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1. Introduction and Preliminaries

In 1980, Nikodem [1] proposed convex stochastic processes and examined the regularity properties
of these processes. Skowroniski in 1992, obtained some further results on Jensen-convex and Wright-
convex stochastic processes [2,3]. Some interesting properties of convex and Jensen-convex processes
are also presented in [4]. Moreover, Kotrys [5] in 2011 developed Hermite-Hadamard type inequalities
for convex stochastic processes. In recent years, many studies have been done in the literature on some
types of convexity for stochastic processes see [9-11] and Hermite-Hadamard inequalities for related
convex stochastic processes [12—18].
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A stochastic process X : I X Q — R is said to be convex if we have
Xtc+(1-0d,.) <tX(c,.)+(1-0Xd,.) (a.e.),

forall c,d € I,t € [0, 1]. X is said to be concave on I # 0, if above inequality reverses.

The notion of stochastic processes for convexity is of great importance in optimization and
also useful for numerical approximations when there exist probabilistic quantities in the literature
[19]. In [20], the authors studied stochastic optimization problem under constraints in a general
framework including fnancial models with constrained portfolios, labor income and large investor
models and reinsurance models (see [21-27] for more details). A constrained stochastic successive
convex approximation (CSSCA) algorithm is proposed in [28] to find a stationary point for a general
non-convex stochastic optimization problem, whose objective and constraint functions are non-
convex and involve expectations over random states. The algorithm solved a sequence of convex
objective/feasibility optimization problems obtained by replacing the objective/constraint functions in
the original problems with some convex surrogate functions. For more on applications of convex
stochastic processes see [29-36].

Let X : I X Q — R be the Jensen convex and mean-square continuous in the interval I X Q2 then

d
X(c ; d, ) < ﬁ fc X(x, )dx < X)) ; X, ) (a.e), (1.1)

for any c,d € I, ¢ < d. If the stochastic process X is concave then both inequalities hold in the reversed
direction . This double inequality is well known in the literature as Hermite-Hadamard inequality [5].
In this article, we establish new refinements of Holder and power mean integral inequality. Also, we
present the counterpart of the research made by T. Toplu et al. in [6] for stochastic processes.

Let us present some important and useful definitions for this research.

Let (Q2, A, P) be a probability space. A function X : Q — R is a random variable if it is A-measurable.
A function X : I X Q — R, where I C R is an interval, is a stochastic process if for every x € I, the
function X(x, .) is a random variable. Readers can look at [7, 8] for the defnitions and basic properties.

Definition 1.1. [8] Consider a stochastic process X(z, .) such that the expectation squared is bounded,
i.e. E[X(t,.)]> < oo for all ¢ € I. The stochastic process X is defined:
(1) continuous in probability on 7, if

u— lim X(c,.) = X(co, .),
for all ¢, € I, where u — lim represents limit in the probability;
(i1) mean-square continuous in /, if

lim E(X(c,.) — X(c.,.))* =0,

C—Co

forall ¢, € I;
(ii1) increasing (decreasing) if forall c,d € I, c < v

X(c,.) £ X(d,.); X(c,.) =2 X(,.) (a.e.);
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(iv) mean-square differentiable at a point ¢ € I, if there is a stochastic process X ( derivative of X) such
that
, X(c,.) — X(co, .
X(c.) = P lim 2€) = X, )

c—Co C — Co

The stochastic process X : I X 2 — R is continuous (differentiable) if it is continuous (differentiable)
at every point of interval /.

Definition 1.2. [8] Assume a stochastic process X : I X Q2 — R with E [X(a)z] < oo, whereael. A
random variable Y : Q — R is said to be the mean-square integral of the process X on [c, d] if for every
normal sequence of partitions of [c,d] C I, c =1, <t < ... <t, =d and for all O, € [t,_, 1], k=1, ...,
n, we have

lim E

n—oo

. 2
(Z X (O, Ntk = te-1) = Y(.)] = 0.
k=1

Then we write

d
f X(s,.)ds =Y(.) (a.e).

