Loading [MathJax]/jax/output/SVG/jax.js

Two congruences concerning Apéry numbers conjectured by Z.-W. Sun

  • Received: 01 February 2020 Revised: 01 May 2020
  • Primary: 11B65, 11B68; Secondary: 05A10, 11A07

  • Let n be a nonnegative integer. The n-th Apéry number is defined by

    An:=nk=0(n+kk)2(nk)2.

    Z.-W. Sun investigated the congruence properties of Apéry numbers and posed some conjectures. For example, Sun conjectured that for any prime p7

    p1k=0(2k+1)Akp72p2Hp1(modp6)

    and for any prime p5

    p1k=0(2k+1)3Akp3+4p4Hp1+65p8Bp5(modp9),

    where Hn=nk=11/k denotes the n-th harmonic number and B0,B1, are the well-known Bernoulli numbers. In this paper we shall confirm these two conjectures.

    Citation: Chen Wang. Two congruences concerning Apéry numbers conjectured by Z.-W. Sun[J]. Electronic Research Archive, 2020, 28(2): 1063-1075. doi: 10.3934/era.2020058

    Related Papers:

    [1] Chen Wang . Two congruences concerning Apéry numbers conjectured by Z.-W. Sun. Electronic Research Archive, 2020, 28(2): 1063-1075. doi: 10.3934/era.2020058
    [2] Chunli Li, Wenchang Chu . Infinite series about harmonic numbers inspired by Ramanujan–like formulae. Electronic Research Archive, 2023, 31(8): 4611-4636. doi: 10.3934/era.2023236
    [3] Dmitry Krachun, Zhi-Wei Sun . On sums of four pentagonal numbers with coefficients. Electronic Research Archive, 2020, 28(1): 559-566. doi: 10.3934/era.2020029
    [4] Ji-Cai Liu . Proof of Sun's conjectural supercongruence involving Catalan numbers. Electronic Research Archive, 2020, 28(2): 1023-1030. doi: 10.3934/era.2020054
    [5] Jianghua Li, Zepeng Zhang, Tianyu Pan . On two-term exponential sums and their mean values. Electronic Research Archive, 2023, 31(9): 5559-5572. doi: 10.3934/era.2023282
    [6] Jin Zhang, Xiaoxue Li . The sixth power mean of one kind generalized two-term exponential sums and their asymptotic properties. Electronic Research Archive, 2023, 31(8): 4579-4591. doi: 10.3934/era.2023234
    [7] Jian Cao, José Luis López-Bonilla, Feng Qi . Three identities and a determinantal formula for differences between Bernoulli polynomials and numbers. Electronic Research Archive, 2024, 32(1): 224-240. doi: 10.3934/era.2024011
    [8] Jiafan Zhang . On the distribution of primitive roots and Lehmer numbers. Electronic Research Archive, 2023, 31(11): 6913-6927. doi: 10.3934/era.2023350
    [9] Qingjie Chai, Hanyu Wei . The binomial sums for four types of polynomials involving floor and ceiling functions. Electronic Research Archive, 2025, 33(3): 1384-1397. doi: 10.3934/era.2025064
    [10] Massimo Grossi . On the number of critical points of solutions of semilinear elliptic equations. Electronic Research Archive, 2021, 29(6): 4215-4228. doi: 10.3934/era.2021080
  • Let n be a nonnegative integer. The n-th Apéry number is defined by

    An:=nk=0(n+kk)2(nk)2.

    Z.-W. Sun investigated the congruence properties of Apéry numbers and posed some conjectures. For example, Sun conjectured that for any prime p7

    p1k=0(2k+1)Akp72p2Hp1(modp6)

    and for any prime p5

    p1k=0(2k+1)3Akp3+4p4Hp1+65p8Bp5(modp9),

    where Hn=nk=11/k denotes the n-th harmonic number and B0,B1, are the well-known Bernoulli numbers. In this paper we shall confirm these two conjectures.



    The well-known Apéry numbers given by

    An:=nk=0(n+kk)2(nk)2=nk=0(n+k2k)2(2kk)2(nN={0,1,}),

    were first introduced by Apéry to prove the irrationality of ζ(3)=n=11/n3 (see [2,12]). It is known that the Apéry numbers have close connections to modular forms (cf. [11]). Recall that the Dedekind eta function is defined by

    η(τ)=q1/24n=1(1qn)withq=e2πiτ,

    where τH={zC:Im(z)>0}. Beukers [3] conjectured that for any prime p>3

    A(p1)/2a(p)(modp2),

    where a(n) (n=1,2,) are given by

    η4(2τ)η4(4τ)=qn=1(1q2n)4(1q4n)4=n=1a(n)qn.

