Processing math: 100%

Asymptotic behaviour of flows on reducible networks

  • In this paper we extend some of the previous results for a system of transport equations on a closed network. We consider the Cauchy problem for a flow on a reducible network; that is, a network represented by a diagraph which is not strongly connected. In particular, such a network can contain sources and sinks. We prove well-posedness of the problem with generalized Kirchhoff's conditions, which allow for amplification and/or reduction of the flow at the nodes, on such reducible networks with sources but show that the problem becomes ill-posed if the network has a sink. Furthermore, we extend the existing results on the asymptotic periodicity of the flow to such networks. In particular, in contrast to previous papers, we consider networks with acyclic parts and we prove that such parts of the network become depleted in a finite time, an estimate of which is also provided. Finally, we show how to apply these results to open networks where a portion of the flowing material is allowed to leave the network.

    Citation: Jacek Banasiak, Proscovia Namayanja. Asymptotic behaviour of flows on reducible networks[J]. Networks and Heterogeneous Media, 2014, 9(2): 197-216. doi: 10.3934/nhm.2014.9.197

    Related Papers:

    [1] Junhong Li, Ning Cui . A hyperchaos generated from Rabinovich system. AIMS Mathematics, 2023, 8(1): 1410-1426. doi: 10.3934/math.2023071
    [2] A. E. Matouk . Chaos and hidden chaos in a 4D dynamical system using the fractal-fractional operators. AIMS Mathematics, 2025, 10(3): 6233-6257. doi: 10.3934/math.2025284
    [3] Hany A. Hosham, Thoraya N. Alharthi . Bifurcation and chaos in simple discontinuous systems separated by a hypersurface. AIMS Mathematics, 2024, 9(7): 17025-17038. doi: 10.3934/math.2024826
    [4] Ning Cui, Junhong Li . A new 4D hyperchaotic system and its control. AIMS Mathematics, 2023, 8(1): 905-923. doi: 10.3934/math.2023044
    [5] Rahat Zarin, Abdur Raouf, Amir Khan, Aeshah A. Raezah, Usa Wannasingha Humphries . Computational modeling of financial crime population dynamics under different fractional operators. AIMS Mathematics, 2023, 8(9): 20755-20789. doi: 10.3934/math.20231058
    [6] Michael Precious Ineh, Umar Ishtiaq, Jackson Efiong Ante, Mubariz Garayev, Ioan-Lucian Popa . A robust uniform practical stability approach for Caputo fractional hybrid systems. AIMS Mathematics, 2025, 10(3): 7001-7021. doi: 10.3934/math.2025320
    [7] Kareem Alanazi, Omar Naifar, Raouf Fakhfakh, Abdellatif Ben Makhlouf . Innovative observer design for nonlinear systems using Caputo fractional derivative with respect to another function. AIMS Mathematics, 2024, 9(12): 35533-35550. doi: 10.3934/math.20241686
    [8] Chatthai Thaiprayoon, Jutarat Kongson, Weerawat Sudsutad . Dynamics of a fractal-fractional mathematical model for the management of waste plastic in the ocean with four different numerical approaches. AIMS Mathematics, 2025, 10(4): 8827-8872. doi: 10.3934/math.2025405
    [9] A. M. Alqahtani, Shivani Sharma, Arun Chaudhary, Aditya Sharma . Application of Caputo-Fabrizio derivative in circuit realization. AIMS Mathematics, 2025, 10(2): 2415-2443. doi: 10.3934/math.2025113
    [10] Michael Precious Ineh, Edet Peter Akpan, Hossam A. Nabwey . A novel approach to Lyapunov stability of Caputo fractional dynamic equations on time scale using a new generalized derivative. AIMS Mathematics, 2024, 9(12): 34406-34434. doi: 10.3934/math.20241639
  • In this paper we extend some of the previous results for a system of transport equations on a closed network. We consider the Cauchy problem for a flow on a reducible network; that is, a network represented by a diagraph which is not strongly connected. In particular, such a network can contain sources and sinks. We prove well-posedness of the problem with generalized Kirchhoff's conditions, which allow for amplification and/or reduction of the flow at the nodes, on such reducible networks with sources but show that the problem becomes ill-posed if the network has a sink. Furthermore, we extend the existing results on the asymptotic periodicity of the flow to such networks. In particular, in contrast to previous papers, we consider networks with acyclic parts and we prove that such parts of the network become depleted in a finite time, an estimate of which is also provided. Finally, we show how to apply these results to open networks where a portion of the flowing material is allowed to leave the network.


    A graph labeling is an assignment of integers to the vertices or edges, or both, subject to certain conditions. Gallian [3] has written a dynamic survey of graph labeling. MacDougall et al. [5] introduced the notion of a vertex magic total labeling of graphs. Let $ G $ be a graph of order $ n $ and size $ m $. A vertex magic total labeling of $ G $ is defined as a one-to-one function

    $ f: V(G) \cup E(G) \rightarrow \{1, 2, \cdots, n+m\} $

    with the property that for each vertex $ u $ of $ G $,

    $ f(u)+\sum\limits_{\substack{v\in N(u)}}f(uv) = k $

    for some constant $ k $ where $ N(u) $ is the neighborhood of $ u $. The constant $ k $ is called the magic constant for $ f $. The vertex-magic total labelings of wheels and related graphs were studied in [6], and later in [11]. The properties of the general graphs such as cycles, paths, complete graphs, wheels, bipartite graphs and trees, which satisfy the vertex magic total labelings, were studied in [10]. MacDougall et al. [4] introduced the concept of a super vertex magic total labeling. They defined a vertex magic total labeling to be super if

    $ f[V(G)] = \{1, 2, \cdots, n\}. $

    In 2017, Nagaraj et al. [7] introduced the concept of an even vertex magic total labeling. They called a vertex magic total labeling as even if

    $ f[V(G)] = \{2, 4, \cdots, 2n\}. $

    A graph $ G $ is called an even vertex magic if there exists an even vertex magic total labeling of $ G $. We note that if $ G $ is an even vertex magic, then $ n \leq m $. The following results, which appeared in [7], are useful to us.