For the existence of the mean-square integral it is enough to assume the mean-square continuity of
the stochastic process X.

The paper is organized as follow: In section 2, we derive Holder-Iscan and improved power mean
integral inequality, whereas in section 3, we introduce the notion of n-polynomial convex stochastic
process and present some interesting properties for these processes. Furthermore, section 4 and
section 5 are devoted to state and prove Hermite-Hadamard inequality and some new type of Hermite-
Hadamard inequalities respectively for n-polynomial convex stochastic processes.

2. Holder-Iscan and improved power mean integral inequality

In this section, we establish new refinements of Holder and power mean integral inequality.

Theorem 2.1. (Holder-Iscan integral inequality) Let X, Y : [c, d]xQ — R be real stochastic processes
and |X'|P, |Y'|P be mean square integrable on [c,d]. If p > 1 and }—7 + [11 = 1, then we have almost
everywhere:

d % d %
f 1X(x, )Y (x, )|dx sd%c{( fd d - %)X (x, .)|de) ( f (d - x)|Y (x, .)|‘1dx)
d 3 d 7
+( f (x — o)X (x, .)|de) ( f (x—o)Y (x, .)|qu) } 2.1)

Proof. Using the Holder integral inequality, we obtain
¢ 1 1 |
f IX(x, )Y (x,.)|dx Sd—{ |(d — x)» X(x, )(d —x)1Y(x,.)|dx
c —-C c
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d
+ f (x = P X(x, )(x — )P ¥(x, .)Idx}

5 d i
SL{( f d - x)X (x, .)|de) ( f (d - x)|Y (x, .)|‘1dx)
d—c c c
d 3 d 7
+( f (x = O)X (x, .)|de) ( f (x = oY (x. .)|qu) }

Theorem 2.2. (Improved power mean integral inequality) Let X,Y : [c,d] X Q — R be real stochastic
processes and |X|, |X||Y|? be mean square integrable on [c,d). If g > 1, then the following inequality
holds almost everywhere:

O

d l_é q
f IX(x, )Y (x,.)|dx Sd—ic{ (f (d - x)|X(x, .)Idx) (f(d — OIX(x, )Y (x, .)|qu)
-4 !
+ (f(x - o) X(x, .)Idx) (f(x —o)||X(x, )Y (x, .)qux) } 2.2)

Proof. Firstly, let g > 1. Using Holder inequality , we easily see that
d 1 1 1 1 1
f X (x, )Y(x,.)|dx :d—{ |(d —x)» X7 (x, )(d—x)1Xa(x, )Y (x,.)|dx
c —-C c

i
+ f (X = VP XP (. )(x — )i XA Y (x, .)|a’x}

_d— (f(d X)|X(x, )IdX) (f (d — 0IX(x, Y (x, )quX)
+(f (x — o) X(x, .)Idx) K (f (x = o) X(x, )Y (x, .)Iqa’x)q }

For g = 1, the inequality (2.2) holds trivially. O
3. Main definition and basic properties

In this section, we introduce our main definition and present some results concerning to the basic
properties of n-polynomial convex stochastic processes.

Definition 3.1. Let X : / X Q — R be a non-negative stochastic process and n € N. Then X is said to
be n-polynomial convex if

X(te+(1-0d,.) < % Z[l —(1-NX(c,.) + % Z[l ~MXd,) (ae), (3.1)
k=1 k=1

for every c,d € I and ¢t € [0, 1].
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Remark 3.2. It is worth pointing out that for

1. n=11n (3.1), the 1-polynomial convexity implies classical convexity.

