]f(x) are defined, respectively, as follows:
Iβ(f)(x):=∫Rnf(y)|x−y|n−βdy,x∈Rn. | (1.8) |
[b,Iβ]f(x):=b(x)Iβ(f)(x)−Iβ(bf)(x),x∈Rn. | (1.9) |
Let b∈BMO(Rn), 0<β<n, and m∈N. The higher-order commutator of fractional integrals operator Imβ,b is defined as follows:
Imβ,bf(x):=∫Rn[b(x)−b(y)]m|x−y|n−βf(y)dy,x∈Rn. | (1.10) |
Obviously, when m=1, I1β,b(f)(x)=[b,Iβ]f(x); and when m=0, I0β,b(f)(x)=Iβ(f)(x).
For 0≤β<n and f∈L1loc(Rn), the fractional maximal operator Mβ is defined as follows:
Mβf(x):=supx∈B1|B|1−βn∫B|f(y)|dy,x∈Rn. | (1.11) |
Where the supremum is taken over all balls B⊂Rn containing x. When β=0, we simply write M instead of M0, which is exactly the Hardy-Littlewood maximal function.
Throughout this paper, we use the following symbols and notations:
1. For a constant R>0 and a point x∈Rn, we write B(x,R):={y∈Rn:|x−y|<R}.
2. For any measurable set E⊂Rn, |E| denotes the Lebesgue measure and χE means the characteristic function.
3. Given k∈Z, we write Bk:=¯B(0,2k)={x∈Rn:|x|≤2k}.
4. We define a family {Ck}∞k=−∞ by Ck:=Bk∖Bk−1={x∈Rn:2k−1<|x|≤2k}. Moreover χk denotes the characteristic function of Ck, namely, χk:=χCk.
5. For any index 1<p(x)<∞, p′(x) is denoted by its conjugate index, namely, 1p(x)+1p′(x)=1.
6. If there exists a positive constant C independent of the main parameters such that A≤CB, then we write A≲B. Additionally A≈B means that both A≲B and B≲A hold.
In this section, we first recall some definitions related to the variable Lebesgue space and variable Muckenhoupt weight theory. On this basis, we review some definitions of weighted variable-exponent Lebesgue spaces, weighted variable-exponent Herz-Morrey spaces, and grand weighted variable-exponent Herz-Morrey spaces. In addition, we recall some definitions of Banach function space and weighted Banach function space. Then, we present several relevant lemmas that will aid in the proof of our main boundedness result.
Definition 2.1 (see [2]) Let p(⋅):Rn→[1,∞) be a real-valued measurable function.
(i) The Lebesgue space with variable-exponent Lp(⋅)(Rn) is defined by
Lp(⋅)(Rn):={fisameasurablefunction:∫Rn(|f(x)|λ)p(x)dx<∞forsomeconstantλ>0} |
(ii) The spaces with variable-exponent Lp(⋅)loc(E) are defined by
Lp(⋅)loc(Rn):={fisameasurablefunction:f∈Lp(⋅)(K)forallcompactsubsetsK⊂Rn} |
The variable-exponent Lebesgue space Lp(⋅)(Rn) is a Banach space with the norm defined by
‖f‖Lp(⋅)(Rn):=inf{λ>0:∫Rn(|f(x)|λ)p(x)dx≤1}. |
Definition 2.2 (see [2]) (i) The set P0(Rn) consists of all measurable functions p(⋅):Rn→(0,∞) satisfying
0<p−≤p(x)≤p+<∞, | (2.1) |
where
p−:=essinf{p(x):x∈Rn}>0,p+:=esssup{p(x):x∈Rn}<∞. | (2.2) |
(ii) The set P(Rn) consists of all measurable functions p(⋅):Rn→[1,∞) satisfying
1<p−≤p(x)≤p+<∞, | (2.3) |
where
p−:=essinf{p(x):x∈Rn}>1,p+:=esssup{p(x):x∈Rn}<∞. | (2.4) |
(iii) The set B(Rn) consists of all measurable functions p(⋅)∈P(Rn) satisfying that the Hardy-Littlewood maximal operator M is bounded on Lp(⋅)(Rn).
Definition 2.3 (see [2]) Suppose that p(⋅) is a real-valued function on Rn. We say that
(i)Clogloc(Rn) is the set of all local log-Hölder continuous functions p(⋅) satisfying
|p(x)−p(y)|≤−Clog(|x−y|),|x−y|<12,x,y∈Rn. | (2.5) |
(ii)Clog0(Rn) is the set of all local log-Hölder continuous functions p(⋅) satisfying at origin
|p(x)−p0|≤Clog(e+1|x|),x∈Rn. | (2.6) |
(iii)Clog∞(Rn) is the set of all local log-Hölder continuous functions satisfying at infinity
|p(x)−p∞|≤Clog(e+|x|),x∈Rn. | (2.7) |
(iv)Clog(Rn)=Clog∞(Rn)∩Clogloc(Rn) denotes the set of all global log-Hölder continuous functions p(⋅).
In [2], the author proved that if p(⋅)∈Clog(Rn), then p′(⋅)∈Clog(Rn), and also proved that if p(⋅)∈P(Rn)∩Clog(Rn), then the Hardy-Littlewood maximal operator M is bounded on Lp(⋅)(Rn).
Definition 2.4 (see [17]) (i) Given a non-negative, measure function ω, for 1<p<∞, ω∈Ap if
[ω]Ap:=supB(1|B|∫Bω(x)dx)(1|B|∫Bω(x)1−p′dx)p−1<∞, | (2.8) |
where the supremum is taken over all balls B⊂Rn.
(ii) A weight ω is called a Muckenhoupt weight A1 if
[ω]A1:=supB1|B|∫Bω(x)dxessinf{ω(x):x∈B}<∞. | (2.9) |
(iii) A weight ω is called a Muckenhoupt weight A∞ if
A∞:=⋃1<r<∞Ar. | (2.10) |
Note that these weights characterize the weighted norm inequalities for the Hardy-Littlewood maximal operator, that is, ω∈Ap, 1<p<∞, if and only if M:Lp(ω)→Lp(ω).
Definition 2.5 (see [18]) Suppose that p(⋅)∈P(Rn), a weight ω is in the class Ap(⋅) if
supB:ball|B|−1‖ω1p(⋅)χB‖Lp(⋅)‖ω−1p(⋅)χB‖Lp′(⋅)<∞. | (2.11) |
Obviously, if p(⋅)=p,1<p<∞, then the above definition reduces to the classical Muckenhoupt Ap class. In [18], suppose p(⋅),q(⋅)∈P(Rn) and p(⋅)≤q(⋅), then A1⊂Ap(⋅)⊂Aq(⋅).
Definition 2.6 (see [18]) Let 0<β<n and p1(⋅),p2(⋅)∈P(Rn) such that 1p2(x)=1p1(x)−βn. A weighted ω is said to be an A(p1(⋅),p2(⋅)) weight, then for all balls B⊂Rn satisfying
‖ωχB‖Lp2(⋅)‖ω−1χB‖Lp′1(⋅)≤C|B|1−βn. | (2.12) |
In [14], suppose p1(⋅),p2(⋅)∈P(Rn) and β∈(0,n) such that 1p2(x)=1p1(x)−βn. Then ω∈A(p1(⋅),p2(⋅)) if and only if ωp2(⋅)∈A1+p2(⋅)p′1(⋅).
Definition 2.7 (see [25]) Let p(⋅)∈P(Rn) and ω∈Ap(⋅), the weighted variable-exponent Lebesgue space Lp(⋅)(ω) denotes the set of all complex-valued measurable functions f satisfying
Lp(⋅)(ω)={f:fω1p(⋅)∈Lp(⋅)(Rn)}. |
This is a Banach space equipped with the norm:
‖f‖Lp(⋅)(ω)=‖fω1p(⋅)‖Lp(⋅)(Rn). |
Definition 2.8 (see [25]) Let α∈R,0<q<∞, p(⋅)∈P(Rn) and 0≤λ<∞. The homogeneous weighted variable-exponent Herz-Morrey spaces M˙Kα,λq,p(⋅)(ω) are defined by
M˙Kα,λq,p(⋅)(ω)={f∈Lp(⋅)loc(Rn∖{0},ω):‖f‖M˙Kα,λq,p(⋅)(ω)<∞}, |
where
‖f‖M˙Kα,λq,p(⋅)(ω)=supL∈Z2−Lλ{L∑k=−∞2kαq‖fχk‖qLp(⋅)(ω)}1q. |
Nonhomogeneous weighted variable-exponent Herz-Morrey spaces can be defined in a similar way. For more details, see [25]. When λ=0, the weighted variable-exponent Herz-Morrey spaces become weighted variable-exponent Herz spaces, see [18].
Definition 2.9 (see [32]) Let p(⋅)∈P(Rn),α∈R,θ>0,0<r<∞,0≤λ<∞. The homogeneous grand weighted variable-exponent Herz-Morrey spaces M˙Kα,r),θλ,p(⋅)(ω) are the collection of Lp(⋅)loc(Rn∖{0},ω) such that
M˙Kα,r),θλ,p(⋅)(ω)={f∈Lp(⋅)loc(Rn∖{0},ω):‖f‖M˙Kα,r),θλ,p(⋅)(ω)<∞}, |
where
‖f‖M˙Kα,r),θλ,p(⋅)(ω)=supδ>0supL∈Z2−Lλ{δθ∑k∈Z2kαr(1+δ)‖fχk‖r(1+δ)Lp(⋅)(ω)}1r(1+δ). |
Nonhomogeneous grand weighted variable-exponent Herz-Morrey spaces can be defined in a similar way. For more details, see [32]. When λ=0, the grand weighted variable-exponent Herz-Morrey spaces become grand weighted variable-exponent Herz spaces, see [33].
Definition 2.10 (see [18]) Let M be the set of all complex-valued measurable functions defined on Rn, and X a linear subspace of M.
1. The space X is said to be a Banach function space if there exists a function ‖⋅‖X:M→[0,∞] satisfying the following properties: Let f,g,fj∈M(j=1,2,…), then
(a) f∈X holds if and only if ‖f‖X<∞.
