
Citation: Boris Andreianov, Mostafa Bendahmane, Kenneth H. Karlsen, Charles Pierre. Convergence of discrete duality finite volume schemes for the cardiac bidomain model[J]. Networks and Heterogeneous Media, 2011, 6(2): 195-240. doi: 10.3934/nhm.2011.6.195
[1] | Pannathon Kreabkhontho, Watchara Teparos, Thitiya Theparod . Potential for eliminating COVID-19 in Thailand through third-dose vaccination: A modeling approach. Mathematical Biosciences and Engineering, 2024, 21(8): 6807-6828. doi: 10.3934/mbe.2024298 |
[2] | Cheng-Cheng Zhu, Jiang Zhu . Spread trend of COVID-19 epidemic outbreak in China: using exponential attractor method in a spatial heterogeneous SEIQR model. Mathematical Biosciences and Engineering, 2020, 17(4): 3062-3087. doi: 10.3934/mbe.2020174 |
[3] | Fang Wang, Lianying Cao, Xiaoji Song . Mathematical modeling of mutated COVID-19 transmission with quarantine, isolation and vaccination. Mathematical Biosciences and Engineering, 2022, 19(8): 8035-8056. doi: 10.3934/mbe.2022376 |
[4] | Rahat Zarin, Usa Wannasingha Humphries, Amir Khan, Aeshah A. Raezah . Computational modeling of fractional COVID-19 model by Haar wavelet collocation Methods with real data. Mathematical Biosciences and Engineering, 2023, 20(6): 11281-11312. doi: 10.3934/mbe.2023500 |
[5] | Xinyu Bai, Shaojuan Ma . Stochastic dynamical behavior of COVID-19 model based on secondary vaccination. Mathematical Biosciences and Engineering, 2023, 20(2): 2980-2997. doi: 10.3934/mbe.2023141 |
[6] | Xiaojing Wang, Yu Liang, Jiahui Li, Maoxing Liu . Modeling COVID-19 transmission dynamics incorporating media coverage and vaccination. Mathematical Biosciences and Engineering, 2023, 20(6): 10392-10403. doi: 10.3934/mbe.2023456 |
[7] | A. Q. Khan, M. Tasneem, M. B. Almatrafi . Discrete-time COVID-19 epidemic model with bifurcation and control. Mathematical Biosciences and Engineering, 2022, 19(2): 1944-1969. doi: 10.3934/mbe.2022092 |
[8] | Fen-fen Zhang, Zhen Jin . Effect of travel restrictions, contact tracing and vaccination on control of emerging infectious diseases: transmission of COVID-19 as a case study. Mathematical Biosciences and Engineering, 2022, 19(3): 3177-3201. doi: 10.3934/mbe.2022147 |
[9] | Beatriz Machado, Liliana Antunes, Constantino Caetano, João F. Pereira, Baltazar Nunes, Paula Patrício, M. Luísa Morgado . The impact of vaccination on the evolution of COVID-19 in Portugal. Mathematical Biosciences and Engineering, 2022, 19(1): 936-952. doi: 10.3934/mbe.2022043 |
[10] | Saima Akter, Zhen Jin . A fractional order model of the COVID-19 outbreak in Bangladesh. Mathematical Biosciences and Engineering, 2023, 20(2): 2544-2565. doi: 10.3934/mbe.2023119 |
Topological indices have become an important research topic associated with the study of their mathematical and computational properties and, fundamentally, for their multiple applications to various areas of knowledge (see, e.g., [2,3,4,5,6,7,8,9]). Within the study of mathematical properties, we will contribute to the study of the optimization problems involved with topological indices (see, e.g., [10,11,12,13,14,15,16,17,18]).
In [19,20] several degree-based topological indices, called adriatic indices, were presented; one of them is the inverse sum indeg index $ IS\!I $. It is important to note that this index was selected as one of the most predictive, in particular associated with the total surface area of the isomers of octane.
Let $ G $ be a graph and $ E(G) $ the set of all edges in $ G $, denote by $ uv $ the edge of the graph $ G $ with vertices $ u, v $ and $ d_z $ is the degree of the vertex $ z $. the $ ISI $ index is defined by
$ IS\!I(G) = \sum\limits_{uv\in E(G)} \frac{1}{\frac{1}{d_u} + \frac{1}{d_v}} = \sum\limits_{uv\in E(G)} \frac{d_u\, d_v}{d_u + d_v} \, . $ |
Nowadays, this index has become one of the most studied from the mathematical point of view (see, e.g., [21,22,23,24,25,26,27]). We study, here, the mathematical properties of the variable inverse sum deg index defined, for each $ a \in \mathbb{R} $, as
$ IS\!D_a(G) = \sum\limits_{uv \in E(G)} \frac{1}{d_u^a + d_v^a} \, . $ |
Note that $ IS\!D_{-1} $ is the inverse sum indeg index $ ISI $.
This research is motivated, in general, by the theoretical-mathematical importance of the topological indices and by their applicability in different areas of knowledge (see [28,29,30]). Additionally, in particular, by the work developed by Vukičević entitled "Bond Additive Modeling 5. Mathematical Properties of the Variable Sum Exdeg Index" (see [1]), where several open problems on the topological index $ IS\!D_a $ were proposed. The novelty of this work is given in two main directions. The first one is associated with the solution of some of the problems posed in [1]. The second one is associated with the development of new optimization techniques and procedures related to the monotony and differentiation of symmetric functions, which allowed us to solve extremal problems and to present bounds for $ IS\!D_a $. Although, these techniques can be extended or applied in a natural way to obtain new relations and properties of other topological indices, it should be noted that their applicability requires the monotony of the function that determines the index to be studied.
In Section 2, we find optimal bounds and solve extremal problems associated with the topological index $ IS\!D_a $, with $ a < 0 $, for several families of graphs. In Proposition 4, we solve the extremal problems for connected graphs with a given number of vertices. Theorem 6 and Remark 1 solve these problems for graphs with a given number of vertices and minimum degree; similarly, Theorems 8 and 9 present solutions to extremal problems in connected graphs with a given number of vertices and maximum degree. In this direction, in Theorem 5, Proposition 7 and Theorem 10, we present optimal bounds for the studied index.
In Section 3 of this research, a QSPR study related to the $ IS\!D_a $ index in polyaromatic hydrocarbons is performed using experimental data. First, we determine the value of $ a $ that maximizes the Pearson's correlation coefficient between this index, and each of the studied physico-chemical properties. Finally, models for these properties are constructed using the simple linear regression method. A discussion of the results obtained is presented in Section 4, and some open problems for future research on this topic are raised.
In this research, $ G = (V (G), E (G)) $ denotes an undirected finite simple graph without isolated vertices. By $ n $, $ m $, $ \Delta $ and $ \delta $, we denote the cardinality of the set of vertices of $ G $, the cardinality of the set of edges of $ G $, its maximum degree and its minimum degree, respectively. Thus, we have $ 1 \le \delta \le \Delta < n $. We denote by $ N(u) $ the set of neighbors of the vertex $ u \in V(G) $.
Suppose $ \delta < \Delta $, we say that a graph $ G $ is $ (\delta, \Delta) $-quasi-regular if it contains a vertex $ w $, such that $ \delta = d_w $ and $ \Delta = d_z $ for every $ z \in V(G) \setminus \{w\} $; $ G $ is $ (\delta, \Delta) $-pseudo-regular if it contains a vertex $ w $, such that $ \Delta = d_w $ and $ \delta = d_z $ for every $ z \in V(G) \setminus \{w\} $.