2. h(t) = % i [1 - (1 - 5" 1in (3.1), we obtain an h-convex stochastic process (see [10]).
k=1

Remark 3.3. Let X : I X Q — R be a 2-polynomial convex stochastic process, then

2 )

T x(e. )+ lTX(d, ) (ae,

X(tc+(1-0d,.) <

for every c,d € I and ¢ € [0, 1]. It is clear that for all ¢ € [0, 1]

3t— 12 py

t < and 1-1t<

This shows that every non-negative convex stochastic process is also a 2-polynomial convex stochastic
process. More generally, every non-negative convex stochastic process is also an n-polynomial convex
stochastic process.

Proposition 3.4. Let X, Y : [ XQ — R be n-polynomial convex stochastic processes andy € R (y > 0),
then X + Y and yX are also n-polynomial convex stochastic processes.

Proof. Consider ¢,d € I and ¢ € (0, 1) arbitrary.

X+Y)tc+(1-0td,)=X(tc+(1 -0td,)+Y(@c+ (1 -1)d,.)

n

1 ¢ 1
= D 1= (1= DM(X(e, ) + Y(e, ) + = > 11 = H1(X(d, ) + ¥(d, )
n oy n

k=1

IA

n

! D=1 =0X + e, )+ 1 D -MX+1@.)  (@e).
n =1 n

k=1

Now consider y > 0. Then,

1 1
yX(e+(1-0d,) <y~ D= -0MX(e )+ v > -4xd, )
k=1 k=1

I v 1
= - Z[l —(1-"TyX(e, )+ - Z[l ~MyXd,)  (ae).
n oy n

k=1

O

Proposition 3.5. If X : I X Q — R is convex and Y : I X Q@ — R is an n-polynomial convex and
non-decreasing stochastic process, then Y o X : [ X Q — R is n-polynomial convex stochastic process.

Proof. By definition of composition, we have

YoX)tc+(1-0d,.)=YX(tc+ (1 -1)d,.))
<YX(c,.)+ (1 -nXd,.)
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< IS - (- e, gy + - D1 -AY(xd, )
n k=1 n k=1
1 v 1 v
== [1-1-Y0X)c,.)+ - Z[l - flY o X)d,) (ae),
= gl
which completes the prove. O

Theorem 3.6. Let X, : [a,b] X Q — R, b > 0, be an arbitrary collection of n-polynomial
convex stochastic processes and define a stochastic process Y(c,.) = supX,(c,.). If J =

{vela,b]:Y(v,.) < oolis non-empty, then J is an interval and Y is an n-polynomial convex stochastic
process on J X Q.

Proof. Lett € [0,1] and ¢, d € J be arbitrary. Then

Y(tc+ (1 —1)d,.) =sup X,(tc + (1 —1)d,.)

n n

< sup %Z[l — (1= D"X,(c, ) + %Z[l — 41X,(d, .)
@ k=1 k=1

1< 1
< ;[1 —(1-0Y sup Xo(c, ) + - Z[l — snga(d, )

k=1
_1 2[1 - -Y(,.) + 1 Z[l - *1y(, )
= =
< 00,

This implies that J is an interval and Y is an n-polynomial convex stochastic process on J X Q. O
4. Hermite-Hadamard inequality

In this section, we will establish Hermite-Hadamard inequality for n-polynomial convex, mean
square integrable stochastic process.

Theorem 4.1. Let X : I X Q — R be an n-polynomial convex, mean square integrable stochastic
process. Then for every c,d € I, ¢ < d, we have almost everywhere

1 n c+d 1 X, )+ X(d, )\ k
§(n+2—n—1)X( 2 ")Sd—cfx(x")dxs( 7 );k+l' @)

Proof. By using inequality (3.1), we have

X(C;d,.) :X([tc+(1 — 1)d] J2r [(1 —t)c+td]")

<ln111kXt 1 -nd lnllk
_n; —(—2) e+ (1=nd)+— —(2)

k=1

X((1=0c+1d,.)
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:l ll—(—”[X(tCHl—t)d )+ X({(1=0c+1td,))].