    This conjecture was later confirmed by Ahlgren and Ono [1].

    In 2012, Z.-W. Sun [16] introduced the Apéry polynomials

    An(x)=nk=0(n+kk)2(nk)2xk(nN)

    and deduced various congruences involving sums of such polynomials. (Clearly, An(1)=An.) For example, for any odd prime p and integer x, he obtained that

    p1k=0(2k+1)Ak(x)p(xp)(modp2), (1)

    where () denotes the Legendre symbol. For x=1 and any prime p5, Sun established the following generalization of (1):

    p1k=0(2k+1)Akp+76p4Bp3(modp5), (2)

    where B0,B1, are the well-known Bernoulli numbers defined as follows:

    B0=0, n1k=0(nk)Bk=0(n=2,3,).

    In 1850 Kummer (cf. [9]) proved that for any odd prime p and even number b with b0(modp1)

    Bk(p1)+bk(p1)+bBbb(mod  p)for kN. (3)

    For mZ+={1,2,} the n-th harmonic numbers of order m are defined by

    H(m)n:=nk=11km(n=1,2,)

    and H(m)0:=0. For the sake of convenience we use Hn to denote H(1)n. From [5] we know that Hp1p2Bp3/3(modp3) for any prime p5. Thus (2) has the following equivalent form

    p1k=0(2k+1)Akp72p2Hp1(modp5). (4)

    Via some numerical computation, Sun [16,Conjecture 4.2] conjectured that (4) also holds modulo p6 provided that p7. This is our first theorem.

    Theorem 1.1. For any prime p7 we have

    p1k=0(2k+1)Akp72p2Hp1(modp6). (5)

    Motivated by Sun's work, Guo and Zeng [6,7] studied some congruences for sums involving Apéry polynomials. Particularly, they obtained

    n1k=0(2k+1)3Ak0(modn3) (6)

    and

    p1k=0(2k+1)3Akp3(mod2p6), (7)

    where p5 is a prime. Strengthening (7), Sun [14,Conjecture A65] proposed the following challenging conjecture.

    Conjecture 1. For any prime p5 we have

    p1k=0(2k+1)3Akp3+4p4Hp1+65p8Bp5(modp9).

    This is our second theorem.

    Theorem 1.2. Conjecture 1 is true.

    Proofs of Theorems 1.1 and 1.2 will be given in Sections 2 and 3, respectively.

    The proofs in this paper strongly depend on the congruence properties of harmonic numbers and the Bernoulli numbers. For their properties, the reader is referred to [9,13,15,17]. Below we first list some congruences involving harmonic numbers and the Bernoulli numbers which will be used later.

    Lemma 2.1. [4,Remark 3.2] For any prime p5 we have

    2Hp1+pH(2)p125p4Bp5(modp5).

    From [13,Theorems 5.1 and 5.2], we have the following congruences.

    Lemma 2.2. For any prime p7 we have

    H(p1)/22qp(2)(modp),H(2)p1(43Bp312B2p4)p+(49Bp314B2p4)p2(modp3),H(2)(p1)/2(143Bp374B2p4)p+(149Bp378B2p4)p2(modp3),H(3)p165p2Bp5(modp3),H(3)(p1)/26(2Bp3p3B2p42p4)(modp2),H(4)p145pBp5(modp2),H(4)(p1)/20(modp),H(5)p10(modp2),

    where qp(2) denotes the Fermat quotient (2p11)/p.

    Remark 1. By Kummer's congruence (3), we know B2p44Bp3/3(modp). Then the congruences of H(2)p1 and H(2)(p1)/2 can be reduced to

    H(2)p1(43Bp312B2p4)p+19p2Bp3(modp3)

    and

    H(2)(p1)/2(143Bp374B2p4)p+718p2Bp3(modp3)

    respectively. By Lemma 2.1, we immediately obtain that Hp1pH(2)p1/2(modp4). Thus

    Hp1(14B2p423Bp3)p2118p3Bp3(modp4). (8)

    Recall that the Bernoulli polynomials Bn(x) are defined as

    Bn(x):=nk=0(nk)Bkxnk(nN). (9)

    Clearly, Bn=Bn(0). Also, we have

    n1k=1km1=Bm(n)Bmm (10)

    for any positive integer n and m.

