Research article Special Issues

Predictability and identifiability assessment of models for prostate cancer under androgen suppression therapy

  • The past two decades have seen the development of numerous mathematical models to study various aspects of prostate cancer in clinical settings. These models often contain large sets of parameters and rely on limited data sets for validation. The quantitative analysis of the dynamics of prostate cancer under treatment may be hindered by the lack of identifiability of the parameters from the available data, which limits the predictive ability of the model. Using three ordinary differential equation models as case studies, we carry out a numerical investigation of the identifiability and uncertainty quantification of the model parameters. In most cases, the parameters are not identifiable from time series of prostate-specific antigen, which is used as a clinical proxy for tumor progression. It may not be possible to define a finite confidence bound on an unidentifiable parameter, and the relative uncertainties in even identifiable parameters may be large in some cases. The Fisher information matrix may be used to determine identifiable parameter subsets for a given model. The use of biological constraints and additional types of measurements, should they become available, may reduce these uncertainties. Ensemble Kalman filtering may provide clinically useful, short-term predictions of patient outcomes from imperfect models, though care must be taken when estimating ``patient-specific'' parameters. Our results demonstrate the importance of parameter identifiability in the validation and predictive ability of mathematical models of prostate tumor treatment. Observing-system simulation experiments, widely used in meteorology, may prove useful in the development of biomathematical models intended for future clinical application.

    Citation: Zhimin Wu, Tin Phan, Javier Baez, Yang Kuang, Eric J. Kostelich. Predictability and identifiability assessment of models for prostate cancerunder androgen suppression therapy[J]. Mathematical Biosciences and Engineering, 2019, 16(5): 3512-3536. doi: 10.3934/mbe.2019176

    Related Papers:

    [1] Alacia M. Voth, John G. Alford, Edward W. Swim . Mathematical modeling of continuous and intermittent androgen suppression for the treatment of advanced prostate cancer. Mathematical Biosciences and Engineering, 2017, 14(3): 777-804. doi: 10.3934/mbe.2017043
    [2] Tin Phan, Changhan He, Alejandro Martinez, Yang Kuang . Dynamics and implications of models for intermittent androgen suppression therapy. Mathematical Biosciences and Engineering, 2019, 16(1): 187-204. doi: 10.3934/mbe.2019010
    [3] Avner Friedman, Harsh Vardhan Jain . A partial differential equation model of metastasized prostatic cancer. Mathematical Biosciences and Engineering, 2013, 10(3): 591-608. doi: 10.3934/mbe.2013.10.591
    [4] Heyrim Cho, Allison L. Lewis, Kathleen M. Storey, Anna C. Zittle . An adaptive information-theoretic experimental design procedure for high-to-low fidelity calibration of prostate cancer models. Mathematical Biosciences and Engineering, 2023, 20(10): 17986-18017. doi: 10.3934/mbe.2023799
    [5] Alex Capaldi, Samuel Behrend, Benjamin Berman, Jason Smith, Justin Wright, Alun L. Lloyd . Parameter estimation and uncertainty quantification for an epidemic model. Mathematical Biosciences and Engineering, 2012, 9(3): 553-576. doi: 10.3934/mbe.2012.9.553
    [6] Cassidy K. Buhler, Rebecca S. Terry, Kathryn G. Link, Frederick R. Adler . Do mechanisms matter? Comparing cancer treatment strategies across mathematical models and outcome objectives. Mathematical Biosciences and Engineering, 2021, 18(5): 6305-6327. doi: 10.3934/mbe.2021315
    [7] Leo Turner, Andrew Burbanks, Marianna Cerasuolo . PCa dynamics with neuroendocrine differentiation and distributed delay. Mathematical Biosciences and Engineering, 2021, 18(6): 8577-8602. doi: 10.3934/mbe.2021425
    [8] Leonardo Schultz, Antonio Gondim, Shigui Ruan . Gompertz models with periodical treatment and applications to prostate cancer. Mathematical Biosciences and Engineering, 2024, 21(3): 4104-4116. doi: 10.3934/mbe.2024181
    [9] Yuganthi R. Liyanage, Nora Heitzman-Breen, Necibe Tuncer, Stanca M. Ciupe . Identifiability investigation of within-host models of acute virus infection. Mathematical Biosciences and Engineering, 2024, 21(10): 7394-7420. doi: 10.3934/mbe.2024325
    [10] Abeer S. Alnahdi, Muhammad Idrees . Nonlinear dynamics of estrogen receptor-positive breast cancer integrating experimental data: A novel spatial modeling approach. Mathematical Biosciences and Engineering, 2023, 20(12): 21163-21185. doi: 10.3934/mbe.2023936
  • The past two decades have seen the development of numerous mathematical models to study various aspects of prostate cancer in clinical settings. These models often contain large sets of parameters and rely on limited data sets for validation. The quantitative analysis of the dynamics of prostate cancer under treatment may be hindered by the lack of identifiability of the parameters from the available data, which limits the predictive ability of the model. Using three ordinary differential equation models as case studies, we carry out a numerical investigation of the identifiability and uncertainty quantification of the model parameters. In most cases, the parameters are not identifiable from time series of prostate-specific antigen, which is used as a clinical proxy for tumor progression. It may not be possible to define a finite confidence bound on an unidentifiable parameter, and the relative uncertainties in even identifiable parameters may be large in some cases. The Fisher information matrix may be used to determine identifiable parameter subsets for a given model. The use of biological constraints and additional types of measurements, should they become available, may reduce these uncertainties. Ensemble Kalman filtering may provide clinically useful, short-term predictions of patient outcomes from imperfect models, though care must be taken when estimating ``patient-specific'' parameters. Our results demonstrate the importance of parameter identifiability in the validation and predictive ability of mathematical models of prostate tumor treatment. Observing-system simulation experiments, widely used in meteorology, may prove useful in the development of biomathematical models intended for future clinical application.