    Theorem 1.1. [7] Let $ G $ be a nontrivial graph of order $ n $ and size $ m $. If $ G $ is an even vertex magic, then magic constant $ k $ is given by the following:

    $ {k = \frac{m^2+2mn+m}{n}}. $

    A wheel $ W_n $, $ n \geq 3 $, is a graph of order $ n+1 $ that contains a cycle $ C_n $, for which every vertex in the cycle $ C_n $ is connected to one other vertex known as the hub. The edges of the wheel which are incident to the hub are called spokes. The vertices and edges of the cycle $ C_n $ in $ W_n $ are called rim vertices and rim edges, respectively. It was shown in [7] that a wheel $ W_n $ has no even vertex magic total labeling, as we state next.

    Theorem 1.2. [7] A wheel $ W_n $ is not even vertex magic.

    In this paper, the labeling problem is related to the work in [1]. In addition to the aforementioned vertex labeling by even numbers $ 2, 4, \cdots, 2n $, they studied vertex labelings by using three consecutive numbers $ 0, 1, 2 $ with some specific properties. These labelings were referred to as a weak Roman dominating function and a perfect Roman dominating function.

    From the studies in [8,9,12], there exist graphs with the same order and size that are even vertex magics. Moreover, the wheel related graphs, namely fans, cycles and suns, having the even vertex magic total labelings were established in [7]. However, since these graphs have the same order and size, it is interesting and challenging to study wheel related graphs when the size is greater than the order, which have an even vertex magic total labeling.

    The $ t $-fold wheel $ W_{n, t} $, $ n \geq 3 $, $ t \geq 1 $, is a wheel related graph derived from a wheel $ W_n $ by duplicating the $ t $ hubs, each adjacent to all rim vertices, and not adjacent to each other. It is observed that the $ t $-fold wheel $ W_{n, t} $ has a size $ nt+n $ that exceeds its order $ n+t $. The goal of this paper is to study conditions for an even vertex magic $ W_{n, t} $ in terms of $ n $ and $ t $. Furthermore, we also determine an even vertex magic total labeling of some $ t $-fold wheel $ W_{n, t} $.

    Since the $ 1 $-fold wheel $ W_{n, 1} $ is isomorphic to the wheel $ W_n $ and by Theorem 1.1, $ W_n $ is not an even vertex magic. In this section, we consider the $ t $-fold wheel $ W_{n, t} $, where $ n $ and $ t $ are integers with $ n\geq 3 $ and $ t\geq2 $.

    In order to present the conditions for an even vertex magic $ W_{n, t} $, we initially explore the magic constant of the $ t $-fold wheel $ W_{n, t} $ of order $ n+t $ and size $ nt+n $ by employing Theorem 1.1.

    Proposition 2.1. Let $ n $ and $ t $ be integers with $ n\geq 3 $ and $ t\geq2 $. If the $ t $-fold wheel $ W_{n, t} $ is an even vertex magic, then the magic constant is defined as follows:

    $ k = 2nt+3n+\frac{n^2t^2+2n^2t+n}{n+t}. $

    We are able to show the bound of an integer $ t $ for the $ t $-fold wheel having an even vertex magic total labeling as follows.

    Proposition 2.2. Let $ n $ and $ t $ be integers with $ n\geq 3 $ and $ t\geq2 $. If the $ t $-fold wheel $ W_{n, t} $ is an even vertex magic, then $ 2 \leq t \leq n $.

    Proof. Suppose that the $ t $-fold wheel $ W_{n, t} $ is an even vertex magic with magic constant $ k $. By Proposition 2.1, we obtain the following:

    $ k = 2nt+3n+\frac{n^2t^2+2n^2t+n}{n+t}. $

    On the contrary, assume that $ t > n $. Let $ t = n+r $, for some $ r \geq 1 $. Then,

    $ n^2t^2+2n^2t+n = n^4+2n^3r+n^2r^2+2n^3+2n^2r+n $

    and

    $ n+t = n+(n+r) = 2n+r. $

    Let

    $ P(n) = n^4+2n^3r+n^2r^2+2n^3+2n^2r+n. $

    By using the remainder theorem, the remainder when $ P(n) $ is divided by $ 2n+r $ is as follows:

    $ P(-\frac{r}{2}) = \frac{r^4+4r^3-8r}{16}. $

    If

    $ P(-\frac{r}{2}) = 0, $

    then $ r = -2 $, which is a contradiction. Thus,

    $ P(-\frac{r}{2}) \neq 0. $

    Specifically, $ n^2t^2+2n^2t+n $ is not divisible by $ n+t $. Thus, $ k $ is not an integer, which is a contradiction. Therefore, $ 2 \leq t \leq n $.

    According to Proposition 2.2, the $ t $-fold wheel $ W_{3, t} $ is not an even vertex magic, where $ t \geq 4 $. Figure 1 shows the even vertex magics $ W_{3, 2} $ and $ W_{3, 3} $ with magic constants $ k = 36 $ and $ k = 50 $, respectively, where their vertices and edges are labeled by the even vertex magic total labelings. We present an even vertex magic total labeling of the $ t $-fold wheel $ W_{n, t} $ by considering only the integer $ n $ as the following results.