In [31] appears the following result.
Lemma 1. Let $ k $ be an integer, such that $ 2 \le k < n $.
$ (1) $ If $ n k $ is even, then there exists a $ k $-regular graph that is connected and has $ n $ vertices.
$ (2) $ If $ n k $ is odd, then there exist a $ (k, k-1) $-quasi-regular and a connected $ (k+1, k) $-pseudo-regular graphs, which are connected and have $ n $ vertices.
The following result is basic to the development of this work.
Lemma 2. For each $ a < 0 $, the function $ f: \mathbb{R}^+ \times \mathbb{R}^+ \rightarrow \mathbb{R}^+ $ given by
$ f(x, y) = \frac1{x^a + y^a} $ |
is strictly increasing in each variable.
Proof. Since $ a < 0 $, we have
$ \frac{\partial f}{\partial x}(x, y) = \frac{-ax^{a-1}}{(x^a+y^a)^2} > 0. $ |
Then, $ f $ is a strictly increasing function in $ x $, and since $ f $ is symmetric, it is also strictly decreasing in $ y $.
Using Lemma 2, we obtain the following result.
Proposition 3. If $ G $ is a graph, $ u, v \in V(G) $ with $ uv \notin E(G) $, and $ a < 0 $, then $ IS\!D_a(G \cup \{uv\}) > IS\!D_a(G) $.
Given an integer number $ n\ge 2 $, let $ \mathcal{G}(n) $ (respectively, $ \mathcal{G}_c(n) $) be the set of graphs (respectively, connected graphs) with $ n $ vertices.
Next, given integer numbers $ 1 \le \delta \le \Delta < n $, we are going to define the following classes of graphs: let $ \mathcal{H}(n, \delta) $ (respectively, $ \mathcal{H}_c(n, \delta) $) be the graphs (respectively, connected graphs) with $ n $ vertices and minimum degree $ \delta $, and let $ \mathcal{I}(n, \Delta) $ (respectively, $ \mathcal{I}_c(n, \Delta) $) be the graphs (respectively, connected graphs) with maximum degree $ \Delta $ and $ n $ vertices.
First, let us state an optimization result for the $ IS\!D_a $ index on $ \mathcal{G}_c(n) $ and $ \mathcal{G}(n) $ (see [32]).
Proposition 4. Consider $ a < 0 $ and an integer $ n\ge 2 $.
$ (1) $ The graph that maximizes the $ IS\!D_{a} $ index on $ \mathcal{G}_c(n) $ or $ \mathcal{G}(n) $ is unique and given by the complete graph $ K_n $.
$ (2) $ If a graph minimizes the $ IS\!D_{a} $ index on $ \mathcal{G}_c(n) $, then it is a tree.
$ (3) $ If $ n $ is even, then the graph that minimizes the $ IS\!D_{a} $ index on $ \mathcal{G}(n) $ is unique and given by the union of $ n/2 $ paths $ P_2 $. If $ n $ is odd, then the graph that minimizes the $ IS\!D_{a} $ index on $ \mathcal{G}(n) $ is unique and given by the union of $ (n-3)/2 $ paths $ P_2 $ with a path $ P_3 $.
Proof. Let $ G $ be a graph with $ n $ vertices, $ m $ edges and minimum degree $ \delta $.
Items (1) and (2) follow directly from Proposition 3.
For the proof of item (3), we first assume that $ n $ is even. For any graph $ G\in \mathcal{G}(n) $ Lemma 2 gives
$ IS\!D_ \alpha(G) = \sum\limits_{uv \in E(G)}\frac{1}{d_u^a+d_v^a} \ge \sum\limits_{uv \in E(G)}\frac{1}{1^a+1^a} = \frac{m}{2}, $ |
and the equality is attained if, and only if, $ \{d_u, d_v\} = \{1\} $ for each $ uv\in E(G) $, i.e., $ G $ is the union of $ n/2 $ path graphs $ P_2 $.
Now, we assume that $ n $ is odd. If $ d_u = 1 $ for each $ u\in V(G) $, handshaking lemma gives $ 2m = n $, a contradiction. So, there exists $ w\in V(G) $, such that $ d_w\ge2 $. Let $ N(w) $ be the set of neighbors of the vertex $ w $, from Lemma 2, we obtain
$ ISDα(G)=∑uv∈E(G),u,v≠w1dau+dav+∑u∈N(w)1dau+daw≥∑uv∈E(G),u,v≠w11a+1a+∑u∈N(w)11a+2a≥m−22+21+2a, $
|
and the equality is attained if, and only if, $ d_u = 1 $ for each $ u\in V(G)\setminus w $ and $ d_w = 2 $. Hence, $ G $ is the union of $ (n-3)/2 $ path graphs $ P_2 $ and a path graph $ P_3 $.
Proposition 4 allows to obtain the following inequalities.
Theorem 5. Consider a graph $ G $ with $ n $ vertices and a negative constant $ a $.
$ (1) $ Then,
$ IS\!D_a(G) \le \frac{1}4 \, n(n-1)^{1-a} , $ |
and equality holds if, and only if, $ G $ is the complete graph $ K_n $.
$ (2) $ If $ n $ is even, then
$ IS\!D_a(G) \ge \frac{1}4 \, n , $ |
and equality holds if, and only if, $ G $ is the union of $ n/2 $ path graphs $ P_2 $.
$ (3) $ If $ n $ is odd, then
$ IS\!D_a(G) \ge \frac{1}4 \, (n-3) + \frac2{1+2^a} \, , $ |
and equality holds if, and only if, $ G $ is the union of a path graph $ P_3 $ and $ (n-3)/2 $ path graphs $ P_2 $.
Proof. Proposition 4 gives
$ IS\!D_a(G) \le IS\!D_a(K_n) = \sum\limits_{uv \in E(K_n)} \frac{1}{d_u^a + d_{v}^a} = \frac{n(n-1)}2 \, \frac{1}{2 (n-1)^a} = \frac{1}4 \, n(n-1)^{1-a} . $ |
This argument gives that the bound is attained if, and only if, $ G $ is the complete graph $ K_n $. Hence, item $ (1) $ holds.
Suppose $ G $ has minimum degree $ \delta $. If $ n $ is even, handshaking lemma gives $ 2m\ge n \delta \ge n $, using this and the proof of Proposition 4, we have
$ IS\!D_a(G)\ge\frac{m}{2}\ge\frac{n}{4}, $ |
and equality holds if, and only if, $ G $ is the union of $ n/2 $ path graphs $ P_2 $. This gives item (2).
If $ n $ is odd, handshaking lemma gives $ 2m\ge (n-1) \delta +2 \ge n+1 $, using this and the proof of Proposition 4, we have
$ IS\!D_a(G)\ge \frac{m-2}{2}+\frac{2}{1+2^a}\ge \frac{\frac{n+1}{2}-2}{2}+\frac{2}{1+2^a} = \frac{n-3}{4}+\frac{2}{1+2^a}, $ |
and equality holds if, and only if, $ G $ is the union of a path graph $ P_3 $ and $ (n-3)/2 $ path graphs $ P_2 $. This gives item (3).
