Processing math: 85%
Research article

A Pontryagin maximum principle for optimal control problems involving generalized distributional-order derivatives

  • In this work, we extended fractional optimal control (OC) theory by proving a version of Pontryagin's maximum principle and establishing sufficient optimality conditions for an OC problem. The dynamical system constraint in the OC problem under investigation is described by a generalized fractional derivative: the left-sided Caputo distributed-order fractional derivative with an arbitrary kernel. This approach provides a more versatile representation of dynamic processes, accommodating a broader range of memory effects and hereditary properties inherent in diverse physical, biological, and engineering systems.

    Citation: Fátima Cruz, Ricardo Almeida, Natália Martins. A Pontryagin maximum principle for optimal control problems involving generalized distributional-order derivatives[J]. AIMS Mathematics, 2025, 10(5): 11939-11956. doi: 10.3934/math.2025539

    Related Papers:

    [1] Ailing Xiang, Liangchen Wang . Boundedness of a predator-prey model with density-dependent motilities and stage structure for the predator. Electronic Research Archive, 2022, 30(5): 1954-1972. doi: 10.3934/era.2022099
    [2] Jialu Tian, Ping Liu . Global dynamics of a modified Leslie-Gower predator-prey model with Beddington-DeAngelis functional response and prey-taxis. Electronic Research Archive, 2022, 30(3): 929-942. doi: 10.3934/era.2022048
    [3] Jiani Jin, Haokun Qi, Bing Liu . Hopf bifurcation induced by fear: A Leslie-Gower reaction-diffusion predator-prey model. Electronic Research Archive, 2024, 32(12): 6503-6534. doi: 10.3934/era.2024304
    [4] Xuemin Fan, Wenjie Zhang, Lu Xu . Global dynamics of a predator-prey model with prey-taxis and hunting cooperation. Electronic Research Archive, 2025, 33(3): 1610-1632. doi: 10.3934/era.2025076
    [5] Shuxia Pan . Asymptotic spreading in a delayed dispersal predator-prey system without comparison principle. Electronic Research Archive, 2019, 27(0): 89-99. doi: 10.3934/era.2019011
    [6] Yuan Tian, Yang Liu, Kaibiao Sun . Complex dynamics of a predator-prey fishery model: The impact of the Allee effect and bilateral intervention. Electronic Research Archive, 2024, 32(11): 6379-6404. doi: 10.3934/era.2024297
    [7] Érika Diz-Pita . Global dynamics of a predator-prey system with immigration in both species. Electronic Research Archive, 2024, 32(2): 762-778. doi: 10.3934/era.2024036
    [8] Miao Peng, Rui Lin, Zhengdi Zhang, Lei Huang . The dynamics of a delayed predator-prey model with square root functional response and stage structure. Electronic Research Archive, 2024, 32(5): 3275-3298. doi: 10.3934/era.2024150
    [9] Pinglan Wan . Dynamic behavior of stochastic predator-prey system. Electronic Research Archive, 2023, 31(5): 2925-2939. doi: 10.3934/era.2023147
    [10] Ling Xue, Min Zhang, Kun Zhao, Xiaoming Zheng . Controlled dynamics of a chemotaxis model with logarithmic sensitivity by physical boundary conditions. Electronic Research Archive, 2022, 30(12): 4530-4552. doi: 10.3934/era.2022230
  • In this work, we extended fractional optimal control (OC) theory by proving a version of Pontryagin's maximum principle and establishing sufficient optimality conditions for an OC problem. The dynamical system constraint in the OC problem under investigation is described by a generalized fractional derivative: the left-sided Caputo distributed-order fractional derivative with an arbitrary kernel. This approach provides a more versatile representation of dynamic processes, accommodating a broader range of memory effects and hereditary properties inherent in diverse physical, biological, and engineering systems.



