Loading [MathJax]/jax/output/SVG/jax.js
Special Issues

Proof of Sun's conjectural supercongruence involving Catalan numbers

  • We confirm a conjectural supercongruence involving Catalan numbers, which is one of the 100 selected open conjectures on congruences of Sun. The proof makes use of hypergeometric series identities and symbolic summation method.

    Citation: Ji-Cai Liu. Proof of Sun's conjectural supercongruence involving Catalan numbers[J]. Electronic Research Archive, 2020, 28(2): 1023-1030. doi: 10.3934/era.2020054

    Related Papers:

    [1] Ji-Cai Liu . Proof of Sun's conjectural supercongruence involving Catalan numbers. Electronic Research Archive, 2020, 28(2): 1023-1030. doi: 10.3934/era.2020054
    [2] Victor J. W. Guo . A family of $ q $-congruences modulo the square of a cyclotomic polynomial. Electronic Research Archive, 2020, 28(2): 1031-1036. doi: 10.3934/era.2020055
    [3] Shishuo Fu, Jiaxi Lu, Yuanzhe Ding . A skeleton model to enumerate standard puzzle sequences. Electronic Research Archive, 2022, 30(1): 179-203. doi: 10.3934/era.2022010
    [4] Chen Wang . Two congruences concerning Apéry numbers conjectured by Z.-W. Sun. Electronic Research Archive, 2020, 28(2): 1063-1075. doi: 10.3934/era.2020058
    [5] Tian-Xiao He, Peter J.-S. Shiue . Identities for linear recursive sequences of order $ 2 $. Electronic Research Archive, 2021, 29(5): 3489-3507. doi: 10.3934/era.2021049
    [6] Dmitry Krachun, Zhi-Wei Sun . On sums of four pentagonal numbers with coefficients. Electronic Research Archive, 2020, 28(1): 559-566. doi: 10.3934/era.2020029
    [7] Chunli Li, Wenchang Chu . Infinite series about harmonic numbers inspired by Ramanujan–like formulae. Electronic Research Archive, 2023, 31(8): 4611-4636. doi: 10.3934/era.2023236
    [8] Fedor Petrov, Zhi-Wei Sun . Proof of some conjectures involving quadratic residues. Electronic Research Archive, 2020, 28(2): 589-597. doi: 10.3934/era.2020031
    [9] Xi Liu, Huaning Liu . Arithmetic autocorrelation and pattern distribution of binary sequences. Electronic Research Archive, 2025, 33(2): 849-866. doi: 10.3934/era.2025038
    [10] Guo-Niu Han . On the existence of permutations conditioned by certain rational functions. Electronic Research Archive, 2020, 28(1): 149-156. doi: 10.3934/era.2020009
  • We confirm a conjectural supercongruence involving Catalan numbers, which is one of the 100 selected open conjectures on congruences of Sun. The proof makes use of hypergeometric series identities and symbolic summation method.



    In 2003, Rodriguez-Villegas [14] conjectured the following four supercongruences associated to certain elliptic curves:

    p1k=0(2kk)216k(1p)(modp2),p1k=0(2kk)(3kk)27k(3p)(modp2),p1k=0(2kk)(4k2k)64k(2p)(modp2),p1k=0(3kk)(6k3k)432k(1p)(modp2),

    where p5 is a prime and (p) denotes the Legendre symbol. These four supercongruences were first proved by Mortenson [12,13] by using the Gross-Koblitz formula. Guo, Pan and Zhang [3] established some interesting q-analogues of the above four supercongruences. For more q-analogues of congruences, one can refer to [1,2,4,5,10].

    Recall that the Euler numbers are defined as

    2ex+ex=n=0Enxnn!,

    and the nth Catalan number is given by

    Cn=1n+1(2nn),

    which plays an important role in various counting problems. We refer to [17] for many different combinatorial interpretations of the Catalan numbers.

    In 2016, Z.-H. Sun [18] proved that for any prime p5,

    p1k=0(2kk)C2k64k(1)p123p2Ep3(modp3),

    which was originally conjectured by Z.-W. Sun [19].

    Mao and Z.-W. Sun [11] showed that for any prime p5,

    (p1)/2k=0(2kk)C2k64k(1)p122p1(modp2). (1)

    Z.-W. Sun [22,Conjecture 11] also conjectured an extension of (1) as follows.

    Conjecture 1.1 (Sun, 2019). For any prime p5, we have

    (p1)/2k=0(2kk)C2k64k(1)p12(2p1(2p11)2)(modp3). (2)

    The main purpose of the paper is to prove (2). Our proof is based on hypergeometric series identities and symbolic summation method.