    Figure 1.  Even vertex magic total labelings of $ W_{3, 2} $ and $ W_{3, 3} $.

    Proposition 2.3. For every integer $ n\geq 3 $, if the $ n $-fold wheel $ W_{n, n} $ is an even vertex magic, then $ n $ is odd.

    Proof. Let $ n $ be an integer with $ n\geq 3 $. Suppose that the $ n $-fold wheel $ W_{n, n} $ is an even vertex magic with a magic constant $ k $. On the contrary, assume that $ n $ is even. There exists an integer $ q $ such that $ n = 2q $. By Proposition 2.1,

    $ k = 2n^2+3n+\frac{n^3+2n^2+1}{2}. $

    Since

    $ n^3+2n^2+1 = 8q^3+8q^2+1 $

    is odd, $ n^3+2n^2+1 $ is not divisible by $ 2 $. Thus, $ k $ is not an integer, which is a contradiction. Therefore, $ n $ is odd.

    As we have seen in Figure 1, the $ 3 $-fold wheel $ W_{3, 3} $ is an even vertex magic, as indicated by Proposition 2.3. By an argument similar to the one used in the proof of Proposition 2.3, we obtain the condition for an even vertex magic $ W_{n, n-2} $, as we now show.

    Proposition 2.4. For every integer $ n\geq 4 $, if the $ (n-2) $-fold wheel $ W_{n, n-2} $ is an even vertex magic, then $ n $ is even.

    The even vertex magic total labeling of the $ 2 $-fold wheel $ W_{4, 2} $ with a magic constant $ k = 50 $ is shown in Figure 2.

    Figure 2.  Even vertex magic total labeling of $ W_{4, 2} $.

    In order to deduce an even vertex magic total labeling of the $ t $-fold wheel for achieving the main result, we need some additional notation for the $ t $-fold wheel $ W_{n, t} $. For every pair of integers $ n\geq 3 $ and $ t\geq2 $, let

    $ V(W_{n, t}) = \{u_1, u_2, \ldots, u_n, v_1, v_2, \ldots, v_t\} $

    and

    $ E(W_{n, t}) = \{u_iu_{i+1} | 1 \leq i \leq n-1\}\cup\{u_nu_1\}\cup\{u_iv_j | 1 \leq i \leq n, 1 \leq j \leq t\}. $

    Suppose the $ t $-fold wheel $ W_{n, t} $ is an even vertex magic. Then, for any even vertex magic total labeling $ f $ of $ W_{n, t} $, let

    $ S_{rv} = \sum\limits_{i = 1}^{n}f(u_i), \ \ \ S_{re} = \sum\limits_{i = 1}^{n-1}f(u_iu_{i+1})+f(u_nu_1) $

    and

    $ S_{h} = \sum\limits_{j = 1}^{t}f(v_j), \ \ \ S_{s} = \sum\limits_{j = 1}^{t} \sum\limits_{i = 1}^{n}f(u_iv_j). $

    Next, we present the following lemma to show the necessary condition for an even vertex magic $ W_{n, t} $ with the following magic constant:

    $ k = 2nt+3n+\frac{n^2t^2+2n^2t+n}{n+t}. $

    Note that

    $ S_{rv}+2S_{re}-S_{h} = (n-t)k. $

    Lemma 2.5. Let $ n $ and $ t $ be integers where $ n\geq 3 $ and $ t\geq2 $. If the $ t $-fold wheel $ W_{n, t} $ is an even vertex magic, then

    $ S_{rv}+2S_{re}-S_{h} = \\ (t^2+4t+3)n^2+(-2t^3-6t^2-3t+1)n+\frac{(t^3+2t^2-1)(2nt)}{n+t}. $

    With the aid of Lemma 2.5 and Proposition 2.2, the necessary condition for an even vertex magic total labeling of the $ t $-fold wheel $ W_{n, t} $ can also be given in terms of $ n $ and $ t $.

    Proposition 2.6. Let $ n $ and $ t $ be integers where $ n\geq 3 $ and $ t\geq2 $. If the $ t $-fold wheel $ W_{n, t} $ is an even vertex magic, then

    $ (-t^2-2t+1)n^2+(2t^3+6t^2+7t+1)n-(t^2+t)-\frac{(t^3+2t^2-1)(2nt)}{n+t} \geq 0. $

    Proof. Suppose that the $ t $-fold wheel $ W_{n, t} $ is an even vertex magic. By Lemma 2.5,

    $ S_{rv}+2S_{re}-S_{h} = (t^2+4t+3)n^2+(-2t^3-6t^2-3t+1)n+\frac{(t^3+2t^2-1)(2nt)}{n+t}. $

    Next, we consider the maximum of $ (S_{rv}+2S_{re}-S_{h}) $.