(b) Norm property:
i. Positivity: ‖f‖X≥0.
ii. Strict positivity: ‖f‖X=0 holds if and only if f(x)=0 for almost every x∈Rn.
iii. Homogeneity: ‖λf‖X=|λ|⋅‖f‖X holds for all λ∈C.
iv. Triangle inequality: ‖f+g‖X≤‖f‖X+‖g‖X.
(c) Symmetry: ‖f‖X=‖|f|‖X.
(d) Lattice property: If 0≤g(x)≤f(x) for almost every x∈Rn, then ‖g‖X≤‖f‖X.
(e) Fatou property: If 0≤fj(x)≤fj+1(x) for all j and fj(x)→f(x) as j→∞ for almost every x∈Rn, then limj→∞‖fj‖X=‖f‖X.
(f) For every measurable set F⊂Rn such that |F|<∞, ‖χF‖X is finite. Additionally, there exists a constant CF>0 depending only on F so that ∫F|h(x)|dx≤CF‖h‖X holds for all h∈X.
2. Suppose that X is a Banach function space equipped with a norm ‖⋅‖X. The associated space X′ is defined by
X′={f∈M:‖f‖X′<∞}, |
where
‖f‖X′=supg{|∫Rnf(x)g(x)dx|:‖g‖X≤1}. |
Definition 2.11 Let(see [18]) Let X be a Banach function spaces. The set Xloc(Rn) consists of all measurable functions f such that fχE∈X for any compact set E with |E|<∞. Given a function W such that 0<W(x)<∞ for almost every x∈(Rn), W∈Xloc(Rn) and W−1∈(X′)loc(Rn), the weighted Banach function space is defined by
X(Rn,W):={f∈M:fW∈X}. |
Lemma 2.1 (see [34]) Let X be a Banach function space, then we have
(i) The associated space X′ is also a Banach function spaces.
(ii)‖⋅‖(X′)′ and ‖⋅‖X are equivalent.
(iii) If g∈X and f∈X′, then
∫Rn|f(x)g(x)|dx≤‖f‖X‖g‖X′, | (2.13) |
is the generalized Hölder inequality.
Lemma 2.2 (see [34]) If X is a Banach function space, then we have, for all balls B,
1≤|B|−1‖χB‖X‖χB‖X′. | (2.14) |
Lemma 2.3 (see [16]) Let X be a Banach function space. Suppose that the Hardy-Littlewood maximal operator M is weakly bounded on X, that is,
‖χ{Mf>λ}‖X≲λ−1‖f‖X |
is true for all f∈X and all λ>0. Then, we have
supB:ball1|B|‖χB‖X‖χB‖X′<∞. | (2.15) |
Lemma 2.4 (see [18]) (i) The weighted Banach function space X(Rn,W) is a Banach function space equipped by the norm
‖f‖X(Rn,W):=‖fW‖X. |
(ii) The associate space of X(Rn,W) is a Banach function space and equals X′(Rn,W−1).
Remark 2.5 (see [21]) Let p(⋅)∈P(Rn) and by comparing the Lp(⋅)(ωp(⋅)) and Lp′(⋅)(ω−p′(⋅)) with the definition of X(Rn,W), we have
1. If we take W=ω and X=Lp(⋅)(Rn), then we get Lp(⋅)(Rn,ω)=Lp(⋅)(ωp(⋅)).
2. If we consider W=ω−1 and X=Lp′(⋅)(Rn), then we get Lp′(⋅)(Rn,ω−1)=Lp′(⋅)(ω−p′(⋅)). By virtue of Lemma 2.4, we get
(Lp(⋅)(Rn,ω))′=(Lp(⋅)(ωp(⋅)))′=Lp′(⋅)(ω−p′(⋅))=Lp′(⋅)(Rn,ω−1). |
Lemma 2.6 (see [18]) Let X be a Banach function space. Suppose that M is bounded on the associate space X′. Then there exists a constant 0<δ<1 such that for all balls B⊂Rn and all measurable sets E⊂B,
‖χE‖X‖χB‖X≲(|E||B|)δ. | (2.16) |
The paper [1] shows that Lp(⋅)(Rn) is a Banach function space and the associated space Lp′(⋅)(Rn) has equivalent norm.
Lemma 2.7 (see [20]) Let p(⋅)∈P(Rn)∩Clog(Rn) and ω∈Ap(⋅), then there are constants δ1,δ2∈(0,1) and C>0 such that for all k,l∈Z with k≤l,
‖χk‖Lp(⋅)(ωp(⋅))‖χl‖Lp(⋅)(ωp(⋅))=‖χk‖(Lp′(⋅)(ω−p′(⋅)))′‖χl‖(Lp′(⋅)(ω−p′(⋅)))′≤C(|Ck||Cl|)δ1, | (2.17) |
and
‖χk‖(Lp(⋅)(ωp(⋅)))′‖χl‖(Lp(⋅)(ωp(⋅)))′≤C(|Ck||Cl|)δ2. | (2.18) |
Lemma 2.8 (see [35] Theorem 3.12) Let p1(⋅)∈P(Rn)∩LH(Rn) and 0<β<np+1. Define p2(⋅) by 1p1(⋅)−1p2(⋅)=βn. If ω∈A(p1(⋅),p2(⋅)), then Iβ is bounded from Lp1(⋅)(ωp1(⋅)) to Lp2(⋅)(ωp2(⋅)).
Lemma 2.9 (see [35] Theorem 3.14) Suppose that b∈BMO(Rn) and m∈N. Let p1(⋅)∈P(Rn)∩Clog(Rn) and 0<β<np+1. Define p2(⋅) by 1p1(⋅)−1p2(⋅)=βn. If ω∈A(p1(⋅),p2(⋅)), then
‖Imβ,b(f)‖Lp2(⋅)(ωp2(⋅))≲‖b‖mBMO(Rn)‖f‖Lp1(⋅)(ωp1(⋅)). |
Lemma 2.10 (see [36] Theorem 2.3) Let p(⋅),p1(⋅),p2(⋅)∈P0(Rn) such that 1p(x)=1p1(x)+1p2(x) for x∈Rn. Then, there exists a constant Cp,p1 independent of functions f and g such that
‖fg‖Lp(⋅)≤Cp,p1‖f‖Lp1(⋅)‖g‖Lp2(⋅), | (2.19) |
holds for every f∈Lp1(⋅)(Rn) and g∈Lp2(⋅)(Rn).
Lemma 2.11 (see [23] Corollary 3.11) Let b∈BMO(Rn),m∈N, and k,j∈Z with k>j. Then we have
C−1‖b‖mBMO(Rn)≤supB1‖χB‖Lp(⋅)(ω)‖(b−bB)mχB‖Lp(⋅)(ω)≤C‖b‖mBMO(Rn), | (2.20) |
and
‖(b−bBj)mχBk‖Lp(⋅)(ω)≤C(k−j)m‖b‖mBMO(Rn)‖χBk‖Lp(⋅)(ω). | (2.21) |
In this section, under certain hypothetical conditions, we first establish the boundedness of higher-order commutators Imβ,b generated by the fractional integrals operator with BMO functions on weighted variable-exponent Herz-Morrey spaces M˙Kα,λq,p(⋅)(ω). Then, we establish the boundedness of Imβ,b on grand weighted variable-exponent Herz-Morrey spaces M˙Kα,r),θλ,p(⋅)(ω).
Theorem 3.1 Suppose that b∈BMO(Rn) and m∈N. Let 0<λ<∞, 0<q1≤q2<∞, p2(⋅)∈P(Rn)∩Clog(Rn), ωp2(⋅)∈A1, δ1,δ2∈(0,1) are the constants appearing in (2.17) and (2.18) respectively. α and β are such that
(i)−nδ1+λ<α<nδ2−β+λ
(ii)0<β<n(δ1+δ2).
Define p1(⋅) by 1p2(⋅)=1p1(⋅)−βn, then Imβ,b are bounded from M˙Kα,λq2,p2(⋅)(ωp2(⋅)) to M˙Kα,λq1,p1(⋅)(ωp1(⋅)).