    Theorem 1.2. The supercongruence (2) is true.

    We establish two preliminary results in the next section. The proof of Theorem 1.2 will be given in Section 3.

    In order to prove Theorem 1.2, we need the following two key results.

    Proposition 2.1. For any prime p5, we have

    (p1)/2k=0(2kk)(2k1)24k(1)p12(2p1qp(2))(modp2), (3)
    (p1)/2k=0(2kk)2(2k1)316k22qp(2)p(qp(2)24qp(2)+3)(modp2), (4)

    where qp(2) is the Fermat quotient (2p11)/p.

    Remark. Z.-W. Sun [20,(1.7)] and [21,(1.7),(3.3),(3.4)] has proved the following closely related results:

    (p3)/2k=0(2kk)(2k+1)24k(1)p+12qp(2)22(modp),(p3)/2k=0(2kk)2(2k+1)16k2qp(2)pqp(2)2+5p212Bp3(modp3),(p3)/2k=0(2kk)2(2k+1)216k2qp(2)2+2p3qp(2)3p6Bp3(modp2),(p3)/2k=0(2kk)2(2k+1)316k43qp(2)316Bp3(modp),

    where the Bernoulli numbers are given by

    xex1=n=0Bnxnn!.

    Before proving Proposition 2.1, we establish the following lemma.

    Lemma 2.2. For any integer n2, we have

    nk=0(n)k(n1)k(1)k(12)k=(1)n12n1, (5)
    nk=0(n)k(n1)k(12)k(1)2k(12)k=4n(n1)2n1, (6)

    where (a)0=1 and (a)k=a(a+1)(a+k1) for k1.

    Proof. Recall Gauss' theorem [16,(1.7.6),page 28]:

    2F1[abc;1]=Γ(c)Γ(cab)Γ(ca)Γ(cb), (7)

    provided that (cab)>0. Letting a=n,b=n1 and c=12 in (7) gives

    2F1[nn112;1]=Γ(12)Γ(32)Γ(12+n)Γ(32n)=(1)n12n1,

    which is (5).

    Also, we have the following transformation formula of hypergeometric series [16,(2.5.11),page 76]:

    3F2[abnef;1]=(ea)n(fa)n(e)n(f)n×3F2[1san1+aen1+afn;1], (8)

    where s=e+fab+n. Letting a=n1,b=12,e=x and f=32x in (8) yields

    3F2[n112nx32x;1]=(x+1n)n(52xn)n(x)n(32x)n×3F2[2n1nxx32;1]. (9)

    Furthermore, we can evaluate the terminating hypergeometric series on the right-hand side of (9):

    3F2[2n1nxx32;1]=4x412x3+(8n2+8n+11)x2+(12n212n3)x+4n(n1)(n2n1)x(x1)(2x1)(2x3).

    It follows that

    3F2[n112nx32x;1]=(x+1n)n(52xn)n(x)n(32x)n×4x412x3+(8n2+8n+11)x2+(12n212n3)x+4n(n1)(n2n1)x(x1)(2x1)(2x3). (10)

    Letting x1 on both sides of (10) and noting that

    limx14x412x3+(8n2+8n+11)x2+(12n212n3)x+4n(n1)(n2n1)x(2x1)(2x3)=4n2(n1)2,

    and

    limx1(x+1n)n(52xn)n(x1)(x)n(32x)n=1n(n1)(2n1),

    we arrive at

    3F2[n112n112;1]=4n(n1)2n1,

    which proves (6).

    Proof of (3). We can rewrite (5) as

    n1k=0(n)k(n1)k(1)k(12)k=(1)n12n1(n)n(n1)n(1)n(12)n=(1)n12n1(1+4n1(2n2))=(1)n1(22n222n212n1). (11)

    Letting n=p+12 in (11) gives

    (p1)/2k=0(1p2)k(1+p2)k(1)k(12)k=(1)p12(2p1qp(2)).

    Since for 0kp12,

    (1p2)k(1+p2)k(12)2k(modp2), (12)

    we have

    (p1)/2k=0(12)2k(1)k(12)k(1)p12(2p1qp(2))(modp2). (13)

    Note that

    (12)k(1)k=(2kk)4k, (14)
    (12)k(12)k=112k. (15)

    Then the proof of (3) follows from (13)–(15).