    By Proposition 2.2, $ 2\leq t \leq n $, and then $ 2n+2t < nt+n+t+1 $. The maximum of

    $ (Srv+2SreSh)=2t+2i2n+2tiis eveni+2nt+2n+ti=nt+n+t+1i2i2tiis eveni=(2i2n+2tiis eveni2i2tiis eveni)+2(nt+2n+ti=1int+n+ti=1i)2i2tiis eveni=((2n+2t)(2n+2t+2)4(2t)(2t+2)4)+2((nt+2n+t)(nt+2n+t+1)2(nt+n+t)(nt+n+t+1)2)(2t)(2t+2)4=2n2t+4n2+4ntt2+2nt.
    $

    Since $ S_{rv}+2S_{re}-S_{h} $ does not exceed the maximum of $ (S_{rv}+2S_{re}-S_{h}) $, the maximum of

    $ (S_{rv}+2S_{re}-S_{h}) - (S_{rv}+2S_{re}-S_{h}) \geq 0. $

    Therefore,

    $ (-t^2-2t+1)n^2+(2t^3+6t^2+7t+1)n-(t^2+t)-\frac{(t^3+2t^2-1)(2nt)}{n+t} \geq 0. $

    Now, we investigate the sufficient condition for a labeling $ f $ that can be an even vertex magic total labeling of $ W_{n, n} $ when $ n $ is odd.

    Theorem 2.7. Let $ n $ be an odd integer where $ n \geq 3 $. For every $ n $-fold wheel $ W_{n, n} $, let

    $ f: V(W_{n, n}) \cup E(W_{n, n}) \rightarrow \{1, 2, \ldots, n^2+3n\} $

    be defined by the following:

    $ f(ui) = 2i,  if   1in,f(vj) = 2n+2j,  if   1jn,f(uiui+1) = 2n+12i,  if  1in1,f(unu1) = 1,  f(un+1jvj) = n2+3n+12j,  if   1jn,f[EH]f[{un+1jvj|1jn}] = {2n+1,2n+3,,n2+n1}    {4n+2,4n+4,,n2+3n},  if  EH={uivj|1i,jn}.
    $

    If

    $ \sum\limits_{j = 1}^{n-1}f(u_1v_j) = \frac{n^3+4n^2-5}{2}, $

    then $ f $ can be an even vertex magic total labeling of $ W_{n, n} $.

    Proof. Assume that

    $ \sum\limits_{j = 1}^{n-1}f(u_1v_j) = \frac{n^3+4n^2-5}{2}. $

    We have that

    $ Ssnj=1f(un+1jvj)=2n+1in2+n1iis oddi+4n+2in2+3niis eveni=(1in2+n1iis oddi1i2n1iis oddi)+(2in2+3niis eveni2i4niis eveni)=((n2+n)24(2n)24)+((n2+3n)(n2+3n+2)44n(4n+2)4)=n4+4n34n2n2,
    $

    and then,

    $ \left(S_{s}-\sum\limits_{j = 1}^{n}f(u_{n+1-j}v_j)\right)-\sum\limits_{j = 1}^{n-1}f(u_1v_j) = \frac{n^4+3n^3-8n^2-n+5}{2}\, . $

    Next, we consider the sum of the label of each vertex and the labels of all edges incident to this vertex. By the assumption, for $ 1 \leq j\leq n $,

    $ f(vj)+ni=1f(uivj)=f(vj)+f(un+1jvj)+1inin+1jf(uivj)=f(vj)+f(un+1jvj)+Ssnj=1f(un+1jvj)n=(2n+2j)+(n2+3n+12j)+n3+4n24n12=n3+6n2+6n+12,
    $
    $ f(u1)+f(u1u2)+f(unu1)+nj=1f(u1vj)=f(u1)+f(u1u2)+f(unu1)+f(u1vn)+n1j=1f(u1vj)=2+(2n+12)+1+(n2+n1+2)+n3+4n252=n3+6n2+6n+12.
    $

    For $ 2 \leq i\leq n, $

    $ f(ui)+f(uiui+1)+f(ui1ui)+nj=1f(uivj)=f(ui)+f(uiui+1)+f(ui1ui)+f(uivn+1i)+1jnjn+1if(uivj)=f(ui)+f(uiui+1)+f(ui1ui)+f(uivn+1i)+(Ssnj=1f(un+1jvj))n1j=1f(u1vj)n1=2i+(2n+12i)+(2n+12i+2)+(n2+n1+2i)+n3+4n24n52=n3+6n2+6n+12.
    $

    Therefore, $ f $ can be an even vertex magic total labeling of $ W_{n, n} $ with a magic constant

    $ k = \frac{n^3+6n^2+6n+1}{2}. $

    Now, we investigate the sufficient condition for a labeling $ f $ that can be an even vertex magic total labeling of $ W_{n, n-2} $ when $ n $ is even.

    Theorem 2.8. Let $ n $ be an even integer with $ n \geq 4 $. For every $ (n-2) $-fold wheel $ W_{n, n-2} $, let

    $ f: V(W_{n, n-2}) \cup E(W_{n, n-2}) \rightarrow \{1, 2, \ldots, n^2+n-2\} $

    be defined by the following:

    $ f(ui)=2i,if   1in,f(vj)=2n+2j,if  1jn2,f[EC]={a1,a2,,an},if  EC={uiui+1,unu1|1in1},f[EH]={1,2,,n2+n2}{2,4,,2n+4,a1,a2,,an},if  EH={uivj|1in,1jn2}.
    $

    If

    $ S_{s} = \frac{n^4+n^3-15n^2+20n-4}{2}, $

    then $ f $ can be an even vertex magic total labeling of $ W_{n, n-2} $.

    Proof. Assume that

    $ S_{s} = \frac{n^4+n^3-15n^2+20n-4}{2}. $

    It suffices to show that for each vertex $ u $ of $ W_{n, n-2} $,

    $ f(u)+\sum\limits_{\substack{v\in N(u)}}f(uv) = k, $

    where

    $ k = \frac{n^3+3n^2-3n}{2}. $

    To do this, we consider the relevant sums, as follows.