Proof We prove the homogeneous case while the nonhomogeneous case is similar. For all f∈M˙Kα,λq2,p2(⋅)(ωp2(⋅))(Rn) and ∀b∈BMO(Rn), if we denote fj:=fχj=fχCj for each j∈Z, then f=∑∞j=−∞fj. So we can write
f(x)=∞∑j=−∞f(x)χj(x)=∞∑j=−∞fj(x). |
Because of 0<q1q2≤1, then the Jensen inequality follows that
(∞∑j=−∞|aj|)q1q2≤∞∑j=−∞|aj|q1q2, | (3.1) |
By virtue of (3.1), we obtain
‖Imβ,b(f)‖q1M˙Kα,λq2,p2(⋅)(ωp2(⋅))=supL∈Z2−Lλq1(L∑k=−∞2kαq2‖Imβ,b(f)χk‖q2Lp2(⋅)(ωp2(⋅)))q1q2≲supL∈Z2−Lλq1L∑k=−∞2kαq1‖Imβ,b(f)χk‖q1Lp2(⋅)(ωp2(⋅))≲supL∈Z2−Lλq1{L∑k=−∞2kαq1(k−2∑j=−∞‖Imβ,b(fj)χk‖Lp2(⋅)(ωp2(⋅)))q1}+supL∈Z2−Lλq1{L∑k=−∞2kαq1(k+1∑j=k−1‖Imβ,b(fj)χk‖Lp2(⋅)(ωp2(⋅)))q1}+supL∈Z2−Lλq1{L∑k=−∞2kαq1(∞∑j=k+2‖Imβ,b(fj)χk‖Lp2(⋅)(ωp2(⋅)))q1}=:(J1+J2+J3). |
First we estimate J1. Note that if x∈Ck, y∈Cj, and j≤k−2, then |x−y|≈|x|≈2k. By Cp inequality and generalized Hölder inequality, for every j,k∈Z, we get
|Imβ,b(fj)(x)χk|≤C∫Cj|b(x)−b(y)|m|x−y|n−β|fj(y)|dyχk(x)≲2k(β−n)∫Cj|fj(y)||b(x)−b(y)|mdyχk(x)≲2k(β−n){|b(x)−bCj|m∫Cj|fj(y)|dy+∫Cj|fj(y)||b(y)−bCj|mdy}χk(x)≲2k(β−n)‖fj‖Lp1(⋅)(ωp1(⋅)){|b(x)−bCj|m‖χj‖(Lp1(⋅)(ωp1(⋅)))′+‖|b(y)−bCj|mχj‖(Lp1(⋅)(ωp1(⋅)))′}χk(x). | (3.2) |
By taking the Lp2(⋅)(ωp2(⋅))−norm for (3.2), by Lemma 2.11, we have
‖Imβ,b(fj)(x)χk‖Lp2(⋅)(ωp2(⋅))≲2k(β−n)‖fj‖Lp1(⋅)(ωp1(⋅)){‖|b(x)−bCj|mχk‖Lp2(⋅)(ωp2(⋅))‖χj‖(Lp1(⋅)(ωp1(⋅)))′+‖|b(y)−bCj|mχj‖(Lp1(⋅)(ωp1(⋅)))′‖χk‖Lp2(⋅)(ωp2(⋅))}≲2k(β−n)‖fj‖Lp1(⋅)(ωp1(⋅)){(k−j)m‖b‖mBMO(Rn)‖χk‖Lp2(⋅)(ωp2(⋅))‖χj‖(Lp1(⋅)(ωp1(⋅)))′+‖b‖mBMO(Rn)‖χj‖(Lp1(⋅)(ωp1(⋅)))′‖χk‖Lp2(⋅)(ωp2(⋅))}≲2k(β−n)(k−j)m‖b‖mBMO(Rn)‖fj‖Lp1(⋅)(ωp1(⋅))‖χj‖(Lp1(⋅)(ωp1(⋅)))′‖χk‖Lp2(⋅)(ωp2(⋅)). | (3.3) |
By virtue of Lemma 2.6, we have
‖χj‖X‖χBj‖X≤C(|Ck||Bk|)δ=C⟹‖χj‖X≤C‖χBj‖X. | (3.4) |
Note that χBj(x)≲2−jβIβ(χBj) (see [11] p.350), by applying (2.15), (3.4), and Lemma 2.8, we obtain
‖χj‖Lp2(⋅)(ωp2(⋅))≤‖χBj‖Lp2(⋅)(ωp2(⋅))≲2−jβ‖Iβ(χBj)‖Lp2(⋅)(ωp2(⋅))≲2−jβ‖χBj‖Lp1(⋅)(ωp1(⋅))≲2j(n−β)‖χBj‖−1(Lp1(⋅)(ωp1(⋅)))′≲2j(n−β)‖χj‖−1(Lp1(⋅)(ωp1(⋅)))′. | (3.5) |
By virtue of (2.14) and (2.15), combining (2.18) and (3.5), we have
2k(β−n)‖χj‖(Lp1(⋅)(ωp1(⋅)))′‖χk‖Lp2(⋅)(ωp2(⋅))=2kβ‖χj‖(Lp1(⋅)(ωp1(⋅)))′2−kn‖χk‖Lp2(⋅)(ωp2(⋅))≲2kβ‖χj‖(Lp1(⋅)(ωp1(⋅)))′‖χk‖−1(Lp2(⋅)(ωp2(⋅)))′=2kβ‖χj‖(Lp1(⋅)(ωp1(⋅)))′‖χj‖−1(Lp2(⋅)(ωp2(⋅)))′‖χj‖(Lp2(⋅)(ωp2(⋅)))′‖χk‖(Lp2(⋅)(ωp2(⋅)))′≲2kβ2nδ2(j−k)‖χj‖(Lp1(⋅)(ωp1(⋅)))′‖χj‖−1(Lp2(⋅)(ωp2(⋅)))′≲2kβ2nδ2(j−k)2j(n−β)‖χj‖−1Lp2(⋅)(ωp2(⋅))‖χj‖−1(Lp2(⋅)(ωp2(⋅)))′=2kβ2nδ2(j−k)2−jβ(2−jn‖χj‖Lp2(⋅)(ωp2(⋅))‖χj‖(Lp2(⋅)(ωp2(⋅)))′)−1≲2(β−nδ2)(k−j). | (3.6) |
Hence by virtue of (3.3) and (3.6), we have
‖Imβ,b(fj)(x)χk‖Lp2(⋅)(ωp2(⋅))≲2(β−nδ2)(k−j)(k−j)m‖b‖mBMO(Rn)‖fj‖Lp1(⋅)(ωp1(⋅)). | (3.7) |
On the other hand, note the following fact:
‖fj‖Lp1(⋅)(ωp1(⋅))=2−jα(2jαq1‖fχj‖q1Lp1(⋅)(ωp1(⋅)))1q1≤2−jα(j∑i=−∞2iαq1‖fχi‖q1Lp1(⋅)(ωp1(⋅)))1q1=2j(λ−α){2−jλ(j∑i=−∞2iαq1‖fχi‖q1Lp1(⋅)(ωp1(⋅)))1q1}≲2j(λ−α)‖f‖M˙Kα,λq1,p1(⋅)(ωp1(⋅)). | (3.8) |
Thus, by virtue of (3.7) and (3.8), remark that α<nδ2−β+λ,
J1=supL∈Z2−Lλq1{L∑k=−∞2kαq1(k−2∑j=−∞‖Imβ,b(fj)χk‖Lp2(⋅)(ωp2(⋅)))q1}≲supL∈Z2−Lλq1{L∑k=−∞2kαq1(k−2∑j=−∞(k−j)m‖b‖mBMO(Rn)‖fj‖Lp1(⋅)(ωp1(⋅))2(β−nδ2)(k−j))q1}≲‖b‖mq1BMO(Rn)‖f‖q1M˙Kα,λq1,p1(⋅)(ωp1(⋅))supL∈Z2−Lλq1{L∑k=−∞2kλq1(k−2∑j=−∞(k−j)m2(k−j)(α+β−nδ2−λ))q1}≲‖b‖mq1BMO(Rn)‖f‖q1M˙Kα,λq1,p1(⋅)(ωp1(⋅))supL∈Z2−Lλq1(L∑k=−∞2kλq1)≲‖b‖mq1BMO(Rn)‖f‖q1M˙Kα,λq1,p1(⋅)(ωp1(⋅)). |
Next, we estimate J2. Using Lemma 2.9, we get
J2=supL∈Z2−Lλq1{L∑k=−∞2kαq1(k+1∑j=k−1‖Imβ,b(fj)χk‖Lp2(⋅)(ωp2(⋅)))q1}≲‖b‖mq1BMO(Rn)supL∈Z2−Lλq1{L∑k=−∞2kαq1(k+1∑j=k−1‖fjχk‖Lp1(⋅)(ωp1(⋅)))q1}≲‖b‖mq1BMO(Rn)supL∈Z2−Lλq1{L∑k=−∞2kαq1‖fjχk‖q1Lp1(⋅)(ωp1(⋅))}=‖b‖mq1BMO(Rn)‖f‖q1M˙Kα,λq1,p1(⋅)(ωp1(⋅)). |
Finally, we estimate J3. Note that if x∈Ck, y∈Cj, and j≥k+2, then |x−y|≈|x|≈2j. By the Cp inequality and generalized Hölder inequality, for every j,k∈Z, we get
|Imβ,b(fj)(x)χk|≤C∫Cj|b(x)−b(y)|m|x−y|n−β|fj(y)|dyχk(x)≲2j(β−n)∫Cj|fj(y)||b(x)−b(y)|mdyχk(x)≲2j(β−n){|b(x)−bCj|m∫Cj|fj(y)|dy+∫Cj|fj(y)||b(y)−bCj|mdy}χk(x)≲2j(β−n)‖fj‖Lp1(⋅)(ωp1(⋅)){|b(x)−bCj|m‖χj‖(Lp1(⋅)(ωp1(⋅)))′+‖|b(y)−bCj|mχj‖(Lp1(⋅)(ωp1(⋅)))′}χk(x). | (3.9) |
Thus, by taking the Lp2(⋅)(ωp2(⋅))−norm for (3.9), by virtue of Lemma 2.11, we have
‖Imβ,b(fj)(x)χk‖Lp2(⋅)(ωp2(⋅))≲2j(β−n)‖fj‖Lp1(⋅)(ωp1(⋅)){‖|b(x)−bCj|mχk‖Lp2(⋅)(ωp2(⋅))‖χj‖(Lp1(⋅)(ωp1(⋅)))′+‖|b(y)−bCj|mχj‖(Lp1(⋅)(ωp1(⋅)))′‖χk‖Lp2(⋅)(ωp2(⋅))}≲2j(β−n)‖fj‖Lp1(⋅)(ωp1(⋅)){(j−k)m‖b‖mBMO(Rn)‖χk‖Lp2(⋅)(ωp2(⋅))‖χj‖(Lp1(⋅)(ωp1(⋅)))′+‖b‖mBMO(Rn)‖χj‖(Lp1(⋅)(ωp1(⋅)))′‖χk‖Lp2(⋅)(ωp2(⋅))}≲2j(β−n)(j−k)m‖b‖mBMO(Rn)‖fj‖Lp1(⋅)(ωp1(⋅))‖χk‖Lp2(⋅)(ωp2(⋅))‖χj‖(Lp1(⋅)(ωp1(⋅)))′. | (3.10) |
On the other hand, by (2.14) and (2.15), combining (2.17) and (3.5), we have
2j(β−n)‖χk‖Lp2(⋅)(ωp2(⋅))‖χj‖(Lp1(⋅)(ωp1(⋅)))′=2jβ‖χk‖Lp2(⋅)(ωp2(⋅))2−jn‖χj‖(Lp1(⋅)(ωp1(⋅)))′≲2jβ‖χk‖Lp2(⋅)(ωp2(⋅))‖χj‖−1Lp1(⋅)(ωp1(⋅))=2jβ‖χj‖−1Lp1(⋅)(ωp1(⋅))‖χj‖Lp2(⋅)(ωp2(⋅))‖χk‖Lp2(⋅)(ωp2(⋅))‖χj‖Lp2(⋅)(ωp2(⋅))≲2jβ2nδ1(k−j)‖χj‖−1Lp1(⋅)(ωp1(⋅))‖χj‖Lp2(⋅)(ωp2(⋅))≲2jβ2nδ1(k−j)2j(n−β)‖χj‖−1Lp1(⋅)(ωp1(⋅))‖χj‖−1(Lp1(⋅)(ωp1(⋅)))′=2jβ2nδ1(k−j)2−jβ(2−jn‖χj‖Lp1(⋅)(ωp1(⋅))‖χj‖(Lp1(⋅)(ωp1(⋅)))′)−1≲2nδ1(k−j). | (3.11) |
Hence, combining (3.10) and (3.11), we obtain
‖Imβ,b(fj)χk‖Lp2(⋅)(ωp2(⋅))≲2nδ1(k−j)(j−k)m‖b‖mBMO(Rn)‖fj‖Lp1(⋅)(ωp1(⋅)). | (3.12) |
Thus, by virtue of (3.9) and (3.12), remark that λ−nδ1<α, and we conclude that
J3=supL∈Z2−Lλq1{L∑k=−∞2kαq1(∞∑j=k+2‖Imβ,b(fj)χk‖Lp2(⋅)(ωp2(⋅)))q1}≲supL∈Z2−Lλq1{L∑k=−∞2kαq1(∞∑j=k+2(j−k)m‖b‖mBMO(Rn)‖fj‖Lp1(⋅)(ωp1(⋅))2nδ1(k−j))q1}≲‖b‖mq1BMO(Rn)‖f‖q1M˙Kα,λq1,p1(⋅)(ωp1(⋅))supL∈Z2−Lλq1{L∑k=−∞2kλq1(∞∑j=k+2(j−k)m2(j−k)(λ−nδ1−α))q1}≲‖b‖mq1BMO(Rn)‖f‖q1M˙Kα,λq1,p1(⋅)(ωp1(⋅))supL∈Z2−Lλq1(L∑k=−∞2kλq1)≲‖b‖mq1BMO(Rn)‖f‖q1M˙Kα,λq1,p1(⋅)(ωp1(⋅)). |
Combining the estimates of J1,J2,J3, we complete the proof of Theorem 3.1.