    This paper is devoted to the existence of weak solutions to the Cauchy problem for the two-component Novikov equation [18]

    {mt+uvmx+(2vux+uvx)m=0,m=uuxx,t>0,nt+uvnx+(2uvx+vux)n=0,n=vvxx. (1)

    Note that this system reduces respectively to the Novikov equation [23]

    mt+3uuxm+u2mx=0, (2)

    when v=u, and the celebrated Camassa-Holm (CH) equation [1]

    mt+2uxm+umx=0, (3)

    when v=1.

    The CH equation was proposed as a nonlinear model describing the unidirectional propagation of the shallow water waves over a flat bottom [1]. Based on the Hamiltonian theory of integrable systems, it was found earlier by using the method of recursion operator due to Fuchssteiner and Fokas [10]. It can also be obtained by using the tri-Hamiltonian duality approach related to the bi-Hamiltonian representation of the Korteweg-de Vries (KdV) equation [9,25]. The CH equation exhibits several remarkable properties. One is the the existence of the multi-peaked solitons on the line R and unit circle S1 [1,2], where the peaked solitons are the weak solution in the sense of distribution. Second, it can describes wave breaking phenomena [4], which is different from the classical integrable systems. The existence of H1-conservation law to the CH equation enables ones to define the H1-weak solution [28]. There have been a number of results concerning about integrability, well-posedness, blow up and wave breaking, orbital stability in the energy space and geometric formulations etc, see for instance [4,5,6,8,28] and references therein.

    The Novikov equation (2) can be viewed as a cubic generalization of the CH equation, which was introduced by Novikov [23,24] in the classification for a class of equations while they possesses higher-order generalized symmetries. Eq. (2) was proved to be integrable since it enjoys Lax-pair and bi-Hamiltonian structure [14], and is equivalent to the first equation in the negative flow of the Sawada-Kotera hierarchy via Liouville transformation [16]. The Novikov equation (2) also admits peaked solitons over the line R and unit circle S1 [14,20], which can be derived by the inverse spectral method. Orbital stability of peaked solitons over the line R and unit circle S1 of (2) in the energy space were verified [20] based on the conservation laws and the structure of peaked solitons of the Novikov equation (2). The well-posedness and wave breaking of the Novikov equation have been discussed in a number of papers, and it reveals that the Cauchy problem of the Novikov equation (2) has global strong solutions when the initial data u0Hs, s>3/2 [3,15,26,27]. The existence of global weak solutions to the Cauchy problem of the Novikov equation (2) was also discussed in [17].

    As the two-component generalization of Novikov equation (2), the so-called Geng-Xue system [11]

    mt+3vuxm+uvmx=0,nt+3uvxn+uvnx=0, (4)

    has been studied extensively [11,13]. The integrability [11,19], dynamics and structure of the peaked solitons of (4) [21] were discussed. In [13], well-posedness and wave breaking phenomena of the Cauchy problem of (4) were discussed. The single peakons and multi-peakons of system (4) were constructed in [21] by using compatibility of Lax-pair, which are not the weak solutions in the sense of distribution. Furthermore, the Geng-Xue system does not have the H1-conserved density, this is different from the CH and Novikov equations. The weak solution in H1 is not well-defined since it does not obey the H1-conservation law.

    The main object in this work is to investigate the existence of weak solutions to system (1). It is of great interest to understand the effect from interactions among the two-components, nonlinear dispersion and various nonlinear terms. More specifically, we shall consider the Cauchy problem of (1) and aim to leverage ideas from previous works on CH and Novikov equations. The weak solution of the Cauchy problem associated with (1) is established in Theorem 3.1.

    The remainder of this paper is organized as follows. In the next section 2, we review some basic results and lemmas as well as invariant properties of momentum densities m and n. In Section 3, we establish the existence of weak solutions, our approach is the regular approximation method together with some a priori estimates.

    In this section, we recall the local well-posedness, some properties of strong and weak solutions to equation (1) and several approximation results.

