[1]
|
C. Huggins and C. V. Hodges, Studies on Prostatic Cancer: I. The Effect of Castration, of
|
[2]
|
W. G. Nelson, Commentary on Huggins and Hodges: "Studies on Prostatic Cancer", Cancer
Res., 76 (2016), 186–187.
|
[3]
|
S. Kumas, M. Shelley, C. Harrison, et al., Neo-adjuvant and adjuvant hormone therapy for
localized and locally advanced prostate cancer, The Cochrane Database Syst. Rev., 18 (2006),
CD006019.
|
[4]
|
B. J. Feldman and D. Feldman, The development of androgen-independent prostate cancer,
Nat. Rev. Cancer, 1 (2001), 34–45.
|
[5]
|
R. Siegel, E. Ward, O. Brawley, et al., Cancer statistics, 2011: The impact of eliminating
socioeconomic and racial disparities on premature cancer deaths, CA: A cancer journal for
clinicians, 61 (2011) , 212–236.
|
[6]
|
N. A. Spry, L. Kristjanson, B. Hooton, et al., Adverse effects to quality of life arising from
treatment can recover with intermittent androgen suppression in men with prostate cancer, Eur.
J. Cancer, 42 (2006), 1083–1092.
|
[7]
|
N. D. Shore and E. D. Crawford, Intermittent Androgen Deprivation Therapy: Redefining the
Standard of Care? Rev. Urol., 12 (2010), 1–11.
|
[8]
|
M. C. Eisenberg and H. V. Jain, A confidence building exercise in data and identifiability:
Modeling cancer chemotherapy as a case study, J. Theor. Biol., 431 (2017), 63–78.
|
[9]
|
T. Phan, H. Changhan, A. Martinez, et al., Dynamics and implications of models for intermit-
tent androgen suppression therapy, Math. Biosci. Eng., 16 (2019).
|
[10]
|
T. L. Jackson, A mathematical model of prostate tumor growth and androgen-independent re-
lapse, Discrete Continuous Dyn. Syst. Ser. B, 4 (2003), 187–201.
|
[11]
|
A. M. Ideta, G. Tanaka, T. Takeuchi, et al., A mathematical model of intermittent androgen
suppression for prostate cancer, J. Nonlinear Sci., 18 (2008), 593–614.
|
[12]
|
T. Portz, Y. Kuang and J. D. Nagy, A clinical data validated mathematical model of prostate
cancer growth under intermittent androgen suppression therapy, AIP Adv., 2 (2012), 0–14.
|
[13]
|
H. Vardhan-Jain and A. Friedman, Modeling prostate cancer response to continuous versus
intermittent androgen ablation therapy, Discrete & Continuous Dynamical Systems-Series B,
18 (2013) .
|
[14]
|
Y. Hirata, K. Akakura, C.S. Higano,et al., Quantitative mathematical modeling of PSA dy-
namics of prostate cancer patients treated with intermittent androgen suppression, J. Mol. Cell.
Biol., 4 (2012), 127–132.
|
[15]
|
Y. Hirata, N. Bruchovsky and K. Aihara, Development of a mathematical model that predicts
the outcome of hormone therapy for prostate cancer, J. Theor. Biol., 264 (2010), 517–527.
|
[16]
|
Y. Hirata, G. Tanaka, N. Bruchovsky, et al., Mathematically modelling and controlling prostate
cancer under intermittent hormone therapy, Asian J. Androl., 14 (2012), 270–277.
|
[17]
|
Q. Guo, Z. Lu, Y. Hirata, et al., Parameter estimation and optimal scheduling algorithm for a
mathematical model of intermittent androgen suppression therapy for prostate cancer, Chaos,
23 (2013), 43125.
|
[18]
|
Y. Hirata, S. I. Azuma and K. Aihara, Model predictive control for optimally scheduling inter-
mittent androgen suppression of prostate cancer, Methods, 67 (2014), 278–281.
|
[19]
|
Y. Hirata, K. Morino, K. Akakura, et al., Personalizing Androgen Suppression for Prostate
Cancer Using Mathematical Modeling, Sci. Rep., 8 (2018), 2673.
|
[20]
|
R. A. Everett, A. M. Packer and Y. Kuang, Can Mathematical Models Predict the Outcomes
of Prostate Cancer Patients Undergoing Intermittent Androgen Deprivation Therapy? Biophys.
