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ABSTRACT. Let n be a nonnegative integer. The n-th Apéry number is defined

by
n 2
n+k n\ 2
A= (M07) ()
= k k
Z.-W. Sun investigated the congruence properties of Apéry numbers and posed

some conjectures. For example, Sun conjectured that for any prime p > 7
p—1 7
Z(Zk + 1Ay =p— —p?Hp—1  (mod p°)
2
k=0
and for any prime p > 5
p—1 6
> @k+1)2Ap =p® +4p*Hp 1 + gpSBp—5 (mod p?),
k=0
where H,, = ZZ:I 1/k denotes the n-th harmonic number and By, Bi, ... are
the well-known Bernoulli numbers. In this paper we shall confirm these two
conjectures.

1. Introduction. The well-known Apéry numbers given by
"+ k\? 0\ " m+k\? 2k
A = = = 1,...
=X (0 =X () () men-oa,
k=0 k=0
were first introduced by Apéry to prove the irrationality of ((3) =Y -, 1/n® (see

[2, 12]). Tt is known that the Apéry numbers have close connections to modular
forms (cf. [11]). Recall that the Dedekind eta function is defined by

oo
n(r) ="/ [J(1—¢") with g = >,
n=1

where 7 € H = {z € C : Im(z) > 0}. Beukers [3] conjectured that for any prime
p>3
Ap-1y/2 = alp) (mod p?),
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where a(n) (n =1,2,...) are given by

0t (2m)n’* (47) —qH 1= ¢®)*(1—¢")* = a(n)g

This conjecture was later confirmed by Ahlgren and Ono [1].
In 2012, Z.-W. Sun [16] introduced the Apéry polynomials

An(x) = kzn:_o (" Z '“)2 (Z)ka (neN)

and deduced various congruences involving sums of such polynomials. (Clearly,
A, (1) = A,.) For example, for any odd prime p and integer x, he obtained that

STk + 1) Ax(e) = p (j) (mod p?), 1)

k=0

where (—) denotes the Legendre symbol. For z = 1 and any prime p > 5, Sun
established the following generalization of (1):

p—1

7
> @k+ 1A =p+ ép‘*Bp,g (mod p%), (2)
k=0
where By, By, ... are the well-known Bernoulli numbers defined as follows:

n—1
n
By=0, ) (k)Bk =0 (n=2,3,...).
k=0
In 1850 Kummer (cf. [9]) proved that for any odd prime p and even number b with
b#0 (modp—1)

Brp-n+v _ By
k(p—1)+b b

For m € Z* = {1,2,...} the n-th harmonic numbers of order m are defined by

"1
Z—m =1,2,..)

k=1

(mod p) for k e N. (3)

and Hém) := 0. For the sake of convenience we use H,, to denote H,(Ll). From [5]
we know that H,_1 = —p®B,_3/3 (mod p?) for any prime p > 5. Thus (2) has the
following equivalent form

p—1 7
> @k+1)Ay =p— 5p2H,,_1 (mod p°). (4)
k=0

Via some numerical computation, Sun [16, Conjecture 4.2] conjectured that (4) also
holds modulo p® provided that p > 7. This is our first theorem.
Theorem 1.1. For any prime p > 7 we have

p—1

7
Z(2k + 1A =p— §p2Hp_1 (mod p®). (5)
k=0
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Motivated by Sun’s work, Guo and Zeng [6, 7] studied some congruences for sums
involving Apéry polynomials. Particularly, they obtained

n—1
Z(Zk +1)%4, =0 (mod n?) (6)
k=0
and
p—1
Z(Qk +1)%4, =p®  (mod 2p°), (7)
k=0

where p > 5 is a prime. Strengthening (7), Sun [14, Conjecture A65] proposed the
following challenging conjecture.

Conjecture 1. For any prime p > 5 we have

p—1

6
2(2]6 + 1)3Ak = p3 + 4p4Hp_1 + gprp_5 (IIlOd pg).
k=0

This is our second theorem.
Theorem 1.2. Conjecture 1 s true.

Proofs of Theorems 1.1 and 1.2 will be given in Sections 2 and 3, respectively.