    Since the sum of the labels of all rim edges is equal to the sum of the labels of all vertices and the labels of all edges subtracted by the sum of the labels of all vertices and the labels of all spokes, it follows that

    $ Sre=n2+n2i=1i2i4n4iis eveniSs=(n2+n2)(n2+n1)2(4n4)(4n2)4n4+n315n2+20n42=n3+5n211n+22.
    $

    Since the sum of the labels of all hubs is equal to the sum of even integers from $ 2n+2 $ to $ 4n-4 $,

    $ Sh+Ss=2n+2i4n4iis eveni+Ss=(2i4n4iis eveni2i2niis eveni)+Ss=(4n4)(4n2)4(2n)(2n+2)4+n4+n315n2+20n42=n4+n39n2+6n2.
    $

    Since the sum of the labels of all rim vertices is equal to the sum of even integers from $ 2 $ to $ 2n $,

    $ Srv+2Sre+Ss=2i2niis eveni+2Sre+Ss=(2n)(2n+2)4+2(n3+5n211n+22)+n4+n315n2+20n42=n4+3n33n22.
    $

    Next, we consider the sum of the label of each vertex and the labels of all edges incident to this vertex. We have the sum of the label of each hub and the labels of all edges incident to this hub as follows.

    For $ 1 \leq j\leq n-2 $,

    $ f(v_j)+\sum\limits_{i = 1}^{n}f(u_iv_j) = \frac{S_{h}+S_{s}}{n-2} = \frac{n^3+3n^2-3n}{2}. $

    We obtain the sum of the label of each rim vertex and the labels of all edges incident to this rim vertex as follows.

    For $ 2 \leq i\leq n-1, $

    $ f(u_i)+f(u_iu_{i+1})+f(u_{i-1}u_i)+\sum\limits_{j = 1}^{n-2}f(u_iv_j) = \frac{ S_{rv}+2S_{re}+S_{s}}{n} = \frac{n^3+3n^2-3n}{2}. $

    Similarly,

    $ f(u_n)+f(u_nu_1)+f(u_{n-1}u_n)+\sum\limits_{j = 1}^{n-2}f(u_nv_j) = \frac{n^3+3n^2-3n}{2} $

    and

    $ f(u_1)+f(u_1u_2)+f(u_nu_1)+\sum\limits_{j = 1}^{n-2}f(u_1v_j) = \frac{n^3+3n^2-3n}{2}. $

    Therefore, $ f $ can be an even vertex magic total labeling of $ W_{n, n-2} $ with the following magic constant:

    $ k = \frac{n^3+3n^2-3n}{2}. $

    In this section, we establish a characterization of an even vertex magic $ W_{n, t} $ for an integer $ 3\leq n \leq 9 $. First, we present an $ n $-fold wheel $ W_{n, n} $ which has an even vertex magic total labeling for every odd integer $ 3\leq n \leq 9 $ as follows.

    Theorem 3.1. For every odd integer $ 3\leq n \leq 9 $, the $ n $-fold wheel $ W_{n, n} $ is an even vertex magic.

    Proof. Let $ n $ be an odd integer where $ 3\leq n \leq 9 $. We define

    $ f: V(W_{n, n}) \cup E(W_{n, n}) \rightarrow \{1, 2, \cdots, n^2+3n\}, $

    as the sufficient condition of Theorem 2.7, by

    $ f(ui)=2i,if   1in,f(vj)=2n+2j,if  1jn,f(uiui+1)=2n+12i,if  1in1,f(unu1)=1,
    $

    and for $ 1 \leq i, j \leq n $, $ f(u_iv_j) $ are shown in Tables 14,

    Table 1.  Labels of edges $ u_iv_j $ of $ W_{3, 3} $ by $ f $, for $ 1 \leq i, j \leq 3 $.
    $ f(u_iv_j) $ $ v_1 $ $ v_2 $ $ v_3 $
    $ u_1 $ 11 18 13
    $ u_2 $ 14 15 9
    $ u_3 $ 17 7 16

     | Show Table
    DownLoad: CSV
    Table 2.  Labels of edges $ u_iv_j $ of $ W_{5, 5} $ by $ f $, for $ 1 \leq i, j \leq 5 $.
    $ f(u_iv_j) $ $ v_1 $ $ v_2 $ $ v_3 $ $ v_4 $ $ v_5 $
    $ u_1 $ 15 21 36 38 31
    $ u_2 $ 13 30 29 33 28
    $ u_3 $ 40 24 35 19 17
    $ u_4 $ 34 37 11 23 32
    $ u_5 $ 39 27 26 22 25

     | Show Table
    DownLoad: CSV
    Table 3.  Labels of edges $ u_iv_j $ of $ W_{7, 7} $ by $ f $, for $ 1 \leq i, j \leq 7 $.
    $ f(u_iv_j) $ $ v_1 $ $ v_2 $ $ v_3 $ $ v_4 $ $ v_5 $ $ v_6 $ $ v_7 $
    $ u_1 $ 15 51 64 40 29 68 57
    $ u_2 $ 66 43 17 38 19 59 70
    $ u_3 $ 25 45 56 48 61 32 47
    $ u_4 $ 52 31 33 63 54 53 30
    $ u_5 $ 42 35 65 34 60 36 46
    $ u_6 $ 55 67 23 58 49 27 41
    $ u_7 $ 69 50 62 37 44 39 21