Rev. Lett., 9 (2014), 173–191.
|
[21]
|
M. Droop, Some thoughts on nutrient limitation in algae. J. Phycol., 9 (1973), 264–272.
|
[22]
|
J. Baez and Y. Kuang, Mathematical Models of Androgen Resistance in Prostate Cancer Pa-
tients under Intermittent Androgen Suppression Therapy. Appl. Sci., 6 (2016), 352.
|
[23]
|
J. D. Morken, A. Packer, R. A. Everett, et al., Mechanisms of resistance to intermittent andro-
gen deprivation in patients with prostate cancer identified by a novel computational method,
Cancer Res., (2014).
|
[24]
|
T. Phan, K. Nguyen, P. Sharma, et al., The Impact of Intermittent Androgen Suppression Ther-
apy in Prostate Cancer Modeling, Appl. Sci., 9 (2019), 36.
|
[25]
|
A. Zazoua and W. Wang, Analysis of mathematical model of prostate cancer with androgen
deprivation therapy, Commun. Nonlinear Sci. Numer. Simul., 66 (2019), 41–60.
|
[26]
|
T. Hatano, Y. Hirata, H. Suzuki, et al., Comparison between mathematical models of intermit-
tent androgen suppression for prostate cancer, J. Theor. Biol., 366 (2015), 33–45.
|
[27]
|
N. Bruchovsky, L. Klotz, J. Crook, et al., Final results of the Canadian prospective Phase II
trial of intermittent androgen suppression for men in biochemical recurrence after radiotherapy
for locally advanced prostate cancer: Clinical parameters, Cancer, 107 (2006), 389–395.
|
[28]
|
C. Cobelli and J. J .DiStefano-III, Parameter and structural identifiability concepts and ambigu-
ities: a critical review and analysis, Am. J. Physiol. Regul. Integr. Comp. Physiol., 239 (1980),
R7–24.
|
[29]
|
A. Raue, C. Kreutz, T. Maiwald, et al., Structural and practical identifiability analysis of
partially observed dynamical models by exploiting the profile likelihood, Bioinformatics, 25
(2009), 1923–1929.
|
[30]
|
S. Audoly, G. Bellu, L. D'Angio, et al., Global identifiability of nonlinear models of biological
systems, IEEE Trans. Biomed. Eng., 48 (2001), 55–65.
|
[31]
|
M. C. Eisenberg, S. L. Robertson and J. H. Tien, Identifiability and estimation of multiple
transmission pathways in cholera and waterborne disease. J. Theor. Biol., 324 (2013), 84–102.
|
[32]
|
M. P. Saccomani and L. D'angiò, Examples of testing global identifiability with the DAISY
software, IFAC Proc. Vol., 42 (2009), 48–53.
|
[33]
|
H. Wu, H. Zhu, H. Miao, et al., Parameter identifiability and estimation of HIV/AIDS dynamic
models, Bull. Math. Biol., 70 (2008), 785–799.
|
[34]
|
M. C. Eisenberg and M. A. L. Hayashi, Determining identifiable parameter combinations using
subset profiling, Math. Biosci., 256 (2014), 116–126.
|
[35]
|
H. Miao, X. Xia, A. S. Perelson, et al., On Identifiability of Nonlinear ODE Models and Ap-
plications in Viral Dynamics, SIAM Rev. Soc. Ind. Appl. Math., 53 (2011), 3–39.
|
[36]
|
T. Quaiser and M. Monnigmann, Systematic identifiability testing for unambiguous mechanis-
tic modeling - application to JAK-STAT, MAP kinase, and NF-κB signaling pathway models,
BMC Syst. Biol., 3 (2009), 50.
|
[37]
|
C. Kreutz, A. Raue, D. Kaschek, et al., Profile likelihood in systems biology, FEBS J., 280
(2013), 2564–2571.
|
[38]
|
G. Evensen, Sequential data assimilation with a nonlinear quasi-geostrophic model using
Monte Carlo methods to forecast error statistics, J. Geophys. Res. Oceans, 99 (1994), 10143–
10162.
|
[39]
|
G. Evensen, The ensemble Kalman filter: Theoretical formulation and practical implementa-
tion, Ocean Dyn., 53 (2003), 343–367.
|
[40]
|
B. R. Hunt, E. J. Kostelich and I. Szunyogh, Efficient data assimilation for spatiotemporal
chaos: A local ensemble transform Kalman filter, Physica D, 230 (2007), 112–126,
|
[41]
|
S. J. Baek, B. R. Hunt, E. Kalnay, et al., Local ensemble Kalman filtering in the presence of
model bias, Tellus A, 58 (2006), 293–306.
|
[42]
|
C. P. Arnold and C. H. Day, Observing-Systems Simulation Experiments: Past, Present, and
Future. Bull. Am. Meteorol. Soc., 67 (1986), 687–695.
|
[43]
|
R. M. Errico, R. Yang, N. C. Privé, et al., Development and validation of observing-system
simulation experiments at NASA's Global Modeling and Assimilation Office, Q. J. R. Meteorol.
Soc., 139 (2013), 1162–1178.
|