2. Proof of Theorem 1.1. The proofs in this paper strongly depend on the con-
gruence properties of harmonic numbers and the Bernoulli numbers. For their
properties, the reader is referred to [9, 13, 15, 17]. Below we first list some congru-
ences involving harmonic numbers and the Bernoulli numbers which will be used
later.

Lemma 2.1. [4, Remark 3.2] For any prime p > 5 we have
2
2H, 4 +pHIEi)1 = 5p4Bp,5 (mod p°).
From [13, Theorems 5.1 and 5.2], we have the following congruences.

Lemma 2.2. For any prime p > 7 we have

Hp1y/2 = —2¢,(2)  (mod p),

4 1 4 1
HI(,z_)l = (3Bp—3 - 2321)—4) p+ <ng—3 - 4sz—4> p*  (mod p*),

) 14 7 14 7
H((p)fl)/Q = (3Bp3 — 4ng4> p —+ <9Bp3 — 832p4) p2 (mOd p3)7

(3) _— _6 2 3 (3) _ 2B)_3 B Bap_4 9
H,”\ = gp By_5 (mod p°), H(p1)/2—6<p_3 % — 4 (mod p©),
4
Hz(i)l = ngP*5 (mod p?), H((ﬁ),l)/z =0 (mod p), H;(i)l =0 (mod p?),

where q,(2) denotes the Fermat quotient (2P~1 —1)/p.

Remark 1. By Kummer’s congruence (3), we know By,_4 = 4B,_3/3 (mod p).

Then the congruences of H;(i)l and H ((;)71) /2 can be reduced to

H®

p—1

4 1 1
<3Bp3 - 232p4) P+ §P23p73 (mod p?)
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and
2 14 7 7
H((p) 1)/2 = <3Bp3 - 432;04) p + EPQBpri (mOd p3)
respectively. By Lemma 2.1, we immediately obtain that H, 1 = —pH, (2) ~./2
(mod p*). Thus
At 2 1 4 4
Hyr = (s = 3B ) 12— 1By (mod 1) (3)
Recall that the Bernoulli polynomials B, (x) are defined as
B, (z) := Z <Z) Brz"*  (neN). (9)
k=0
Clearly, B,, = B,(0). Also, we have
n—1
B, — B,
Z Ll — L (10)
m
k=1

for any positive integer n and m.
Let d > 0 and s := (s1,...,84) € (Z\{0})?. The alternating multiple harmonic
sum [18] is defined as follows

sgn(s;)*
H(s;n):= E H e
1<k <hs<ohg<nizt  Ki

Clearly, Hm = H(m;n).
Let A,B, D, E, F be defined as in [18 Section 6], i.e.,

p—3
BB
A=Y BiBy s, B—Zz’kaBpsk, D= Z%,
k=2 k=2
) 28ByB,_5_} —~ 273 kBB, 5 ko
N

Lemma 2.3. For any prime p > 7 we have
D —4F =2B —2A — q,(2)B,—3 (mod p).
Proof. In [18, Section 6], Tauraso and Zhao proved that
H(1,-3;p—1)=B—-A=2F—2D+2¢,(2)B,—3 (mod p)
and
gD —2F —2F — gqp(Q)Bp_g =0 (mod p).
Combining the above two congruences we immediately obtain the desired result. [

Lemma 2.4. Let p > 7 be a prime. Then we have

H(3,1;(p—1)/2) = (<p> 1yy2Hp-1y/2 — 4B +4A  (mod p). (11)

Proof. By Lemma 2.2, it is easy to check that
3 4

(12)
=H(1,3;(p—1)/2)+ H(3,1;(p—1)/2) (mod p).
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Thus it suffices to evaluate H(1,3; (p—1)/2) modulo p. By Fermat’s little theorem,
(9) and (10) we arrive at

HOBG-12)= Y o

1<j<k<(p—1)/2

J
jp—2 B,_1(k)— B,_
— Z jks _ Z pkl() p—1

3(p —
1<j<k<(p—1)/2 1<k<(p—1)/2 (p 1)
Zpl(p 1)k‘2 3Bplz p_l 7) plzpl)/Q 3
- ¥ 1 >k
p—1