Fix positive integers $ 1\le \delta < n $. Let $ K_n^\delta $ be the $ n $-vertex graph with minimum and maximum degrees $ \delta $ and $ n-1 $, respectively, obtained from $ K_{n-1} $ (the complete graph with $ n-1 $ vertices) and an additional vertex $ w $, as follows: If we fix $ \delta $ vertices $ v_1, \dots, v_\delta \in V(K_{n-1}) $, then the vertices of $ K_n^\delta $ are $ w $ and the vertices of $ K_{n-1} $, and the edges of $ K_n^\delta $ are $ \{v_1w, \dots, v_\delta w\} $ and the edges of $ K_{n-1} $.
We consider now the optimization problem for the $ IS\!D_a $ index on $ \mathcal{H}_c(n, \delta) $ and $ \mathcal{H}(n, \delta) $.
Theorem 6. Consider $ a < 0 $ and integers $ 1\le \delta < n $.
$ (1) $ Then, the graph in $ \mathcal{H}_c(n, \delta) $ that maximizes the $ IS\!D_{a} $ index is unique and given by $ K_n^\delta $.
$ (2) $ If $ \delta \ge 2 $ and $ n \delta $ is even, then all the graphs in $ \mathcal{H}_c(n, \delta) $ that minimize $ IS\!D_{a} $ are the connected $ \delta $-regular graphs.
$ (3) $ If $ \delta \ge 2 $ and $ n \delta $ is odd, then all the graphs in $ \mathcal{H}_c(n, \delta) $ that minimize $ IS\!D_{a} $ are the connected $ (\delta+1, \delta) $-pseudo-regular graphs.
Proof. Given a graph $ G \in \mathcal{H}_c(n, \delta)\setminus \{K_n^\delta\} $, fix any vertex $ u \in V(G) $ with $ d_u = \delta $. Since
$ G \neq G \cup \{vw: v, w\in V(G) \setminus \{u\} \text{ and } vw\notin E(G) \} = K_n^\delta, $ |
Proposition 3 gives $ IS\!D_a(K_n^\delta) > IS\!D_a(G) $. This proves item $ (1) $.
Handshaking lemma gives $ 2m \ge n \delta $.
Since $ d_u \ge \delta $ for every $ u \in V(G) $, Lemma 2 gives
$ IS\!D_a(G) = \sum\limits_{uv \in E(G)} \frac{1}{d_u^a + d_{v}^a} \ge \sum\limits_{uv \in E(G)} \frac{1}{2\delta^a} = \frac{m}{2\delta^a} \ge \frac{n\delta/2}{2\delta^a} = \frac{1}{4} \, n\delta^{1-a}, $ |
and the bound is attained if, and only if, $ \delta = d_u $ for all $ u \in V(G) $.
If $ \delta n $ is even, then Lemma 1 gives that there is a connected $ \delta $-regular graph with $ n $ vertices. Hence, the unique graphs in $ \mathcal{H}_c(n, \delta) $ that minimize the $ IS\!D_{a} $ index are the connected $ \delta $-regular graphs.
If $ \delta n $ is odd, then handshaking lemma gives that there is no regular graph. Hence, there exists a vertex $ w $ with $ d_w \ge \delta+1 $. Since $ d_u \ge \delta $ for every $ u \in V(G) $, handshaking lemma gives $ 2m \ge (n-1) \delta+\delta+1 = n \delta+1 $. Lemma 2 gives
$ ISDa(G)=∑u∈N(w)1dau+daw+∑uv∈E(G),u,v≠w1dau+dav≥∑u∈N(w)1δa+(δ+1)a+∑uv∈E(G),u,v≠w12δa≥δ+1δa+(δ+1)a+m−δ−12δa≥δ+1δa+(δ+1)a+(nδ+1)/2−δ−12δa, $
|
and the bound is attained if, and only if, $ d_u = \delta $ for all $ u \in V(G)\setminus \{w\} $, and $ d_w = \delta+1 $. Lemma 1 gives that there is a connected $ (\delta+1, \delta) $-pseudo-regular graph with $ n $ vertices. Therefore, the unique graphs in $ \mathcal{H}_c(n, \delta) $ that minimize the $ IS\!D_{a} $ index are the connected $ (\delta+1, \delta) $-pseudo-regular graphs.
Remark 1. If we replace $ \mathcal{H}_c(n, \delta) $ with $ \mathcal{H}(n, \delta) $ everywhere in the statement of Theorem 6, then the argument in its proof gives that the same conclusions hold if we remove everywhere the word "connected".
Theorem 6 and Remark 1 have the following consequence.
Proposition 7. Consider a graph $ G $ with minimum degree $ \delta $ and $ n $ vertices, and a negative constant $ a $.
$ (1) $ Then,
$ IS\!D_{a}(G) \le \frac{(n-\delta-1)(n-\delta-2)}{4(n-2)^a} + \frac{\delta}{\delta^a+(n-1)^a} +\frac{\delta(\delta-1)}{4(n-1)^a} +\frac{\delta(n-\delta-1)}{(n-2)^a+(n-1)^a} \, , $ |
and the bound is attained if, and only if, $ G $ is isomorphic to $ K_n^\delta $.
$ (2) $ If $ \delta \ge 2 $ and $ \delta n $ is even, then
$ IS\!D_{a}(G) \ge \frac{1}{4}\, n\delta^{1-a} , $ |
and the bound is attained if, and only if, $ G $ is $ \delta $-regular.
$ (3) $ If $ \delta \ge 2 $ and $ n \delta $ is odd, then
$ IS\!D_{a}(G) \ge \frac{\delta(n-2)-1}{4\delta^a} + \frac{\delta+1}{\delta^a+(\delta+1)^a} \, , $ |
and the bound is attained if, and only if, $ G $ is $ (\delta+1, \delta) $-pseudo-regular.
Let us deal with the optimization problem for the $ IS\!D_a $ index on $ \mathcal{I}_c(n, \Delta) $.
Theorem 8. Consider $ a < 0 $ and integers $ 2\le \Delta < n $.
$ (1) $ If $ n \Delta $ is even, then all the graphs that maximize $ IS\!D_{a} $ on $ \mathcal{I}_c(n, \Delta) $ are the connected $ \Delta $-regular graphs.
$ (2) $ If $ n \Delta $ is odd, then all the graphs that maximize $ IS\!D_{a} $ on $ \mathcal{I}_c(n, \Delta) $ are the connected $ (\Delta, \Delta-1) $-quasi-regular graphs.
$ (3) $ If a graph minimizes $ IS\!D_{a} $ on $ \mathcal{I}_c(n, \Delta) $, then it is a tree.
Proof. Handshaking lemma gives $ 2m \le n \Delta $. Since $ d_u \le \Delta $ for every $ u \in V(G) $, Lemma 2 gives
$ IS\!D_a(G) = \sum\limits_{uv \in E(G)} \frac{1}{d_u^a + d_{v}^a} \le \sum\limits_{uv \in E(G)} \frac{1}{2 \Delta^a} = \frac{m}{2 \Delta^a} \le \frac{n \Delta/2}{2 \Delta^a} = \frac{1}4 \, n \Delta^{1-a} , $ |
and the bound is attained if, and only if, $ \Delta = d_u $ for all $ u \in V(G) $.
If $ n \Delta $ is even, then Lemma 1 gives that there is a connected $ \Delta $-regular graph with $ n $ vertices. Hence, the unique graphs in $ \mathcal{I}_c(n, \Delta) $ that maximize the $ IS\!D_{a} $ index are the connected $ \Delta $-regular graphs.