Theorem 3.2 Suppose that b∈BMO(Rn) and m∈N. Let 0≤λ<∞, 1<r<∞, p2(⋅)∈P(Rn)∩Clog(Rn), ωp2(⋅)∈A1, δ1,δ2∈(0,1) be the constants appearing in (2.17) and (2.18) respectively. α and β are such that
(i)−nδ1<α<nδ2−β
(ii)0<β<n(δ1+δ2).
Define p1(⋅) by 1p2(⋅)=1p1(⋅)−βn, then Imβ,b is bounded from M˙Kα,r),θλ,p2(⋅)(ωp2(⋅)) to M˙Kα,r),θλ,p1(⋅)(ωp1(⋅)).
Proof We prove the homogeneous case, as the nonhomogeneous case is similar. For all f∈M˙Kα,r),θλ,p2(⋅)(ωp2(⋅)) and ∀b∈BMO(Rn), if we denote fj:=fχj=fχCj for each j∈Z, then f=∑∞j=−∞fj. So we can write
f(x)=∞∑j=−∞f(x)χj(x)=∞∑j=−∞fj(x). |
Then we have
‖Imβ,b(f)‖M˙Kα,r),θλ,p2(⋅)(ωp2(⋅))=supδ>0supL∈Z2−Lλ(δθ∑k∈Z2kαr(1+δ)‖Imβ,b(f)χk‖r(1+δ)Lp2(⋅)(ωp2(⋅)))1r(1+δ)=supδ>0supL∈Z2−Lλ(δθ∑k∈Z2kαr(1+δ)∞∑j=−∞‖Imβ,b(fj)χk‖r(1+δ)Lp2(⋅)(ωp2(⋅)))1r(1+δ)≤supδ>0supL∈Z2−Lλ(δθ∑k∈Z2kαr(1+δ)∑j≤k−2‖Imβ,b(fj)χk‖r(1+δ)Lp2(⋅)(ωp2(⋅)))1r(1+δ)+supδ>0supL∈Z2−Lλ(δθ∑k∈Z2kαr(1+δ)k+1∑j=k−1‖Imβ,b(fj)χk‖r(1+δ)Lp2(⋅)(ωp2(⋅)))1r(1+δ)+supδ>0supL∈Z2−Lλ(δθ∑k∈Z2kαr(1+δ)∑j≥k+2‖Imβ,b(fj)χk‖r(1+δ)Lp2(⋅)(ωp2(⋅)))1r(1+δ)=:(J1+J2+J3). |
First, we estimate J1. Remark that α<nδ2−β, thus we consider two cases: 1<r(1+δ)<∞ and 0<r(1+δ)≤1. For the case 1<r(1+δ)<∞, by applying (3.7) and Hölder inequality, we have
J1=supδ>0supL∈Z2−Lλ(δθ∞∑k=−∞2kαr(1+δ)k−2∑j=−∞‖Imβ,b(fj)χk‖r(1+δ)Lp2(⋅)(ωp2(⋅)))1r(1+δ)≤supδ>0supL∈Z2−Lλ{δθ∞∑k=−∞2kαr(1+δ)(k−2∑j=−∞‖Imβ,b(fj)χk‖Lp2(⋅)(ωp2(⋅)))r(1+δ)}1r(1+δ)≲supδ>0supL∈Z2−Lλ{δθ∞∑k=−∞2kαr(1+δ)(k−2∑j=−∞‖b‖mBMO(Rn)‖fj‖Lp1(⋅)(ωp1(⋅))×(k−j)m2(β−nδ2)(k−j))r(1+δ)}1r(1+δ)≤‖b‖mBMO(Rn)×supδ>0supL∈Z2−Lλ{δθ∞∑k=−∞(k−2∑j=−∞2αj‖fj‖Lp1(⋅)(ωp1(⋅))(k−j)m2(β−nδ2+α)(k−j))r(1+δ)}1r(1+δ)≤‖b‖mBMO(Rn)×supδ>0supL∈Z2−Lλ{δθ∞∑k=−∞(k−2∑j=−∞2αjr(1+δ)‖fj‖r(1+δ)Lp1(⋅)(ωp1(⋅))(k−j)mr(1+δ)2(β−nδ2+α)(k−j)r(1+δ)2)×(k−2∑j=−∞2(β−nδ2+α)(k−j)(r(1+δ))′2)r(1+δ)(r(1+δ))′}1r(1+δ)≤‖b‖mBMO(Rn)×supδ>0supL∈Z2−Lλ{δθ∞∑k=−∞k−2∑j=−∞2αjr(1+δ)‖fj‖r(1+δ)Lp1(⋅)(ωp1(⋅))(k−j)mr(1+δ)2(β−nδ2+α)(k−j)r(1+δ)2}1r(1+δ)≤‖b‖mBMO(Rn)×supδ>0supL∈Z2−Lλ{δθ∞∑j=−∞2αjr(1+δ)‖fj‖r(1+δ)Lp1(⋅)(ωp1(⋅))∑k≥j+2(k−j)mr(1+δ)2(β−nδ2+α)(k−j)r(1+δ)2}1r(1+δ)≤‖b‖mBMO(Rn)supδ>0supL∈Z2−Lλ{δθ∞∑j=−∞2αjr(1+δ)‖fj‖r(1+δ)Lp1(⋅)(ωp1(⋅))}1r(1+δ)≤‖b‖mBMO(Rn)‖f‖M˙Kα,r),θλ,p1(⋅)(ωp1(⋅)). |
For 0<r(1+δ)≤1, by virtue of (3.7), we have
J1=supδ>0supL∈Z2−Lλ(δθ∞∑k=−∞2kαr(1+δ)k−2∑j=−∞‖Imβ,b(fj)χk‖r(1+δ)Lp2(⋅)(ωp2(⋅)))1r(1+δ)≤supδ>0supL∈Z2−Lλ{δθ∞∑k=−∞2kαr(1+δ)(k−2∑j=−∞‖Imβ,b(fj)χk‖Lp2(⋅)(ωp2(⋅)))r(1+δ)}1r(1+δ)≲supδ>0supL∈Z2−Lλ{δθ∞∑k=−∞2kαr(1+δ)(k−2∑j=−∞‖b‖mBMO(Rn)‖fj‖Lp1(⋅)(ωp1(⋅))×(k−j)m2(β−nδ2)(k−j))r(1+δ)}1r(1+δ)≤‖b‖mBMO(Rn)×supδ>0supL∈Z2−Lλ{δθ∞∑k=−∞(2αjk−2∑j=−∞‖fj‖Lp1(⋅)(ωp1(⋅))(k−j)m2(β−nδ2+α)(k−j))r(1+δ)}1r(1+δ)≤‖b‖mBMO(Rn)×supδ>0supL∈Z2−Lλ{δθ∞∑k=−∞k−2∑j=−∞2αjr(1+δ)‖fj‖r(1+δ)Lp1(⋅)(ωp1(⋅))(k−j)mr(1+δ)2(β−nδ2+α)(k−j)r(1+δ)}1r(1+δ)≤‖b‖mBMO(Rn)×supδ>0supL∈Z2−Lλ{δθ∞∑j=−∞2αjr(1+δ)‖fj‖r(1+δ)Lp1(⋅)(ωp1(⋅))∑k≥j+2(k−j)mr(1+δ)2(β−nδ2+α)(k−j)r(1+δ)}1r(1+δ)≤‖b‖mBMO(Rn)×supδ>0supL∈Z2−Lλ{δθ∞∑j=−∞2αjr(1+δ)‖fj‖r(1+δ)Lp1(⋅)(ωp1(⋅))}1r(1+δ)≤‖b‖mBMO(Rn)‖f‖M˙Kα,r),θλ,p1(⋅)(ωp1(⋅)). |
Next, we estimate J2. Using Lemma 2.9, we get
J2=supδ>0supL∈Z2−Lλ(δθ∑k∈Z2kαr(1+δ)k+1∑j=k−1‖Imβ,b(fj)χk‖r(1+δ)Lp2(⋅)(ωp2(⋅)))1r(1+δ)≲‖b‖mBMO(Rn)supδ>0supL∈Z2−Lλ(δθ∑k∈Z2kαr(1+δ)k+1∑j=k−1‖(fχj)‖r(1+δ)Lp1(⋅)(ωp1(⋅)))1r(1+δ)≤‖b‖mBMO(Rn)supδ>0supL∈Z2−Lλ(δθ∑k∈Z2kαr(1+δ)‖(fχk)‖r(1+δ)Lp1(⋅)(ωp1(⋅)))1r(1+δ)≤‖b‖mBMO(Rn)‖f‖M˙Kα,r),θλ,p1(⋅)(ωp1(⋅)). |
Finally, we estimate J3. By virtue of (3.12), we have
J3=supδ>0supL∈Z2−Lλ(δθ∑k∈Z2kαr(1+δ)∑j≥k+2‖Imβ,b(fj)χk‖r(1+δ)Lp2(⋅)(ωp2(⋅)))1r(1+δ)≲‖b‖mBMO(Rn)×supδ>0supL∈Z2−Lλ(δθ∑k∈Z2kαr(1+δ)∑j≥k+22nδ1(k−j)r(1+δ)(j−k)mr(1+δ)‖fj‖r(1+δ)Lp1(⋅)(ωp1(⋅)))1r(1+δ)≤‖b‖mBMO(Rn)×supδ>0supL∈Z2−Lλ{δθ∑k∈Z(∑j≥k+2‖fj‖Lp1(⋅)(ωp1(⋅))(j−k)m2αj2(α+nδ1)(k−j))r(1+δ)}1r(1+δ). |
Remark that α+nδ1>0, thus we consider two cases 1<r(1+δ)<∞ and 0<r(1+δ)≤1. For the case 1<r(1+δ)<∞, by applying Hölder inequality, we have
J3≤‖b‖mBMO(Rn)×supδ>0supL∈Z2−Lλ{δθ∑k∈Z(∑j≥k+2‖fj‖Lp1(⋅)(ωp1(⋅))(j−k)m2αj2(α+nδ1)(k−j))r(1+δ)}1r(1+δ)≤‖b‖mBMO(Rn)×supδ>0supL∈Z2−Lλ{δθ∞∑k=−∞(∑j≥k+22αjr(1+δ)‖fj‖r(1+δ)Lp1(⋅)(ωp1(⋅))(j−k)mr(1+δ)2(nδ1+α)(k−j)r(1+δ)2)×(∑j≥k+22(nδ1+α)(k−j)(r(1+δ))′2)r(1+δ)(r(1+δ))′}1r(1+δ)≤‖b‖mBMO(Rn)×supδ>0supL∈Z2−Lλ{δθ∞∑k=−∞∑j≥k+22αjr(1+δ)‖fj‖r(1+δ)Lp1(⋅)(ωp1(⋅))(j−k)mr(1+δ)2(nδ1+α)(k−j)r(1+δ)2}1r(1+δ)≤‖b‖mBMO(Rn)×supδ>0supL∈Z2−Lλ{δθ∞∑j=−∞2αjr(1+δ)‖fj‖r(1+δ)Lp1(⋅)(ωp1(⋅))∑k≤j−2(j−k)mr(1+δ)2(nδ1+α)(k−j)r(1+δ)2}1r(1+δ)≤‖b‖mBMO(Rn)supδ>0supL∈Z2−Lλ{δθ∞∑j=−∞2αjr(1+δ)‖fj‖r(1+δ)Lp1(⋅)(ωp1(⋅))}1r(1+δ)≤‖b‖mBMO(Rn)‖f‖M˙Kα,r),θλ,p1(⋅)(ωp1(⋅)). |
For 0<r(1+δ)≤1, we have