1<k<(p—1)/2

p—
" HB 8 41 Lk : 1—i Bi—2(3) — Bi—2
(QP)_p (p— 1)/2+Z S (f

(mod p),

where the last step follows from the fact B;,, = 0 for any odd n > 3. By [9, p. 248]
we know that B, (1/2) = (2!" — 1)B,,. Thus

= (237" = 2)Bp_1-iBi_»

H(1,3;(p—1)/2) =— Bp_3H(,— 1/2—2 i—2
pP— 1—1i
211 2B, 3_;B;
=— p—sH(p71>/2—Z( )z e
=2

=- By, 3Hp_1)/2 —8F +2D (mod p).
With help of Lemmas 2.2 and 2.3, we have
H(1,3;(p—1)/2) =4B —4A (mod p).
Combining this with (12), we have completed the proof of Lemma 2.4. O

Lemma 2.5. Let p > 7 be a prime. Then we have

(p—1)/2 H(Z) 3 (3) 2) (3)
k —
> k :@HP—H H 1>/z+2Hp 1Hp—1)/2 = PHG 1y o Hp-1) /2
k=1

+4p(B — A) (mod p?).
Proof. By [10, Eq. (3.13)] we know that for any odd prime p
H, ; (mod p?). (13)

On the other hand,
p=1 p(2) (p—1)/2 H® (r=1)/2 (2)

Hy ' _ k ok
ok k=1 o Pk
For k=1,2,...,(p—1)/2 we have
HO, . (Lo pe g 3) 2
Z Z(j2+J2> =H,”, — H, —2pH,;”, (mod p°)

— j=k
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by Lemma 2.2. Thus

1

P (2) (p—1)/2 11(2)

H H
=2 Y e HE L, pHR2.2 (0 - 1)/2)
1 k=1

—~ HP Hy, 1yjo +2pH(3, 15 (p — 1)/2)  (mod p?).

b
I

In view of Lemma 2.2, we have

(2) (4)
H H
(p—1)/2 -
H(2,2;(p—1)/2) = ( p2 ) - (p21)/2 =0 (mod p).

This together with Lemma 2.4 proves Lemma 2.5.
Lemma 2.6. [16, Lemma 2.1] Let k € N. Then for n € Z* we have
n—1 2 2
m+k (n—k)? (m+k
2 1 = — .
mZ:o(m+ )( 2%k ) 2% +1 \ 2k

Proof of Theorem 1.1. By Lemma 2.6 it is routine to check that

gum +1) Ay = :é(Qm 1) ]i (m;]; k) 2 (2:) 2
) :Zlo 2m +1 (m;; k‘)

) )

p2p71 1 (p—1)2(p+k:>2
Pt 2k +1 k k
Note that

IO (NI 2%

1

Since H((§11)/2 =0 (mod p) and H(2,2;(p —1)/2) =0 (mod p), we have

p—1
Z (2m + 1)A,, = p*S; — 2p*%y  (mod p°),

m=0

where

J
=1-2p°H? + p*HY + 4p*H(2,2;k) (mod p°).
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We first consider ¥; modulo p*. Clearly,

> > :
b= (o 1)/2 2k +1 pars 2p—1—-k)+1
(10235/2 1 (p§/2 1
= — 8p° =2 —
= (2k+1) — (2k+
(p—3)/2 (p—3)/2

1
e Z @2k +1)3 kZ:O % + 1

For r € {2,3,4},
(p—3)/2

1 O e (5
k;) 2k +1)" L e

By the above and Lemma 2.2,

(p—3)/2 1 1

;;) k1 Z %11

+1)/2

5 =

Now we turn to X modulo p?. By Lemma 2.2,

P
L H(Q) — fH(Q) + poH(S) (mod p*)
“p (p—1)/2 2 (p—1)/2 ’

(mod p?).