    Let d>0 and s:=(s1,,sd)(Z{0})d. The alternating multiple harmonic sum [18] is defined as follows

    H(s;n):=1k1<k2<kdndi=1sgn(si)kik|si|i.

    Clearly, H(m)n=H(m;n).

    Let A,B,D,E,F be defined as in [18,Section 6], i.e.,

    A:=p3k=2BkBp3k,B:=p3k=22kBkBp3k,D:=p3k=2BkBp3kk,E:=p3k=22kBkBp3kk,F:=p3k=22p3kBkBp3kk.

    Lemma 2.3. For any prime p7 we have

    D4F2B2Aqp(2)Bp3(modp).

    Proof. In [18,Section 6], Tauraso and Zhao proved that

    H(1,3;p1)BA2E2D+2qp(2)Bp3(modp)

    and

    52D2E2F32qp(2)Bp30(modp).

    Combining the above two congruences we immediately obtain the desired result.

    Lemma 2.4. Let p7 be a prime. Then we have

    H(3,1;(p1)/2)H(3)(p1)/2H(p1)/24B+4A(modp). (11)

    Proof. By Lemma 2.2, it is easy to check that

    H(3)(p1)/2H(p1)/2=H(1,3;(p1)/2)+H(3,1;(p1)/2)+H(4)(p1)/2H(1,3;(p1)/2)+H(3,1;(p1)/2)(modp). (12)

    Thus it suffices to evaluate H(1,3;(p1)/2) modulo p. By Fermat's little theorem, (9) and (10) we arrive at

    H(1,3;(p1)/2)=1j<k(p1)/21jk31j<k(p1)/2jp2k3=1k(p1)/2Bp1(k)Bp1k3(p1)=1k(p1)/2p1i=1(p1i)ki3Bp1ip1=p1i=1(p1i)Bp1ip1(p1)/2k=1ki3(p12)Bp3p1H(p1)/2+p1i=4(p1i)Bp1ip1Bi2(12)Bi2i2(modp),

    where the last step follows from the fact Bn=0 for any odd n3. By [9,p. 248] we know that Bn(1/2)=(21n1)Bn. Thus

    H(1,3;(p1)/2)Bp3H(p1)/2p1i=4(23i2)Bp1iBi2i2=Bp3H(p1)/2p3i=2(21i2)Bp3iBiiBp3H(p1)/28F+2D(modp).

    With help of Lemmas 2.2 and 2.3, we have

    H(1,3;(p1)/2)4B4A(modp).

    Combining this with (12), we have completed the proof of Lemma 2.4.

    Lemma 2.5. Let p7 be a prime. Then we have

    (p1)/2k=1H(2)kk32p2Hp1+12H(3)(p1)/2+12H(2)p1H(p1)/2pH(3)(p1)/2H(p1)/2+4p(BA)(modp2).

    Proof. By [10,Eq. (3.13)] we know that for any odd prime p

    p1k=1H(2)kk3p2Hp1(modp2). (13)

    On the other hand,

    p1k=1H(2)kk=(p1)/2k=1H(2)kk+(p1)/2k=1H(2)pkpk.

    For k=1,2,,(p1)/2 we have

    H(2)pk=p1j=k1(pj)2p1j=k(1j2+2pj2)H(2)p1H(2)k12pH(3)k1(modp2)

    by Lemma 2.2. Thus

    p1k=1H(2)kk2(p1)/2k=1H(2)kkH(3)(p1)/2+pH(2,2;(p1)/2)H(2)p1H(p1)/2+2pH(3,1;(p1)/2)(modp2).

    In view of Lemma 2.2, we have

    H(2,2;(p1)/2)=(H(2)(p1)/2)22H(4)(p1)/220(modp).

    This together with Lemma 2.4 proves Lemma 2.5.

    Lemma 2.6. [16,Lemma 2.1] Let kN. Then for nZ+ we have

    n1m=0(2m+1)(m+k2k)2=(nk)22k+1(n+k2k)2.