    First, we introduce some notations. Throughout the paper, we denote the convolution by . Let X denote the norm of Banach space X and let , denote the duality paring between H1(R) and H1(R). Let M(R) be the space of Radon measures on R with bounded total variation and M+(R) be the subset of positive Radon measures. Moreover, we write BV(R) for the space of functions with bounded variation, V(f) being the total variation of fBV(R). Furthermore, for 0<p<, s0, let Lp and s denote the norm of Lp(R) space and Hs(R) space, respectively.

    With m=uuxx and n=vvxx, the Cauchy problem of equation (1) takes the form:

    {mt+uvmx+(2vux+uvx)m=0,m=uuxx,t>0,xR,nt+uvnx+(2uvx+vux)n=0,n=vvxx,u(0,x)=u0(x),v(0,x)=v0(x),xR. (5)

    Note that if P(x)=12e|x|, xR, we have (12x)1f=Pf for all the fL2(R) and Pm=u, Pn=v. Then we can rewrite the equation (5) as follows:

    {ut+uvux+Px(12u2xv+uuxvx+u2v)+12P(u2xvx)=0,t>0,xR,vt+uvvx+Px(12v2xu+vvxux+v2u)+12P(v2xux)=0,u(0,x)=u0(x),v(0,x)=v0(x),xR. (6)

    Next we recall the local well-posedness and the conservation laws.

    Lemma 2.1. [12] Let u0,v0Hs(R), s3. Assume that T=T(u0,v0)>0 be the maximal existence time of the corresponding strong solution (u,v). Then the initial value problem of system (1) possesses a strong solution

    u,vC([0,T);Hs(R))C1([0,T);Hs1(R))

    Moreover, the solution depends continuously on the initial data, i.e. the mapping (u0,v0)(u(,u0),v(,v0)):Hs(R)×Hs(R)C([0,T);Hs(R))C1([0,T);Hs1(R))×C([0,T);Hs(R))C1([0,T);Hs1(R)) is continuous.

    Lemma 2.2. [12] Let u0,v0Hs(R), s3, and let (u(t,x),v(t,x)) be the corresponding solution to equation (1) with the initial data (u0,v0). Then we have

    R(u2(t,x)+u2x(t,x))dx=R(u20+u20x)dx,R(v2(t,x)+v2x(t,x))dx=R(v20+v20x)dx,R(u(t,x)v(t,x)+ux(t,x)vx(t,x))dx=R(u0v0+u0xv0x)dx.

    Moreover, we have

    |u(t,x)|22u01,|v(t,x)|22v01.

    Note that equation (1) has the solitary waves with corner at their peaks. Obviously, such solitons are not strong solutions to equation (6). In order to provide a mathematical framework for the study of these solitons, we define the notion of weak solutions to equation (6). Let

    Fu(u,v)=uvux+Px(12u2xv+uuxvx+u2v)+12P(u2xvx),Fv(u,v)=uvvx+Px(12v2xu+vvxux+v2u)+12P(v2xux).

    Then equation (6) can be written as

    {ut+Fu(u,v)=0,vt+Fv(u,v)=0,u(0,x)=u0(x),v(0,x)=v0(x). (7)

    Lemma 2.3. [22] Let T>0. If

    f,gL2((0,T);H1(R))anddfdt,dgdtL2((0,T);H1(R)),

    then f,g are a.e. equal to functions continuous from [0,T] into L2(R) and

    f(t),g(t)f(s),g(s)=tsdf(τ)dτ,g(τ)dτ+tsdg(τ)dτ,f(τ)dτ

    for all s,t[0,T].

    Throughout this paper, let {ρn}n1 denote the mollifiers

    ρn=(Rρ(ξ)dξ)1nρ(nx),xR,n1,

    where ρCc(R) is defined by

    ρ(x)={e1x21,for|x|<1,0,for|x|1.

    Next, we recall two crucial approximation results and two identities.