-1 —-3)/2 2
pz H,E2) _ (pz)/ H;() )1 .
b (o) 2k +1 = 2p—1—-k)+1
(p—3)/2 H(2) (p—3)/2 H(z)
= Z k4 9p _ ke
= 2k+1 (2k + 1)
(p—3)/2 (3)
H "W Hip-1yy2 + 29 Z 2k—|—1
Thus
HE 1
Yo = % + 201 + §H£3)1H(p—1)/2 + 2poy  (mod p?),
where
(p—3)/2 (2) (p—3)/2 H®
— k
=) 2k+1+p (2k + 1)
k= k=0
and

1069

(15)
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It is easy to see that

(p—3)/2 2 (p—1)/2 17(2)
B/ S o VS
P p—1-2k — 2%k
1 L P02y 8
=—_H H
9 (p—1)/2 p 1)/2 Z jZ( 2]_|_1 (2j+1)3>
[ IS 3) 3)
D) Z % <4H2k — H.” +8pHy" — pHy, )
k=1
1 )
S Hw- 2 Ly s (mod p?).
Also,
(p—3)/2 3 (p—1)/2 p7(3)
m=— Y oY > Hep—1)/2-1
T &= p-1-2% — 2%k

1 ) 1 (p—1)/2 T,
_ 3
=—3He-nrHp )+ 5 Z % Z Gt 1

— j=0

1 ®) (H)/Z Lige  1ae
:_§H(p 1)/2H(p 1)/2 —4 £ % <H2k _ng ) (mod p).
Combining the above we deduce that
g2 (P1)/2 @) (P12 (2)
_(p=1)/2 (2)
Up =2 — HipypHy Ly p 4 Y - Y
P k k
k=1 k=1

1 2 3

+ S HZ Hipyj2 = pHipo1) 2HG ) gy (mod p7).

Note that
(p—1)/2 (2) p— (2)
H 3 3
Z 27+H —Lp-1)+ H((p) 1)/2 _HZ()7)1'
k=1
By [18, Proposition 7.3] we know that

7
—pgp(2)Bp—3 + p(B — A) (mod pz),

H(2,-1;p—1) E—;X— g

(18)

where X := B,_3/(p—3) — Bap—_4/(4p — 8). Now combining (16)—(18), Lemmas 2.2

and 2.5 we obtain that

@)
Hi 00 L 2Hy

Yo = d p?).
2 p 2p2 (mop)

Substituting (15) and (19) into (14) and using (13) and Lemma 2.2 we have

p—1

m=0
— 7 2 6
=p— 5P Hp—1 (mod p°).

The proof of Theorem 1.1 is complete now.

_ 372 3 3.0(2) P 2
> @m+1)A, =p—2p Hy = Sp°H gy + H(p 12 — 217 H,

(19)
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3. Proof of Theorem 1.2. In order to show Theorem 1.2, we need the following

results.

Lemma 3.1. Let p > 7 be a prime. Then we have

p—1
H(2,2;k) 1
275—7 p—5 (rnod p).
— k 2

Proof. Clearly,

p—1

H(2,2;k) 2 k)
H(2,2,1;p— 1)+ H(2,3;p—1).

=1

By [19, Theorems 3.1 and 3.5] we have

=

3
H(2,3;p—1)=-2B,_5 (modp) and H(2,2,1;p—1)= 5 Br—s

Combining the above we obtain the desired result.

Lemma 3.2. For any prime p > 7 we have

Proof. Note that

By [8, Lemma 3] we know that

3H,_ 1
pl —p?’B,_5 (mod p?)

H(1,2;p—1)=—
(1,2;p—1) e 5

for any prime p > 3. Therefore, by (8) and Lemma 2.2 we have
H(2,1:p 1) =Hy )~ H(L2p ~ 1) = HY,
3H,_ 1
= pi; - - 2Bp 5 7H1(737)1 (mod p3),

Then (20) follows at once.

Lemma 3.3. For any prime p > 7 we have

= 3H 1
ZH(2,2;k) = 2H;S4)1 pg_l —|—H( )+ 2p2Bp 5 (mod p?),
k=0

p—1

> (H(2,43k) + H(4,2;k)) = 3B,—5  (mod p),

k=0

ZH (2,2,2; k) zBp_5 (mod p).
k=0

(mod p).