     | Show Table
    DownLoad: CSV
    Table 4.  Labels of edges $ u_iv_j $ of $ W_{9, 9} $ by $ f $, for $ 1 \leq i, j \leq 9 $.
    $ f(u_iv_j) $ $ v_1 $ $ v_2 $ $ v_3 $ $ v_4 $ $ v_5 $ $ v_6 $ $ v_7 $ $ v_8 $ $ v_9 $
    $ u_1 $ 73 33 102 69 19 79 63 86 91
    $ u_2 $ 43 56 35 62 49 89 85 93 87
    $ u_3 $ 75 61 48 53 104 92 95 23 50
    $ u_4 $ 80 58 72 25 108 97 77 47 39
    $ u_5 $ 51 96 59 81 99 37 55 57 70
    $ u_6 $ 60 100 44 101 67 40 41 90 64
    $ u_7 $ 38 83 103 82 74 78 29 76 46
    $ u_8 $ 88 105 94 65 42 66 52 31 68
    $ u_9 $ 107 21 54 71 45 27 106 98 84

     | Show Table
    DownLoad: CSV

    For every odd integer $ 3 \leq n\leq 9 $, the labeling $ f $, as defined above, is an even vertex magic total labeling of the $ n $-fold wheel $ W_{n, n} $ with magic constants $ k = 50, 153, 340 $ and $ 635 $, respectively. Therefore, $ W_{n, n} $ is an even vertex magic.

    As a consequence of an even vertex magic $ W_{3, 2} $, Proposition 2.2 and Theorem 3.1, in any $ t $-fold wheel $ W_{3, t} $, we are able to show that both $ W_{3, t} $ and $ W_{3, t} $ are only even vertex magics.

    Theorem 3.2. For every integer $ t \geq 2 $, the $ t $-fold wheel $ W_{3, t} $ is an even vertex magic if and only if $ t = 2, 3 $.

    The following result gives the necessary and sufficient condition for the $ t $-fold wheel $ W_{n, t} $ to be an even vertex magic for every odd integer $ 5\leq n \leq 9 $.

    Theorem 3.3. For every odd integer $ 5\leq n \leq 9 $ and an integer $ t \geq 2 $, the $ t $-fold wheel $ W_{n, t} $ is an even vertex magic if and only if $ t = n $.

    Proof. Let $ n $ be an odd integer where $ 5\leq n \leq 9 $ and $ t $ is an integer where $ t \geq 2 $. Assume that the $ t $-fold wheel $ W_{n, t} $ is an even vertex magic. By Proposition 2.2, $ 2\leq t \leq n $.

    Case 1. $ n = 5, 7. $ If $ 2\leq t \leq n-1 $, then $ n^2t^2+2n^2t+n $ is not divisible by $ n+t $, and hence $ k $ is not an integer, which is a contradiction. Therefore, $ t = n $.

    Case 2. $ n = 9. $ If either $ t = 2 $ or $ 4\leq t \leq n-1 $, then $ n^2t^2+2n^2t+n $ is not divisible by $ n+t $, and hence $ k $ is not an integer, which is a contradiction. If $ t = 3 $, then,

    $ 2nt^3-n^2t^2-2n^2t+6nt^2+7nt+n^2-t^2+n-t-\frac{2nt^4+4nt^3-2nt}{n+t} = -174 < 0, $

    which is a contradiction with Proposition 2.6. Therefore, $ t = n $.

    Conversely, assume $ t = n $. By Theorem 3.1, $ W_{n, t} $ is an even vertex magic.

    We show an even vertex magic total labeling of $ W_{n, n-2} $ for every even integer $ 4\leq n \leq 8 $ as follows.

    Theorem 3.4. For every even integer $ 4 \leq n \leq 8 $, the $ (n-2) $-fold wheel $ W_{n, n-2} $ is an even vertex magic.

    Proof. Let $ n $ be an even integer with $ 4 \leq n \leq 8 $. We define

    $ f: V(W_{n, n-2}) \cup E(W_{n, n-2}) \rightarrow \{1, 2, \ldots, n^2+n-2\} $

    as the sufficient condition of Theorem 2.8, by

    $ f(ui)=2i,if  1in,f(vj)=2n+2j,if  1jn2,
    $

    for $ 1 \leq i\leq n-1 $, $ f(u_iu_{i+1}) $ and $ f(u_nu_1) $ are shown in Tables 57.

    Table 5.  Labels of edges $ u_iu_{i+1} $ and $ u_4u_1 $ of $ W_{4, 2} $ by $ f $, for $ 1 \leq i\leq 3 $.
    $ f(u_1u_2) $ $ f(u_2u_3) $ $ f(u_3u_4) $ $ f(u_4u_1) $
    18 9 11 13

     | Show Table
    DownLoad: CSV
    Table 6.  Labels of edges $ u_iu_{i+1} $ and $ u_6u_1 $ of $ W_{6, 4} $ by $ f $, for $ 1 \leq i\leq 5 $.
    $ f(u_1u_2) $ $ f(u_2u_3) $ $ f(u_3u_4) $ $ f(u_4u_5) $ $ f(u_5u_6) $ $ f(u_6u_1) $
    40 39 38 13 17 19

     | Show Table
    DownLoad: CSV
    Table 7.  Labels of edges $ u_iu_{i+1} $ and $ u_8u_1 $ of $ W_{8, 6} $ by $ f $, for $ 1 \leq i\leq 7 $.
    $ f(u_1u_2) $ $ f(u_2u_3) $ $ f(u_3u_4) $ $ f(u_4u_5) $ $ f(u_5u_6) $ $ f(u_6u_7) $ $ f(u_7u_8) $ $ f(u_8u_1) $
    70 68 66 64 62 19 13 11

     | Show Table
    DownLoad: CSV

    And for $ 1 \leq i\leq n $ and $ 1 \leq j\leq n-2 $, $ f(u_iv_j) $ are shown in Tables 810.

