[1]
|
J. Huang, Y. Qian, Y. Yan, H. Liang, L. Zhao, Addressing hospital overwhelm during the COVID-19 pandemic by using a primary health care-based integrated health system: Modeling study, JMIR Med. Inform., 12 (2024), 54355. https://doi.org/10.2196/54355 doi: 10.2196/54355
|
[2]
|
H. Lau, T. Khosrawipour, P. Kocbach, H. Ichii, J. Bania, V. Khosrawipour, Evaluating the massive underreporting and undertesting of COVID-19 cases in multiple global epicenters, Pulmonology, 27 (2021), 110–115. https://doi.org/10.1016/j.pulmoe.2020.05.015 doi: 10.1016/j.pulmoe.2020.05.015
|
[3]
|
Statista, Impact of coronavirus (COVID-19) on securing ICU beds in hospitals across India as of April 2021, 2021. Available from: https://www.statista.com/statistics/1231043/india-covid-19-impact-on-securing-icu-beds-in-hospitals/.
|
[4]
|
X. Wang, J. Wang, J. Shen, J. S. Ji, L. Pan, H. Liu, et al., Facilities for centralized isolation and quarantine for the observation and treatment of patients with COVID-19, Engineering, 7 (2021), 908–913. https://doi.org/10.1016/j.eng.2021.03.010 doi: 10.1016/j.eng.2021.03.010
|
[5]
|
W. Zhu, M. Zhang, J. Pan, Y. Yao, W. Wang, Effects of prolonged incubation period and centralized quarantine on the COVID-19 outbreak in Shijiazhuang, China: A modeling study, BMC Med., 19 (2021), 308. https://doi.org/10.1186/s12916-021-02178-z doi: 10.1186/s12916-021-02178-z
|
[6]
|
A. Satapathi, N. K. Dhar, A. R. Hota, V. Srivastava, Coupled evolutionary behavioral and disease dynamics under reinfection risk, IEEE Trans. Control Network Syst., 11 (2024), 795–807. https://doi.org/10.1109/TCNS.2023.3312250 doi: 10.1109/TCNS.2023.3312250
|
[7]
|
S. Funk, M. Salathé, V. A. A. Jansen, Modelling the influence of human behaviour on the spread of infectious diseases: A review, J. R. Soc. Interface, 7 (2010), 1247–1256. https://doi.org/10.1098/rsif.2010.0142 doi: 10.1098/rsif.2010.0142
|
[8]
|
M. Martcheva, N. Tuncer, C. N. Ngonghala, Effects of social-distancing on infectious disease dynamics: An evolutionary game theory and economic perspective, J. Biol. Dyn., 15 (2021), 342–366. https://doi.org/10.1080/17513758.2021.1946177 doi: 10.1080/17513758.2021.1946177
|
[9]
|
M. Alam, J. Tanimoto, A game-theoretic modeling approach to comprehend the advantage of dynamic health interventions in limiting the transmission of multi-strain epidemics, J. Appl. Math. Phys., 10 (2022), 3700–3748. https://doi.org/10.4236/jamp.2022.1012248 doi: 10.4236/jamp.2022.1012248
|
[10]
|
P. Premkumar, J. B. Chakrabarty, A. Rajeev, Impact of sustained lockdown during COVID-19 pandemic on behavioural dynamics through evolutionary game theoretic model, Ann. Oper. Res., (2023). https://doi.org/10.1007/s10479-023-05743-2
|
[11]
|
H. Khazaei, K. Paarporn, A. Garcia, C. Eksin, Disease spread coupled with evolutionary social distancing dynamics can lead to growing oscillations, in 2021 60th IEEE Conference on Decision and Control (CDC), (2021), 4280–4286. https://doi.org/10.1109/CDC45484.2021.9683594
|
[12]
|
A. O. Yunus, M. O. Olayiwola, K. A. Adedokun, J. A. Adedeji, I. A. Alaje, Mathematical analysis of fractional-order caputo's derivative of coronavirus disease model via laplace adomian decomposition method, Beni-Suef Univ. J. Basic Appl. Sci., 11 (2022), 144. https://doi.org/10.1186/s43088-022-00326-9 doi: 10.1186/s43088-022-00326-9
|
[13]
|
M. Wali, S. Arshad, J. Huang, Stability analysis of an axtended SEIR COVID-19 fractional model with vaccination efficiency, Comput. Math. Methods Med., 2022 (2022), 3754051. https://doi.org/10.1155/2022/3754051 doi: 10.1155/2022/3754051
|
[14]
|
K. Oldham, J. Spanier, The Fractional Calculus Theory and Applications of Differentiation and Integration to Arbitrary Order, Elsevier, 1974.
