Special Issues

The differential equation model of pathogenesis of Kawasaki disease with theoretical analysis

  • Fever is a extremely common symptom in infants and young children. Due to the lowresistance of infants and young, long-term fever may cause damage to the child’s body. Clinically,some children with long-term fever was eventually diagnosed with Kawasaki disease (KD). KD, anautoimmune disease, is a systemic vasculitis mainly affecting children younger than 5 years old. Dueto the delayed therapy and diagnosis, coronary artery abnormalities (CAAs) develop in children with KD, and leads to a high risk of acquired heart disease. Later, patients may have myocardial infarctionor even die a sudden death. Unfortunately, at present, the pathogenesis of KD remains unknownand KD lacks of specific and sensitive biomarkers, thus bringing difficulties to diagnosis and therapy.Therefore it is a highly focused topic to research on the mechanism of KD. Some scholars believethat KD is caused by the cross reaction of external infection and organ tissue composition, herebytriggering disorder of the immune system and producing a variety of cytokines. On the basis ofconsidering the cytokines such as vascular endothelial cells, inflammatory factors, adhesion factorsand chemokines, endothelial cell growth factors, put forward a kind of dynamic model of pathogenesisof KD by the theory of ordinary differential equation. It is found that the dynamic model can showcomplex dynamic behavior, such as the forward and backward bifurcation of the equilibria. This articlereveals the possible complexity of KD infection, and provides a theoretical references for the researchof pathogenic mechanism and clinical treatment of KD.

    Citation: Rong Qiang, Wanbiao Ma, Ke Guo, Hongwu Du. The differential equation model of pathogenesis of Kawasaki disease with theoretical analysis[J]. Mathematical Biosciences and Engineering, 2019, 16(5): 3488-3511. doi: 10.3934/mbe.2019175

    Related Papers:

    [1] Fangyuan Chen, Rong Yuan . Dynamic behavior of swine influenza transmission during the breed-slaughter process. Mathematical Biosciences and Engineering, 2020, 17(5): 5849-5863. doi: 10.3934/mbe.2020312
    [2] Aurelie Akossi, Gerardo Chowell-Puente, Alexandra Smirnova . Numerical study of discretization algorithms for stable estimation of disease parameters and epidemic forecasting. Mathematical Biosciences and Engineering, 2019, 16(5): 3674-3693. doi: 10.3934/mbe.2019182
    [3] Kasia A. Pawelek, Anne Oeldorf-Hirsch, Libin Rong . Modeling the impact of twitter on influenza epidemics. Mathematical Biosciences and Engineering, 2014, 11(6): 1337-1356. doi: 10.3934/mbe.2014.11.1337
    [4] Meili Li, Ruijun Zhai, Junling Ma . The effects of disease control measures on the reproduction number of COVID-19 in British Columbia, Canada. Mathematical Biosciences and Engineering, 2023, 20(8): 13849-13863. doi: 10.3934/mbe.2023616