    Proof of Theorem 1.1. By Lemma 2.6 it is routine to check that

    p1m=0(2m+1)Am=p1m=0(2m+1)mk=0(m+k2k)2(2kk)2=p1k=0(2kk)2p1m=0(2m+1)(m+k2k)2=p1k=0(2kk)2(pk)22k+1(p+k2k)2=p2p1k=012k+1(p1k)2(p+kk)2.

    Note that

    (p1k)2(p+kk)2=kj=1(1p2j2)2kj=1(12p2j2+p4j4)12p2H(2)k+p4H(4)k+4p4H(2,2;k)(modp5).

    Since H(4)(p1)/20(modp) and H(2,2;(p1)/2)0(modp), we have

    p1m=0(2m+1)Amp2Σ12p4Σ2(modp6), (14)

    where

    Σ1:=p1k=012k+1andΣ2:=p1k=0H(2)k2k+1.

    We first consider Σ1 modulo p4. Clearly,

    p1k=(p+1)/212k+1=(p3)/2k=012(p1k)+18p3(p3)/2k=01(2k+1)42p(p3)/2k=01(2k+1)24p2(p3)/2k=01(2k+1)3(p3)/2k=012k+1(modp4).

    For r{2,3,4},

    (p3)/2k=01(2k+1)r=H(r)p112rH(r)(p1)/2.

    By the above and Lemma 2.2,

    Σ1=1p+(p3)/2k=012k+1+p1k=(p+1)/212k+11p2p(H(2)p114H(2)(p1)/2)+12p2H(3)(p1)/2(modp4). (15)

    Now we turn to Σ2 modulo p2. By Lemma 2.2,

    p1k=(p+1)/2H(2)k2k+1=(p3)/2k=0H(2)p1k2(p1k)+1(p3)/2k=0H(2)k2k+1+2p(p3)/2k=0H(2)k(2k+1)2+12H(2)p1H(p1)/2+2p(p3)/2k=0H(3)k2k+1(modp2).

    Thus

    Σ2H(2)(p1)/2p+2σ1+12H(2)p1H(p1)/2+2pσ2(modp2),

    where

    σ1:=(p3)/2k=0H(2)k2k+1+p(p3)/2k=0H(2)k(2k+1)2

    and

    σ2:=(p3)/2k=0H(3)k2k+1.

    It is easy to see that

    σ1(p3)/2k=0H(2)kp12k=(p1)/2k=1H(2)(p1)/2k2k12H(p1)/2H(2)(p1)/2+12(p1)/2k=11kk1j=0(4(2j+1)2+8p(2j+1)3)=12(p1)/2k=11k(4H(2)2kH(2)k+8pH(3)2kpH(3)k)12H(p1)/2H(2)(p1)/2(modp2).

    Also,

    σ2(p3)/2k=0H(3)kp12k=(p1)/2k=1H(3)(p1)/2k2k12H(p1)/2H(3)(p1)/2+12(p1)/2k=11kk1j=08(2j+1)3=12H(p1)/2H(3)(p1)/24(p1)/2k=11k(H(3)2k18H(3)k)(modp).

    Combining the above we deduce that

    Σ2H(2)(p1)/2pH(p1)/2H(2)(p1)/2+4(p1)/2k=1H(2)2kk(p1)/2k=1H(2)kk+12H(2)p1H(p1)/2pH(p1)/2H(3)(p1)/2(modp2). (16)

    Note that

    (p1)/2k=1H(2)2kk=p1k=1H(2)kk+H(2,1;p1)+14H(3)(p1)/2H(3)p1. (17)

    By [18,Proposition 7.3] we know that

    H(2,1;p1)32X76pqp(2)Bp3+p(BA)(modp2), (18)

    where X:=Bp3/(p3)B2p4/(4p8). Now combining (16)–(18), Lemmas 2.2 and 2.5 we obtain that

    Σ2H(2)(p1)/2p+21Hp12p2(modp2). (19)

    Substituting (15) and (19) into (14) and using (13) and Lemma 2.2 we have

    p1m=0(2m+1)Amp2p3H(2)p132p3H(2)(p1)/2+12p4H(3)(p1)/221p2Hp1p72p2Hp1(modp6).

    The proof of Theorem 1.1 is complete now.

    In order to show Theorem 1.2, we need the following results.

    Lemma 3.1. Let p7 be a prime. Then we have

    p1k=1H(2,2;k)k12Bp5(modp).

    Proof. Clearly,

    p1k=1H(2,2;k)k=H(2,2,1;p1)+H(2,3;p1).