    Lemma 2.4. [7] Let f:RR be uniformly continuous and bounded. If μM(R), then

    [ρn(fμ)(ρnf)(ρnμ)]0,asninL1(R).

    Lemma 2.5. [7] Let f:RR be uniformly continuous and bounded. If gL(R), then

    ρn(fg)(ρnf)(ρng)0,asninL(R).

    Lemma 2.6. [7] Assume that u(t,)W1,1(R) is uniformly bounded in W1,1(R) for all tR+. Then for a.e. tR+, there hold

    ddtR|ρnu|dx=R(ρnut)sgn(ρnu)dx

    and

    ddtR|ρnux|dx=R(ρnuxt)sgn(ρnux)dx.

    Consider the flow governed by (uv)(t,x):

    {dq(t,x)dt=(uv)(t,q),t>0,xR,q(0,x)=x,xR. (8)

    Applying classical results in the theory of ODEs, one can obtain the following useful result on the above initial value problem.

    Lemma 2.7. [12] Let u0,v0Hs(R), s3, and T>0 be the life-span of the corresponding strong solution (u,v) to equation (5) with the initial data (u0,v0). Then equation (8) has a unique solution qC1([0,T)×R,R). Moreover, the map q(t,) is an increasing diffeomorphism over R with

    qx=exp(t0(uv)x(s,q(s,x))ds),(t,x)[0,T)×R.

    Furthermore, setting m=uuxx and n=vvxx, we obtain

    m(t,q)=exp(t0(2vux+uvx)(s,q(s,x))ds)m0,n(t,q)=exp(t0(2uvx+vux)(s,q(s,x))ds)n0,(t,x)[0,T)×R.

    Theorem 2.8. Let u0,v0Hs(R), s3. Assume that m0=u02xu0 and n0=v02xv0 are nonnegative, and T>0 be the maximal existence time of the corresponding strong solution (u,v). Then the initial value problem of system (1) possesses a pair of unique strong solution (u,v), where

    u,vC([0,T);Hs(R))C1([0,T);Hs1(R)).

    Set m(t,)=u(t,)uxx(t,) and n(t,)=v(t,)vxx(t,). Then, Eu(u)=R(u2+u2x)dx, Ev(v)=R(v2+v2x)dx, H(u,v)=R(uv+uxvx)dx and E0(u,v)=R(mn)13dx are four conservation laws and we have for all tR+

    (i).m(t,)0,n(t,)0,u(t,)0,v(t,)0and|ux(t,)|u(t,),|vx(t,)|v(t,)onR;(ii).u(t,)L1m(t,)L1,u(t,)L22u(t,)1=22u01,andv(t,)L1n(t,)L1,v(t,)L22v(t,)1=22v01;(iii).ux(t,)L1m(t,)L1andvx(t,)L1n(t,)L1.

    Moreover, if m0,n0L1(R), we obtain

    m(t,)L1eu01v01tm0L1andn(t,)L1eu01v01tn0L1.

    Proof. Let u0,v0Hs(R), s3, and let T>0 be the maximal existence time of the solution (u,v) to equation (5) with the initial data (u0,v0). If m00 and n00, then Lemma 2.7 ensures that m(t,)0 and n(t,)0 for all t[0,). By u=Pm, v=Pn and the positivity of P, we infer that u(t,)0 and v(t,)0 for all t0. Note that v is analogous as u and

    u(t,x)=ex2xeym(t,y)dy+ex2xeym(t,y)dy, (9)

    and

    ux(t,x)=ex2xeym(t,y)dy+ex2xeym(t,y)dy. (10)

    From the above two relations and m0, we deduce that

    |ux(t,x)|u(t,x)22u(t,x)1.

    In view of Lemma 2.2, we obtain that Eu(u) and Ev(v) are conserved and

    u(t,x)22u01,(t,x)R+×R.