    Table 8.  Labels of edges $ u_iv_j $ of $ W_{4, 2} $ by $ f $, for $ 1 \leq i\leq 4 $ and $ 1 \leq j\leq 2 $.
    $ f(u_iv_j) $ $ v_1 $ $ v_2 $
    $ u_1 $ 16 1
    $ u_2 $ 14 5
    $ u_3 $ 7 17
    $ u_4 $ 3 15

     | Show Table
    DownLoad: CSV
    Table 9.  Labels of edges $ u_iv_j $ of $ W_{6, 4} $ by $ f $, for $ 1 \leq i\leq 6 $ and $ 1 \leq j\leq 4 $.
    $ f(u_iv_j) $ $ v_1 $ $ v_2 $ $ v_3 $ $ v_4 $
    $ u_1 $ 36 24 3 29
    $ u_2 $ 11 25 33 1
    $ u_3 $ 26 9 5 30
    $ u_4 $ 22 23 34 15
    $ u_5 $ 37 21 28 27
    $ u_6 $ 7 35 32 31

     | Show Table
    DownLoad: CSV
    Table 10.  Labels of edges $ u_iv_j $ of $ W_{8, 6} $ by $ f $, for $ 1 \leq i\leq 8 $ and $ 1 \leq j\leq 6 $.
    $ f(u_iv_j) $ $ v_1 $ $ v_2 $ $ v_3 $ $ v_4 $ $ v_5 $ $ v_6 $
    $ u_1 $ 69 3 40 56 39 50
    $ u_2 $ 1 67 5 59 31 35
    $ u_3 $ 21 17 65 7 44 46
    $ u_4 $ 42 38 23 33 9 57
    $ u_5 $ 61 27 37 34 30 15
    $ u_6 $ 41 53 49 32 47 25
    $ u_7 $ 29 60 54 52 63 36
    $ u_8 $ 58 55 45 43 51 48

     | Show Table
    DownLoad: CSV

    For every even integer $ 4 \leq n \leq 8 $, the labeling $ f $, as defined above, is an even vertex magic total labeling of the $ (n-2) $-fold wheel $ W_{n, n-2} $ with magic constants $ k = 50, 153 $ and $ 340 $, respectively. Therefore, $ W_{n, n-2} $ is an even vertex magic.

    There is a similar methodology of the proof of Theorem 3.4, which is also used in the study of graph operations (see [2]). Next, we determine a characterization of the $ t $-fold wheel $ W_{n, t} $ to be an even vertex magic for every even integer $ 4 \leq n \leq 8 $. In order to we need to present the following lemma involving a $ 3 $-fold wheel $ W_{8, 3} $.

    Lemma 3.5. The $ 3 $-fold wheel $ W_{8, 3} $ is not an even vertex magic.

    Proof. On the contrary, assume that the $ 3 $-fold wheel $ W_{8, 3} $ is an even vertex magic with a magic constant $ k $. Since $ W_{8, 3} $ has an order $ 11 $ and a size $ 32 $ and by Proposition 2.1, $ k = 160 $. We have that

    $ S_{rv} = 132, \ \ 2S_{re} = 1, 628-2S_{s} $

    and

    $ S_{rv}+2S_{re}+S_{s} = 8k = 1, 280. $

    Thus, $ S_{s} = 480 $. However, $ S_{h}+S_{s} = 3k = 480 $. This is a contradiction because $ S_{h} > 0 $. Therefore, $ W_{8, 3} $ is not an even vertex magic.

    We are able to show that the necessary and sufficient condition for the $ t $-fold wheel $ W_{n, t} $ is an even vertex magic for every even integer $ 4\leq n \leq 8 $.

    Theorem 3.6. For every even integer $ 4\leq n \leq 8 $ and integer $ t \geq 2 $, the $ t $-fold wheel $ W_{n, t} $ is an even vertex magic if and only if $ t = n-2 $.

    Proof. Let $ n $ be an even integer where $ 4\leq n \leq 8 $ and $ t $ is an integer where $ t \geq 2 $. Assume that the $ t $-fold wheel $ W_{n, t} $ is an even vertex magic. By Proposition 2.2, $ 2\leq t \leq n $.

    Case 1. $ n = 4, 6. $ If either $ 2\leq t \leq n-3 $ or $ n-1\leq t \leq n $, then $ n^2t^2+2n^2t+n $ is not divisible by $ n+t $, and hence $ k $ is not an integer, which is a contradiction. Therefore, $ t = n-2 $.

    Case 2. $ n = 8. $ If either $ 4\leq t \leq n-3 $ or $ n-1\leq t \leq n $, then $ n^2t^2+2n^2t+n $ is not divisible by $ n+t $, and hence $ k $ is not an integer, which is a contradiction. If $ t = 3 $, then, by Lemma 3.5, $ W_{n, t} $ is not an even vertex magic, which is a contradiction. If $ t = 2 $, then,

    $ 2nt^3-n^2t^2-2n^2t+6nt^2+7nt+n^2-t^2+n-t-\frac{2nt^4+4nt^3-2nt}{n+t} = -62 < 0, $

    which is a contradiction with Proposition 2.6. Therefore, $ t = n-2 $.

    Conversely, assume $ t = n-2 $. By Theorem 3.4, $ W_{n, t} $ is an even vertex magic.

    In this paper, we have not only established the bound of an integer $ t $ for the even vertex magic total labeling of the $ t $-fold wheel, but have also presented the necessary condition for such labeling in terms of $ n $ and $ t $. Furthermore, we have conducted an investigation into the sufficient conditions for labelings that can serve as even vertex magic total labelings for $ W_{n, n} $ when $ n $ is odd, and $ W_{n, n-2} $ when $ n $ is even.