J3≤‖b‖mBMO(Rn)×supδ>0supL∈Z2−Lλ{δθ∑k∈Z(∑j≥k+2‖fj‖Lp1(⋅)(ωp1(⋅))(j−k)m2αj2(α+nδ1)(k−j))r(1+δ)}1r(1+δ)≤‖b‖mBMO(Rn)×supδ>0supL∈Z2−Lλ{δθ∞∑k=−∞∑j≥k+22αjr(1+δ)‖fj‖r(1+δ)Lp1(⋅)(ωp1(⋅))(j−k)mr(1+δ)2(nδ1+α)(k−j)r(1+δ)}1r(1+δ)≤‖b‖mBMO(Rn)×supδ>0supL∈Z2−Lλ{δθ∞∑j=−∞2αjr(1+δ)‖fj‖r(1+δ)Lp1(⋅)(ωp1(⋅))∑k≤j−2(j−k)mr(1+δ)2(nδ1+α)(k−j)r(1+δ)}1r(1+δ)≤‖b‖mBMO(Rn)supδ>0supL∈Z2−Lλ{δθ∞∑j=−∞2αjr(1+δ)‖fj‖r(1+δ)Lp1(⋅)(ωp1(⋅))}1r(1+δ)≤‖b‖mBMO(Rn)‖f‖M˙Kα,r),θλ,p1(⋅)(ωp1(⋅)). |
Combining the estimates of J1,J2,J3, we complete the proof of Theorem 3.2.
Remark 3.3 When λ=0 and m=0, Theorem 3.1 holds on weighted variable-exponent Herz spaces and generalizes the result of Izuki in [18] (see Theorem 4). When 0<λ<n and m=1, Theorem 3.1 has been proved by Zhao in [26] (see Theorem 2.2). When m=0, Theorem 3.2 holds on grand weighted variable-exponent Herz-Morrey spaces, and generalizes the result of Sultan in [32] (see Theorem 2).
In this section, under some assumed conditions, we first establish the boundedness of the m−order multilinear fractional Hardy operator Hβ,m on weighted variable exponent Herz-Morrey spaces M˙Kα,λq,p(⋅)(ω). Then, we establish the boundedness of the adjoint operator of the m−order multilinear fractional Hardy operator H∗β,m on weighted variable-exponent Herz-Morrey spaces M˙Kα,λq,p(⋅)(ω). As a corollary of the above two results, we also obtain the corresponding result for multilinear Hardy operator Hm and its adjoint operator H∗m.
Theorem 4.1 Let pi(⋅)∈P(Rn)∩Clog(Rn)(i=1,2,⋯,m,m∈Z+), p(⋅) is defined as follows:
m∑i=11pi(x)−1p(x)=βn. |
Let 0<β<mnmax1≤i≤m(pi)+, 0<qi<∞, λi>0, 1q=∑mi=11qi−βn, λ=∑mi=1λi, α=∑mi=1αi, ω∈Ap(⋅), ωi∈Api(⋅), ω=∏mi=1ωi, αi<λi+nδi2, where δi2∈(0,1) are the constants in (2.18) for exponents pi(⋅) and weights ωpi(⋅)i, then
‖Hβ,m(→f)‖M˙Kα,λq,p(⋅)(ωp(⋅))≤Cm∏i=1‖fi‖M˙Kαi,λiqi,pi(⋅)(ωpi(⋅)i). |
Proof We prove the homogeneous case, since the nonhomogeneous case is similar. Without loss of generality, we only consider the case m=2. Actually, a similar procedure works for all m∈Z+(m≥1). When m=2, then we have
Hβ,2(→f)(x)=1|x|2n−β∫|t1|<|x|∫|t2|<|x|f1(t1)f2(t2)dt1dt2. |
For arbitrary fi∈M˙Kαi,λiqi,pi(⋅)(ωpi(⋅)i)(i=1,2), let fki:=fi⋅χki=fi⋅χCki, then
fi(x)=∞∑ki=−∞fi(x)⋅χki(x)=∞∑ki=−∞fki(x). |
By virtue of the definition of Hβ,2 and generalized Hölder inequality (2.13), we have
|Hβ,2(→f)(x)⋅χk(x)|≤1|x|2n−β∫|t1|<|x|∫|t2|<|x||f1(t1)f2(t2)|dt1dt2⋅χk(x)≲2k(β−2n)∫Bk∫Bk|f1(t1)f2(t2)|dt1dt2⋅χk(x)≲2k(β−2n)k∑k1=−∞k∑k2=−∞∫Ck1∫Ck2|f1(t1)f2(t2)|dt1dt2⋅χk(x)≲2k(β−2n)k∑k1=−∞k∑k2=−∞(∫Ck1|f1(t1)|dt1)(∫Ck2|f2(t2)|dt2)⋅χk(x)≲2k(β−2n)k∑k1=−∞k∑k2=−∞(‖fk1‖Lp1(⋅)(ωp1(⋅)1)‖fk2‖Lp2(⋅)(ωp2(⋅)2)⋅‖χk1‖(Lp1(⋅)(ωp1(⋅)1))′‖χk2‖(Lp2(⋅)(ωp2(⋅)2))′)χk(x). | (4.1) |
Note that if u(⋅),p1(⋅),p2(⋅)∈P(Rn) such that 1u(x)=1p1(x)+1p2(x) for x∈Rn, and ω∈Au(⋅) with ωi∈Api(⋅), ω=∏2i=1ωi, by (2.19) of Lemma 2.10, we have
‖fg‖Lu(⋅)(ωu(⋅))=‖fgω‖Lu(⋅)(Rn)=‖fω1gω2‖Lp(⋅)(Rn)≲‖fω1‖Lp1(⋅)(Rn)‖gω2‖Lp2(⋅)(Rn)=‖f‖Lp1(⋅)(ωp1(⋅)1)‖g‖Lp2(⋅)(ωp2(⋅)2). | (4.2) |
By virtue of (2.16) of Lemma 2.6, we have
‖χk‖X‖χBk‖X≤(|Ck||Bk|)δ=C⟹‖χk‖X≤C‖χBk‖X. | (4.3) |
Let 1u(x)=1p1(x)+1p2(x), then by the condition of Theorem 4.1, it implies that βn=1u(x)−1p(x). Note that χBk≤C2−kβIβ(χBk)(x) (see [11] p.350), by virtue of (2.15), (4.2), (4.3), and Lemma 2.8, we have
‖χk‖Lp(⋅)(ωp(⋅))≤‖χBk‖Lp(⋅)(ωp(⋅))≲2−kβ‖Iβ(χBk)‖Lp(⋅)(ωp(⋅))≲2−kβ‖χBk‖Lu(⋅)(ωu(⋅))≲2−kβ‖χBk‖Lp1(⋅)(ωp1(⋅)1)‖χBk‖Lp2(⋅)(ωp2(⋅)2)≲2k(2n−β)‖χBk‖−1(Lp1(⋅)(ωp1(⋅)1))′‖χBk‖−1(Lp2(⋅)(ωp2(⋅)2))′≲2k(2n−β)‖χk‖−1(Lp1(⋅)(ωp1(⋅)1))′‖χk‖−1(Lp2(⋅)(ωp2(⋅)2))′ | (4.4) |
Remark that k1≤k,k2≤k. By applying (2.18) and (4.4), we have
2k(β−2n)‖χk1‖(Lp1(⋅)(ωp1(⋅)1))′‖χk2‖(Lp2(⋅)(ωp2(⋅)2))′‖χk‖Lp(⋅)(ωp(⋅))≲‖χk1‖(Lp1(⋅)(ωp1(⋅)1))′‖χk‖(Lp1(⋅)(ωp1(⋅)1))′‖χk2‖(Lp2(⋅)(ωp2(⋅)2))′‖χk‖(Lp2(⋅)(ωp2(⋅)2))′≲2(k1−k)nδ122(k2−k)nδ22. | (4.5) |
Thus, by taking the Lp(⋅)(ωp(⋅))−norm for (4.1), and by virtue of (4.5), we have
‖Hβ,2(→f)⋅χk‖Lp(⋅)(ωp(⋅))≲2k(β−2n)k∑k1=−∞k∑k2=−∞(‖fk1‖Lp1(⋅)(ωp1(⋅)1)‖fk2‖Lp2(⋅)(ωp2(⋅)2)⋅‖χk1‖(Lp1(⋅)(ωp1(⋅)1))′‖χk2‖(Lp2(⋅)(ωp2(⋅)2))′)‖χk‖Lp(⋅)(ωp(⋅))≲(k∑k1=−∞2(k1−k)nδ12‖fk1‖Lp1(⋅)(ωp1(⋅)1))(k∑k2=−∞2(k2−k)nδ22‖fk2‖Lp2(⋅)(ωp2(⋅)2))≲2∏i=1(k∑ki=−∞2(ki−k)nδi2‖fki‖Lpi(⋅)(ωpi(⋅)i)). | (4.6) |
Let 0<γ≤1, then by the Jensen inequality it follows that
(∞∑j=−∞|aj|)γ≤∞∑j=−∞|aj|γ, | (4.7) |
Let 1v=1q1+1q2, then 1q=1v−βn, therefore q>v. By applying (4.6), (4.7), and Hölder inequality in sequential form, we have
