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Abstract. Let n be a nonnegative integer. The n-th Apéry number is defined

by

An :=
n∑

k=0

(n+ k

k

)2(n
k

)2
.

Z.-W. Sun investigated the congruence properties of Apéry numbers and posed

some conjectures. For example, Sun conjectured that for any prime p ≥ 7

p−1∑
k=0

(2k + 1)Ak ≡ p−
7

2
p2Hp−1 (mod p6)

and for any prime p ≥ 5

p−1∑
k=0

(2k + 1)3Ak ≡ p3 + 4p4Hp−1 +
6

5
p8Bp−5 (mod p9),

where Hn =
∑n

k=1 1/k denotes the n-th harmonic number and B0, B1, . . . are

the well-known Bernoulli numbers. In this paper we shall confirm these two
conjectures.

1. Introduction. The well-known Apéry numbers given by

An :=

n∑
k=0

(
n+ k

k

)2(
n

k

)2

=

n∑
k=0

(
n+ k

2k

)2(
2k

k

)2

(n ∈ N = {0, 1, . . .}),

were first introduced by Apéry to prove the irrationality of ζ(3) =
∑∞
n=1 1/n3 (see

[2, 12]). It is known that the Apéry numbers have close connections to modular
forms (cf. [11]). Recall that the Dedekind eta function is defined by

η(τ) = q1/24
∞∏
n=1

(1− qn) with q = e2πiτ ,

where τ ∈ H = {z ∈ C : Im(z) > 0}. Beukers [3] conjectured that for any prime
p > 3

A(p−1)/2 ≡ a(p) (mod p2),
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where a(n) (n = 1, 2, . . .) are given by

η4(2τ)η4(4τ) = q

∞∏
n=1

(1− q2n)4(1− q4n)4 =

∞∑
n=1

a(n)qn.

This conjecture was later confirmed by Ahlgren and Ono [1].
In 2012, Z.-W. Sun [16] introduced the Apéry polynomials

An(x) =

n∑
k=0

(
n+ k

k

)2(
n

k

)2

xk (n ∈ N)

and deduced various congruences involving sums of such polynomials. (Clearly,
An(1) = An.) For example, for any odd prime p and integer x, he obtained that

p−1∑
k=0

(2k + 1)Ak(x) ≡ p
(
x

p

)
(mod p2), (1)

where (−) denotes the Legendre symbol. For x = 1 and any prime p ≥ 5, Sun
established the following generalization of (1):

p−1∑
k=0

(2k + 1)Ak ≡ p+
7

6
p4Bp−3 (mod p5), (2)

where B0, B1, . . . are the well-known Bernoulli numbers defined as follows:

B0 = 0,

n−1∑
k=0

(
n

k

)
Bk = 0 (n = 2, 3, . . .).

In 1850 Kummer (cf. [9]) proved that for any odd prime p and even number b with
b 6≡ 0 (mod p− 1)

Bk(p−1)+b

k(p− 1) + b
≡ Bb

b
(mod p) for k ∈ N. (3)

For m ∈ Z+ = {1, 2, . . .} the n-th harmonic numbers of order m are defined by

H(m)
n :=

n∑
k=1

1

km
(n = 1, 2, . . .)

and H
(m)
0 := 0. For the sake of convenience we use Hn to denote H

(1)
n . From [5]

we know that Hp−1 ≡ −p2Bp−3/3 (mod p3) for any prime p ≥ 5. Thus (2) has the
following equivalent form

p−1∑
k=0

(2k + 1)Ak ≡ p−
7

2
p2Hp−1 (mod p5). (4)

Via some numerical computation, Sun [16, Conjecture 4.2] conjectured that (4) also
holds modulo p6 provided that p ≥ 7. This is our first theorem.

Theorem 1.1. For any prime p ≥ 7 we have

p−1∑
k=0

(2k + 1)Ak ≡ p−
7

2
p2Hp−1 (mod p6). (5)
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Motivated by Sun’s work, Guo and Zeng [6, 7] studied some congruences for sums
involving Apéry polynomials. Particularly, they obtained

n−1∑
k=0

(2k + 1)3Ak ≡ 0 (mod n3) (6)

and
p−1∑
k=0

(2k + 1)3Ak ≡ p3 (mod 2p6), (7)

where p ≥ 5 is a prime. Strengthening (7), Sun [14, Conjecture A65] proposed the
following challenging conjecture.