    Since m(t,x)=uuxx, it follows that u=Pm and ux=Pxm. Note that PL1=PxL1=1. Applying Young's inequality, one can easily obtain (i)(iii). Since equation (1) can be used to derive the following form

    ((mn)13)t+((mn)13uv)x=0,

    it immediately follows that E0(u,v) is a conserved density. On the other hand, by equation (5), we have

    ddtRm(t,x)dx=(uvmx+(2vux+uvx)m)dx=(vuxm(uvm)x)dxuLvLm(t,x)dxu01v01m(t,x)dx.

    Since m0L1(R), in view of Gronwall's inequality, we can get

    m(t,)L1eu01v01tm0L1.

    Similarly, we find

    n(t,)L1eu01v01tn0L1.

    This completes the proof of Theorem 2.8.

    In this section, we will prove that there exists a unique global weak solution to equation (6), provided the initial data (u0,v0) satisfy certain sign-invariant conditions.

    Theorem 3.1. Let u0,v0H1(R). Assume m0=u0u0xxandn0=v0v0xxM+(R).Then equation (6) has a pair of unique weak solution (u,v), where

    u,vW1,(Rx×R)L(R+;H1(R))

    with the initial data u(0,x)=u0,v(0,x)=v0 and such that m=uuxx,n=vvxxM+(R) are bounded on [0,T), for any fixed T>0. Moreover, Eu(u)=R(u2+u2x)dx, Ev(v)=R(v2+v2x)dx and H(u,v)=R(uv+vxux)dx are conserved densities.

    Proof. First, we shall prove u,vW1,(Rx×R)L(R+;H1(R)). Let u0,v0H1(R) and assume that m0=u0u0,xx,n0=v0v0,xxM+(R). Note that u0=Pm0 and v0=Pn0. Thus, we have for any fL(R),

    u0L1=Pm0L1=supfL1Rf(x)(Pm0)(x)dx=supfL1Rf(x)RP(xy)dm0(y)dx=supfL1R(Pf)(y)dm0(y)supfL1PL1fLm0M(R)=m0M(R). (11)

    Similarly, we have

    v0L1n0M(R). (12)

    We first prove that there exists a corresponding (u,v) with the initial data (u0,v0), which belongs to H1loc(R+×R)L(R+;H1(R))×H1loc(R+×R)L(R+;H1(R)), satisfying equation (6) in the sense of distributions.

    Let us define un0=ρnu0H(R) and vn0=ρnv0H(R) for n1. Obviously, we have

    un0u0H1(R),n,vn0v0H1(R),n, (13)

    and for all n1,

    un01=ρnu01u01,vn01v01,un0L1=ρnu0L1u0L1,vn0L1v0L1, (14)

    in view of Young's inequality. Note that for all n1,

    mn0=un0un0,xx=ρnm00,andnn0=vn0vn0,xx=ρnv00.

    Comparing with the proof of relation (11) and (12), we get

    mn0L1m0M(R),andnn0L1n0M(R),n1. (15)

    By Theorem 2.8, we obtain that there exists a global strong solution

    un=un(,un0),vn=vn(,vn0)C([0,T);Hs(R))C1([0,T);Hs1(R))

    for every s3, and we have un(t,x)unxx(t,x)0 and vn(t,x)vnxx(t,x)0 for all (t,x)R+×R. In view of theorem 2.8 and (14), we obtain for n1 and t0,

    unx(t,)Lun(t,)Lun(t,)1=un01u01,vnx(t,)Lvn(t,)Lvn(t,)1=vn01v01. (16)

    By the above inequality, we have

    un(t,)vn(t,)unx(t,)L2un(t,)Lvn(t,)Lunx(t,)L2un(t,)21vn(t,)1u021v01. (17)

    Similarly, we have

    vn(t,)un(t,)vnx(t,)L2v021u01. (18)