‖Hβ,2(→f)‖M˙Kα,λq,p(⋅)(ωp(⋅))=supL∈Z2−Lλ{L∑k=−∞2kαq‖Hβ,2(→f)χk‖qLp(⋅)(ωp(⋅))}1q≲supL∈Z2−Lλ{L∑k=−∞2kαq2∏i=1(k∑ki=−∞2(ki−k)nδi2‖fki‖Lpi(⋅)(ωpi(⋅)i))q}1q≲supL∈Z2−Lλ{L∑k=−∞2∏i=1(k∑ki=−∞2kαi+(ki−k)nδi2‖fki‖Lpi(⋅)(ωpi(⋅)i))q}1q≲supL∈Z2−Lλ{L∑k=−∞2∏i=1(k∑ki=−∞2kαi+(ki−k)nδi2‖fki‖Lpi(⋅)(ωpi(⋅)i))v}1v≲2∏i=1supL∈Z2−Lλi{L∑k=−∞(k∑ki=−∞2kαi+(ki−k)nδi2‖fki‖Lpi(⋅)(ωpi(⋅)i))qi}1qi. | (4.8) |
on the other hand, note the following fact:
‖fki‖Lpi(⋅)(ωpi(⋅)i)=2−kiαi(2kiαiqi‖fiχki‖qiLpi(⋅)(ωpi(⋅)i))1qi≤2−kiαi(ki∑ji=−∞2jiαiqi‖fiχji‖qiLpi(⋅)(ωpi(⋅)i))1qi=2ki(λi−αi){2−kiλi(ki∑ji=−∞2jiαiqi‖fiχji‖qiLpi(⋅)(ωpi(⋅)i))1qi}≲2ki(λi−αi)‖fi‖M˙Kαi,λiqi,pi(⋅)(ωpi(⋅)i). | (4.9) |
Remark that αi<λi+nδi2. By applying (4.7), (4.8), and (4.9), we have
‖Hβ,2(→f)‖M˙Kα,λq,p(⋅)(ωp(⋅))≲2∏i=1supL∈Z2−Lλi{L∑k=−∞(k∑ki=−∞2kαi+(ki−k)nδi2‖fki‖Lpi(⋅)(ωpi(⋅)i))qi}1qi≲2∏i=1‖fi‖M˙Kαi,λiqi,pi(⋅)(ωpi(⋅)i)supL∈Z2−Lλi{L∑k=−∞2kλiqi(k∑ki=−∞2(ki−k)(λi−αi+nδi2))qi}1qi≲2∏i=1‖fi‖M˙Kαi,λiqi,pi(⋅)(ωpi(⋅)i)supL∈Z2−Lλi(L∑k=−∞2kλiqi)1qi≲2∏i=1‖fi‖M˙Kαi,λiqi,pi(⋅)(ωpi(⋅)i). |
This finishes the proof of Theorem 4.1.
Theorem 4.2 Let pi(⋅)∈P(Rn)∩Clog(Rn)(i=1,2,⋯,m,m∈Z+), p(⋅) is defined as follows:
m∑i=11pi(x)−1p(x)=βn. |
Let 0<β<mnmax1≤i≤m(pi)+, 0<qi<∞, λi>0, 1q=∑mi=11qi−βn, λ=∑mi=1λi, α=∑mi=1αi, ω∈Ap(⋅), ωi∈Api(⋅), ω=∏mi=1ωi, αi>λi+βm−nδi1, where δi1∈(0,1) are the constants in (2.17) for exponents pi(⋅) and weights ωpi(⋅)i, then
‖H∗β,m(→f)‖M˙Kα,λq,p(⋅)(ωp(⋅))≤Cm∏i=1‖fi‖M˙Kαi,λiqi,pi(⋅)(ωpi(⋅)i). |
Proof We prove the homogeneous case, since the nonhomogeneous case is similar. Without loss of generality, we only consider the case m=2. Actually, a similar procedure works for all m∈Z+(m≥1). When m=2, then we have
H∗β,2(→f)(x)=∫|t1|≥|x|∫|t2|≥|x|f1(t1)f2(t2)|(t1,t2)|2n−βdt1dt2. |
For arbitrary fi∈M˙Kαi,λiqi,pi(⋅)(ωpi(⋅)i)(i=1,2), let fki:=fi⋅χki=fi⋅χCki, then
fi(x)=∞∑ki=−∞fi(x)⋅χki(x)=∞∑ki=−∞fki(x). |
Note that |t1|n−β2|t2|n−β2<|(t1,t2)|2n−β (see [37] p.11). By virtue of the definition of H∗β,2 and generalized Hölder inequality, we have
|H∗β,2(→f)(x)⋅χk(x)|≤∫|t1|≥|x|∫|t2|≥|x||f1(t1)f2(t2)||(t1,t2)|2n−βdt1dt2⋅χk(x)≤∞∑k1=k∞∑k2=k∫Ck1∫Ck2|f1(t1)f2(t2)||(t1,t2)|2n−βdt1dt2⋅χk(x)≲∞∑k1=k∞∑k2=k2(k1+k2)(β2−n)(∫Ck1|f1(t1)|dt1)(∫Ck2|f2(t2)|dt2)⋅χk(x)≲∞∑k1=k∞∑k2=k2(k1+k2)(β2−n)(‖fk1‖Lp1(⋅)(ωp1(⋅)1)‖fk2‖Lp2(⋅)(ωp2(⋅)2)⋅‖χk1‖(Lp1(⋅)(ωp1(⋅)1))′‖χk2‖(Lp2(⋅)(ωp2(⋅)2))′)χk(x). | (4.10) |
Remark that k1≥k,k2≥k. By applying (2.14), (2.17), and (4.4), we have
2(k1+k2)(β2−n)‖χk1‖(Lp1(⋅)(ωp1(⋅)1))′‖χk2‖(Lp2(⋅)(ωp2(⋅)2))′‖χk‖Lp(⋅)(ωp(⋅))≲2(k1+k2)(β2−n)‖χk1‖(Lp1(⋅)(ωp1(⋅)1))′‖χk2‖(Lp2(⋅)(ωp2(⋅)2))′2k(2n−β)‖χk‖−1(Lp1(⋅)(ωp1(⋅)1))′‖χk‖−1(Lp2(⋅)(ωp2(⋅)2))′≲2(k1+k2)(β2−n)‖χk1‖(Lp1(⋅)(ωp1(⋅)1))′‖χk2‖(Lp2(⋅)(ωp2(⋅)2))′2−kβ‖χk‖Lp1(⋅)(ωp1(⋅)1)‖χk‖Lp2(⋅)(ωp2(⋅)2)≲2(k1+k2)(β2−n)2nk1‖χk1‖−1Lp1(⋅)(ωp1(⋅)1)2nk2‖χk2‖−1Lp2(⋅)(ωp2(⋅)2)2−kβ‖χk‖Lp1(⋅)(ωp1(⋅)1)‖χk‖Lp2(⋅)(ωp2(⋅)2)=2(k1+k2−2k)β2‖χk1‖−1Lp1(⋅)(ωp1(⋅)1)‖χk2‖−1Lp2(⋅)(ωp2(⋅)2)‖χk‖Lp1(⋅)(ωp1(⋅)1)‖χk‖Lp2(⋅)(ωp2(⋅)2)=2(k1+k2−2k)β2‖χk‖Lp1(⋅)(ωp1(⋅)1)‖χk1‖Lp1(⋅)(ωp1(⋅)1)‖χk‖Lp2(⋅)(ωp2(⋅)2)‖χk2‖Lp2(⋅)(ωp2(⋅)2)≲2(k1+k2−2k)β22(k−k1)nδ112(k−k2)nδ21=2(k1−k)(β2−nδ11)2(k1−k)(β2−nδ21). | (4.11) |
Thus, by taking the Lp(⋅)(ωp(⋅))−norm for (4.10), and by virtue of (4.11), we have
‖H∗β,2(→f)⋅χk‖Lp(⋅)(ωp(⋅))≲∞∑k1=k∞∑k2=k2(k1+k2)(β2−n)(‖fk1‖Lp1(⋅)(ωp1(⋅)1)‖fk2‖Lp2(⋅)(ωp2(⋅)2)⋅‖χk1‖(Lp1(⋅)(ωp1(⋅)1))′‖χk2‖(Lp2(⋅)(ωp2(⋅)2))′)‖χk‖Lp(⋅)(ωp(⋅))≲(∞∑k1=k2(k1−k)(β2−nδ11)‖fk1‖Lp1(⋅)(ωp1(⋅)1))(∞∑k2=k2(k2−k)(β2−nδ21)‖fk2‖Lp2(⋅)(ωp2(⋅)2))≲2∏i=1(∞∑ki=k2(ki−k)(β2−nδi1)‖fki‖Lpi(⋅)(ωpi(⋅)i)). | (4.12) |
Let 1v=1q1+1q2, then 1q=1v−βn; therefore, q>v. By applying (4.7), (4.12), and Hölder inequality in sequential form, we have
‖H∗β,2(→f)‖M˙Kα,λq,p(⋅)(ωp(⋅))=supL∈Z2−Lλ{L∑k=−∞2kαq‖H∗β,2(→f)χk‖qLp(⋅)(ωp(⋅))}1q≲supL∈Z2−Lλ{L∑k=−∞2kαq2∏i=1(∞∑ki=k2(ki−k)(β2−nδi1)‖fki‖Lpi(⋅)(ωpi(⋅)i))q}1q≲supL∈Z2−Lλ{L∑k=−∞2∏i=1(∞∑ki=k2kαi+(ki−k)(β2−nδi1)‖fki‖Lpi(⋅)(ωpi(⋅)i))q}1q≲supL∈Z2−Lλ{L∑k=−∞2∏i=1(∞∑ki=k2kαi+(ki−k)(β2−nδi1)‖fki‖Lpi(⋅)(ωpi(⋅)i))v}1v≲2∏i=1supL∈Z2−Lλi{L∑k=−∞(∞∑ki=k2kαi+(ki−k)(β2−nδi1)‖fki‖Lpi(⋅)(ωpi(⋅)i))qi}1qi. | (4.13) |
Remark that αi>λi+β2−nδi1. By applying (4.7), (4.9), and (4.13), we have
‖H∗β,2(→f)‖M˙Kα,λq,p(⋅)(ωp(⋅))≲2∏i=1supL∈Z2−Lλi{L∑k=−∞(∞∑ki=k2kαi+(ki−k)(β2−nδi1)‖fki‖Lpi(⋅)(ωpi(⋅)i))qi}1qi≲2∏i=1‖fi‖M˙Kαi,λiqi,pi(⋅)(ωpi(⋅)i)supL∈Z2−Lλi{L∑k=−∞2kλiqi(∞∑ki=k2(ki−k)(λi+β2−αi−nδi1))qi}1qi≲2∏i=1‖fi‖M˙Kαi,λiqi,pi(⋅)(ωpi(⋅)i)supL∈Z2−Lλi(L∑k=−∞2kλiqi)1qi≲2∏i=1‖fi‖M˙Kαi,λiqi,pi(⋅)(ωpi(⋅)i). |
This finishes the proof of Theorem 4.2.