    Our research has led us to the following significant conclusions:

    ● For every integer $ t \geq 2 $, the $ t $-fold wheel $ W_{3, t} $ is an even vertex magic total labeling if and only if $ t = 2, 3 $.

    ● For every odd integer $ 5 \leq n \leq 9 $ and an integer $ t \geq 2 $, the $ t $-fold wheel $ W_{n, t} $ is an even vertex magic total labeling if and only if $ t = n $.

    ● For every even integer $ 4 \leq n \leq 8 $ and an integer $ t \geq 2 $, the $ t $-fold wheel $ W_{n, t} $ is an even vertex magic total labeling if and only if $ t = n-2 $.

    In essence, our work has discussed the characterizations of $ t $-fold wheel $ W_{n, t} $ to possess an even vertex magic total labeling for an integer $ 3 \leq n \leq 9 $. It would be interesting to apply the results of this paper to further study under what conditions for $ W_{n, t} $ will be an even vertex magic, especially for a larger $ n $.

    The authors declare they have not used Artificial Intelligence (AI) tools in the creation of this article.

    The authors declare that they have no conflicts of interest.

    [1] W. J. Anderson, Continuous-Time Markov Chains. An Application Oriented Approach, Springer Verlag, New York, 1991. doi: 10.1007/978-1-4612-3038-0
    [2] W. Arendt, Resolvent positive operators, Proc. Lond. Math. Soc., 54 (1987), 321-349. doi: 10.1112/plms/s3-54.2.321
    [3] J. Banasiak and L. Arlotti, Perturbation of Positive Semigroups with Applications, Springer Verlag, London, 2006.
    [4] J. Banasiak and P. Namayanja, Relative entropy and discrete Poincaré inequalities for reducible matrices, Appl. Math. Lett., 25 (2012), 2193-2197. doi: 10.1016/j.aml.2012.06.001
    [5] J. Bang-Jensen and G. Gutin, Digraphs. Theory, Algorithms and Applications, 2nd ed., Springer Verlag, London, 2009. doi: 10.1007/978-1-84800-998-1
    [6] N. Deo, Graph Theory with Applications to Engineering and Computer Science, Prentice Hall, Inc., Englewood Cliffs, 1974.
    [7] B. Dorn, Flows in Infinite Networks - A Semigroup Aproach, Ph.D thesis, University of Tübingen, 2008.
    [8] B. Dorn, Semigroups for flows in infinite networks, Semigroup Forum, 76 (2008), 341-356. doi: 10.1007/s00233-007-9036-2
    [9] B. Dorn, M. Kramar Fijavž, R. Nagel and A. Radl, The semigroup approach to transport processes in networks, Physica D, 239 (2010), 1416-1421. doi: 10.1016/j.physd.2009.06.012
    [10] B. Dorn, V. Keicher and E. Sikolya, Asymptotic periodicity of recurrent flows in infinite networks, Math. Z., 263 (2009), 69-87. doi: 10.1007/s00209-008-0410-x
    [11] K.-J. Engel and R. Nagel, One Parameter Semigroups for Linear Evolution Equations, Springer Verlag, New York, 2000.
    [12] F. R. Gantmacher, Applications of the Theory of Matrices, Interscience Publishers, Inc. New York, 1959.
    [13] Ch. Godsil and G. Royle, Algebraic Graph Theory, Springer Verlag, New York, 2001. doi: 10.1007/978-1-4613-0163-9
    [14] F.M. Hante, G. Leugering and T. I. Seidman, Modeling and analysis of modal switching in networked transport systems, Appl. Math. & Optimization, 59 (2009), 275-292. doi: 10.1007/s00245-008-9057-6
    [15] M. Kramar and E. Sikolya, Spectral properties and asymptotic periodicity of flows in networks, Math. Z., 249 (2005), 139-162. doi: 10.1007/s00209-004-0695-3
    [16] T. Matrai and E. Sikolya, Asymptotic behaviour of flows in networks, Forum Math., 19 (2007), 429-461. doi: 10.1515/FORUM.2007.018
    [17] C. D. Meyer, Matrix Analysis and Applied Linear Algebra, SIAM, Philadelphia, 2000. doi: 10.1137/1.9780898719512
    [18] H. Minc, Nonnegative Matrices, John Wiley & Sons, New York, 1988.
    [19] R. Nagel, ed., One-parameter Semigroups of Positive Operators, Springer Verlag, Berlin, 1986.
    [20] P. Namayanja, Transport on Network Structures, Ph.D thesis, UKZN, 2012.
    [21] E. Seneta, Nonnegative Matrices and Markov Chains, Springer Verlag, New York, 1981. doi: 10.1007/0-387-32792-4
    [22] E. Sikolya, Semigroups for Flows in Networks, Ph.D dissertation, University of Tübingen, 2004.
    [23] E. Sikolya, Flows in networks with dynamic ramification nodes, J. Evol. Equ., 5 (2005), 441-463. doi: 10.1007/s00028-005-0221-z
  • Reader Comments
  • © 2014 the Author(s), licensee AIMS Press. This is an open access article distributed under the terms of the Creative Commons Attribution License (http://creativecommons.org/licenses/by/4.0)
通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索

Metrics

Article views(4425) PDF downloads(145) Cited by(18)

Other Articles By Authors

/

DownLoad:  Full-Size Img  PowerPoint
Return
Return

Catalog