    By [19,Theorems 3.1 and 3.5] we have

    H(2,3;p1)2Bp5(modp)andH(2,2,1;p1)32Bp5(modp).

    Combining the above we obtain the desired result.

    Lemma 3.2. For any prime p7 we have

    p1k=1H(2)kk3Hp1p212p2Bp5(modp3). (20)

    Proof. Note that

    p1k=1H(2)kk=H(2,1;p1)+H(3)p1.

    By [8,Lemma 3] we know that

    H(1,2;p1)3Hp1p2+12p2Bp5(modp3)

    for any prime p>3. Therefore, by (8) and Lemma 2.2 we have

    H(2,1;p1)=Hp1H(2)p1H(1,2;p1)H(3)p13Hp1p212p2Bp5H(3)p1(modp3).

    Then (20) follows at once.

    Lemma 3.3. For any prime p7 we have

    p1k=0H(2,2;k)p2H(4)p13Hp1p2+H(3)p1+12p2Bp5(modp3), (21)
    p1k=0(H(2,4;k)+H(4,2;k))3Bp5(modp), (22)
    p1k=0H(2,2,2;k)32Bp5(modp). (23)

    Proof. By Lemma 2.2 we arrive at

    p1k=0H(2,2;k)=p1k=11i<jk1i2j2=1i<jp1pji2j2=p2((H(2)p1)2H(4)p1)1i<jp11i2jp2H(4)p1+p1k=1Hkk2(modp3).

    Furthermore,

    p1k=1Hkk2=p1k=11k2kj=11j=p1j=11jp1k=j1k2p1j=1H(2)jj+H(3)p1(modp3).

    From the above and Lemma 3.2, we obtain (21).

    Now we turn to prove (22). It is easy to see that

    p1k=0(H(2,4;k)+H(4,2;k))=1i<jp1pji2j4+1i<jp1pji4j2H(2,3;p1)H(4,1;p1)(modp).

    By [18,Theorem 3.1] we have H(2,3;p1)2Bp5(modp) and H(4,1;p1)Bp5(modp) for p7. Then (22) follows at once.

    Finally, we consider (23). Clearly,

    p1k=0H(2,2,2;k)=1i1<i2<i3p1pi3i21i22i23H(2,2,1;p1)(modp).

    By [19,Theorem 3.5], we have

    H(2,2,1;p1)32Bp5(modp).

    The proof of Lemma 3.3 is now complete.

    Lemma 3.4. Let kN. Then for nZ+ we have

    n1m=0(2m+1)3(m+k2k)2=(nk)2(2n2k1)k+1(n+k2k)2.

    Proof. It can be verified directly by induction on n.

    Proof of Theorem 1.2. The case p=5 can be verified directly. Below we assume that p7. By Lemma 3.4 we have

    p1m=0(2m+1)3Am=p1m=0(2m+1)3mk=0(m+k2k)2(2kk)2=p1k=0(2kk)2p1m=0(2m+1)3(m+k2k)2=p1k=0(2kk)2(pk)2(2p2k1)k+1(p+k2k)2=p2p1k=02p2k1k+1(p1k)2(p+kk)2.

    Noting that

    (p1k)2(p+kk)2=kj=1(1p2j2)2kj=1(12p2j2+p4j4)12p2H(2)k+p4H(4)k+4p4H(2,2;k)2p6(H(2,4;k)+H(4,2;k))8p6H(2,2,2;k)(modp7),

    we arrive at

    p1m=0(2m+1)3Am 2p4p1k=11k+1(12p2H(2)k+p4H(4)k+4p4H(2,2;k))p2p1k=0(12p2H(2)k+p4H(4)k+4p4H(2,2;k)2p6(H(2,4;k)+H(4,2;k))8p6H(2,2,2;k))(modp9).

    It is clear that

    p1k=01k+1=Hp1+1p.

    With the help of Lemma 3.2 we obtain that

    p1k=0H(2)kk+1=pk=1H(2)k1k=p1k=1H(2)kkH(3)p1+H(2)p1p3p2Hp1+H(2)p1pH(3)p112p2Bp5(modp3).

    Clearly,

    p1k=0H(4)kk+1=H(4,1;p1)+H(4)p1pBp5+H(4)p1p(modp).