Theorem 4.3 Let pi(⋅)∈P(Rn)∩Clog(Rn)(i=1,2,⋯,m,m∈Z+), p(⋅) is defined as follows:
m∑i=11pi(x)=1p(x). |
Let 0<qi<∞, λi>0, 1q=∑mi=11qi, λ=∑mi=1λi, ω∈Ap(⋅), ωi∈Api(⋅), ω=∏mi=1ωi, δi1,δi2∈(0,1) are the constants in Lemma 2.7 for exponents pi(⋅) and weights ωpi(⋅)i, then
(i) When αi<λi+nδi2, we have
‖Hm(→f)‖M˙Kα,λq,p(⋅)(ωp(⋅))≤Cm∏i=1‖fi‖M˙Kαi,λiqi,pi(⋅)(ωpi(⋅)i). |
(ii) When αi>λi−nδi1, we have
‖H∗m(→f)‖M˙Kα,λq,p(⋅)(ωp(⋅))≤Cm∏i=1‖fi‖M˙Kαi,λiqi,pi(⋅)(ωpi(⋅)i). |
Proof(i) We prove the homogeneous case, since the nonhomogeneous case is similar. Since the proof method is similar to the Theorem 4.1, we only give the proof idea here and omit the detailed proof. Without loss of generality, we only consider the case m=2. Actually, a similar procedure works for all m∈Z+(m≥1). When m=2, similar to the estimation of (4.1), by virtue of the definition of H2 and generalized Hölder inequality, we have
|H2(→f)(x)⋅χk(x)|≲2−2knk∑k1=−∞k∑k2=−∞(‖fk1‖Lp1(⋅)(ωp1(⋅)1)‖fk2‖Lp2(⋅)(ωp2(⋅)2)⋅‖χk1‖(Lp1(⋅)(ωp1(⋅)1))′‖χk2‖(Lp2(⋅)(ωp2(⋅)2))′)χk(x). | (4.14) |
By taking the Lp(⋅)(ωp(⋅))−norm for (4.14) and applying (2.18) and (4.4), we have
‖H2(→f)⋅χk‖Lp(⋅)(ωp(⋅))≲2−2knk∑k1=−∞k∑k2=−∞{‖fk1‖Lp1(⋅)(ωp1(⋅)1)‖fk2‖Lp2(⋅)(ωp2(⋅)2)⋅‖χk1‖(Lp1(⋅)(ωp1(⋅)1))′‖χk2‖(Lp2(⋅)(ωp2(⋅)2))′}‖χk‖Lp(⋅)(ωp(⋅))≲2−2knk∑k1=−∞k∑k2=−∞{‖fk1‖Lp1(⋅)(ωp1(⋅)1)‖fk2‖Lp2(⋅)(ωp2(⋅)2)⋅‖χk1‖(Lp1(⋅)(ωp1(⋅)1))′‖χk2‖(Lp2(⋅)(ωp2(⋅)2))′}2k(2n−β)‖χk‖−1(Lp1(⋅)(ωp1(⋅)1))′‖χk‖−1(Lp2(⋅)(ωp2(⋅)2))′≲2∏i=1{k∑ki=−∞‖fki‖Lpi(⋅)(ωpi(⋅)i)‖χki‖(Lpi(⋅)(ωpi(⋅)i))′‖χk‖−1(Lpi(⋅)(ωpi(⋅)i))′}=2∏i=1{k∑ki=−∞‖fki‖Lpi(⋅)(ωpi(⋅)i)‖χki‖(Lpi(⋅)(ωpi(⋅)i))′‖χk‖(Lpi(⋅)(ωpi(⋅)))′}≲2∏i=1{k∑ki=−∞2(ki−k)nδi2‖fki‖Lpi(⋅)(ωpi(⋅)i)}. | (4.15) |
Next, the required results are obtained in a way similar to the proof of Theorem 4.1.
(ii) We prove the homogeneous case, since the nonhomogeneous case is similar. Since the proof method is similar to the Theorem 4.2, we only give the proof idea here and omit the detailed proof. Without loss of generality, we only consider the case m=2. Actually, a similar procedure works for all m∈Z+(m≥1). When m=2, similar to the estimation of (4.10), by virtue of the definition of H∗2 and generalized Hölder inequality, we have
|H∗2(→f)(x)⋅χk(x)|≲∞∑k1=k∞∑k2=k2(−n)(k1+k2)(‖fk1‖Lp1(⋅)(ωp1(⋅)1)‖fk2‖Lp2(⋅)(ωp2(⋅)2)⋅‖χk1‖(Lp1(⋅)(ωp1(⋅)1))′‖χk2‖(Lp2(⋅)(ωp2(⋅)2))′)χk(x). | (4.16) |
By taking the Lp(⋅)(ωp(⋅))−norm for (4.16), applying (2.14), (2.15), (2.17), and (4.4), we have
‖H∗2(→f)⋅χk‖Lp(⋅)(ωp(⋅))≲2(−n)(k1+k2)∞∑k1=k∞∑k2=k{‖fk1‖Lp1(⋅)(ωp1(⋅)1)‖fk2‖Lp2(⋅)(ωp2(⋅)2)⋅‖χk1‖(Lp1(⋅)(ωp1(⋅)1))′‖χk2‖(Lp2(⋅)(ωp2(⋅)2))′}2k(2n−β)‖χk‖−1(Lp1(⋅)(ωp1(⋅)1))′‖χk‖−1(Lp2(⋅)(ωp2(⋅)2))′≲∞∑k1=k∞∑k2=k{‖fk1‖Lp1(⋅)(ωp1(⋅)1)‖fk2‖Lp2(⋅)(ωp2(⋅)2)⋅2−nk1‖χk1‖(Lp1(⋅)(ωp1(⋅)1))′2−nk2‖χk2‖(Lp2(⋅)(ωp2(⋅)2))′}‖χk‖Lp1(⋅)(ωp1(⋅)1)‖χk‖Lp2(⋅)(ωp2(⋅)2)≲2∏i=1{∞∑ki=k‖fki‖Lpi(⋅)(ωpi(⋅)i)‖χki‖−1Lpi(⋅)(ωpi(⋅)i)‖χk‖Lpi(⋅)(ωpi(⋅)i)}=2∏i=1{∞∑ki=k‖fki‖Lpi(⋅)(ωpi(⋅)i)‖χk‖Lpi(⋅)(ωpi(⋅)i)‖χki‖Lpi(⋅)(ωpi(⋅))}≲2∏i=1{∞∑ki=k2(k−ki)nδi1‖fki‖Lpi(⋅)(ωpi(⋅)i)}. | (4.17) |
Similar to the estimation of (4.13). By applying (4.7), (4.17), and Hölder inequality in sequential form, we have
‖H∗2(→f)‖M˙Kα,λq,p(⋅)(ωp(⋅))≲2∏i=1supL∈Z2−Lλi{L∑k=−∞(∞∑ki=k2kαi+(k−ki)nδi1‖fki‖Lpi(⋅)(ωpi(⋅)i))qi}1qi. | (4.18) |
Remark that αi>λi−nδi1. By applying (4.7), (4.9), and (4.18), we have
‖H∗2(→f)‖M˙Kα,λq,p(⋅)(ωp(⋅))≲2∏i=1supL∈Z2−Lλi{L∑k=−∞(∞∑ki=k2kαi+(k−ki)nδi1‖fki‖Lpi(⋅)(ωpi(⋅)i))qi}1qi≲2∏i=1‖fi‖M˙Kαi,λiqi,pi(⋅)(ωpi(⋅)i)supL∈Z2−Lλi{L∑k=−∞2kλiqi(∞∑ki=k2(k−ki)(αi+nδi1−λi))qi}1qi≲2∏i=1‖fi‖M˙Kαi,λiqi,pi(⋅)(ωpi(⋅)i)supL∈Z2−Lλi(L∑k=−∞2kλiqi)1qi≲2∏i=1‖fi‖M˙Kαi,λiqi,pi(⋅)(ωpi(⋅)i). |
This finishes the proof idea of Theorem 4.3.