l’l

By integrating last inequality with respect to # € [0, 1], we get

c+d 1 & N1 ! !
X( > ")SZZ[I_(E)HJ; X(lc+(1—l)d,.)dt+f0X((l—l‘)c+td,.)dt

k=1
2 21
- (”+ ) f X(x, )dx,
d-c n c
implies

1 n c+d 1

- X )< X(x, )dx. 42
2(n+2‘"—1) ( 2 ) d—cf (%, Jdx “42)

Now, changing the variable as x = fc + (1 — f)d, and using the inequality (3.1), we have

d 1
L X(x,.)dx:f X(tc+ (1 —0d, )dt
d—C c 0
1 1 n 1 n
sfo [;;[1—(1—t)k]X(c,.)+;Z[l—tk]X(d,.)]dt
_ X)) Z[l—(l—t)k]dt+ Xd, ) 2[1—
n 0 %=1 0 %=1
X(c,.) f ' X, .) f
= 1-(1-0"ds 1 — Mdr
H;O[ ( )]+n;0[
X, ) ko Xd, ) ok
R ;k+1+ " ;k+1
CX(e, )+ X(d, ) Sk
- n Zk+1’ (43
where
: k l k k
jo\[l—(l—t)]dt:fo[l—[]d[:m.
Combining (4.2) and (4.3) yields (4.1). O

Remark 4.2. For n = 1, the inequality (4.1) coincides with the inequality (1.1).
5. New inequalities of Hermite-Hadamard type

In this section, we purpose to develop new Hermite-Hadamard type inequalities for stochastic
processes whose first derivative in absolute value , raised to a certain power is n-polynomial convex

stochastic process. In order to prove these inequalities it is necessary to use the following lemma:
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Lemma 5.1. Let X : I X Q — R be a mean square differentiable stochastic process on I° and X is
mean square integrable on [c,d], where c,d € I, ¢ < d. Then we have almost everywhere

X(c, )+ X(,.) B 1
2 d—c

1
de(x, Jdx = %f (1-20X (tc + (1 - £)d, )dk. (5.1
c 0

Proof. Using integration by parts, we get

X(tc+(1-10d,.)

! 1 1 _
f(1—2t)X/(tc+(1—t)d,,)dt: (1 =21 +2f X(te + (1 t)a’,.)dt
0 c—d 0 0 c—d
_ X )+ Xd,) 21
= d—vc d_c.d_cfX(x,.)dx.

This implies that

1 i
d—c f (1= 20X (1 + (1 — . yd = &)+ X ) 1 f X(x, )dx.
2 Jo 2 d—c J.

O

Theorem 5.2. Let X : I x Q — R be a mean square differentiable stochastic process on I° and X be
mean square integrable on [c,d). If|1X | is an n-polynomial convex stochastic process on [c, d], then we
have almost everywhere:

X(c,) + X(d,) 1 d
I 3 _d—CI X(x,.)dx

(K2 +k+2)2k-2
(k + 1)(k + 2)2k+1

Sd;ci

k=1

]A(|X’(c, WILIX (d, D), (5:2)

where A is the arithmetic mean.

Proof. Using Lemma 5.1 and the property of n-polynomial convexity of stochastic process |X |, we
have

X(c,.)+X(d,.) 1
> —d_CfX(x,.)dx

1
a-c f (1=20X (tc + (1 = Od, )dt
2 Jo

n

d-c (! 1 ¢ , 1 ,
<= fo|1—2t|(r—lZ[1—(l—t)k]IX(c,.)|+r—lZ[l—tk]lX(d,.)l]dt

k=1 k=1

d—C , 1 n L , 1 n
o X (c, .)|f(; 1 - 2t|kZ=:‘[1 — (1 -0)"1dt + X (d, .)Ij(; 1 - 2t|kzz;[l - tk]dt]

d—C , n 1 , n 1
== |X(c,.)|;j; |1—2t|[1—(1—r)k]dr+|X(d,.)|;fo |1—2t|[1—tk]dt)

d-cf S+ k+2)2k-2 , S+ k+2)2k-2
=2 (X (c,.)lkzz; (k+1)(k+2)2k+1]+|X (d")lkZ:; (k+1)(k+2)2k+1]J
_d-c -
= — Z