    Proof of (4). We can rewrite (6) as

    n1k=0(n)k(n1)k(12)k(1)2k(12)k=4n(n1)2n1(n)n(n1)n(12)n(1)2n(12)n=12n1(4n(n1)+(1)n(2n2n)). (16)

    Letting n=p+12 in (16) and using (12), we obtain

    (p1)/2k=0(12)3k(1)2k(12)k1p(p21+(1)p+12(p1p+12))(modp2).

    For 0kp1, we have

    (p1k)(1)k(1pki=11i+p21i<jk1ij)=(1)k(1pHk+p22(H2kH(2)k))(modp3), (17)

    where

    H(r)k=kj=11jr,

    with the convention that Hk=H(1)k. It follows that

    (p1)/2k=0(12)3k(1)2k(12)kp2(H2p+12H(2)p+12+2)Hp+12=p2(H2p12+4Hp12H(2)p12+6)Hp122(modp2). (18)

    By [7,(41)] and [19,Lemma 2.4], we have

    Hp122qp(2)+pqp(2)2(modp2), (19)

    and

    H(2)p120(modp). (20)

    Substituting (19) and (20) into (18) gives

    (p1)/2k=0(12)3k(1)2k(12)k2qp(2)2+p(qp(2)24qp(2)+3)(modp2). (21)

    Finally, applying (14) and (15) to the left-hand side of (21), we reach

    (p1)/2k=0(2kk)2(2k1)316k22qp(2)p(qp(2)24qp(2)+3)(modp2),

    as desired.

    Lemma 3.1. For any non-negative integer n, we have

    nk=0(n)k(n+1)k(14)k(34)k(1)2k(12)k(32)k=(2nn)4n, (22)

    and

    nk=0(n)k(n+1)k(14)k(34)k(1)2k(12)k(32)kkj=11(2j1)2=(2nn)4n(3+nk=11(2k1)2)+22n+1nk=0(2kk)(2k1)24k4n(2n+1)(2nn)nk=0(2kk)2(2k1)316k. (23)

    Proof. Recall that (see [16,(2.4.2.2),page 65])

    4F3[d1+fgf2f+121+f1+f+d+g21+f+dg2;1]=Γ(gf)Γ(gd)Γ(g)Γ(gfd). (24)

    Letting d=n,f=12 and g=n+12 in (24), we obtain

    4F3[nn+1143411232;1]=Γ(n)Γ(12)Γ(n+12)Γ(0)=(2nn)4n,

    which is (22).

    On the other hand, (23) can be discovered and proved by symbolic summation package Sigma due to Schneider [15]. One can refer to [9] for the same approach to finding and proving identities of this type.

    Proof of (2). Recall that (see [8,(4.4)])

    (1+p2)k(1p2)k(12)2k(1p2kj=11(2j1)2)(modp4). (25)

    Letting n=p12 in (22) and using (25), we obtain

    (p1)/2k=0(12)k(14)k(34)k(1)2k(32)k12p1(p1p12)+p2(p1)/2k=0(12)k(14)k(34)k(1)2k(32)kkj=11(2j1)2(modp4), (26)

    where we have utilized the fact (14)k(34)k/(32)kZp for 0kp12.

    From (25), we deduce that

    (1+p2)k(1p2)k(12)2k(modp2). (27)

    Letting n=p12 in (23) and using (27) gives

    (p1)/2k=0(12)k(14)k(34)k(1)2k(32)kkj=11(2j1)212p1(p1p12)(3+(p1)/2k=11(2k1)2)+2p(p1)/2k=0(2kk)(2k1)24k2p1p(p1p12)(p1)/2k=0(2kk)2(2k1)316k(modp2). (28)

    Substituting (28) into (26) yields

    (p1)/2k=0(12)k(14)k(34)k(1)2k(32)k12p1(p1p12)p22p1(p1p12)(3+(p1)/2k=11(2k1)2)+2p(p1)/2k=0(2kk)(2k1)24k2p1p(p1p12)(p1)/2k=0(2kk)2(2k1)316k(modp4). (29)

    Furthermore, by (17), (19) and (20) we have

    (p1p12)(1)p12(1pHp12+p22(H2p12H(2)p12))(1)p12(1+2pqp(2)+p2qp(2)2)(modp3). (30)

    By (20) and the Wolstenholme's theorem [6,page 114], we have

    (p1)/2k=11(2k1)2=H(2)p114H(2)p120(modp). (31)

    Setting 2p1=a and qp(2)=(a1)/p, and then substituting (3), (4), (30) and (31) into (29), we arrive at

    (p1)/2k=0(12)k(14)k(34)k(1)2k(32)k(1)p12(a32a2+4a22a1+3(a1)2p2a(2a1))=(1)p12(a(a1)2+3(a1)32a1+3(a1)2p2a(2a1))(modp3).