    Numerical investigation and improvement of the aerodynamic performance of a modified elliptical-bladed Savonius-style wind turbine. By Sri Kurniati, Sudirman Syam and Arifin Sanusi. AIMS Energy, 2023, Volume 11, Issue 6: 1211–1230. Doi: 10.3934/energy.2023055

    The authors would like to make the following corrections to the published paper [1].

    On page 1213, we updated the contents of "one symbol statement: ρ" in section 2. The updated contents are as follows:

    - ρ is the the density of air,

    On page 1215, we updated the contents of "Eq 16" in section 2. The updated contents are as follows:

    ϕϕt+(V)(ΓV)=Rϕϕ (16)

    On page 1216, we updated the contents of "Table 2" in section 2. The updated contents are as follows:

    Table 2.  The terms in the general transfer equation Eq 16.
    ϕt+(V)(ΓV)=R(16)
    l Γ
    1 U vt 1ρρx+x(vtux)+y(vtvx)+z(vtwx)+gx
    2 V vt 1ρρy+x(vtuy)+y(vtvy)+z(vtwy)+gy
    3 W vt 1ρρz+x(vtuz)+y(vtvz)+z(vtwz)+gz
    4 1 0 0
    5 K vt/ Gε
    6 ε vt/ C1εkGc2εkε

     | Show Table
    DownLoad: CSV

    All authors declare no conflicts of interest in this paper.



