Citation: Andrea Braides, Anneliese Defranceschi, Enrico Vitali. Variational evolution of one-dimensional Lennard-Jones systems[J]. Networks and Heterogeneous Media, 2014, 9(2): 217-238. doi: 10.3934/nhm.2014.9.217
[1] | Andrea Braides, Anneliese Defranceschi, Enrico Vitali . Variational evolution of one-dimensional Lennard-Jones systems. Networks and Heterogeneous Media, 2014, 9(2): 217-238. doi: 10.3934/nhm.2014.9.217 |
[2] | Mathias Schäffner, Anja Schlömerkemper . On Lennard-Jones systems with finite range interactions and their asymptotic analysis. Networks and Heterogeneous Media, 2018, 13(1): 95-118. doi: 10.3934/nhm.2018005 |
[3] | Thomas Hudson . Gamma-expansion for a 1D confined Lennard-Jones model with point defect. Networks and Heterogeneous Media, 2013, 8(2): 501-527. doi: 10.3934/nhm.2013.8.501 |
[4] | Maria Cameron . Computing the asymptotic spectrum for networks representing energy landscapes using the minimum spanning tree. Networks and Heterogeneous Media, 2014, 9(3): 383-416. doi: 10.3934/nhm.2014.9.383 |
[5] | G. Dal Maso, Antonio DeSimone, M. G. Mora, M. Morini . Time-dependent systems of generalized Young measures. Networks and Heterogeneous Media, 2007, 2(1): 1-36. doi: 10.3934/nhm.2007.2.1 |
[6] | Antonio Tribuzio . Perturbations of minimizing movements and curves of maximal slope. Networks and Heterogeneous Media, 2018, 13(3): 423-448. doi: 10.3934/nhm.2018019 |
[7] | Valerii Maksimov, Luca Placidi, Francisco James León Trujillo, Chiara De Santis, Anil Misra, Dmitry Timofeev, Francesco Fabbrocino, Emilio Barchiesi . Dynamic strain gradient brittle fracture propagation: comparison with experimental evidence. Networks and Heterogeneous Media, 2024, 19(3): 1058-1084. doi: 10.3934/nhm.2024047 |
[8] | Manuel Friedrich, Bernd Schmidt . On a discrete-to-continuum convergence result for a two dimensional brittle material in the small displacement regime. Networks and Heterogeneous Media, 2015, 10(2): 321-342. doi: 10.3934/nhm.2015.10.321 |
[9] | Denis Mercier . Spectrum analysis of a serially connected Euler-Bernoulli beams problem. Networks and Heterogeneous Media, 2009, 4(4): 709-730. doi: 10.3934/nhm.2009.4.709 |
[10] | Jens Lang, Pascal Mindt . Entropy-preserving coupling conditions for one-dimensional Euler systems at junctions. Networks and Heterogeneous Media, 2018, 13(1): 177-190. doi: 10.3934/nhm.2018008 |
[1] | L. Ambrosio, Minimizing movements, Rend. Accad. Naz. Sci. XL Mem. Mat. Appl. (5), 19 (1995), 191-246. |
[2] | L. Ambrosio and A. Braides, Energies in $SBV$ and variational models in fracture mechanics, in Homogenization and Applications to Material Sciences (Nice, 1995) (eds. D. Cioranescu, A. Damlamian, and P. Donato), GAKUTO Internat. Ser. Math. Sci. Appl., 9, Gakkōtosho, Tokyo, 1995, 1-22. |
[3] | L. Ambrosio, N. Fusco and D. Pallara, Functions of Bounded Variation and Free Discontinuity Problems, Oxford University Press, New York, 2000. |
[4] | L. Ambrosio and N. Gigli, A user's guide to optimal transport, in Modelling and Optimisation of Flows on Networks (eds. B. Piccoli and M. Rascle), Lecture Notes in Mathematics, 2062, Springer, Berlin, 2013, 1-155. |
[5] | L. Ambrosio, N. Gigli and G. Savaré, Gradient Flows in Metric Spaces and in the Space of Probability Measures, Lectures in Mathematics ETH, Zürich, Birkhhäuser, Basel, 2008. |
[6] |
A. Braides, $\Gamma$-convergence for Beginners, Oxford University Press, Oxford, 2002. doi: 10.1093/acprof:oso/9780198507840.001.0001
![]() |
[7] |
A. Braides, Local Minimization, Variational Evolution and $\Gamma$-Convergence, Lecture Notes in Mathematics, 2094, Springer, Berlin, 2014. doi: 10.1007/978-3-319-01982-6
![]() |
[8] |
A. Braides, M. S. Gelli and M. Novaga, Motion and pinning of discrete interfaces, Arch. Ration. Mech. Anal., 95 (2010), 469-498. doi: 10.1007/s00205-009-0215-z
![]() |
[9] |
A. Braides, A. J. Lew and M. Ortiz, Effective cohesive behavior of layers of interatomic planes, Arch. Ration. Mech. Anal., 180 (2006), 151-182. doi: 10.1007/s00205-005-0399-9
![]() |
[10] |
A. Braides and L. Truskinovsky, Asymptotic expansions by Gamma-convergence, Cont. Mech. Therm., 20 (2008), 21-62. doi: 10.1007/s00161-008-0072-2
![]() |
[11] |
G. Dal Maso, An Introduction to $\Gamma$-Convergence, Birkhäuser, Boston, 1993. doi: 10.1007/978-1-4612-0327-8
![]() |
[12] | E. De Giorgi, New problems on minimizing movements, in Boundary Value Problems for Partial Differential Equations and Applications, RMA Res. Notes Appl. Math., 29, Masson, Paris, 1993, 81-98. |
[13] |
N. Gigli, On the heat flow on metric measure spaces: Existence, uniqueness and stability, Calc. Var. Partial Differential Equations, 39 (2010), 101-120. doi: 10.1007/s00526-009-0303-9
![]() |
[14] | M. Gobbino, Gradient flow for the one-dimensional Mumford-Shah functional, Ann. Scuola Norm. Sup. Pisa Cl. Sci. (4), 27 (1998), 145-193. |
[15] |
E. Sandier and S. Serfaty, Gamma-convergence of gradient flows and application to Ginzburg-Landau, Comm. Pure Appl. Math., 57 (2004), 1627-1672. doi: 10.1002/cpa.20046
![]() |
1. | Andrea Braides, Valerio Vallocchia, Static, Quasistatic and Dynamic Analysis for Scaled Perona-Malik Functionals, 2018, 156, 0167-8019, 79, 10.1007/s10440-018-0155-4 | |
2. | Andrea Braides, Maria Colombo, Massimo Gobbino, Margherita Solci, Minimizing movements along a sequence of functionals and curves of maximal slope, 2016, 354, 1631073X, 685, 10.1016/j.crma.2016.04.011 | |
3. | Laura Lauerbach, Mathias Schäffner, Anja Schlömerkemper, On continuum limits of heterogeneous discrete systems modelling cracks in composite materials, 2018, 40, 09367195, 184, 10.1002/gamm.201730003 | |
4. | Anneliese Defranceschi, Luca Lussardi, Enrico Vitali, Variational evolution of discrete one-dimensional second-order functionals, 2024, 1081-2865, 10.1177/10812865241275568 | |
5. | Manuel Friedrich, Joscha Seutter, Atomistic-to-continuum convergence for quasi-static crack growth in brittle materials, 2025, 35, 0218-2025, 1325, 10.1142/S0218202525500198 |