(K +k+2)2=2{1X (c, )|+ 11X, .)|
L | (k+ 1)(k +2)2¢+1 2

IA
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d—c <
:nz

k=1

(K> +k+2)2k-2
(k + 1)(k + 2)2k+1

]A<|X’<c, N 1X (d, D,
where A is the arithmetic mean and

1 1 i .
f |1—2t|[1_(1_t)k]dt:f |1_2t|[1—lk]dl_(k +k+2)2 2
0 0

(k4 D)(k + 2)2k1°

O

Corollary 5.3. For n = 1 in (5.2), we obtain the following inequality for convex stochastic processes:

X(c, )+ X, 1 d
‘ > _d—cj: X(x,.)dx

d— , ,
< TCA(lX (c, ), 1X d, ) (a.e.).

Theorem 5.4. Let X : I X Q — R be a mean square differentiable stochastic process on I° with g > 1,
i + f] = 1 and assume that X be mean square integrable on [c,d). If|X | is an n-polynomial convex
stochastic process on [c,d], then the following inequality holds almost everywhere for t € [0, 1]:

X(e,.) + X(d, ) 1 d d—c{ 1 Vv(2< &k 5l , ,
' _ f X o] < 4 (p+1) [Z;“—l) AFX (e, I X (d, ).

2 d—c
(5.3)

Proof. By using Lemma 5.1, Holder’s integral inequality and the definition of n-polynomial convexity
of stochastic process |X |7, we get

X(c,) + X(d,)) 1 d
‘ > _d—c‘[ X(x, )dx

d—c
2

_ 1 % 1 , 5
<2< f |1—2t|”dt) ( f |X(tc+(1—t)d,.)|th)
2 0 0

<

1
f 11 = 24X (tc + (1 = 9d, )dt
0

U

; 1
d—c( 1 VXl § f i, X @OF S f ar]
= 1 -1 -0dt + ———— 1 — Fldt
2 \ptl " kZ:; 0[ oo ; 0[ !
) 1
d-c 1 \» , 1 <& k , 1 <& Y
= X (c, )|?- — + X', )~
2 \pe1) (K€ )ln;k+1 X« )ln;k+1]
1 1
d-c( 1 V(2% k) 1 :
- - > —| Au(X (c, )% X (d, )
RS n;kﬂ) (X (e, I, X (d, 1),

where A is the arithmetic mean and

! 1
f 1 —21Pdt = ——,
0 p+1

1 1
k
—(1 = pK1dr = — 0 —
jo\[l (1 t)]dt—jo\[l t]dt—k+1.
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Corollary 5.5. For n = 1 in (5.3), we obtain the following inequality for convex stochastic processes:

X(c,) + X, ) 1 d
‘ > _d—cfc X(x,.)dx

: dz;c (—pi 1)pA5<lX'<c, LX) (ae).

Theorem 5.6. Let X : [ X Q — R be a mean square differentiable stochastic process on I° with g > 1
and X be mean square integrable on [c,d]. If |X'|? is an n-polynomial convex stochastic process on
[c,d], then the following inequality holds almost everywhere for t € [0, 1]:

X, )+Xd,) 1 ¢ (1)1 k2t =2} ,
‘ 2 Sd-c f K (5) (Z kZ‘ (ke + D)k + 2)2k+1] AT(X (e, I 1X (. I

(5.4)

Proof. Assume g > 1. By using Lemma 5.1, Holder’s integral inequality and the property of n-
polynomial convexity of stochastic process |X |7, we get

X(c,)) + X(d,.) 1 d
' > o fX(x,.)a’x

“3( [l i
( |1—2t|dt) ( f 11 = 241X (tc + (1 = 1)d, .)|th)