If $ n \Delta $ is odd, then handshaking lemma gives that there is no regular graph in $ \mathcal{I}_c(n, \Delta) $. Let $ G \in \mathcal{I}_c(n, \Delta) $. Hence, there exists a vertex $ w $ with $ d_w \le \Delta-1 $. Then, $ 2m \le \Delta(n-1)+ \Delta-1 = \Delta n-1 $. Lemma 2 gives
$ ISDa(G)=∑u∈N(w)1dau+daw+∑uv∈E(G),u,v≠w1dau+dav≤∑u∈N(w)1Δa+(Δ−1)a+∑uv∈E(G),u,v≠w12Δa≤Δ−1Δa+(Δ−1)a+m−Δ+12Δa≤Δ−1Δa+(Δ−1)a+(Δn−1)/2−Δ+12Δa, $
|
and the bound is attained if, and only if, $ d_u = \Delta $ for all $ u \in V(G)\setminus \{w\} $, and $ d_w = \Delta-1 $. Lemma 1 gives that there is a connected $ (\Delta, \Delta-1) $-quasi-regular graph with $ n $ vertices. Therefore, the unique graphs in $ \mathcal{I}_c(n, \delta) $ that maximize the $ IS\!D_{a} $ index are the connected $ (\Delta, \Delta-1) $-quasi-regular graphs.
Given any graph $ G \in \mathcal{I}_c(n, \Delta) $ which is not a tree, fix any vertex $ u \in V(G) $ with $ d_u = \Delta $. Since $ G $ is not a tree, there exists a cycle $ C $ in $ G $. Since $ C $ has at least three edges, there exists $ vw \in E(G)\cap C $, such that $ u \notin \{v, w\} $. Since $ vw $ is contained in a cycle of $ G $, then $ G\setminus \{vw\} $ is a connected graph. Thus, $ G\setminus \{vw\} \in \mathcal{I}_c(n, \Delta) $ and Proposition 3 gives $ IS\!D_a(G) > IS\!D_a(G\setminus \{vw\}) $. By iterating this argument, we obtain that if a graph minimizes the $ IS\!D_{a} $ index on $ \mathcal{I}_c(n, \Delta) $, then it is a tree.
The following result deals with the optimization problem for the $ IS\!D_a $ index on $ \mathcal{I}(n, \Delta) $.
Theorem 9. Consider $ a < 0 $ and integers $ 2\le \Delta < n $.
$ (1) $ If $ n \Delta $ is even, then all the graphs that maximize the $ IS\!D_{a} $ index on $ \mathcal{I}(n, \Delta) $ are the $ \Delta $-regular graphs.
$ (2) $ If $ n \Delta $ is odd, then all the graphs that maximize the $ IS\!D_{a} $ index on $ \mathcal{I}(n, \Delta) $ are the $ (\Delta, \Delta-1) $-quasi-regular graphs.
$ (3) $ If $ n- \Delta $ is odd, then the graph that minimizes the $ IS\!D_{a} $ index on $ \mathcal{I}(n, \Delta) $ is unique and given by the union of the star graph $ S_{ \Delta+1} $ and $ (n- \Delta-1)/2 $ path graphs $ P_2 $.
$ (4) $ If $ n = \Delta+2 $, then the graph that minimizes the $ IS\!D_{a} $ index on $ \mathcal{I}(n, \Delta) $ is unique and given by the star graph $ S_{ \Delta+1} $ with an additional edge attached to a vertex of degree $ 1 $ in $ S_{ \Delta+1} $.
$ (5) $ If $ n \ge \Delta+4 $ and $ n- \Delta $ is even, then the graph that minimizes the $ IS\!D_{a} $ index on $ \mathcal{I}(n, \Delta) $ is unique and given by the union of the star graph $ S_{ \Delta+1} $, $ (n- \Delta-4)/2 $ path graphs $ P_2 $ and a path graph $ P_3 $.
Proof. The argument in Theorem 8 gives directly items $ (1) $ and $ (2) $.
Let $ G \in \mathcal{I}(n, \Delta) $ and $ w \in V(G) $ a vertex with $ d_w = \Delta $.
Assume first that $ n- \Delta $ is odd. Handshaking lemma gives $ 2m \ge n-1+ \Delta $. Note that $ n-1+ \Delta = n- \Delta + 2 \Delta-1 $ is even. Lemma 2 gives
$ ISDa(G)=∑u∈N(w)1dau+daw+∑uv∈E(G),u,v≠w1dau+dav≥∑u∈N(w)11a+Δa+∑uv∈E(G),u,v≠w11a+1a=Δ1+Δa+m−Δ2≥Δ1+Δa+(n−1+Δ)/2−Δ2=Δ1+Δa+n−Δ−14, $
|
and the bound is attained if, and only if, $ 1 = d_u $ for all $ u \in V(G) \setminus \{w\} $, i.e., $ G $ is the union of the star graph $ S_{ \Delta+1} $ and $ (n- \Delta-1)/2 $ path graphs $ P_2 $.
Assume now that $ n = \Delta+2 $. Let $ z \in V(G) \setminus N(w) $ be the vertex with $ V(G) = \{w, z\} \cup N(w) $. Choose $ p \in N(z) $; since $ z \notin N(w) $, we have $ p \in N(w) $ and so, $ d_p \ge 2 $. Handshaking lemma gives $ 2m \ge (n-2) + \Delta +2 = n + \Delta $. Lemma 2 gives
$ ISDa(G)=∑u∈N(w)1dau+daw+∑uv∈E(G),u,v≠w1dau+dav≥Δ−11+Δa+12a+Δa+11+2a, $
|
and the bound is attained if, and only if, $ 1 = d_u $ for all $ u \in V(G) \setminus \{w, p\} $ and $ d_p = 2 $, i.e., $ G $ is the star graph $ S_{ \Delta+1} $ with an additional edge attached to a vertex of degree $ 1 $ in $ S_{ \Delta+1} $.
Assume that $ n \ge \Delta+4 $ and $ n- \Delta $ is even. If $ d_u = 1 $ for every $ u \in V(G) \setminus \{w\} $, then handshaking lemma gives $ 2m = n-1+ \Delta $, a contradiction since $ n-1+ \Delta = n- \Delta+2 \Delta-1 $ is odd. Thus, there exists a vertex $ p \in V(G) \setminus \{w\} $ with $ d_p \ge 2 $. Handshaking lemma gives $ 2m \ge (n-2) +2 + \Delta = n + \Delta $.
If $ p \notin N(w) $, then Lemma 2 gives
$ ISDa(G)=∑u∈N(w)1dau+daw+∑u∈N(p)1dau+dap+∑uv∈E(G),u,v∉{w,p}1dau+dav≥∑u∈N(w)11a+Δa+∑u∈N(p)11a+2a+∑uv∈E(G),u,v∉{w,p}11a+1a≥Δ1+Δa+21+2a+m−Δ−22≥Δ1+Δa+21+2a+(n+Δ)/2−Δ−22=Δ1+Δa+21+2a+n−Δ−44, $
|
and the bound is attained if, and only if, $ d_u = 1 $ for all $ u \in V(G)\setminus \{w, p\} $, and $ d_p = 2 $, i.e., $ G $ is the union of the star graph $ S_{ \Delta+1} $, $ (n- \Delta-4)/2 $ path graphs $ P_2 $ and a path graph $ P_3 $.