Conjecture 1. For any prime p ≥ 5 we have

p−1∑
k=0

(2k + 1)3Ak ≡ p3 + 4p4Hp−1 +
6

5
p8Bp−5 (mod p9).

This is our second theorem.

Theorem 1.2. Conjecture 1 is true.

Proofs of Theorems 1.1 and 1.2 will be given in Sections 2 and 3, respectively.

2. Proof of Theorem 1.1. The proofs in this paper strongly depend on the con-
gruence properties of harmonic numbers and the Bernoulli numbers. For their
properties, the reader is referred to [9, 13, 15, 17]. Below we first list some congru-
ences involving harmonic numbers and the Bernoulli numbers which will be used
later.

Lemma 2.1. [4, Remark 3.2] For any prime p ≥ 5 we have

2Hp−1 + pH
(2)
p−1 ≡

2

5
p4Bp−5 (mod p5).

From [13, Theorems 5.1 and 5.2], we have the following congruences.

Lemma 2.2. For any prime p ≥ 7 we have

H(p−1)/2 ≡ −2qp(2) (mod p),

H
(2)
p−1 ≡

(
4

3
Bp−3 −

1

2
B2p−4

)
p+

(
4

9
Bp−3 −

1

4
B2p−4

)
p2 (mod p3),

H
(2)
(p−1)/2 ≡

(
14

3
Bp−3 −

7

4
B2p−4

)
p+

(
14

9
Bp−3 −

7

8
B2p−4

)
p2 (mod p3),

H
(3)
p−1 ≡ −

6

5
p2Bp−5 (mod p3), H

(3)
(p−1)/2 ≡ 6

(
2Bp−3

p− 3
− B2p−4

2p− 4

)
(mod p2),

H
(4)
p−1 ≡

4

5
pBp−5 (mod p2), H

(4)
(p−1)/2 ≡ 0 (mod p), H

(5)
p−1 ≡ 0 (mod p2),

where qp(2) denotes the Fermat quotient (2p−1 − 1)/p.

Remark 1. By Kummer’s congruence (3), we know B2p−4 ≡ 4Bp−3/3 (mod p).

Then the congruences of H
(2)
p−1 and H

(2)
(p−1)/2 can be reduced to

H
(2)
p−1 ≡

(
4

3
Bp−3 −

1

2
B2p−4

)
p+

1

9
p2Bp−3 (mod p3)
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and

H
(2)
(p−1)/2 ≡

(
14

3
Bp−3 −

7

4
B2p−4

)
p+

7

18
p2Bp−3 (mod p3)

respectively. By Lemma 2.1, we immediately obtain that Hp−1 ≡ −pH(2)
p−1/2

(mod p4). Thus

Hp−1 ≡
(

1

4
B2p−4 −

2

3
Bp−3

)
p2 − 1

18
p3Bp−3 (mod p4). (8)

Recall that the Bernoulli polynomials Bn(x) are defined as

Bn(x) :=

n∑
k=0

(
n

k

)
Bkx

n−k (n ∈ N). (9)

Clearly, Bn = Bn(0). Also, we have

n−1∑
k=1

km−1 =
Bm(n)−Bm

m
(10)

for any positive integer n and m.
Let d > 0 and s := (s1, . . . , sd) ∈ (Z\{0})d. The alternating multiple harmonic

sum [18] is defined as follows

H(s;n) :=
∑

1≤k1<k2<···kd≤n

d∏
i=1

sgn(si)
ki

k
|si|
i

.

Clearly, H
(m)
n = H(m;n).

Let A,B,D,E, F be defined as in [18, Section 6], i.e.,

A :=

p−3∑
k=2

BkBp−3−k, B :=

p−3∑
k=2

2kBkBp−3−k, D :=

p−3∑
k=2

BkBp−3−k

k
,

E :=

p−3∑
k=2

2kBkBp−3−k

k
, F :=

p−3∑
k=2

2p−3−kBkBp−3−k

k
.

Lemma 2.3. For any prime p ≥ 7 we have

D − 4F ≡ 2B − 2A− qp(2)Bp−3 (mod p).

Proof. In [18, Section 6], Tauraso and Zhao proved that

H(1,−3; p− 1) ≡ B −A ≡ 2E − 2D + 2qp(2)Bp−3 (mod p)

and
5

2
D − 2E − 2F − 3

2
qp(2)Bp−3 ≡ 0 (mod p).