Remark 4.4 Because of M˙Kα,0q,p(⋅)(ω)=˙Kα,qp(⋅)(ω), let λ=0 from Theorem 4.1 and Theorem 4.2. Then we can obtain the boundedness of the m−order multilinear fractional Hardy operator Hβ,m and its adjoint operator H∗β,m from the weighted variable-exponent Herz product space
Kα1,q1p1(⋅)(ωp1(⋅)1)×Kα2,q2p2(⋅)(ωp2(⋅)2)×⋯×Kαm,qmpm(⋅)(ωpm(⋅)m) |
to the homogeneous weighted variable-exponent Herz space Kα,qp(⋅)(ωp(⋅)). Obviously, from Theorem 4.3, the m−order multilinear Hardy operator H and its adjoint operator H∗ have similar results.
This paper first considered the boundedness of higher-order commutators Imβ,b generated by the fractional integral operator with BMO functions on weighted variable-exponent Herz-Morrey spaces M˙Kα,λq,p(⋅)(ω) and grand weighted variable-exponent Herz-Morrey spaces M˙Kα,r),θλ,p(⋅)(ω), and generalized Theorem 4 of Izuki [18] as well as Theorem 2 of Sultan [32]. Then, we considered the boundedness of the m−order multilinear fractional Hardy operator Hβ,m and its adjoint operator H∗β,m on weighted variable-exponent Herz-Morrey spaces M˙Kα,λq,p(⋅)(ω), and generalized some relevant results of Wu [12].
Ming Liu and Binhua Feng wrote the main manuscript text and approved the final manuscript.
The authors declare they have not used Artificial Intelligence (AI) tools in the creation of this article.
We wish to thank the handing editor and the referees for their valuable comments and suggestions. B. Feng is supported by the National Natural Science Foundation of China (No.12461035,12261079), the Natural Science Foundation of Gansu Province (No.24JRRA242).
The authors declare there is no conflict of interest.
[1] |
K. Nikodem, On convex stochastic processes, Aequationes Math., 20 (1980), 184–197. doi: 10.1007/BF02190513
![]() |
[2] |
A. Skowronski, On some properties of j-convex stochastic processes, Aequationes Math., 44 (1992), 249–258. doi: 10.1007/BF01830983
![]() |
[3] | A. Skowronski, On Wright-convex stochastic processes, Ann. Math. Sil, 9 (1995), 29–32. |
[4] | Z. Pales, Nonconvex functions and separation by power means, Math. Inequal. Appl., 3 (2000), 169–176. |
[5] |
D. Kotrys, Hermite-Hadamard inequality for convex stochastic processes, Aequationes Math., 83 (2012), 143–151. doi: 10.1007/s00010-011-0090-1
![]() |
[6] |
T. Toplu, M. kadakal, I. İşcan, On n-polynomial convexity and some related inequalities, AIMS Math., 5 (2020), 1304–1318. doi: 10.3934/math.2020089
![]() |
[7] | Z. Brzezniak, T. Zastawniak, Basic stochastic processes: a course through exercises, Springer Science & Business Media, 2000. |
[8] | K. Sobczyk, Stochastic differential equations with applications to physics and engineering, Springer Science & Business Media, 2013. |
[9] |
D. Kotrys, Remarks on strongly convex stochastic processes, Aequationes Math., 86 (2013), 91–98. doi: 10.1007/s00010-012-0163-9
![]() |
[10] | D. Barrez, L. Gonzlez, N. Merentes, A. Moros, On h-convex stochastic processes, Mathematica Aeterna, 5 (2015), 571–581. |
[11] | M. Shoaib Saleem, M. Ghafoor, H. Zhou, J. Li, Generalization of h-convex stochastic processes and some classical inequalities, Math. Probl. Eng., 2020 (2020), 1–9. |
[12] |
G. Farid, W. Nazeer, M. S. Saleem, S. Mehmood, S. M. Kang, Bounds of Riemann-Liouville fractional integrals in general form via convex functions and their applications, Mathematics, 6 (2018), 248. doi: 10.3390/math6110248
![]() |
[13] |
S. Zhao, S. I. Butt, W. Nazeer, J. Nasir, M. Umar, Y. Liu, Some Hermiteensenercer type inequalities for k-Caputo-fractional derivatives and related results, Adv. Differ. Equ-NY, 2020 (2020), 1–17. doi: 10.1186/s13662-019-2438-0
![]() |
[14] | H. Bai, M. S. Saleem, W. Nazeer, M. S. Zahoor, T. Zhao, Hermite-Hadamard-and Jensen-type inequalities for interval nonconvex function, J. Math., 2020 (2020), 1–6. |
[15] |
S. M. Kang, G. Farid, W. Nazeer, B. Tariq, Hadamard and Fejadamard inequalities for extended generalized fractional integrals involving special functions, J. Inequal. Appl., 2018 (2018), 1–11. doi: 10.1186/s13660-017-1594-6
![]() |
[16] |
Y. C. Kwun, G. Farid, S. Ullah, W. Nazeer, K. Mahreen, S. M. Kang, Inequalities for a unified integral operator and associated results in fractional calculus, IEEE Access, 7 (2019), 126283–126292. doi: 10.1109/ACCESS.2019.2939166
![]() |
[17] |
X. Z. Yang, G. Farid, W. Nazeer, Y. M. Chu, C. F. Dong, Fractional generalized Hadamard and Fej-Hadamard inequalities for m-convex function, AIMS Math., 5 (2020), 6325–6340. doi: 10.3934/math.2020407
![]() |
[18] |
Y. C. Kwun, G. Farid, W. Nazeer, S. Ullah, S. M. Kang, Generalized riemann-liouville k-fractional integrals associated with Ostrowski type inequalities and error bounds of hadamard inequalities, IEEE access, 6 (2018), 64946–64953. doi: 10.1109/ACCESS.2018.2878266
![]() |
[19] |
P. Chen, A. Quarteroni, G. Rozza, Stochastic optimal Robin boundary control problems of advection-dominated elliptic equations, SIAM J. Numer. Anal., 51 (2013), 2700–2722. doi: 10.1137/120884158
![]() |
[20] |
M. Mnif, H. Pham, Stochastic optimization under constraints, Stoch. Proc. Appl., 93 (2001), 149–180. doi: 10.1016/S0304-4149(00)00089-2
![]() |
[21] | P. Bank, F. Riedel, Optimal consumption choice under uncertainty with intertemporal substitution, Ann. Appl. Probab., 11 (1999), 788. |
[22] |
D. Cuoco, Optimal consumption and equilibrium prices with portfolio constraints and stochastic income, J. Econom. Theory, 72 (1997), 33–73. doi: 10.1006/jeth.1996.2207
![]() |
[23] |
D. Cuoco, J. CvitaniCc, Optimal consumption choice for a large investor, J. Econom. Dyn. Control, 22 (1998), 401–436. doi: 10.1016/S0165-1889(97)00065-1
![]() |
[24] | J. Cvitanić, I. Karatzas, Convex duality in convex portfolio optimization, Ann. Appl. Probab., 2 (1992), 767–818. |
[25] | N. El Karoui, M. Jeanblanc, Optimization of consumption with labor income, Financ. Stoch., 4 (1998), 409–440. |
[26] |
H. He, H. Pagès, Labor income, borrowing constraints and equilibrium asset prices, Economic Theory, 3 (1993), 663–696. doi: 10.1007/BF01210265
![]() |
[27] |
R. Merton, Optimum consumption and portfolio rules in a continuous-time model, J. Econom. Theory, 3 (1971), 373–413. doi: 10.1016/0022-0531(71)90038-X
![]() |
[28] |
A. Liu, V. K. Lau, B. Kananian, Stochastic successive convex approximation for non-convex constrained stochastic optimization, IEEE T. Signal Proces., 67 (2019), 4189–4203. doi: 10.1109/TSP.2019.2925601
![]() |
[29] |
A. Nemirovski, A. Shapiro, Convex approximations of chance constrained programs, SIAM J. Optimiz., 17 (2007), 969–996. doi: 10.1137/050622328
![]() |
[30] | A. Rakhlin, O. Shamir, K. Sridharan, Making gradient descent optimal for strongly convex stochastic optimization, arXiv preprint arXiv: 1109.5647, 2011. |
[31] |
S. Ghadimi, G. Lan, Optimal stochastic approximation algorithms for strongly convex stochastic composite optimization i: A generic algorithmic framework, SIAM J. Optimiz., 22 (2012), 1469–1492. doi: 10.1137/110848864
![]() |
[32] | H. Yu, M. Neely, X. Wei, Online convex optimization with stochastic constraints, Advances in Neural Information Processing Systems, 30 (2017), 1428–1438. |
[33] | A. Defazio, F. Bach, S. Lacoste-Julien, SAGA: A fast incremental gradient method with support for non-strongly convex composite objectives, Advances in neural information processing systems, 27 (2014), 1646–1654. |
[34] |
Y. Xu, W. Yin, Block stochastic gradient iteration for convex and nonconvex optimization, SIAM J. Optimiz., 25 (2015), 1686–1716. doi: 10.1137/140983938
![]() |
[35] | A. K. Sahu, D. Jakovetic, D. Bajovic, S. Kar, Communication-efficient distributed strongly convex stochastic optimization: Non-asymptotic rates, arXiv preprint arXiv: 1809.02920, 2018. |
[36] | M. Mahdavi, T. Yang, R. Jin, Stochastic convex optimization with multiple objectives, Advances in Neural Information Processing Systems, 26 (2013), 1115–1123. |
1. | Zafer ÜNAL, Vajda’s Identities for Dual Fibonacci and Dual Lucas Sedenions, 2023, 6, 2619-8991, 98, 10.34248/bsengineering.1253548 |