    [1] C. Huggins and C. V. Hodges, Studies on Prostatic Cancer: I. The Effect of Castration, of
    [2] W. G. Nelson, Commentary on Huggins and Hodges: "Studies on Prostatic Cancer", Cancer Res., 76 (2016), 186–187.
    [3] S. Kumas, M. Shelley, C. Harrison, et al., Neo-adjuvant and adjuvant hormone therapy for localized and locally advanced prostate cancer, The Cochrane Database Syst. Rev., 18 (2006), CD006019.
    [4] B. J. Feldman and D. Feldman, The development of androgen-independent prostate cancer, Nat. Rev. Cancer, 1 (2001), 34–45.
    [5] R. Siegel, E. Ward, O. Brawley, et al., Cancer statistics, 2011: The impact of eliminating socioeconomic and racial disparities on premature cancer deaths, CA: A cancer journal for clinicians, 61 (2011) , 212–236.
    [6] N. A. Spry, L. Kristjanson, B. Hooton, et al., Adverse effects to quality of life arising from treatment can recover with intermittent androgen suppression in men with prostate cancer, Eur. J. Cancer, 42 (2006), 1083–1092.
    [7] N. D. Shore and E. D. Crawford, Intermittent Androgen Deprivation Therapy: Redefining the Standard of Care? Rev. Urol., 12 (2010), 1–11.
    [8] M. C. Eisenberg and H. V. Jain, A confidence building exercise in data and identifiability: Modeling cancer chemotherapy as a case study, J. Theor. Biol., 431 (2017), 63–78.
    [9] T. Phan, H. Changhan, A. Martinez, et al., Dynamics and implications of models for intermit- tent androgen suppression therapy, Math. Biosci. Eng., 16 (2019).
    [10] T. L. Jackson, A mathematical model of prostate tumor growth and androgen-independent re- lapse, Discrete Continuous Dyn. Syst. Ser. B, 4 (2003), 187–201.
    [11] A. M. Ideta, G. Tanaka, T. Takeuchi, et al., A mathematical model of intermittent androgen suppression for prostate cancer, J. Nonlinear Sci., 18 (2008), 593–614.
    [12] T. Portz, Y. Kuang and J. D. Nagy, A clinical data validated mathematical model of prostate cancer growth under intermittent androgen suppression therapy, AIP Adv., 2 (2012), 0–14.
    [13] H. Vardhan-Jain and A. Friedman, Modeling prostate cancer response to continuous versus intermittent androgen ablation therapy, Discrete & Continuous Dynamical Systems-Series B, 18 (2013) .
    [14] Y. Hirata, K. Akakura, C.S. Higano,et al., Quantitative mathematical modeling of PSA dy- namics of prostate cancer patients treated with intermittent androgen suppression, J. Mol. Cell. Biol., 4 (2012), 127–132.
    [15] Y. Hirata, N. Bruchovsky and K. Aihara, Development of a mathematical model that predicts the outcome of hormone therapy for prostate cancer, J. Theor. Biol., 264 (2010), 517–527.
    [16] Y. Hirata, G. Tanaka, N. Bruchovsky, et al., Mathematically modelling and controlling prostate cancer under intermittent hormone therapy, Asian J. Androl., 14 (2012), 270–277.
    [17] Q. Guo, Z. Lu, Y. Hirata, et al., Parameter estimation and optimal scheduling algorithm for a mathematical model of intermittent androgen suppression therapy for prostate cancer, Chaos, 23 (2013), 43125.
    [18] Y. Hirata, S. I. Azuma and K. Aihara, Model predictive control for optimally scheduling inter- mittent androgen suppression of prostate cancer, Methods, 67 (2014), 278–281.
    [19] Y. Hirata, K. Morino, K. Akakura, et al., Personalizing Androgen Suppression for Prostate Cancer Using Mathematical Modeling, Sci. Rep., 8 (2018), 2673.
    [20] R. A. Everett, A. M. Packer and Y. Kuang, Can Mathematical Models Predict the Outcomes of Prostate Cancer Patients Undergoing Intermittent Androgen Deprivation Therapy? Biophys. Rev. Lett., 9 (2014), 173–191.
    [21] M. Droop, Some thoughts on nutrient limitation in algae. J. Phycol., 9 (1973), 264–272.
    [22] J. Baez and Y. Kuang, Mathematical Models of Androgen Resistance in Prostate Cancer Pa- tients under Intermittent Androgen Suppression Therapy. Appl. Sci., 6 (2016), 352.