    By Young's inequality and (16), for all t0 and n1, we obtain

    Px(12(unx)2vn+ununxvnx+(un)2vn)+12P((unx)2vnx)L2PxL212(unx)2vn+ununxvnx+(un)2vnL1+12PL2(unx)2vnxL112unx2L2vnL+12unLunxL2vnxL2+un2L2vnL+12vnxLunx2L252un21vn152u021v01. (19)

    Similarly, we get

    Px(12(vnx)2un+vnunxvnx+(vn)2un)+12P((vnx)2unx)L252v021u01. (20)

    Combining (17)-(20) with equation (6) for all t0 and n1, we find

    ddtun(t,)L272u021v01,andddtvn(t,)L272v021u01. (21)

    For fixed T>0, by Theorem 2.8 and (21), we have

    T0R([un(t,x)]2+[unx(t,x)]2+[unt(t,x)]2)dxdt(u021+494u041v021)T,T0R([vn(t,x)]2+[vnx(t,x)]2+[vnt(t,x)]2)dxdt(v021+494v041u021)T. (22)

    It follows that the sequence {un}n1 is uniformly bounded in the space H1((0,T)×R).Thus we can extract a subsequence such that

    unkuweaklyinH1(0,T)×R)fornk (23)

    and

    unku,a.e.on(0,T)×Rfornk, (24)

    for some uH1((0,T)×R). By Theorem 2.8, (11) and (14), we have that for fixed t(0,T), the sequence unkx(t,)BV(R) satisfies

    V[unkx(t,)]=unkxx(t,)L1unk(t,)L1+mnk(t,)L12mnk(t,)L12eunk01vnk01tmnk0L12eu01v01tm0M(R)

    and

    unkx(t,)Lunk(t,)1=unk0(t,)1u01.

    Applying Helly's theorem, we obtain that there exists a subsequence, denoted again by {unkx(t,)}, which converges at every point to some function ˆu(t,) of finite variation with

    V[ˆu(t,)]2eu01v01tm0M(R).

    Since for almost all t(0,T), unkx(t,)ux(t,) in D(R) in view of (24), it follows that ˆu(t,)=ux(t,) for a.e. t(0,T). Therefore, we have

    unkxuxa.e.on(0,T)×Rfornk, (25)

    and for a.e. t(0,T),

    V[ux(t,)]=uxx(t,)M(R)2eu01v01tm0M(R).

    We can analogously extract a subsequence of {vnk}, denote again by {vnk} such that

    vnkva.e.on(0,T)×Rfornkandvnkxvxa.e.on(0,T)×Rfornk. (26)

    By Theorem 2.8 (ii)(iii) and (16), we have

    12(unx)2vn+ununxvnx+(un)2vn+12(unx)2vnxL13u021v01.

    For fixed t(0,T), it follows that the sequence {12(unx)2vn+ununxvnx+(un)2vn+12(unx)2vnx} is uniformly bounded in L1(R). Therefore, it has a subsequence converging weakly in L1(R), denoted again by {12(unx)2vn+ununxvnx+(un)2vn+12(unx)2vnx}. By (24) and (25), we deduce that the weak L1(R)-limit is 12(ux)2vn+uuxvx+u2v+12(ux)2vx. Note that P,PxL(R). It follows that

    Px[12(unx)2vn+ununxvnx+(un)2vn]+P(12(unx)2vnx)Px[12u2xvn+uuxvx+u2v]+P(12u2xvx),asn. (27)

    We can analogously obtain that

    Px[12(vnx)2un+vnvnxunx+(vn)2un]+P(12(vnx)2unx)Px[12v2xun+vvxux+v2u]+P(12v2xux),asn. (28)

    Combining (24)-(26) with (27) and (28), we deduce that (u,v) satisfies equation (6) in D((0,T)×R).