    [5] Karen R. Ríos-Soto, Baojun Song, Carlos Castillo-Chavez . Epidemic spread of influenza viruses: The impact of transient populations on disease dynamics. Mathematical Biosciences and Engineering, 2011, 8(1): 199-222. doi: 10.3934/mbe.2011.8.199
    [6] Rodolfo Acuňa-Soto, Luis Castaňeda-Davila, Gerardo Chowell . A perspective on the 2009 A/H1N1 influenza pandemic in Mexico. Mathematical Biosciences and Engineering, 2011, 8(1): 223-238. doi: 10.3934/mbe.2011.8.223
    [7] Qingling Zeng, Kamran Khan, Jianhong Wu, Huaiping Zhu . The utility of preemptive mass influenza vaccination in controlling a SARS outbreak during flu season. Mathematical Biosciences and Engineering, 2007, 4(4): 739-754. doi: 10.3934/mbe.2007.4.739
    [8] Akhil Kumar Srivastav, Pankaj Kumar Tiwari, Prashant K Srivastava, Mini Ghosh, Yun Kang . A mathematical model for the impacts of face mask, hospitalization and quarantine on the dynamics of COVID-19 in India: deterministic vs. stochastic. Mathematical Biosciences and Engineering, 2021, 18(1): 182-213. doi: 10.3934/mbe.2021010
    [9] Hiroshi Nishiura . Joint quantification of transmission dynamics and diagnostic accuracy applied to influenza. Mathematical Biosciences and Engineering, 2011, 8(1): 49-64. doi: 10.3934/mbe.2011.8.49
    [10] Oren Barnea, Rami Yaari, Guy Katriel, Lewi Stone . Modelling seasonal influenza in Israel. Mathematical Biosciences and Engineering, 2011, 8(2): 561-573. doi: 10.3934/mbe.2011.8.561
  • Fever is a extremely common symptom in infants and young children. Due to the lowresistance of infants and young, long-term fever may cause damage to the child’s body. Clinically,some children with long-term fever was eventually diagnosed with Kawasaki disease (KD). KD, anautoimmune disease, is a systemic vasculitis mainly affecting children younger than 5 years old. Dueto the delayed therapy and diagnosis, coronary artery abnormalities (CAAs) develop in children with KD, and leads to a high risk of acquired heart disease. Later, patients may have myocardial infarctionor even die a sudden death. Unfortunately, at present, the pathogenesis of KD remains unknownand KD lacks of specific and sensitive biomarkers, thus bringing difficulties to diagnosis and therapy.Therefore it is a highly focused topic to research on the mechanism of KD. Some scholars believethat KD is caused by the cross reaction of external infection and organ tissue composition, herebytriggering disorder of the immune system and producing a variety of cytokines. On the basis ofconsidering the cytokines such as vascular endothelial cells, inflammatory factors, adhesion factorsand chemokines, endothelial cell growth factors, put forward a kind of dynamic model of pathogenesisof KD by the theory of ordinary differential equation. It is found that the dynamic model can showcomplex dynamic behavior, such as the forward and backward bifurcation of the equilibria. This articlereveals the possible complexity of KD infection, and provides a theoretical references for the researchof pathogenic mechanism and clinical treatment of KD.