Combining the above two congruences we immediately obtain the desired result.

Lemma 2.4. Let p ≥ 7 be a prime. Then we have

H(3, 1; (p− 1)/2) ≡ H(3)
(p−1)/2H(p−1)/2 − 4B + 4A (mod p). (11)

Proof. By Lemma 2.2, it is easy to check that

H
(3)
(p−1)/2H(p−1)/2 =H(1, 3; (p− 1)/2) +H(3, 1; (p− 1)/2) +H

(4)
(p−1)/2

≡H(1, 3; (p− 1)/2) +H(3, 1; (p− 1)/2) (mod p).
(12)
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Thus it suffices to evaluate H(1, 3; (p−1)/2) modulo p. By Fermat’s little theorem,
(9) and (10) we arrive at

H(1, 3; (p− 1)/2) =
∑

1≤j<k≤(p−1)/2

1

jk3

≡
∑

1≤j<k≤(p−1)/2

jp−2

k3
=

∑
1≤k≤(p−1)/2

Bp−1(k)−Bp−1

k3(p− 1)

=
∑

1≤k≤(p−1)/2

∑p−1
i=1

(
p−1
i

)
ki−3Bp−1−i

p− 1
=

p−1∑
i=1

(
p−1
i

)
Bp−1−i

p− 1

(p−1)/2∑
k=1

ki−3

≡
(
p−1

2

)
Bp−3

p− 1
H(p−1)/2 +

p−1∑
i=4

(
p−1
i

)
Bp−1−i

p− 1
·
Bi−2

(
1
2

)
−Bi−2

i− 2
(mod p),

where the last step follows from the fact Bn = 0 for any odd n ≥ 3. By [9, p. 248]
we know that Bn(1/2) = (21−n − 1)Bn. Thus

H(1, 3; (p− 1)/2) ≡−Bp−3H(p−1)/2 −
p−1∑
i=4

(23−i − 2)Bp−1−iBi−2

i− 2

=−Bp−3H(p−1)/2 −
p−3∑
i=2

(21−i − 2)Bp−3−iBi
i

≡−Bp−3H(p−1)/2 − 8F + 2D (mod p).

With help of Lemmas 2.2 and 2.3, we have

H(1, 3; (p− 1)/2) ≡ 4B − 4A (mod p).

Combining this with (12), we have completed the proof of Lemma 2.4.

Lemma 2.5. Let p ≥ 7 be a prime. Then we have

(p−1)/2∑
k=1

H
(2)
k

k
≡ 3

2p2
Hp−1 +

1

2
H

(3)
(p−1)/2 +

1

2
H

(2)
p−1H(p−1)/2 − pH

(3)
(p−1)/2H(p−1)/2

+ 4p(B −A) (mod p2).

Proof. By [10, Eq. (3.13)] we know that for any odd prime p

p−1∑
k=1

H
(2)
k

k
≡ 3

p2
Hp−1 (mod p2). (13)

On the other hand,

p−1∑
k=1

H
(2)
k

k
=

(p−1)/2∑
k=1

H
(2)
k

k
+

(p−1)/2∑
k=1

H
(2)
p−k

p− k
.

For k = 1, 2, . . . , (p− 1)/2 we have

H
(2)
p−k =

p−1∑
j=k

1

(p− j)2
≡

p−1∑
j=k

(
1

j2
+

2p

j2

)
≡ H(2)

p−1 −H
(2)
k−1 − 2pH

(3)
k−1 (mod p2)
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by Lemma 2.2. Thus

p−1∑
k=1

H
(2)
k

k
≡2

(p−1)/2∑
k=1

H
(2)
k

k
−H(3)

(p−1)/2 + pH(2, 2; (p− 1)/2)

−H(2)
p−1H(p−1)/2 + 2pH(3, 1; (p− 1)/2) (mod p2).

In view of Lemma 2.2, we have

H(2, 2; (p− 1)/2) =

(
H

(2)
(p−1)/2

)2

2
−
H

(4)
(p−1)/2

2
≡ 0 (mod p).

This together with Lemma 2.4 proves Lemma 2.5.