If $ p \in N(w) $, then
$ ISDa(G)=∑u∈N(w)∖{p}1dau+daw+∑u∈N(p)∖{w}1dau+dap+1dap+daw+∑uv∈E(G),u,v∉{w,p}1dau+dav≥∑u∈N(w)∖{p}11a+Δa+∑u∈N(p)∖{w}11a+dap+1dap+Δa+∑uv∈E(G),u,v∉{w,p}11a+1a≥Δ−11+Δa+11+2a+12a+Δa+m−Δ−12≥Δ−11+Δa+11+2a+12a+Δa+(n+Δ)/2−Δ−12=Δ−11+Δa+11+2a+12a+Δa+n−Δ−24. $
|
Hence, in order to finish the proof of item $ (5) $, it suffices to show that
$ Δ−11+Δa+11+2a+12a+Δa+n−Δ−24>Δ1+Δa+21+2a+n−Δ−44. $
|
We have
$ (1−2a)(1−Δa)>0,1+2aΔa>2a+Δa,2aΔa+Δa+2a+1>2(2a+Δa),(Δa+1)(1+2a)(2+2a+Δa)>2(2a+Δa)(2a+Δa+2),12a+Δa+12>11+Δa+11+2a,Δ−11+Δa+11+2a+12a+Δa+n−Δ−24>Δ1+Δa+21+2a+n−Δ−44, $
|
and so, $ (5) $ holds.
Remark 2. Note that the case $ \Delta = 1 $ in Theorem 9 is trivial: if $ \Delta = 1 $, then $ G $ is a union of isolated edges.
Also, we can state the following inequalities.
Theorem 10. Consider a graph $ G $ with maximum degree $ \Delta $ and $ n $ vertices, and a negative constant $ a $.
$ (1) $ If $ n \Delta $ is even, then
$ IS\!D_a(G) \le \frac{1}4 \, n \Delta^{1-a} , $ |
and the bound is attained if, and only if, $ G $ is a regular graph.
$ (2) $ If $ n \Delta $ is odd, then
$ IS\!D_a(G) \le \frac{ \Delta-1}{ \Delta^a + ( \Delta-1)^a} + \frac{ \Delta (n - 2)+1}{4 \Delta^a} \, , $ |
and the bound is attained if, and only if, $ G $ is a $ (\Delta, \Delta-1) $-quasi-regular graph.
$ (3) $ If $ n- \Delta $ is odd, then
$ IS\!D_a(G) \ge \frac{ \Delta}{1 + \Delta^a} + \frac{n- \Delta-1}{4} \, , $ |
and the bound is attained if, and only if, $ G $ is the union of the star graph $ S_{ \Delta+1} $ and $ (n- \Delta-1)/2 $ path graphs $ P_2 $.
$ (4) $ If $ n = \Delta+2 $, then
$ IS\!D_a(G) \ge \frac{ \Delta-1}{1 + \Delta^a} + \frac{1}{2^a + \Delta^a} + \frac{1}{1 + 2^a} \, , $ |
and the bound is attained if, and only if, $ G $ is the star graph $ S_{ \Delta+1} $ with an additional edge attached to a vertex of degree $ 1 $ in $ S_{ \Delta+1} $.
$ (5) $ If $ n \ge \Delta+4 $ and $ n- \Delta $ is even, then
$ IS\!D_a(G) \ge \frac{ \Delta}{1 + \Delta^a} + \frac{2}{1 + 2^a} + \frac{n- \Delta-4}{4} \, , $ |
and the bound is attained if, and only if, $ G $ is the union of the star graph $ S_{ \Delta+1} $, $ (n- \Delta-4)/2 $ path graphs $ P_2 $ and a path graph $ P_3 $.
Proof. The argument in the proof of Theorem 8 gives items $ (1) $ and $ (2) $, since the variable inverse sum deg index of a regular graph is
$ \frac{1}4 \, n \Delta^{1-a} , $ |
and the $ IS\!D_a $ index of a $ (\Delta, \Delta-1) $-quasi-regular graph is
$ \frac{ \Delta-1}{ \Delta^a + ( \Delta-1)^a} + \frac{ \Delta (n - 2)+1}{4 \Delta^a} \, . $ |
The argument in the proof of Theorem 9 gives directly items $ (3) $–$ (5) $.
The variable inverse sum deg index $ IS\!D_{-1.950} $ was selected in [33] as a significant predictor of standard enthalpy of formation for octane isomers. In this section, we will test the predictive power of the $ IS\!D_a $ index using experimental data on three physicochemical properties of 82 polyaromatic hydrocarbons (PAH). The properties studied are the melting point (MP), boiling point (BP) and octanol-water partition coefficient (LogP) (the experimental data were obtained from [34]). In order to obtain the values of the $ IS\!D_a $ index, we constructed the hydrogen-suppressed graph of each molecule, then we use a program of our own elaboration to compute the index for each value of $ a $ analyzed.
We calculated the Pearson's correlation coefficient $ r $ between the three analyzed properties and the $ IS\!D_a $ index, for values of $ a $ in the interval $ [-5, 5] $ with a spacing of $ 0.01 $; the results are shown in Figure 1. The dashed red line indicates the value of $ a $ that maximizes $ r $.
Figure 2 shows the $ IS\!Da $ index (for values of $ a $ that maximize $ r $) vs. the studied properties of PAH. In addition, in Figure 2, we test the following linear regression models (red lines)
$ MP=31.54ISD0.15−121.15BP=58.94ISD0.39−13.35LogP=0.68ISD0.63+1.55. $
|
Table 1 summarizes the statistical and regression parameters of these models.
Property | $ a $ | $ r $ | $ c $ | $ m $ | $ SE $ | $ F $ | $ SF $ |
MP | $ 0.15 $ | $ 0.856 $ | $ -122.15 $ | $ 31.54 $ | $ 54.61 $ | $ 214.47 $ | $ 4.31\times 10^{-24} $ |
BP | $ 0.39 $ | $ 0.989 $ | $ -13.35 $ | $ 58.94 $ | $ 12.42 $ | $ 2272.86 $ | $ 5.69\times 10^{-44} $ |
LogP | $ 0.63 $ | $ 0.943 $ | $ 1.55 $ | $ 0.68 $ | $ 0.34 $ | $ 282.04 $ | $ 2.53\times 10^{-18} $ |
Motivated by a paper of Vukičević [1], and based on the practical applications found for the variable inverse sum deg index $ IS\!D_{a} $, we focus our research on the study of optimal graphs associated with $ IS\!D_{a} $, when $ a < 0 $. In this direction, it is wise to study the extremal properties of $ IS\!D_{a} $, when $ a < 0 $ in general graphs. Specifically, in this paper, we characterize the graphs with extremal values in the following significant classes of graphs with a fixed number of vertices:
● graphs with a fixed minimum degree;
● connected graphs with a fixed minimum degree;
● graphs with a fixed maximum degree;
● connected graphs with a fixed maximum degree.
From the QSPR study performed on polyaromatic hydrocarbons, it can be concluded that the $ IS\!D_a $ index presents a strong correlation with the boiling point and octanol-water partition coefficient properties, with maximum values of $ r $ higher than $ 0.98 $ and $ 0.94 $, respectively. Further, the melting point property presents some correlation with the $ IS\!D_a $ index with maximum value of $ r $ close to $ 0.85 $.