    Furthermore,

    p1k=0H(2,2;k)k+1=12pk=11k((H(2)k1)2H(4)k1)=12pk=11k((H(2)k)2H(4)k2H(2)kk2+2k4)=p1k=1H(2,2;k)kH(2,3;p1)+12p((H(2)p1)2H(4)p1).

    Then by Lemmas 2.2 and 3.1 we arrive at

    p1k=0H(2,2;k)k+132Bp512pH(4)p1(modp).

    For r=2,4 we have

    p1k=0H(r)k=p1k=1kl=11lr=p1l=1pllr=pH(r)p1H(r1)p1.

    Combining the above and in view of Lemma 3.3 we obtain

    p1m=0(2m+1)3Am2p4Hp1+2p312p4Hp1+4p6H(3)p14p5H(2)p1+2p8Bp52p8Bp5+2p7H(4)p1+12p8Bp54p7H(4)p1p3+2p5H(2)p12p4Hp1p7H(4)p1+p6H(3)p1+2p7H(4)p1+12p4Hp12p8Bp54p6H(3)p16p8Bp5=p32p4Hp12p5H(2)p1+p6H(3)p1p7H(4)p1+4p8Bp5(modp9).

    Then Theorem 1.2 follows from Lemmas 2.1 and 2.2.

    The author would like to thank the anonymous referees for their helpful comments.



    [1] A Gaussian hypergeometric series evaluation and Apéry number congruences. J. Reine Angew. Math. (2000) 518: 187-212.
    [2] Irrationalité de ζ(2) et ζ(3). Astérisque (1979) 61: 11-13.
    [3] Another congruence for the Apéry numbers. J. Number Theory (1987) 25: 201-210.
    [4] Congruences for Apéry numbers βn=nk=0(nk)2(n+kk). Int. J. Number Theory (2020) 16: 981-1003.
    [5] On the residues of the sums of products of the first p1 numbers, and their powers, to modulus p2 or p3. Quart. J. Math. (1900) 31: 321-353.
    [6] Proof of some conjectures of Z.-W. Sun on congruences for Apéry polynomials. J. Number Theory (2012) 132: 1731-1740.
    [7] New congruences for sums involving Apéry numbers or central Delannoy numbers. Int. J. Number Theory (2012) 8: 2003-2016.
    [8] Congruences arising from Apéry-type series for zeta values. Adv. Appl. Math. (2012) 49: 218-238.
    [9] K. Ireland and M. Rosen, A Classical Introduction to Modern Number Theory, 2nd edition, Graduate Texts in Math., Vol. 84, Springer-Verlag, New York, 1990. doi: 10.1007/978-1-4757-2103-4
    [10] Congruences for the (p1)th Apéry number. Bull. Aust. Math. Soc. (2019) 99: 362-368.
    [11] K. Ono, The Web of Modularity: Arithmetic of Coefficients of Modular Forms and q-Series, Amer. Math. Soc., Providence, RI, 2004.
    [12] N. J. A. Sloane, Sequence A005259 in OEIS, http://oeis.org/A005259.
    [13] Congruences concerning Bernoulli numbers and Bernoulli polynomials. Discrete Appl. Math. (2000) 105: 193-223.
    [14] Z.-W. Sun, Open conjectures on congruences, preprint, arXiv: 0911.5665v57.
    [15] Arithmetic theory of harmonic numbers. Proc. Amer. Math. Soc. (2012) 140: 415-428.
    [16] On sums of Apéry polynomials and related congruences. J. Number Theory (2012) 132: 2673-2699.
    [17] Arithmetic theory of harmonic numbers(II). Colloq. Math. (2013) 130: 67-78.
    [18] Congruences of alternating multiple harmonic sums. J. Comb. Number Theory (2010) 2: 129-159.
    [19] Wolstenholme type theorem for multiple harmonic sums. Int. J. Number Theory (2008) 4: 73-106.
  • This article has been cited by:

    1. Wei Xia, Zhi-Wei Sun, On congruences involving Apéry numbers, 2023, 0002-9939, 10.1090/proc/16387
  • Reader Comments
  • © 2020 the Author(s), licensee AIMS Press. This is an open access article distributed under the terms of the Creative Commons Attribution License (http://creativecommons.org/licenses/by/4.0)
通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索

Metrics

Article views(2308) PDF downloads(329) Cited by(1)

Other Articles By Authors

/

DownLoad:  Full-Size Img  PowerPoint
Return
Return

Catalog