() f|1—2r| Z[l—(l—t)uX(c i

k=1

+%; [ - X (d, )|’1]dt)l

1-
_d- (1) IX(c )lq f|1_2;|[1—(1—t)]
k=1

d- ! ,
chf 11 = 26X (tc + (1 = 0)d, )dt
0

2
M f|1—2t|[1—tk]dt]
k 1

d-c(1} q[lX(c,.)Iq (K + k +2)2k —
2 \2 n Lk + Dk +2)28

1

1X'(d, )1~ (K +k+2)2Kk-273
" Z‘ (k + D(k + 2)2k+1 ]

1

2 a 1 , ,
n & (k+ Dk + 2)2k+1) Ad(IX (e, ) 1X (d, )1,
=1

d—c {1\ 77 (1 & (2 +k +2)2% -
2 \2

where

! 1
f |1 —2¢|dt = =,
0 2

1 1 2 k
e Rk -
[ -2 - -t = [z - = G
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For ¢ = 1, we use the estimates from the proof of Theorem 5.2. Thus, the proof of Theorem 5.6 is
completed. O

Remark 5.7. If we take ¢ = 1 in Theorem 5.6, then we get the conclusion of Theorem 5.2.

Corollary 5.8. For n = 1 in (5.4), we obtain the following inequality for convex stochastic processes:

X, ) +Xd,) 1 fd
2 d—cJ.

Now, we will prove the Theorem 5.4 by using Holder-Iscan integral inequality. Then we will
compare the results obtained in this Theorem and Theorem 5.4.

OILIX ) (ae).

Theorem 5.9. Let X : [ X Q — R be mean square differentiable on I° with ¢ < d, g > 1, % + é =1

Assume that X be mean square integrable on [c,d) and |X'|9 be an n-polynomial convex stochastic
process on [c,d], then the following inequality holds almost everywhere for t € [0, 1]:

d
X, )+Xd,) 1 fX(x,,)dx

7 T (5.5)

1

Sd—c( 1 )[IX(C )|qZ k +|X(d WS k(k+3) }q
2 \2(p+ 1) 2k +2) n 2k + Dk +2)

d—c 1 71X (¢, )1 < k(k +3) |X/(d,.)|q - k g
T2 (2(p+l))( n L+ Dk+D) 7 ;2(k+2)]'

Proof. By using Lemma 5.1, Holder-Iscan integral inequality and the property of n-polynomial
convexity of stochastic process |X |9, we obtain

X(c,.)+ X, .) 1
> —d_cfX(x, JDdx

d-c ! z ! , 7
S (f (1-0l1 - 2t|”dt) (f (1 =X (tc + (1 —1t)d, .)|th)
0 0

d—c( (! T ) 7
+ — f |1 —2¢Pdt f 1X (tc + (1 — 0d, )|'dt
2 0 0
implies

d
‘X(c, )+Xd,) 1 f X(x,.)dx

d_ ! ’
< ch 11— 26X (tc + (1 = 0)d, .)dt
0

2 d-c

d-c 1 ’ 1X'(c, )7 + ! . 1X'(d, ) & 1 L
== (2(p+1)) ( " ;fo(l—t)[l—(l—t)]dHTZfo(l—t)[l—rk]dt)

d—c{ 1 X () < (d Il ®
+— (2(p+1))( . ;fo[ g t)]dt+ Zf ]dt,

AIMS Mathematics Volume 6, Issue 6, 6322-6339.
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which gives

X(c,)+ X, 1
> —d_cfX(x,.)dx

<d—c( 1 ) IX/(c,.)IqZ": ko Xy kk+3) g
-2 \2(p+1) n — 2(k+2) n — 2k + D)(k+2)

N d—c ( 1 )11 1X'(c, ) < k(k +3) N 1X'(d, )| Zn: k !
2 \2(p+ 1D n 2k + D)(k +2) n i 2k +2)

where
1 1 1
(1 =0|1 =2tPdrt = f |1 = 2¢Pdt = ,
fo 0 2(p+ 1)
1 k 1 k k
1-0[1 -0 -0)dt = t1 —1"]dt = ,
fo (1-0[l-1-27] fo [ ] h+2)
and
! ! k(k + 3)
1=l -Fldt= | f1-(0-t}]= ——"—.
[fa-on=rae= [ - -0 = 522
Hence, the proof of Theorem 5.9 is completed.. O