For future research, we suggests:
● To study the extreme problems for the $ IS\!D_a $ index for values of $ a > 0 $.
● To consider the problem of finding which tree/trees with $ n $ vertices (with a fixed maximum degree or not) minimize the index $ IS\!D_a $ ($ a < 0 $).
● To analyze the behavior of the $ IS\!D_{a} $ index in other important families of graphs, such as graph products and graph operators.
● To explore the mathematical properties and possible applications of the exponential extension of the $ IS\!D_a $ index.
● To study the predictive power of this index on other physicochemical properties of PAH, and on other classes of molecules.
The authors were supported by a grant from Agencia Estatal de Investigación (PID2019-106433GB-I00 / AEI / 10.13039/501100011033), Spain.
The authors declare there are no conflicts of interest.
[1] |
H. W. Alt and S. Luckhaus, Quasilinear elliptic-parabolic differential equations, Math. Z., 183 (1983), 311-341. doi: 10.1007/BF01176474
![]() |
[2] | B. Andreianov, M. Bendahmane, F. Hubert and S. Krell, On 3D DDFV discretization of gradient and divergence operators. I. Meshing, operators and discrete duality, Preprint HAL (2011), http://hal.archives-ouvertes.fr/hal-00355212 |
[3] | B. Andreianov, M. Bendahmane and F. Hubert, On 3D DDFV discretization of gradient and divergence operators. II. Discrete functional analysis tools and applications to degenerate parabolic problems, Preprint HAL (2011), http://hal.archives-ouvertes.fr/hal-00567342 |
[4] | B. Andreianov, M. Bendahmane and K. H. Karlsen, A gradient reconstruction formula for finite volume schemes and discrete duality, In R. Eymard and J.-M. Hérard, editors, Finite Volume For Complex Applications, Problems And Perspectives. 5th International Conference, Wiley, London, (2008), 161-168. |
[5] | B. Andreianov, M. Bendahmane and K. H. Karlsen, Discrete duality finite volume schemes for doubly nonlinear degenerate hyperbolic-parabolic equations, J. Hyperbolic Diff. Equ., 7 (2010), 1-67. |
[6] | B. Andreianov, M. Bendahmane and R. Ruiz Baier, Analysis of a finite volume method for a cross-diffusion model in population dynamics, M3AS Math. Models Meth. Appl. Sci., (2011), http://dx.doi.org/10.1142/S0218202511005064 |
[7] |
B. Andreianov, F. Boyer and F. Hubert, Discrete duality finite volume schemes for Leray-Lions type elliptic problems on general 2D meshes, Num. Meth. PDE, 23 (2007), 145-195. doi: 10.1002/num.20170
![]() |
[8] |
B. Andreianov, M. Gutnic and P. Wittbold, Convergence of finite volume approximations for a nonlinear elliptic-parabolic problem: A "continuous" approach, SIAM J. Num. Anal., 42 (2004), 228-251. doi: 10.1137/S0036142901400006
![]() |
[9] | B. Andreianov, F. Hubert and S. Krell, Benchmark 3D: A version of the DDFV scheme with cell/vertex unknowns on general meshes, In Proc. of Finite Volumes for Complex Applications VI in Prague, Springer, (2011), to appear. |
[10] |
M. Bendahmane, R. Bürger and R. Ruiz Baier, A finite volume scheme for cardiac propagation in media with isotropic conductivities, Math. Comp. Simul., 80 (2010), 1821-1840. doi: 10.1016/j.matcom.2009.12.010
![]() |
[11] | M. Bendahmane and K. H. Karlsen, Analysis of a class of degenerate reaction-diffusion systems and the bidomain model of cardiac tissue, Netw. Heterog. Media, 1 (2006), 185-218. |
[12] |
M. Bendahmane and K. H. Karlsen, Convergence of a finite volume scheme for the bidomain model of cardiac tissue, Appl. Numer. Math., 59 (2009), 2266-2284. doi: 10.1016/j.apnum.2008.12.016
![]() |
[13] | S. Börm, L. Grasedyck and W. Hackbusch, An introduction to hierarchical matrices, Math. Bohemica, 127 (2002), 229-241. |
[14] |
S. Börm, L. Grasedyck and W. Hackbusch, Introduction to hierarchical matrices with applications, Eng. Anal. Bound., 27 (2003), 405-422. doi: 10.1016/S0955-7997(02)00152-2
![]() |
[15] |
Y. Bourgault, Y. Coudière and C. Pierre, Existence and uniqueness of the solution for the bidomain model used in cardiac electro-physiology, Nonlin. Anal. Real World Appl., 10 (2009), 458-482. doi: 10.1016/j.nonrwa.2007.10.007
![]() |
[16] | F. Boyer and P. Fabrie, "Eléments d'Analyse pour l'Étude de quelques Modèles d'Écoulements de Fluides Visqueux Incompressibles" (French) [Elements of analysis for the study of some models of incompressible viscous fluid flow], Math. & Appl. Vol. 52, Springer, Berlin, 2006. |
[17] |
F. Boyer and F. Hubert, Finite volume method for 2D linear and nonlinear elliptic problems with discontinuities, SIAM J. Num. Anal., 46 (2008), 3032-3070. doi: 10.1137/060666196
![]() |
[18] |
M. Brezzi, K. Lipnikov and M. Shashkov, Convergence of the mimetic finite difference method for diffusion problems on polyhedral meshes, SIAM J. Num. Anal., 43 (2005), 1872-1896. doi: 10.1137/040613950
![]() |
[19] |
P. Colli Franzone, L. Guerri and S. Rovida, Wavefront propagation in an activation model of the anisotropic cardiac tissue: Asymptotic analysis and numerical simulations, J. Math. Biol., 28 (1990), 121-176. doi: 10.1007/BF00163143
![]() |
[20] |
P. Colli Franzone, L. Guerri and S. Tentoni, Mathematical modeling of the excitation process in myocardial tissue: Influence of fiber rotation on wavefront propagation and potential field, Math. Biosci., 101 (1990), 155-235. doi: 10.1016/0025-5564(90)90020-Y
![]() |
[21] |
P. Colli Franzone, L. F. Pavarino and B. Taccardi, Simulating patterns of excitation, repolarization and action potential duration with cardiac bidomain and monodomain models, Math. Biosci., 197 (2005), 35-66. doi: 10.1016/j.mbs.2005.04.003
![]() |
[22] | P. Colli Franzone and G. Savaré, Degenerate evolution systems modeling the cardiac electric field at micro- and macroscopic level, In Evolution equations, semigroups and functional analysis (Milano, 2000), vol. 50 of Progr. Nonlinear Differential Equations Appl., 49-78. Birkhäuser, Basel, 2002. |
[23] |
Y. Coudière, Th. Gallouët and R. Herbin, Discrete Sobolev inequalities and $L^p$ error estimates for finite volume solutions of convection diffusion equations, M2AN Math. Model. Numer. Anal., 35 (2001), 767-778. doi: 10.1051/m2an:2001135