    [23] J. D. Morken, A. Packer, R. A. Everett, et al., Mechanisms of resistance to intermittent andro- gen deprivation in patients with prostate cancer identified by a novel computational method, Cancer Res., (2014).
    [24] T. Phan, K. Nguyen, P. Sharma, et al., The Impact of Intermittent Androgen Suppression Ther- apy in Prostate Cancer Modeling, Appl. Sci., 9 (2019), 36.
    [25] A. Zazoua and W. Wang, Analysis of mathematical model of prostate cancer with androgen deprivation therapy, Commun. Nonlinear Sci. Numer. Simul., 66 (2019), 41–60.
    [26] T. Hatano, Y. Hirata, H. Suzuki, et al., Comparison between mathematical models of intermit- tent androgen suppression for prostate cancer, J. Theor. Biol., 366 (2015), 33–45.
    [27] N. Bruchovsky, L. Klotz, J. Crook, et al., Final results of the Canadian prospective Phase II trial of intermittent androgen suppression for men in biochemical recurrence after radiotherapy for locally advanced prostate cancer: Clinical parameters, Cancer, 107 (2006), 389–395.
    [28] C. Cobelli and J. J .DiStefano-III, Parameter and structural identifiability concepts and ambigu- ities: a critical review and analysis, Am. J. Physiol. Regul. Integr. Comp. Physiol., 239 (1980), R7–24.
    [29] A. Raue, C. Kreutz, T. Maiwald, et al., Structural and practical identifiability analysis of partially observed dynamical models by exploiting the profile likelihood, Bioinformatics, 25 (2009), 1923–1929.
    [30] S. Audoly, G. Bellu, L. D'Angio, et al., Global identifiability of nonlinear models of biological systems, IEEE Trans. Biomed. Eng., 48 (2001), 55–65.
    [31] M. C. Eisenberg, S. L. Robertson and J. H. Tien, Identifiability and estimation of multiple transmission pathways in cholera and waterborne disease. J. Theor. Biol., 324 (2013), 84–102.
    [32] M. P. Saccomani and L. D'angiò, Examples of testing global identifiability with the DAISY software, IFAC Proc. Vol., 42 (2009), 48–53.
    [33] H. Wu, H. Zhu, H. Miao, et al., Parameter identifiability and estimation of HIV/AIDS dynamic models, Bull. Math. Biol., 70 (2008), 785–799.
    [34] M. C. Eisenberg and M. A. L. Hayashi, Determining identifiable parameter combinations using subset profiling, Math. Biosci., 256 (2014), 116–126.
    [35] H. Miao, X. Xia, A. S. Perelson, et al., On Identifiability of Nonlinear ODE Models and Ap- plications in Viral Dynamics, SIAM Rev. Soc. Ind. Appl. Math., 53 (2011), 3–39.
    [36] T. Quaiser and M. Monnigmann, Systematic identifiability testing for unambiguous mechanis- tic modeling - application to JAK-STAT, MAP kinase, and NF-κB signaling pathway models, BMC Syst. Biol., 3 (2009), 50.
    [37] C. Kreutz, A. Raue, D. Kaschek, et al., Profile likelihood in systems biology, FEBS J., 280 (2013), 2564–2571.
    [38] G. Evensen, Sequential data assimilation with a nonlinear quasi-geostrophic model using Monte Carlo methods to forecast error statistics, J. Geophys. Res. Oceans, 99 (1994), 10143– 10162.
    [39] G. Evensen, The ensemble Kalman filter: Theoretical formulation and practical implementa- tion, Ocean Dyn., 53 (2003), 343–367.
    [40] B. R. Hunt, E. J. Kostelich and I. Szunyogh, Efficient data assimilation for spatiotemporal chaos: A local ensemble transform Kalman filter, Physica D, 230 (2007), 112–126,
    [41] S. J. Baek, B. R. Hunt, E. Kalnay, et al., Local ensemble Kalman filtering in the presence of model bias, Tellus A, 58 (2006), 293–306.
    [42] C. P. Arnold and C. H. Day, Observing-Systems Simulation Experiments: Past, Present, and Future. Bull. Am. Meteorol. Soc., 67 (1986), 687–695.
    [43] R. M. Errico, R. Yang, N. C. Privé, et al., Development and validation of observing-system simulation experiments at NASA's Global Modeling and Assimilation Office, Q. J. R. Meteorol. Soc., 139 (2013), 1162–1178.
  • This article has been cited by:

    1. Regina Padmanabhan, Nader Meskin, Ala-Eddin Al Moustafa, 2021, Chapter 7, 978-981-15-8639-2, 135, 10.1007/978-981-15-8640-8_7
    2. Roberta Coletti, Andrea Pugliese, Luca Marchetti, Modeling the effect of immunotherapies on human castration-resistant prostate cancer, 2021, 509, 00225193, 110500, 10.1016/j.jtbi.2020.110500
    3. Hope Murphy, Gabriel McCarthy, Hana M. Dobrovolny, Olga A Sukocheva, Understanding the effect of measurement time on drug characterization, 2020, 15, 1932-6203, e0233031, 10.1371/journal.pone.0233031
    4. Tin Phan, Sharon M. Crook, Alan H. Bryce, Carlo C. Maley, Eric J. Kostelich, Yang Kuang, Review: Mathematical Modeling of Prostate Cancer and Clinical Application, 2020, 10, 2076-3417, 2721, 10.3390/app10082721
    5. Trevor Reckell, Kyle Nguyen, Tin Phan, Sharon Crook, Eric J. Kostelich, Yang Kuang, Modeling the synergistic properties of drugs in hormonal treatment for prostate cancer, 2021, 514, 00225193, 110570, 10.1016/j.jtbi.2020.110570
    6. Masud M A, Md Hamidul Islam, Khondaker A. Mamun, Byul Nim Kim, Sangil Kim, COVID-19 Transmission: Bangladesh Perspective, 2020, 8, 2227-7390, 1793, 10.3390/math8101793
    7. Regina Padmanabhan, Nader Meskin, Ala-Eddin Al Moustafa, 2021, Chapter 2, 978-981-15-8639-2, 15, 10.1007/978-981-15-8640-8_2
    8. Kate L. Wootton, Alva Curtsdotter, Tomas Jonsson, H. T. Banks, Riccardo Bommarco, Tomas Roslin, Amanda N. Laubmeier, Peter Eklöv, Beyond body size—new traits for new heights in trait-based modelling of predator-prey dynamics, 2022, 17, 1932-6203, e0251896, 10.1371/journal.pone.0251896
    9. Christine Pho, Madison Frieler, Giri R. Akkaraju, Anton V. Naumov, Hana M. Dobrovolny, Using mathematical modeling to estimate time-independent cancer chemotherapy efficacy parameters, 2021, 10, 2193-9616, 10.1007/s40203-021-00117-7
    10. William Meade, Allison Weber, Tin Phan, Emily Hampston, Laura Figueroa Resa, John Nagy, Yang Kuang, High Accuracy Indicators of Androgen Suppression Therapy Failure for Prostate Cancer—A Modeling Study, 2022, 14, 2072-6694, 4033, 10.3390/cancers14164033
    11. Tin Phan, Changhan He, Irakli Loladze, Clay Prater, Jim Elser, Yang Kuang, Dynamics and growth rate implications of ribosomes and mRNAs interaction in E. coli, 2022, 8, 24058440, e09820, 10.1016/j.heliyon.2022.e09820
    12. Tin Phan, Justin Bennett, Taylor Patten, Practical Understanding of Cancer Model Identifiability in Clinical Applications, 2023, 13, 2075-1729, 410, 10.3390/life13020410
    13. Samara Sharpe, Hana M. Dobrovolny, Predicting the effectiveness of chemotherapy using stochastic ODE models of tumor growth, 2021, 101, 10075704, 105883, 10.1016/j.cnsns.2021.105883
    14. Emmanuel Fleurantin, Christian Sampson, Daniel Paul Maes, Justin Bennett, Tayler Fernandes-Nunez, Sophia Marx, Geir Evensen, A study of disproportionately affected populations by race/ethnicity during the SARS-CoV-2 pandemic using multi-population SEIR modeling and ensemble data assimilation, 2021, 3, 2639-8001, 479, 10.3934/fods.2021022
    15. Rong Yan, Aili Wang, Xueying Zhang, Jingmin He, Duo Bai, Dynamics of a non-smooth model of prostate cancer with intermittent androgen deprivation therapy, 2022, 442, 01672789, 133522, 10.1016/j.physd.2022.133522
    16. Tin Phan, Samantha Brozak, Bruce Pell, Anna Gitter, Amy Xiao, Kristina D. Mena, Yang Kuang, Fuqing Wu, A simple SEIR-V model to estimate COVID-19 prevalence and predict SARS-CoV-2 transmission using wastewater-based surveillance data, 2023, 857, 00489697, 159326, 10.1016/j.scitotenv.2022.159326
    17. Kyle Nguyen, Kan Li, Kevin Flores, Georgia D. Tomaras, S. Moses Dennison, Janice M. McCarthy, Parameter estimation and identifiability analysis for a bivalent analyte model of monoclonal antibody-antigen binding, 2023, 679, 00032697, 115263, 10.1016/j.ab.2023.115263
    18. Tin Phan, Allison Weber, Alan H. Bryce, Yang Kuang, The prognostic value of androgen to PSA ratio in predictive modeling of prostate cancer, 2023, 176, 03069877, 111084, 10.1016/j.mehy.2023.111084
    19. Aili Wang, Rong Yan, Haixia Li, Xiaodan Sun, Weike Zhou, Stacey R. Smith, A joint-threshold Filippov model describing the effect of intermittent androgen-deprivation therapy in controlling prostate cancer, 2024, 377, 00255564, 109301, 10.1016/j.mbs.2024.109301
    20. Adriana M De Mendoza, Soňa Michlíková, Paula S Castro, Anni G Muñoz, Lisa Eckhardt, Steffen Lange, Leoni A Kunz-Schughart, Generalized, sublethal damage-based mathematical approach for improved modeling of clonogenic survival curve flattening upon hyperthermia, radiotherapy, and beyond, 2025, 70, 0031-9155, 025022, 10.1088/1361-6560/ada680
    21. Krasimira Tsaneva-Atanasova, Giulia Pederzanil, Marianna Laviola, Decoding uncertainty for clinical decision-making, 2025, 383, 1364-503X, 10.1098/rsta.2024.0207
    22. Nadine Kuehle Genannt Botmann, Hana M. Dobrovolny, Assessing the role of model choice in parameter identifiability of cancer treatment efficacy, 2025, 11, 2297-4687, 10.3389/fams.2025.1542617
  • Reader Comments
  • © 2019 the Author(s), licensee AIMS Press. This is an open access article distributed under the terms of the Creative Commons Attribution License (http://creativecommons.org/licenses/by/4.0)
通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索

Metrics

Article views(6386) PDF downloads(819) Cited by(22)

Article outline

Figures and Tables

Figures(5)  /  Tables(4)

/

DownLoad:  Full-Size Img  PowerPoint
Return
Return

Catalog