Lemma 2.6. [16, Lemma 2.1] Let k ∈ N. Then for n ∈ Z+ we have

n−1∑
m=0

(2m+ 1)

(
m+ k

2k

)2

=
(n− k)2

2k + 1

(
n+ k

2k

)2

.

Proof of Theorem 1.1. By Lemma 2.6 it is routine to check that

p−1∑
m=0

(2m+ 1)Am =

p−1∑
m=0

(2m+ 1)

m∑
k=0

(
m+ k

2k

)2(
2k

k

)2

=

p−1∑
k=0

(
2k

k

)2 p−1∑
m=0

(2m+ 1)

(
m+ k

2k

)2

=

p−1∑
k=0

(
2k

k

)2
(p− k)2

2k + 1

(
p+ k

2k

)2

=p2

p−1∑
k=0

1

2k + 1

(
p− 1

k

)2(
p+ k

k

)2

.

Note that(
p− 1

k

)2(
p+ k

k

)2

=

k∏
j=1

(
1− p2

j2

)2

≡
k∏
j=1

(
1− 2p2

j2
+
p4

j4

)
≡1− 2p2H

(2)
k + p4H

(4)
k + 4p4H(2, 2; k) (mod p5).

Since H
(4)
(p−1)/2 ≡ 0 (mod p) and H(2, 2; (p− 1)/2) ≡ 0 (mod p), we have

p−1∑
m=0

(2m+ 1)Am ≡ p2Σ1 − 2p4Σ2 (mod p6), (14)

where

Σ1 :=

p−1∑
k=0

1

2k + 1
and Σ2 :=

p−1∑
k=0

H
(2)
k

2k + 1
.
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We first consider Σ1 modulo p4. Clearly,

p−1∑
k=(p+1)/2

1

2k + 1
=

(p−3)/2∑
k=0

1

2(p− 1− k) + 1

≡− 8p3

(p−3)/2∑
k=0

1

(2k + 1)4
− 2p

(p−3)/2∑
k=0

1

(2k + 1)2

− 4p2

(p−3)/2∑
k=0

1

(2k + 1)3
−

(p−3)/2∑
k=0

1

2k + 1
(mod p4).

For r ∈ {2, 3, 4},
(p−3)/2∑
k=0

1

(2k + 1)r
= H

(r)
p−1 −

1

2r
H

(r)
(p−1)/2.

By the above and Lemma 2.2,

Σ1 =
1

p
+

(p−3)/2∑
k=0

1

2k + 1
+

p−1∑
k=(p+1)/2

1

2k + 1

≡1

p
− 2p

(
H

(2)
p−1 −

1

4
H

(2)
(p−1)/2

)
+

1

2
p2H

(3)
(p−1)/2 (mod p4).

(15)

Now we turn to Σ2 modulo p2. By Lemma 2.2,

p−1∑
k=(p+1)/2

H
(2)
k

2k + 1
=

(p−3)/2∑
k=0

H
(2)
p−1−k

2(p− 1− k) + 1

≡
(p−3)/2∑
k=0

H
(2)
k

2k + 1
+ 2p

(p−3)/2∑
k=0

H
(2)
k

(2k + 1)2

+
1

2
H

(2)
p−1H(p−1)/2 + 2p

(p−3)/2∑
k=0

H
(3)
k

2k + 1
(mod p2).

Thus

Σ2 ≡
H

(2)
(p−1)/2

p
+ 2σ1 +

1

2
H

(2)
p−1H(p−1)/2 + 2pσ2 (mod p2),

where

σ1 :=

(p−3)/2∑
k=0

H
(2)
k

2k + 1
+ p

(p−3)/2∑
k=0

H
(2)
k

(2k + 1)2

and

σ2 :=

(p−3)/2∑
k=0

H
(3)
k

2k + 1
.



1070 CHEN WANG

It is easy to see that

σ1 ≡−
(p−3)/2∑
k=0

H
(2)
k

p− 1− 2k
= −

(p−1)/2∑
k=1

H
(2)
(p−1)/2−k

2k

≡− 1

2
H(p−1)/2H

(2)
(p−1)/2 +

1

2

(p−1)/2∑
k=1

1

k

k−1∑
j=0

(
4

(2j + 1)2
+

8p

(2j + 1)3

)

=
1

2

(p−1)/2∑
k=1

1

k

(
4H

(2)
2k −H

(2)
k + 8pH

(3)
2k − pH

(3)
k

)
− 1

2
H(p−1)/2H

(2)
(p−1)/2 (mod p2).