![]() |
[24] | Y. Coudière and F. Hubert, A 3D discrete duality finite volume method for nonlinear elliptic equations, In: A. Handloviovà, P. Frolkovič, K. Mikula, D. Ševčovič (Eds.), Proc. of Algoritmy 2009, 18th Conf. on Scientific Computing (2009), 51-60, http://pc2.iam.fmph.uniba.sk/amuc/_contributed/algo2009/ |
[25] | Y. Coudière and F. Hubert, A 3D discrete duality finite volume method for nonlinear elliptic equation, HAL preprint (2010), http://hal.archives-ouvertes.fr/hal-00456837 |
[26] | Y. Coudière, F. Hubert and G. Manzini, Benchmark 3D: CeVeFE-DDFV, a discrete duality scheme with cell/vertex/face+edge unknowns, In Proc. of Finite Volumes for Complex Applications VI in Prague, Springer (2011), to appear. |
[27] | Y. Coudière and G. Manzini, The discrete duality finite volume method for convection-diffusion problems, SIAM J. Numer. Anal., 47 (2010), 4163-4192. |
[28] | Y. Coudière and Ch. Pierre, Benchmark 3D: CeVe-DDFV, a discrete duality scheme with cell/vertex unknowns, In Proc. of Finite Volumes for Complex Applications VI in Prague, Springer (2011), to appear. |
[29] |
Y. Coudière and Ch. Pierre, Stability and convergence of a finite volume method for two systems of reaction-diffusion in electro-cardiology, Nonlin. Anal. Real World Appl., 7 (2006), 916-935. doi: 10.1016/j.nonrwa.2005.02.006
![]() |
[30] | Y. Coudière, Ch. Pierre and R. Turpault, A 2D/3D finite volume method used to solve the bidomain equations of electro-cardiology, Proc. of Algorithmy 2009, 18th Conf. on Scientific Computing, (2009), http://pc2.iam.fmph.uniba.sk/amuc/_contributed/algo2009/ |
[31] | Y. Coudière, Ch. Pierre, O. Rousseau and R. Turpault, A 2D/3D discrete duality finite volume scheme. Application to ECG simulation, Int. J. on Finite Volumes, 6 (2008), 1-24. |
[32] | K. Domelevo, S. Delcourte and P. Omnes, Discrete-duality finite volume method for second order elliptic equations, in: F. Benkhaldoun, D. Ouazar, S. Raghay (Eds.), Finite Volumes for Complex Applications, Hermes Science Publishing, (2005), 447-458. |
[33] |
K. Domelevo and P. Omnès., A finite volume method for the Laplace equation on almost arbitrary two-dimensional grids, M2AN Math. Model. Numer. Anal., 39 (2005), 1203-1249. doi: 10.1051/m2an:2005047
![]() |
[34] | L. C. Evans, "Partial Differential Equations," vol. 19 of Graduate Studies in Mathematics. American Math. Society, Providence, RI, 1998. |
[35] | R. Eymard, T. Gallouët and R. Herbin, "Finite Volume Methods," Handbook of Numerical Analysis, Vol. VII, P. Ciarlet, J.-L. Lions, eds., North-Holland, 2000. |
[36] |
R. Eymard, T. Gallouët and R. Herbin, Discretisation of heterogeneous and anisotropic diffusion problems on general non-conforming meshes. SUSHI: A scheme using stabilisation and hybrid interfaces, IMA J. Numer. Anal., 30 (2010), 1009-1043. doi: 10.1093/imanum/drn084
![]() |
[37] | R. Eymard, G. Henry, R. Herbin, F. Hubert, R. Klöfkorn and G. Manzini, 3D Benchmark on discretization schemes for anisotropic diffusion problems on general grids, In Proc. of Finite Volumes for Complex Applications VI in Prague, Springer (2011), to appear. |
[38] |
A. Glitzky and J. A. Griepentrog, Discrete Sobolev-Poincaré inequalities for Voronoï finite volume approximations, SIAM J. Numer. Anal., 48 (2010), 372-391. doi: 10.1137/09076502X
![]() |
[39] |
D. Harrild and C. S. Henriquez, A finite volume model of cardiac propagation, Ann. Biomed. Engrg., 25 (1997), 315-334. doi: 10.1007/BF02648046
![]() |
[40] | R. Herbin and F. Hubert, Benchmark on discretisation schemes for anisotropic diffusion problems on general grids, In R. Eymard and J.-M. Hérard, editors, Finite Volume For Complex Applications, Problems And Perspectives. 5th International Conferenc, Wiley, London, (2008), 659-692. |
[41] | C. S. Henriquez, Simulating the electrical behavior of cardiac tissue using the biodomain models, Crit. Rev. Biomed. Engr., 21 (1993), 1-77. |
[42] | F. Hermeline, Une méthode de volumes finis pour les équations elliptiques du second ordre (French) [A finite-volume method for second-order elliptic equations], C. R. Math. Acad. Sci. Paris Sér. I, 326 (1198), 1433-1436. |
[43] |
F. Hermeline, A finite volume method for the approximation of diffusion operators on distorted meshes, J. Comput. Phys., 160 (2000), 481-499. doi: 10.1006/jcph.2000.6466
![]() |
[44] | F. Hermeline, A finite volume method for solving Maxwell equations in inhomogeneous media on arbitrary meshes, C. R. Math. Acad. Sci. Paris Sér. I, 339 (2004), 893-898. |
[45] |
F. Hermeline, Approximation of 2D and 3D diffusion operators with discontinuous full-tensor coefficients on arbitrary meshes, Comput. Methods Appl. Mech. Engrg., 196 (2007), 2497-2526. doi: 10.1016/j.cma.2007.01.005
![]() |
[46] |
F. Hermeline, A finite volume method for approximating 3D diffusion operators on general meshes, J. Comput. Phys., 228 (2009), 5763-5786. doi: 10.1016/j.jcp.2009.05.002
![]() |
[47] | A. L. Hodgkin and A. F. Huxley, A quantitative description of membrane current and its application to conduction and excitation in nerve, J. Physiol., 117 (1952), 500-544. |
[48] | J. Keener and J. Sneyd, "Mathematical Physiology," Vol. 8 of Interdisciplinary Applied Mathematics, Springer, New York, 1998. |
[49] | S. Krell, Stabilized DDFV schemes for Stokes problem with variable viscosity on general 2D meshes, Num. Meth. PDEs, (2010), http://dx.doi.org/10.1002/num.20603 |
[50] | S. Krell and G. Manzini, The Discrete Duality Finite Volume method for the Stokes equations on 3D polyhedral meshes, HAL preprint (2010), http://hal.archives-ouvertes.fr/hal-00448465 |
[51] | S. N. Kruzhkov, Results on the nature of the continuity of solutions of parabolic equations and some of their applications, Mat. Zametki, 6 (1969), 97-108; english tr. in Math. Notes, 6 (1969), 517-523. |
[52] |
P. Le Guyader, F. Trelles and P. Savard, Extracellular measurement of anisotropic bidomain myocardial conductivities. I. Theoretical analysis, Annals Biomed. Eng., 29 (2001), 862-877. doi: 10.1114/1.1408923