    Since unkt(t,) is uniformly bounded in L2(R) for all tR+ and unk(t,)1 has a uniform bound as tR+ and all n1. Hence the family tunk(t,)H1(R) is weakly equicontinuous on [0,T] for any T>0. An application of the Arzela-Ascoli theorem yields that {unk} contains a subsequence, denoted again by {unk}, which converges weakly in H1(R), uniformly in t[0,T]. The limit function is u. Because T is arbitrary, we have that u is locally and weakly continuous from [0,) into H1(R), i.e.

    uCw,loc(R+;H1(R)).

    For a.e. tR+, since unk(t,)u(t,) weakly in H1(R), in view of (15) and (16), we obtain

    u(t,)Lu(t,)1lim infnkun(t,)1=lim infnkunk0(t,)1lim infnkP1mnk0(t,)L1m0M(R), (29)

    for a.e. tR+. The previous relation implies that

    uL(R+×R)L(R+;H1(R)).

    Note that by Theorem 2.8 and (15), we have

    unx(t,)Lun(t,)Lun(t,)1P1mn0(t,)L1m0(t,)M(R). (30)

    Combining this with (25), we deduce that

    uxL(R+×R).

    This shows that

    uW1,(R+×R)L(R+;H1(R)).

    Taking the same way as u, we get

    vW1,(R+×R)L(R+;H1(R)).

    Please note that we use the subsequence of {vnk} which is determined after using the Arzela-Ascoli theorem.

    Now, by a regularization technique, we prove that Eu(u), Ev(v) and H(u,v) are conserved densities. As (u,v) solves equation (6) in the sense of distributions, we see that for a.e. tR+, n1,

    {ρnut+ρn(uvux)+ρnPx(12u2xv+uuxvx+u2v)+12ρnP(u2xvx)=0,ρnvt+ρn(uvvx)+ρnPx(12v2xv+vuxvx+v2u)+12ρnP(v2xux)=0. (31)

    By differentiation of the first equation of (31), we obtain

    ρnuxt+ρn(uvux)x+ρnPx(12u2xvx)+ρnPxx(12u2xv+uuxvx+u2v)=0. (32)

    Note that 2(Pf)=Pff, fL2(R). We can rewrite (32) as

    ρnuxt+ρnx(uvux)+ρnP(12u2xv+uuxvx+u2v)ρn(12u2xv+uuxvx+u2v)+ρnPx(12u2xvx)=0. (33)

    Take these two equation (32) and (33) into the integration below, we obtain

    12ddtR(ρnu)2+(ρnux)2dx=R(ρnu)(ρnut)+(ρnux)(ρnuxt)dx=R(ρnu)(ρn(uvux)+ρnPx(12u2xv+uuxvx+u2v)+ρnP(12u2xvx))dxR(ρnux)(ρnx(uvux)+ρnP(12u2xv+uuxvx+u2v)ρn(12u2xv+uuxvx+u2v)+ρnPx(12u2xvx))dx. (34)

    Note that

    limnρnuuL2=limnρn(uvux)uvuxL2=0.

    Therefore, by using H¨older inequality, we have for a.e. tR+

    R(ρnu)(ρn(uvux))dxRu2vuxdx,asn.

    Similarly, for a.e. tR

    R(ρnu)(ρnPx(12u2xv+uuxvx+u2v))dxRuPx(12u2xv+uuxvx+u2v)dx,asn,
    R(ρnu)(ρnP(12u2xvx))dxRuP(12u2xvx)dx,asn,
    R(ρnux)(ρnP(12u2xv+uuxvx+u2v))dxRuxP(12u2xv+uuxvx+u2v)dx,asn,
    R(ρnux)(ρn(12u2xv+uuxvx+u2v))dxRux(12u2xv+uuxvx+u2v)dx,asn,
    R(ρnux)(ρnPx(12u2xvx))dxRuxPx(12u2xvx)dx,asn,

    as u(t,),v(t,)H1(R) and ux,vxL(R+×R). Furthermore, note that

    R(ρnux)(ρnx(uvux))dx=R(ρn,xxu)(ρ(uvux))dx+R(ρn,xxu)(ρnuv)(ρnux)dx+12R(ρnux)2(ρn(uv)x)dx. (35)

    Observe that

    R(ρnux)2(ρn(uv)x)dxRu2x(uv)xdx,asn.