(20)
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Proof. By Lemma 2.2 we arrive at

p—1 p—1
1

> H(2,2k) = — = b_J
—_ . 7] N )
k=0 k=11<i<j<k 1<i<j<p-1
_P((g@ ) _ g 1
=5 () -mh) - ¥ &
1<i<j<p—1
p—1
_ P Hj,
:—5 I()_)l“rZﬁ (mode)
k=1
Furthermore,
LH, Sl i
Byl SIS
k=1 k=1 j=1 j=1" k=j
p—1 2)
H:
=- I+ H,(fi)l (mod p?)
; J
Jj=1
From the above and Lemma 3.2, we obtain (21).
Now we turn to prove (22). It is easy to see that
S p—j p—j
S snsnezn - Y b Y 2
k=0 1<i<j<p-1 ' J 1<i<j<p-1 ' J

=-H(2,3p-1)-H(41;p—1) (modp).

By [18, Theorem 3.1] we have H(2,3;p—1) = —2B,_5 (mod p) and H(4,1;p—1) =
—B,_5 (mod p) for p > 7. Then (22) follows at once.
Finally, we consider (23). Clearly,

p—1 .
S H(2,2,2k) = 3 3 = _H(2,2,1;p—1) (mod p).
k=0 1<y <ia<iz<p—1 11123

By [19, Theorem 3.5], we have

3
H(2,2,1;p—1) = §Bp_5 (mod p).

The proof of Lemma 3.3 is now complete. O

Lemma 3.4. Let k € N. Then for n € ZT we have

§(2m+1)3<m+k>2 _ (n—kPEn—k—1) (n#—k)z.

2k kE+1 2k

m=0

Proof. It can be verified directly by induction on n. O

Proof of Theorem 1.2. The case p = 5 can be verified directly. Below we assume
that p > 7. By Lemma 3.4 we have
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z<m Zm S
:21<2k) 1)212 +1) (m;;k)z

k=
RS2k (o - K220 — k- 1) (p+E\?
N k k+1 2k
=0
_21§2p2—k‘—1 p—1 2 p+k 2
P k+1 k ko)
k=0
Noting that
k 2 2 k 2 4
OISR (GBI
1—* = 1——+—
(k k E J2 ]1;[ gt

1
=1—2°H? + p*HY + 4p* H(2,2; k) — 2p° (H(2,4; k) + H(4,2; k)
- 8p6H(272a27k) (mOd p7)7

we arrive at

p—1
Z (2m+1)°A
m=0
p—1 1
=%'y (1 —op?H? + p HW 4 4prH(2,2; k:))
k=1
p—1
_p? (1 —2p*H + p*HW + 4p* H(2,2; k)
k=0

—2p% (H(2,4; k) + H(4,2; k) — 8p°H(2,2,2; k)) (mod p%).

It is clear that

p—1 2 P (2) =1 (2 (2)

ZHi):ZHk—lz Hi)waﬁh
e
okt ook ok p
3 Z
EFHp_l + 2l Hz(>3)1 — prBp 5 (mod p°)
Clearly,
p=1 (4 4) 4)
H H~ H™
E_—HA4,Lp—1)+—LL=-B, s+ 21 (modp)
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Furthermore,
p—1
H(2,2;k) 1 1 2) \?2 (4)
_ == — | H ) —H
l;) k+1 2 I; k ( -1 k=

Then by Lemmas 2.2 and 3.1 we arrive at

p—1
H(2,2;k) 3 1 @
Z a1 = §Bp—5 — Q—Héjl (mod p).
k=0 P

For r = 2,4 we have

p—1 k D l

T - T r—1
ZHIE): er = Ir :pHI(’—)l_HI()—l)'
k=0

Combining the above and in view of Lemma 3.3 we obtain

p—1

> @2m+1)°A,

m=0

=2p'H,_1 +2p* — 12p"H, 1 + 4p°HY| — 4p°H”| + 2p°B,_5 — 2°B, 5
+ 2107HZ(7431 + 12pSBp,5 — 4p7Hz(i)1 — p3 + 2]95H1227)1 — 2p4Hp,1 — p7Hz(i)1
—|—pGHZ()331 + 2p7HI()47)1 + 12p4Hp,1 — 2pSBp,5 — 4]36ng331 — 6pSBp,5

=p® — 2p4Hp,1 — 2]95H15231 —|—pGHZ(i)1 — p7H]g4)1 + 4p8Bp,5 (mod p?%).

Then Theorem 1.2 follows from Lemmas 2.1 and 2.2. O
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