|
[15]
|
H. M. Srivastava, Fractional-order derivatives and integrals: Introductory overview and recent developments, Kyungpook Math. J., 60 (2020), 73–116. https://doi.org/10.5666/KMJ.2020.60.1.73 doi: 10.5666/KMJ.2020.60.1.73
|
[16]
|
S. He, H. Wang, K. Sun, Solutions and memory effect of fractional-order chaotic system: A review, Chin. Phys. B, 31 (2022), 060501. https://doi.org/10.1088/1674-1056/ac43ae doi: 10.1088/1674-1056/ac43ae
|
[17]
|
M. R. Islam, A. Peace, D. Medina, T. Oraby, Integer versus fractional order SEIR deterministic and stochastic models of measles, Int. J. Environ. Res. Public Health, 17 (2020), 2014. https://doi.org/10.3390/ijerph17062014 doi: 10.3390/ijerph17062014
|
[18]
|
C. T. Bauch, Imitation dynamics predict vaccinating behaviour, Proc. R. Soc. B, 272 (2005), 1669–1675. https://doi.org/10.1098/rspb.2005.3153 doi: 10.1098/rspb.2005.3153
|
[19]
|
X. Wang, J. Wang, J. Shen, J. S. Ji, L. Pan, H. Liu, et al., Facilities for centralized isolation and quarantine for the observation and treatment of patients with COVID-19, Engineering, 7 (2021), 908–913. https://doi.org/10.1016/j.eng.2021.03.010 doi: 10.1016/j.eng.2021.03.010
|
[20]
|
J. Hofbauer, K. Sigmund, Evolutionary Games and Population Dynamics, Cambridge University Press, 1998. https://doi.org/10.1017/CBO9781139173179
|
[21]
|
S. He, Y. Peng, K. Sun, SEIR modeling of the COVID-19 and its dynamics, Nonlinear Dyn., 101 (2020), 1667–1680. https://doi.org/10.1007/s11071-020-05743-y doi: 10.1007/s11071-020-05743-y
|
[22]
|
R. Niu, E. W. M. Wong, Y. Chan, M. A. V. Wyk, G. Chen, Modeling the COVID-19 pandemic using an SEIHR model with human migration, IEEE Access, 8 (2020), 195503–195514. https://doi.org/10.1109/ACCESS.2020.3032584 doi: 10.1109/ACCESS.2020.3032584
|
[23]
|
F. Ndaïrou, I. Area, J. J. Nieto, D. F. M. Torres, Mathematical modeling of COVID-19 transmission dynamics with a case study of Wuhan, Chaos Solitons Fractals, 135 (2020), 109846. https://doi.org/10.1016/j.chaos.2020.109846 doi: 10.1016/j.chaos.2020.109846
|
[24]
|
H. Alrabaiah, M. Arfan, K. Shah, I. Mahariq, A. Ullah, A comparative study of spreading of novel corona virus disease by using fractional order modified SEIR model, Alexandria Eng. J., 60 (2021), 573–585. https://doi.org/10.1016/j.aej.2020.09.036 doi: 10.1016/j.aej.2020.09.036
|
[25]
|
S. Y. Chae, K. Lee, H. M. Lee, N. Jung, Q. A. Le, B. J. Mafwele, et al., Estimation of infection rate and predictions of disease spreading based on initial individuals infected with COVID-19, Front. Phys., 8 (2020). https://doi.org/10.3389/fphy.2020.00311
|
[26]
|
H. Sun, Y. Qiu, H. Yan, Y. Huang, Y. Zhu, J. Gu, et al., Tracking reproductivity of COVID-19 epidemic in China with varying coefficient SIR model, J. Data Sci., 18 (2020), 455–472. https://doi.org/10.6339/JDS.202007_18(3).0010 doi: 10.6339/JDS.202007_18(3).0010
|
[27]
|
P. Ashcroft, S. Lehtinen, D. C. Angst, N. Low, S. Bonhoeffer, Quantifying the impact of quarantine duration on COVID-19 transmission, Elife, 10 (2021), 63704. https://doi.org/10.7554/eLife.63704 doi: 10.7554/eLife.63704
|
[28]
|
E. Mathieu, H. Ritchie, L. Rodés-Guirao, C. Appel, D. Gavrilov, C. Giattino, et al., COVID-19 Pandemic, 2020. Available from: https://ourworldindata.org/coronavirus.