Corollary 5.10. Forn = 1in (5.5), we obtain the following inequality for convex stochastic processes:

X(c,.)+X(,.) 1
> —d_CfX(x,.)dx

d—c{ 1 \
<
4 \p+1

Remark 5.11. The inequality (5.5) gives better result than (5.3). We will prove it by showing that

d—c( 1 )5 X (¢, )| Z kXl kk+3) g

2 \2(p+1) n — 2k +2) n — 2k + 1)(k+2)

. d—c( 1 ),', Xl v kk+3) K Z KoY
2 20+ 1) n L2+ Dk +2) n L2+ 2)

1 1
d—C 1 ;2’1 k a 1 ’ ’
< - — | A9(|X I 1X (d, D).
<= (p+1) [n;“l) (X (¢, ), 1X (d, )

If we use the concavity of the stochastic process Y : [0, 00)xQ — R, defined by Y(u,.) =ut,0 < A1 < 1,
we get

X (e, 1 + 21X (d, )7\ (21X (e, ) + X (d, )
3 + 3 (a.e.).

d—c{ 1 V(IX@)l & & X @ Kk+3) 7
2 2+ 1) " ;2(“2) n Li20k+ DHk+2)
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1 1
_ 1 > X/ ‘ g N , ‘ g 2
N d-c 1X (c,.)| k(k +3) N X (d, )| Z k
2 2+ D) n L2k + Dik+2) n Li2k+2)
d—c{ 1 V. [1XEH SN kb 1X@ ) S &
< 2= 2z
=72 (2(p+1)) [2 n ;k+1+2 n ;k+1

; 1
d- 1 Vvl k) , ,
_ Czé( ) (— —) ARX (e, )1 1X (d, 1)
nk:lk

p+1 1

+

which is required.

Theorem 5.12. Let X : I X Q — R be mean square differentiable on I° with ¢ < d, g > 1. Assume
that X be mean square integrable on [c,d] and |X |9 be an n-polynomial convex stochastic process on
[c,d], then the following inequality holds almost everywhere for t € [0, 1]:

X(c,) + X, ) 1 d
‘ > —d_cfc X(x, )dx

d—c (177 (1X (e, ) & 1X'(d, )7 & ;
< 2 (5) (T;Sl(k)+T;S2(k)

1

d—c {1\ (1X (¢, )t & X (d, )1 ‘

(5.6)

where

1 1
Si(k) = f (1= =211 - (1 - H")dt = f 11 = 24[1 — *dt
0 0
B (kK2 +k+2)2k-2

T2k 2(k + 2)(k + 3)°
1 1
S, (k) :f 11 =241 = (1 —)*dr = f (1 =9)|1 =24[1 — *dt
0 0

(k+5) [(k? + k + 2)2% = 2
T 2kt D(k+2)(k+3)

Proof. Assume first that ¢ > 1. From Lemma 5.1, improved power-mean integral inequality and the
definition of n-polynomial convexity of stochastic process |X |4, we have

d
‘X(c,.)+X(d")_ 1 fX(x,.)dx

2 d—c

d_ 1
< C(f (1—t)|1—2t|dt)
2 0
+u(f t|1—2t|dt)
2 0

1
q 1 q
(f t1 = 24X (tc + (1 — 1)d, .)|th)
0
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d- ! ,
< ch 11 = 26X (tc + (1 — 1)d, )dt
0