    [1] C. Shao and S. Zhu, Clinical disease and immunity, Science Press, Beijing, 2002.
    [2] T. Kawasaki, Acute febrile mucocutaneous syndrome with lymphoid involvement with specificdesquamation of the fingers and toes in children, Arerugi, 16 (1967), 178–222.
    [3] S. Bayers, S. T. Shulman and A. S. Paller, Kawasaki disease: Part I. Diagnosis, clinical features,and pathogenesis, J. Am. Acad. Dermatol., 69 (2013), 501e1–501e11.
    [4] R. Uehara and E. D. Belay, Epidemiology of Kawasaki Disease in Asia, Europe, and the UnitedStates, J. Epidemiol., 22 (2012), 79–85.
    [5] H. Lue, L. Chen, M. Lin, et al., Epidemiological features of Kawasaki disease in Taiwan, 1976–2007: results of five nationwide questionnaire hospital surveys, Pediatr. Neonatol., 55 (2014),92–96.
    [6] C. Wei, J. Tsai, C. Lin, et al., Increased risk of idiopathic nephrotic syndrome in children withatopic dermatitis, Pediatr. Nephrol., 29 (2014), 2157–2163.
    [7] A. Kentsis, A. Shulman, S. Ahmed, et al., Urine proteomics for discovery of improved diagnosticmarkers of Kawasaki disease, EMBO Mol. Med., 22 (2012), 210–220.
    [8] M. Ayusawa, T. Sonobe, S. Uemura, et al., Revision of diagnostic guidelines for Kawasaki disease(the 5th revised edition), Pediatr. Int, 47 (2005), 232–234.
    [9] C. Galeotti, S. V. Kaveri, R. Cimaz, et al., Predisposing factors, pathogenesis and therapeuticintervention of Kawasaki disease, Drug. Discov. Today, 21 (2016), 1850–1857.
    [10] M. Terai and S. T. Shulman, Prevalence of coronary artery abnormalities in Kawasaki diseaseis highly dependent on gamma globulin dose but independent of salicylate dose, J. Pediatr., 131(1997), 888–893.
    [11] G. B. Kim, J. J. Yu, K. L. Yoon, et al., Medium- or higher-dose acetylsalicylic acid for acuteKawasaki disease and patient outcomes, J. Pediatr., 184 (2016), 125–129.e1.
    [12] J. C. Burns, B. M. Best, A. Mejias, et al., Infliximab treatment of intravenous immunoglobulin-resistant Kawasaki disease, J. Pediatr., 153 (2008), 833–838.
    [13] T. Yang, M. Lin, C. Lu, et al., The prevention of coronary arterial abnormalities in Kawasakidisease: A meta-analysis of the corticosteroid effectiveness, J. Microbiol. Immunol. Infect., 51(2018), 321–331.
    [14] J. Shen, L. Liang and C. Wang, Perifosine inhibits lipopolysaccharide (LPS)-induced tumornecrosis factor (TNF)- production via regulation multiple signaling pathways: new implicationfor Kawasaki disease (KD) treatment, Biochem. Biophys. Res. Commun., 437 (2013), 250–255.
    [15] F. Bajolle, J. F. Meritet, F. Rozenberg, et al., Markers of a recent bocavirus infection in childrenwith Kawasaki disease: a year prospective study, Pathol. Biol., 62 (2014), 365–368.
    [16] L. Chang, C. Lu, P. Shao, et al., Viral infections associated with Kawasaki disease, J. Formos.Med. Assoc., 113 (2014), 148–154.
    [17] N. Principi, D. Rigante and S. Esposito, The role of infection in Kawasaki syndrome, J. Infect.,67 (2013), 1–10.
    [18] A. Harnden, B. Alves and A. Sheikh, Rising incidence of Kawasaki disease in England: analysisof hospital admission data, Bmj, 324 (2002), 1424–1425.
    [19] H. Murata, Experimental candida-induced arteritis in mice. Relation to arteritis in themucocutaneous lymph node syndrome, Microbiol. Immunol., 23 (1979), 825–831.
    [20] A.H.Rowley, S.M.Wolinsky, D.A.Relman, etal., Searchforhighlyconservedviralandbacterialnucleic acid sequences corresponding to an etiologic agent of Kawasaki disease, Pediatr. Res., 36(1994), 567–571.
    [21] R. S. M. Yeung, The etiology of Kawasaki disease: a superantigen-mediated process, Progress Pediatr. Cardiol., 19 (2004), 115–122.