Also,

σ2 ≡−
(p−3)/2∑
k=0

H
(3)
k

p− 1− 2k
= −

(p−1)/2∑
k=1

H
(3)
(p−1)/2−k

2k

≡− 1

2
H(p−1)/2H

(3)
(p−1)/2 +

1

2

(p−1)/2∑
k=1

1

k

k−1∑
j=0

−8

(2j + 1)3

=− 1

2
H(p−1)/2H

(3)
(p−1)/2 − 4

(p−1)/2∑
k=1

1

k

(
H

(3)
2k −

1

8
H

(3)
k

)
(mod p).

Combining the above we deduce that

Σ2 ≡
H

(2)
(p−1)/2

p
−H(p−1)/2H

(2)
(p−1)/2 + 4

(p−1)/2∑
k=1

H
(2)
2k

k
−

(p−1)/2∑
k=1

H
(2)
k

k

+
1

2
H

(2)
p−1H(p−1)/2 − pH(p−1)/2H

(3)
(p−1)/2 (mod p2).

(16)

Note that
(p−1)/2∑
k=1

H
(2)
2k

k
=

p−1∑
k=1

H
(2)
k

k
+H(2,−1; p− 1) +

1

4
H

(3)
(p−1)/2 −H

(3)
p−1. (17)

By [18, Proposition 7.3] we know that

H(2,−1; p− 1) ≡ −3

2
X − 7

6
pqp(2)Bp−3 + p(B −A) (mod p2), (18)

where X := Bp−3/(p−3)−B2p−4/(4p−8). Now combining (16)–(18), Lemmas 2.2
and 2.5 we obtain that

Σ2 ≡
H

(2)
(p−1)/2

p
+

21Hp−1

2p2
(mod p2). (19)

Substituting (15) and (19) into (14) and using (13) and Lemma 2.2 we have

p−1∑
m=0

(2m+ 1)Am ≡p− 2p3H
(2)
p−1 −

3

2
p3H

(2)
(p−1)/2 +

1

2
p4H

(3)
(p−1)/2 − 21p2Hp−1

≡p− 7

2
p2Hp−1 (mod p6).

The proof of Theorem 1.1 is complete now.
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3. Proof of Theorem 1.2. In order to show Theorem 1.2, we need the following
results.

Lemma 3.1. Let p ≥ 7 be a prime. Then we have

p−1∑
k=1

H(2, 2; k)

k
≡ −1

2
Bp−5 (mod p).

Proof. Clearly,

p−1∑
k=1

H(2, 2; k)

k
= H(2, 2, 1; p− 1) +H(2, 3; p− 1).

By [19, Theorems 3.1 and 3.5] we have

H(2, 3; p− 1) ≡ −2Bp−5 (mod p) and H(2, 2, 1; p− 1) ≡ 3

2
Bp−5 (mod p).

Combining the above we obtain the desired result.

Lemma 3.2. For any prime p ≥ 7 we have

p−1∑
k=1

H
(2)
k

k
≡ 3Hp−1

p2
− 1

2
p2Bp−5 (mod p3). (20)

Proof. Note that
p−1∑
k=1

H
(2)
k

k
= H(2, 1; p− 1) +H

(3)
p−1.

By [8, Lemma 3] we know that

H(1, 2; p− 1) ≡ −3Hp−1

p2
+

1

2
p2Bp−5 (mod p3)

for any prime p > 3. Therefore, by (8) and Lemma 2.2 we have

H(2, 1; p− 1) =Hp−1H
(2)
p−1 −H(1, 2; p− 1)−H(3)

p−1

≡3Hp−1

p2
− 1

2
p2Bp−5 −H(3)

p−1 (mod p3).

Then (20) follows at once.

Lemma 3.3. For any prime p ≥ 7 we have

p−1∑
k=0

H(2, 2; k) ≡ −p
2
H

(4)
p−1 −

3Hp−1

p2
+H

(3)
p−1 +

1

2
p2Bp−5 (mod p3), (21)

p−1∑
k=0

(H(2, 4; k) +H(4, 2; k)) ≡ 3Bp−5 (mod p), (22)

p−1∑
k=0

H(2, 2, 2; k) ≡ −3

2
Bp−5 (mod p). (23)
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Proof. By Lemma 2.2 we arrive at

p−1∑
k=0

H(2, 2; k) =

p−1∑
k=1

∑
1≤i<j≤k

1

i2j2
=

∑
1≤i<j≤p−1

p− j
i2j2

=
p

2

((
H

(2)
p−1

)2

−H(4)
p−1

)
−

∑
1≤i<j≤p−1

1

i2j

≡− p

2
H

(4)
p−1 +

p−1∑
k=1

Hk

k2
(mod p3).