![]() |
[53] | G. T. Lines, P. Grottum, A. J. Pullan, J. Sundes and A. Tveito, Mathematical models and numerical methods for the forward problem in cardiac electrophysiology, Comput. Visual. Sci., 5 (2002), 215-239. |
[54] | G. Lines, M. L. Buist, P. Grøttum, A. J. Pullan, J. Sundnes and A. Tveito, Mathematical models and numerical methods for the forward problem in cardiac electrophysiology, Comput. Visual. Sci., 5 (2003), 215-239. |
[55] | J.-L. Lions and E. Magenes, "Problèmes aux Limites non Homogènes et Applications," Vol. 1, (French) [Nonhomogeneous boundary value problems and their applications. Vol. 1], Dunod, Paris, 1968. |
[56] | C.-H. Luo and Y. Rudy, A model of the ventricular cardiac action potential. Depolarization, repolarization, and their interaction, Circ. Res., 68 (1991), 1501-1526. |
[57] | D. Noble, A modification of the Hodgkin-Huxley equation applicable to Purkinje fibre action and pacemaker potentials, J. Physiol., 160 (1962), 317-352. |
[58] |
F. Otto, $L^1$-contraction and uniqueness for quasilinear elliptic-parabolic equations, J. Diff. Equ., 131 (1996), 20-38. doi: 10.1006/jdeq.1996.0155
![]() |
[59] | Ch. Pierre, "Modélisation et Simulation de l'Activité Électrique du Coeur dans le Thorax, Analyse Numérique et Méthodes de Volumes Finis" (French) [Modelling and Simulation of the Heart Electrical Activity in the Thorax, Numerical Analysis and Finite Volume Methods] Ph.D. Thesis, Université de Nantes, 2005. |
[60] | Ch. Pierre, Preconditioning the coupled heart and torso bidomain model with an almost linear complexity, HAL Preprint (2010), http://hal.archives-ouvertes.fr/hal-00525976. |
[61] |
S. Sanfelici, Convergence of the Galerkin approximation of a degenerate evolution problem in electro-cardiology, Numer. Meth. PDE, 18 (2002), 218-240. doi: 10.1002/num.1000
![]() |
[62] | J. Sundnes, G. T. Lines, X. Cai, B. F. Nielsen, K.-A. Mardal and A. Tveito, "Computing the Electrical Activity in the Human Heart," Springer, 2005. |
[63] |
J. Sundnes, G. T. Lines and A. Tveito, An operator splitting method for solving the bidomain equations coupled to a volume conductor model for the torso, Math. Biosci., 194 (2005), 233-248. doi: 10.1016/j.mbs.2005.01.001
![]() |
[64] | L. Tung, "A Bidomain Model for Describing Ischemic Myocardial D-D Properties," Ph.D. thesis, M.I.T., 1978. |
[65] |
M. Veneroni, Reaction-diffusion systems for the microscopic cellular model of the cardiac electric field, Math. Methods Appl. Sci., 29 (2006), 1631-1661. doi: 10.1002/mma.740
![]() |
1. | Shuo Li, Saif Ullah, Salman A. AlQahtani, Sayed M. Tag, Ali Akgül, Mathematical assessment of Monkeypox with asymptomatic infection: Prediction and optimal control analysis with real data application, 2023, 51, 22113797, 106726, 10.1016/j.rinp.2023.106726 | |
2. | Yuzhen Wang, Saif Ullah, Ihsan Ullah Khan, Salman A. AlQahtani, Ahmed M. Hassan, Numerical assessment of multiple vaccinations to mitigate the transmission of COVID-19 via a new epidemiological modeling approach, 2023, 52, 22113797, 106889, 10.1016/j.rinp.2023.106889 | |
3. | Rehana Naz, Andrew Omame, Mariano Torrisi, Cost-effectiveness analysis of COVID-19 vaccination: A review of some vaccination models, 2024, 11, 26668181, 100842, 10.1016/j.padiff.2024.100842 | |
4. | Yan Li, Laique Zada, Emad A. A. Ismail, Fuad A. Awwad, Ahmed M. Hassan, Assessing the Impact of Time-Varying Optimal Vaccination and Non-Pharmaceutical Interventions on the Dynamics and Control of COVID-19: A Computational Epidemic Modeling Approach, 2023, 11, 2227-7390, 4253, 10.3390/math11204253 | |
5. | Laiquan Wang, Arshad Alam Khan, Saif Ullah, Nadeem Haider, Salman A. AlQahtani, Abdul Baseer Saqib, A rigorous theoretical and numerical analysis of a nonlinear reaction-diffusion epidemic model pertaining dynamics of COVID-19, 2024, 14, 2045-2322, 10.1038/s41598-024-56469-5 | |
6. | Y. Sudha, V. N. Deiva Mani, K. Murugesan, On the Solvability of Time-Fractional Spatio-Temporal COVID-19 Model with Non-linear Diffusion, 2024, 48, 2731-8095, 1281, 10.1007/s40995-024-01663-3 | |
7. | Wafa F. Alfwzan, Mahmoud H. DarAssi, F.M. Allehiany, Muhammad Altaf Khan, Mohammad Y. Alshahrani, Elsayed M. Tag-eldin, A novel mathematical study to understand the Lumpy skin disease (LSD) using modified parameterized approach, 2023, 51, 22113797, 106626, 10.1016/j.rinp.2023.106626 | |
8. | Changtong Li, Saif Ullah, Rashid Nawaz, Salman A AlQahtani, Shuo Li, Mathematical modeling and analysis of monkeypox 2022 outbreak with the environment effects using a Cpauto fractional derivative, 2023, 98, 0031-8949, 105239, 10.1088/1402-4896/acf88e | |
9. | Abdeldjalil Kadri, Ahmed Boudaoui, Saif Ullah, Mohammed Asiri, Abdul Baseer Saqib, Muhammad Bilal Riaz, A comparative study of deterministic and stochastic computational modeling approaches for analyzing and optimizing COVID-19 control, 2025, 15, 2045-2322, 10.1038/s41598-025-96127-y | |
10. | Manal Almuzini, Farah A. Abdullah, Matthew O. Adewole, Shaher Momani, S. A. Khuri, Generalized Mathematical Model of Infectious Disease During Medicinal Intervention by Employing Fractional Differential Equations, 2025, 0170-4214, 10.1002/mma.11019 |
Property | $ a $ | $ r $ | $ c $ | $ m $ | $ SE $ | $ F $ | $ SF $ |
MP | $ 0.15 $ | $ 0.856 $ | $ -122.15 $ | $ 31.54 $ | $ 54.61 $ | $ 214.47 $ | $ 4.31\times 10^{-24} $ |
BP | $ 0.39 $ | $ 0.989 $ | $ -13.35 $ | $ 58.94 $ | $ 12.42 $ | $ 2272.86 $ | $ 5.69\times 10^{-44} $ |
LogP | $ 0.63 $ | $ 0.943 $ | $ 1.55 $ | $ 0.68 $ | $ 0.34 $ | $ 282.04 $ | $ 2.53\times 10^{-18} $ |
Property | $ a $ | $ r $ | $ c $ | $ m $ | $ SE $ | $ F $ | $ SF $ |
MP | $ 0.15 $ | $ 0.856 $ | $ -122.15 $ | $ 31.54 $ | $ 54.61 $ | $ 214.47 $ | $ 4.31\times 10^{-24} $ |
BP | $ 0.39 $ | $ 0.989 $ | $ -13.35 $ | $ 58.94 $ | $ 12.42 $ | $ 2272.86 $ | $ 5.69\times 10^{-44} $ |
LogP | $ 0.63 $ | $ 0.943 $ | $ 1.55 $ | $ 0.68 $ | $ 0.34 $ | $ 282.04 $ | $ 2.53\times 10^{-18} $ |