    [22] C. Lin, C. Lin, B. Hwang, et al., Serial changes of serum interleukin-6, interleukin-8, and tumornecrosis factor alpha among patients with Kawasaki disease,J. Pediatr, 121 (1992), 924–926.
    [23] M. Xiao, L. Men, M. Xu, et al., Berberine protects endothelial progenitor cell from damage ofTNF- via the PI3K/AKT/eNOS signaling pathway, J. Pediatr., 743 (2014), 11–16.
    [24] J. S. Hui-Yuen, T. T. Duong and R. S. Yeung, TNF- is necessary for induction of coronary arteryinflammation and aneurysm formation in an animal model of Kawasaki disease, J. Immunol., 176(2006), 6294–6301.
    [25] R. Fukazawa, Y. Uchikoba, Y. Kuramochi, et al., Leukocyte adhesion factor Mac-1 and migrationinhibitory factor-related protein (MRP) on granulocyte plays the essential role for causingvasculitis in kawasaki disease and the gamma globulin therapy inhibit leukocyte-endothelial celladhesion, JACC, 39 (2002), 409.
    [26] M. Terai, K. Yasukawa, S. Narumoto, et al., Vascular endothelial growth factor in acute Kawasakidisease, J. Pediatr., 83 (1999), 337–339.
    [27] S. T. Shulman and A. H. Rowley, Etiology and pathogenesis of Kawasaki disease, Progress Pediatr. Cardiol., 6 (1997), 187–192.
    [28] Y. Kuang, Delay Differential Equations with Applications in Population Dynamics, AcademicPress, Boston, 1993.
    [29] L. Chen, X. Meng and J. Jiao, Biodynamics, Science Press, Beijing, 2009.30. Z. Ma, Y. Zhou and W. Wang, et al., Mathematical Modeling and Research of Epidemic Dynamics,Science Press, Beijing, 2004.
    [30] 31. M. A. Nowak and C. R. M. Bangham, Population dynamics of immune responses to persistentvirus, Science, 272 (1996), 74–79.
    [31] 32. A. S. Perelson, A. U. Neumann, M. Markowitz, et al., HIV-1 dynamics in vivo: virion clearancerate, infected cell life-span, and viral generation time, Science, 271 (1996), 1582–1586.
    [32] 33. D. E. Kirschner and G. F. Webb, A model for the treatment strategy in the chemotherapy of AIDS,Bull. Math. Biol., 58 (1996), 367–390.
    [33] 34. A. S. Perelson and P. W. Nelson, Mathematical analysis of HIV-1 dynamics in vivo, SIAM Rev.,41 (1999), 3–44.
    [34] 35. R. Culshaw and S. Ruan, A delay-differential equation model of HIV infection of CD4 + T-cells,Math. Biosci., 165 (2000), 27–39.
    [35] 36. M. A. Nowak and R. M. May, Virus Dynamics: Mathematical Principles of Immunology and Virology, Oxford University Press, Oxford, 2000.
    [36] 37. Y. Iwasa, F. Michor and M. A. Nowak, Some basic properties of immune selection, J. Theor. Biol.,229 (2004), 179–188.
    [37] 38. R. Kumar, G. Clermont, Y. Vodovotz, et al., The dynamics of acute inflammation, J. Theor. Biol.,230 (2004), 145–155.
    [38] 39. Y. Xiao, S. Tang and J. Wu, Media impact switching surface during an infectious disease outbreak,Sci. Rep., 5 (2015), 78
    [39] 40. S. K. Sasmal, Y. Dong and Y. Takeuchi, Mathematical modeling on T-cell me diate d adaptiveimmunity in primary dengue infections, J. Theor. Biol., 429 (2017), 229–240.
    [40] 41. J. K. Hale and S. M. V. Lunel, Introduction to Functional Differential Equations, Springer Verlag,New York, 1993.
    [41] 42. O. Diekmann, J. A. P. Heesterbeek and J. A. J. Metz, On the definition and the computation ofthe basic reproduction ratio R 0 in models for infectious diseases in heterogeneous populations, J. Math. Biol., 28 (1990), 365–382.
    [42] 43. P. van den Driessche and J. Watmough, Reproduction numbers and sub-threshold endemicequilibria for compartmental models of disease transmission, Math. Biosci., 180 (2002), 29–48.
  • This article has been cited by:

    1. Md. Samsuzzoha, Manmohan Singh, David Lucy, A numerical study on an influenza epidemic model with vaccination and diffusion, 2012, 219, 00963003, 122, 10.1016/j.amc.2012.04.089
    2. S. Dorjee, Z. Poljak, C. W. Revie, J. Bridgland, B. McNab, E. Leger, J. Sanchez, A Review of Simulation Modelling Approaches Used for the Spread of Zoonotic Influenza Viruses in Animal and Human Populations, 2013, 60, 18631959, 383, 10.1111/zph.12010
    3. Jon Brugger, Christian L. Althaus, Transmission of and susceptibility to seasonal influenza in Switzerland from 2003 to 2015, 2020, 30, 17554365, 100373, 10.1016/j.epidem.2019.100373
    4. Hiroshi Nishiura, Ping Yan, Candace K. Sleeman, Charles J. Mode, Estimating the transmission potential of supercritical processes based on the final size distribution of minor outbreaks, 2012, 294, 00225193, 48, 10.1016/j.jtbi.2011.10.039
    5. Fred Brauer, Carlos Castillo-Chavez, Zhilan Feng, 2019, Chapter 9, 978-1-4939-9826-5, 311, 10.1007/978-1-4939-9828-9_9
    6. Rodolfo Acuna-Soto, 2009, Chapter 9, 978-90-481-2312-4, 189, 10.1007/978-90-481-2313-1_9
    7. Parameter estimation and uncertainty quantification for an epidemic model, 2012, 9, 1551-0018, 553, 10.3934/mbe.2012.9.553
    8. Y. Yang, J. D. Sugimoto, M. E. Halloran, N. E. Basta, D. L. Chao, L. Matrajt, G. Potter, E. Kenah, I. M. Longini, The Transmissibility and Control of Pandemic Influenza A (H1N1) Virus, 2009, 326, 0036-8075, 729, 10.1126/science.1177373
    9. Gerardo Chowell, Fred Brauer, 2009, Chapter 1, 978-90-481-2312-4, 1, 10.1007/978-90-481-2313-1_1
    10. Chaeshin Chu, Junehawk Lee, Dong Hoon Choi, Seung-Ki Youn, Jong-Koo Lee, Sensitivity Analysis of the Parameters of Korea’s Pandemic Influenza Preparedness Plan, 2011, 2, 22109099, 210, 10.1016/j.phrp.2011.11.048
    11. Tridip Sardar, Soumalya Mukhopadhyay, Amiya Ranjan Bhowmick, Joydev Chattopadhyay, Alessandro Vespignani, An Optimal Cost Effectiveness Study on Zimbabwe Cholera Seasonal Data from 2008–2011, 2013, 8, 1932-6203, e81231, 10.1371/journal.pone.0081231
    12. Lisa Sattenspiel, Regional patterns of mortality during the 1918 influenza pandemic in Newfoundland, 2011, 29, 0264410X, B33, 10.1016/j.vaccine.2011.02.046
    13. Ian York, Ruben O. Donis, 2012, Chapter 221, 978-3-642-36870-7, 241, 10.1007/82_2012_221
    14. Charlotte Jackson, Emilia Vynnycky, Punam Mangtani, The Relationship Between School Holidays and Transmission of Influenza in England and Wales, 2016, 184, 0002-9262, 644, 10.1093/aje/kww083
    15. Gerardo Chowell, Hiroshi Nishiura, Quantifying the transmission potential of pandemic influenza, 2008, 5, 15710645, 50, 10.1016/j.plrev.2007.12.001
    16. Maciej F Boni, Bui Huu Manh, Pham Quang Thai, Jeremy Farrar, Tran Tinh Hien, Nguyen Tran Hien, Nguyen Van Kinh, Peter Horby, Modelling the progression of pandemic influenza A (H1N1) in Vietnam and the opportunities for reassortment with other influenza viruses, 2009, 7, 1741-7015, 10.1186/1741-7015-7-43
    17. Nadhem Selmi, A model of the 2014 Ebola virus: Evidence of West Africa, 2019, 010, 10.29328/journal.ijcv.1001004
    18. Leonardo López, Germán Burguerner, Leonardo Giovanini, Addressing population heterogeneity and distribution in epidemics models using a cellular automata approach, 2014, 7, 1756-0500, 10.1186/1756-0500-7-234
    19. I. De Falco, A. Della Cioppa, U. Scafuri, E. Tarantino, 2021, 9780128245361, 75, 10.1016/B978-0-12-824536-1.00005-8
    20. Imelda Trejo, Nicolas W. Hengartner, Alberto d’Onofrio, A modified Susceptible-Infected-Recovered model for observed under-reported incidence data, 2022, 17, 1932-6203, e0263047, 10.1371/journal.pone.0263047
    21. Ella Ziegler, Katarina L. Matthes, Peter W. Middelkamp, Verena J. Schuenemann, Christian L. Althaus, Frank Rühli, Kaspar Staub, Retrospective modelling of the disease and mortality burden of the 1918–1920 influenza pandemic in Zurich, Switzerland, 2025, 50, 17554365, 100813, 10.1016/j.epidem.2025.100813
  • Reader Comments
  • © 2019 the Author(s), licensee AIMS Press. This is an open access article distributed under the terms of the Creative Commons Attribution License (http://creativecommons.org/licenses/by/4.0)
通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索

Metrics

Article views(5641) PDF downloads(685) Cited by(8)

Article outline

Figures and Tables

Figures(10)  /  Tables(3)

Other Articles By Authors

/

DownLoad:  Full-Size Img  PowerPoint
Return
Return

Catalog