Furthermore,

p−1∑
k=1

Hk

k2
=

p−1∑
k=1

1

k2

k∑
j=1

1

j
=

p−1∑
j=1

1

j

p−1∑
k=j

1

k2

≡−
p−1∑
j=1

H
(2)
j

j
+H

(3)
p−1 (mod p3).

From the above and Lemma 3.2, we obtain (21).
Now we turn to prove (22). It is easy to see that

p−1∑
k=0

(H(2, 4; k) +H(4, 2; k)) =
∑

1≤i<j≤p−1

p− j
i2j4

+
∑

1≤i<j≤p−1

p− j
i4j2

≡−H(2, 3; p− 1)−H(4, 1; p− 1) (mod p).

By [18, Theorem 3.1] we have H(2, 3; p−1) ≡ −2Bp−5 (mod p) and H(4, 1; p−1) ≡
−Bp−5 (mod p) for p ≥ 7. Then (22) follows at once.

Finally, we consider (23). Clearly,

p−1∑
k=0

H(2, 2, 2; k) =
∑

1≤i1<i2<i3≤p−1

p− i3
i21i

2
2i

2
3

≡ −H(2, 2, 1; p− 1) (mod p).

By [19, Theorem 3.5], we have

H(2, 2, 1; p− 1) ≡ 3

2
Bp−5 (mod p).

The proof of Lemma 3.3 is now complete.

Lemma 3.4. Let k ∈ N. Then for n ∈ Z+ we have

n−1∑
m=0

(2m+ 1)3

(
m+ k

2k

)2

=
(n− k)2(2n2 − k − 1)

k + 1

(
n+ k

2k

)2

.

Proof. It can be verified directly by induction on n.

Proof of Theorem 1.2. The case p = 5 can be verified directly. Below we assume
that p ≥ 7. By Lemma 3.4 we have
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p−1∑
m=0

(2m+ 1)3Am =

p−1∑
m=0

(2m+ 1)3
m∑
k=0

(
m+ k

2k

)2(
2k

k

)2

=

p−1∑
k=0

(
2k

k

)2 p−1∑
m=0

(2m+ 1)3

(
m+ k

2k

)2

=

p−1∑
k=0

(
2k

k

)2
(p− k)2(2p2 − k − 1)

k + 1

(
p+ k

2k

)2

=p2

p−1∑
k=0

2p2 − k − 1

k + 1

(
p− 1

k

)2(
p+ k

k

)2

.

Noting that(
p− 1

k

)2(
p+ k

k

)2

=

k∏
j=1

(
1− p2

j2

)2

≡
k∏
j=1

(
1− 2p2

j2
+
p4

j4

)
≡1− 2p2H

(2)
k + p4H

(4)
k + 4p4H(2, 2; k)− 2p6 (H(2, 4; k) +H(4, 2; k))

− 8p6H(2, 2, 2; k) (mod p7),

we arrive at

p−1∑
m=0

(2m+ 1)3Am

≡ 2p4

p−1∑
k=1

1

k + 1

(
1− 2p2H

(2)
k + p4H

(4)
k + 4p4H(2, 2; k)

)
− p2

p−1∑
k=0

(
1− 2p2H

(2)
k + p4H

(4)
k + 4p4H(2, 2; k)

− 2p6 (H(2, 4; k) +H(4, 2; k))− 8p6H(2, 2, 2; k)

)
(mod p9).

It is clear that
p−1∑
k=0

1

k + 1
= Hp−1 +

1

p
.

With the help of Lemma 3.2 we obtain that

p−1∑
k=0

H
(2)
k

k + 1
=

p∑
k=1

H
(2)
k−1

k
=

p−1∑
k=1

H
(2)
k

k
−H(3)

p−1 +
H

(2)
p−1

p

≡ 3

p2
Hp−1 +

H
(2)
p−1

p
−H(3)

p−1 −
1

2
p2Bp−5 (mod p3).