|
[29]
|
S. Lumme, R. Sund, A. H. Leyland, I. Keskimäki, A Monte Carlo method to estimate the confidence intervals for the concentration index using aggregated population register data, Health Serv. Outcomes Res. Method., 15 (2015), 82–98. https://doi.org/10.1007/s10742-015-0137-1 doi: 10.1007/s10742-015-0137-1
|
[30]
|
E. L. Ionides, C. Breto, J. Park, R. A. Smith, A. A. King, Monte Carlo profile confidence intervals for dynamic systems, J. R. Soc. Interface, 14 (2017), 20170126. https://doi.org/10.1098/rsif.2017.0126. doi: 10.1098/rsif.2017.0126
|
[31]
|
B. Sen-Crowe, M. Sutherland, M. McKenney, A. Elkbuli, A closer look into global hospital beds capacity and resource shortages during the COVID-19 pandemic, J. Surg. Res., 260 (2021), 56–63. https://doi.org/10.1016/j.jss.2020.11.062 doi: 10.1016/j.jss.2020.11.062
|
[32]
|
P. Rzymski, N. Kasianchuk, D. Sikora, B. Poniedziałek, COVID-19 vaccinations and rates of infections, hospitalizations, ICU admissions, and deaths in Europe during SARS-CoV-2 omicron wave in the first quarter of 2022, J. Med. Virol., 95 (2023), 28131. https://doi.org/10.1002/jmv.28131 doi: 10.1002/jmv.28131
|
[33]
|
R. Silaghi-Dumitrescu, I. Patrascu, M. Lehene, I. Bercea, Comorbidities of COVID-19 patients, Medicina, 59 (2023), 1393. https://doi.org/10.3390/medicina59081393 doi: 10.3390/medicina59081393
|
[34]
|
C. N. Ngonghala, P. Goel, D. Kutor, S. Bhattacharyya, Human choice to self-isolate in the face of the COVID-19 pandemic: A game dynamic modelling approach, J. Theor. Biol., 32 (2020), 100397. https://doi.org/10.1016/j.jtbi.2021.110692 doi: 10.1016/j.jtbi.2021.110692
|
[35]
|
C. M. Saad-Roy, A. Traulsen, Dynamics in a behavioral-epidemiological model for individual adherence to a nonpharmaceutical intervention, Proc. Natl. Acad. Sci., 120 (2023), 2311584120. https://doi.org/10.1073/pnas.2311584120 doi: 10.1073/pnas.2311584120
|
[36]
|
M. Farman, A. Akgül, A. Ahmad, S. Imtiaz, Analysis and dynamical behavior of fractional-order cancer model with vaccine strategy, Math. Methods Appl. Sci., 43 (2020), 4871–4882. https://doi.org/10.1002/mma.6240 doi: 10.1002/mma.6240
|
[37]
|
E. Addai, L. Zhang, J. K. K. Asamoah, J. F. Essel, A fractional order age-specific smoke epidemic model, Appl. Math. Modell., 119 (2023), 99–118. https://doi.org/10.1016/j.apm.2023.02.019 doi: 10.1016/j.apm.2023.02.019
|
[38]
|
J. Chen, C. Xia, M. Perc, The SIQRS propagation model with quarantine on simplicial complexes, IEEE Trans. Comput. Soc. Syst., 11 (2024), 4267–4278. https://doi.org/10.1109/TCSS.2024.3351173 doi: 10.1109/TCSS.2024.3351173
|
[39]
|
O. Diekmann, J. A. P. Heesterbeek, M. G. Roberts, The construction of next-generation matrices for compartmental epidemic models, J. R. Soc. Interface, 7 (2010), 873–885. https://doi.org/10.1098/rsif.2009.0386 doi: 10.1098/rsif.2009.0386
|