    By the Fermat's little theorem, we have a10(modp), and so

    (p1)/2k=0(12)k(14)k(34)k(1)2k(32)k(1)p12(a(a1)2)(modp3). (32)

    Note that

    (14)k(34)k(1)2k=(4k2k)(2kk)64k, (33)
    (12)k(32)k=12k+1. (34)

    Then the proof of (2) follows from (32)–(34).

    The author would like to thank Professor Zhi-Wei Sun and the anonymous referees for helpful comments which made the paper more readable.



    [1] V. J. W. Guo, Proof of a generalization of the (B.2) supercongruence of Van Hamme through a q-microscope, Adv. in Appl. Math., 116 (2020). doi: 10.1016/j.aam.2020.102016
    [2] q-Analogues of two Ramanujan-type formulas for 1/π. J. Difference Equ. Appl. (2018) 24: 1368-1373.
    [3] The Rodriguez-Villegas type congruences for truncated q-hypergeometric functions. J. Number Theory (2017) 174: 358-368.
    [4] V. J. W. Guo and M. J. Schlosser, A family of q-hypergeometric congruences modulo the fourth power of a cyclotomic polynomial, preprint, arXiv: 1909.10294.
    [5] V. J. W. Guo and M. J. Schlosser, Some new q-congruences for truncated basic hypergeometric series: Even powers, Results Math., 75 (2020), 15pp. doi: 10.1007/s00025-019-1126-4
    [6] (2008) An Introduction to the Theory of Numbers. Oxford: Oxford University Press.
    [7] On congruences involving Bernoulli numbers and the quotients of Fermat and Wilson. Ann. of Math. (2) (1938) 39: 350-360.
    [8] On Van Hamme's (A.2) and (H.2) supercongruences. J. Math. Anal. Appl. (2019) 471: 613-622.
    [9] Semi-automated proof of supercongruences on partial sums of hypergeometric series. J. Symbolic Comput. (2019) 93: 221-229.
    [10] J.-C. Liu and F. Petrov, Congruences on sums of q-binomial coefficients, Adv. in Appl. Math., 116 (2020), 11pp. doi: 10.1016/j.aam.2020.102003
    [11] New congruences involving products of two binomial coefficients. Ramanujan J. (2019) 49: 237-256.
    [12] A supercongruence conjecture of Rodriguez-Villegas for a certain truncated hypergeometric function. J. Number Theory (2003) 99: 139-147.
    [13] Supercongruences between truncated 2F1 hypergeometric functions and their Gaussian analogs. Trans. Amer. Math. Soc. (2003) 355: 987-1007.
    [14] F. Rodriguez-Villegas, Hypergeometric families of Calabi-Yau manifolds, in Calabi-Yau Varieties and Mirror Symmetry, Fields Inst. Commun., 38, Amer. Math. Soc., Providence, RI, 2003,223–231.
    [15] C. Schneider, Symbolic summation assists combinatorics, Sém. Lothar. Combin., 56 (2006/07), 36pp.
    [16] (1966) Generalized Hypergeometric Functions. Cambridge: Cambridge University Press.
    [17] R. P. Stanley, Enumerative Combinatorics. Vol. 2, Cambridge Studies in Advanced Mathematics, 62, Cambridge University Press, 1999. doi: 10.1017/CBO9780511609589
    [18] Super congruences involving Bernoulli polynomials. Int. J. Number Theory (2016) 12: 1259-1271.
    [19] Super congruences and Euler numbers. Sci. China Math. (2011) 54: 2509-2535.
    [20] On congruences related to central binomial coefficients. J. Number Theory (2011) 131: 2219-2238.
    [21] p-adic congruences motivated by series. J. Number Theory (2014) 134: 181-196.
    [22] Open conjectures on congruences. Nanjing Univ. J. Math. Biquarterly (2019) 36: 1-99.
  • Reader Comments
  • © 2020 the Author(s), licensee AIMS Press. This is an open access article distributed under the terms of the Creative Commons Attribution License (http://creativecommons.org/licenses/by/4.0)
通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索

Metrics

Article views(2342) PDF downloads(184) Cited by(0)

Other Articles By Authors

/

DownLoad:  Full-Size Img  PowerPoint
Return
Return

Catalog