Clearly,

p−1∑
k=0

H
(4)
k

k + 1
= H(4, 1; p− 1) +

H
(4)
p−1

p
≡ −Bp−5 +

H
(4)
p−1

p
(mod p).
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Furthermore,

p−1∑
k=0

H(2, 2; k)

k + 1
=

1

2

p∑
k=1

1

k

((
H

(2)
k−1

)2

−H(4)
k−1

)

=
1

2

p∑
k=1

1

k

((
H

(2)
k

)2

−H(4)
k −

2H
(2)
k

k2
+

2

k4

)

=

p−1∑
k=1

H(2, 2; k)

k
−H(2, 3; p− 1) +

1

2p

((
H

(2)
p−1

)2

−H(4)
p−1

)
.

Then by Lemmas 2.2 and 3.1 we arrive at

p−1∑
k=0

H(2, 2; k)

k + 1
≡ 3

2
Bp−5 −

1

2p
H

(4)
p−1 (mod p).

For r = 2, 4 we have

p−1∑
k=0

H
(r)
k =

p−1∑
k=1

k∑
l=1

1

lr
=

p−1∑
l=1

p− l
lr

= pH
(r)
p−1 −H

(r−1)
p−1 .

Combining the above and in view of Lemma 3.3 we obtain

p−1∑
m=0

(2m+ 1)3Am

≡2p4Hp−1 + 2p3 − 12p4Hp−1 + 4p6H
(3)
p−1 − 4p5H

(2)
p−1 + 2p8Bp−5 − 2p8Bp−5

+ 2p7H
(4)
p−1 + 12p8Bp−5 − 4p7H

(4)
p−1 − p3 + 2p5H

(2)
p−1 − 2p4Hp−1 − p7H

(4)
p−1

+ p6H
(3)
p−1 + 2p7H

(4)
p−1 + 12p4Hp−1 − 2p8Bp−5 − 4p6H

(3)
p−1 − 6p8Bp−5

=p3 − 2p4Hp−1 − 2p5H
(2)
p−1 + p6H

(3)
p−1 − p7H

(4)
p−1 + 4p8Bp−5 (mod p9).

Then Theorem 1.2 follows from Lemmas 2.1 and 2.2.
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[16] Z.-W. Sun, On sums of Apéry polynomials and related congruences, J. Number Theory, 132

(2012), 2673–2699.
[17] Z.-W. Sun and L.-L. Zhao, Arithmetic theory of harmonic numbers(II), Colloq. Math., 130

(2013), 67–78.

[18] R. Tauraso and J. Zhao, Congruences of alternating multiple harmonic sums, J. Comb. Num-
ber Theory, 2 (2010), 129–159.

[19] J. Zhao, Wolstenholme type theorem for multiple harmonic sums, Int. J. Number Theory, 4

(2008), 73–106.

Received February 2020; 1st revision April 2020; 2nd revision May 2020.

E-mail address: cwang@smail.nju.edu.cn

http://www.ams.org/mathscinet-getitem?mr=MR3952469&return=pdf
http://dx.doi.org/10.1017/S0004972718001156
http://www.ams.org/mathscinet-getitem?mr=MR2020489&return=pdf
http://oeis.org/A005259
http://www.ams.org/mathscinet-getitem?mr=MR1780472&return=pdf
http://dx.doi.org/10.1016/S0166-218X(00)00184-0
http://arxiv.org/pdf/0911.5665v57
http://www.ams.org/mathscinet-getitem?mr=MR2846311&return=pdf
http://dx.doi.org/10.1090/S0002-9939-2011-10925-0
http://www.ams.org/mathscinet-getitem?mr=MR2954998&return=pdf
http://dx.doi.org/10.1016/j.jnt.2012.05.014
http://www.ams.org/mathscinet-getitem?mr=MR3034316&return=pdf
http://dx.doi.org/10.4064/cm130-1-7
http://www.ams.org/mathscinet-getitem?mr=MR2907787&return=pdf
http://www.ams.org/mathscinet-getitem?mr=MR2387917&return=pdf
http://dx.doi.org/10.1142/S1793042108001146
mailto:cwang@smail.nju.edu.cn

	1. Introduction
	2. Proof of Theorem 1.1
	3. Proof of Theorem 1.2
	Acknowledgments
	REFERENCES