1-1
q

1 q
(f (1= DI = 24X (tc + (1 - £)d, .)|th)
0
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d—c 1X'(c, )|q
< > (4_1) (— f (1 -1 =24[1 — (1 —)X]dt

w f(l—t)ll—Ztl[l—t]dl)
+%(4) ('X(C )quf {1 = 24[1 = (1 — D}]ds
+w;fo t|1—2t|[1—t"]dt)q
S (%)2 (Mgsl(m Miszw)];
+d;c(;)2 3[|X(c I ZSZ(") Zs (k))

1 1
f (1 =0l —2tdt = f t1 = 2t|dt = —
0 0

For g = 1, we use the estimates from the proof of Theorem 5.2. Thus, the proof of Theorem 5.12 is
completed. O

where

Corollary 5.13. Forn = 1in (5.6), we obtain the following inequality for convex stochastic processes:

X(c,.)+X(d,.) 1
‘ > —d_cfX(x,.)dx

—c (|X (C, )lq + 3|X (d, ,)|q)‘1 N (3|X (C, )lq + |X (d, )|q)q] (61.6.).

8 4 4 4 4

Remark 5.14. The inequality (5.6) gives better estimate than (5.4). Let us prove it by showing

d-c 1X'(c, )| X (d Il 1
[ L )
d-c (1) _% [lX/(C’ )lq - |X,(d9 )|l] - );
n - — ) SHk)+ —— > S(k)
2 \2 n ; ? n ,; 1

d—c 1\ (1 & @rk+22-2) 1 ,
=72 (5) (Z;(k+1)(k+2)2k+l] APt L X I0.

By using concavity of the stochastic process Y : [0,00) X Q — R, defined by Y(u,.) = u',0 < A1 < 1,
we obtain

d—c (177 (IX 0 Xl <o)
T(z) ( Zsl<k)+ . ;Sxk)]
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d—c {1\ (IX () < IX'(d, ) < 5
+ (5) [TZSZ(k)JFTZSl(k)

1

) ( Z[S (k) + S (k)]] AS(X (e, )17 1X (. )1,

where

( + k +2)2" -
(k + 1)(k + 2)2k+1"

S1(k) + Sa(k) =
which completes the proof of remark.
6. Applications for special means

For two positive numbers ¢, d with ¢ < d, define

c+d
A(ce,d) =
(c,d) 5
G(c,d) = Ved,
2cd
H(e,d) = ,
(c,d) c+d
1
1 (d4\d—<
Ic.d) = L&) c#d
c, c=d
d—c
L(c,d):{ R Eij

c, c=d

1
p+]_cp+| »
Ly(c,d) = { (((;H)(d—c)) ., c#d,peR\{-1,0}

These means are respectively called the arithmetic, geometric, harmonic, identric, logarithmic and
p-logarithmic means of two positive numbers ¢ and d.
Applying Theorem 4.1 to X(u,.) = —Inu, u € (0, 1] results in the following inequality for means:

Corollary 6.1. Assume c,d € (0, 1] with ¢ < d, then

1 m nA Ak
(— " Vo< < 22N 2
2(m+2—m—1)”G " m;k (@e.).

Applying Theorem 4.1 to X(u,.) = u™, u € [0, oo) results in the following inequality for means.

Corollary 6.2. Assume m € (—c0,0) U [1,00) \ {1} and c,d € [0, o0) with ¢ < d, then

1 m ; m 2 ok
E(W)A (c.d) < Lij(e.d) < ~ A", d") Zk— (a.e.).
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Taking X(u,.) = u™!, u € (0, 00) in Theorem 4.1 results in the inequality for means as follows.

Corollary 6.3. Assume c,d € (0, ) with ¢ < d, then

1 m 2 Nk
Sl L e <! < ZHg! — .e.).
2(m+2—m—1) @d<leds< (C’d);kﬂ (@)

7. Conclusions

The more generalized class of convex stochastic processes named as n-polynomial convex stochastic
process is introduced in the present note. Hermite-Hadamard inequality and some of its refined forms
hold for this new generalization. Some existing results in literature became the particular cases of these
results as mentioned in remarks. All the results and inequalities derived here are new, interesting and
important in the field of integral inequalities.
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