    On the other hand

    ρnxxuL1uxxM(R)2eu01v01tm0M(R),t[0,T).

    As u(t,),v(t,)H1(R) and ux,vxL(R+×R), by Lemma 2.5, it follows that

    (ρnuv)(ρnux)(ρn(uvux))L0,n.

    Therefore,

    R(ρn,xxu)((ρnuv)(ρnux)ρn(uvux))dx0,n.

    In view of the above relations and (35), we obtain

    R(ρnux)(ρnx(uvux))dx12Ru2x(uv)xdx,n. (36)

    Let us define

    Eun(t)=R(ρnu)2+(ρnux)2dx, (37)

    and

    Gun(t)=2R(ρnu)(ρn(uvux)+ρnPx(12u2xv+uuxvx+u2v)+ρnP(12u2xvx))dx2R(ρnux)(ρnx(uvux)+ρnP(12u2xv+uuxvx+u2v)ρn(12u2xv+uuxvx+u2v)+ρnPx(12u2xvx))dx.

    We have proved that for fixed T>0, for a.e. t[0,T),

    {ddtEun(t)=Gun(t),n1,Gun(t)0,n. (38)

    Therefore, we get

    Eun(t)Eun(0)=t0Gun(s)ds,t[0,T),n1. (39)

    By Young's inequality and H¨older's inequality, it follows that there is a Ku(T)>0 such that

    |Gun(t)|Ku(T),n1.

    In view of (38) and (39), an application of Lebesgue's dominated convergence theorem yields that for fixed a.e. tR+,

    limn(Eun(t)Eun(0))=0.

    By (24) and the above relation, for fixed tR+, we can get

    Eu(u)=limnEun(t)=limnEun(0)=Eu(u0).

    By Theorem 2.8, we infer that for all fixed tR+, Eu(u) is conserved. Similarly, we can show that Ev(v) is also conserved.

    Next, we prove that H(u,v) is a conserved density.

    By differentiation of the second equation of (31), we obtain this relation:

    ρnvxt+ρnx(uvvx)+ρnP(12v2xu+vuxvx+v2u)ρn(12v2xu+vuxvx+v2u)+ρnPx(12v2xux)=0. (40)

    In view of (31), (33) and (40), we obtain

    ddtR(ρnu)(ρnv)+(ρnux)(ρnvx)dx=R(ρnu)(ρnvt)+(ρnux)(ρnvxt)+(ρnut)(ρnv)+(ρnuxt)(ρnvx)dx=R(ρnu)(ρn(uvvx)+ρnPx(12v2xu+vuxvx+v2u)
    +ρnP(12v2xux))dxR(ρnux)(ρnx(uvvx)+ρnP(12v2xu+vuxvx+v2u)ρn(12v2xu+vuxvx+v2u)+ρnPx(12v2xux))dxR(ρnv)(ρn(vuux)+ρnPx(12u2xv+uuxvx+u2v)+ρnP(12u2xvx))dxR(ρnvx)(ρnx(uvux)+ρnP(12u2xv+uuxvx+u2v)ρn(12u2xv+uuxvx+u2v)+ρnPx(12u2xvx))dx. (41)

    We can analogously get the similar convergence like the case ddtR(ρnu)2+(ρnux)2dx by using Lemma 2.5, u(t,),v(t,)H1(R) and ux,vxL(R+×R).

    It is nature to define

    Hn(t)=R(ρnu)(ρnv)+(ρnux)(ρnvx)dx, (42)

    and

    Gu,vn(t)=R(ρnu)(ρn(uvvx)+ρnPx(12v2xu+vuxvx+v2u)+ρnP(12v2xux))dxR(ρnux)(ρnx(uvvx)+ρnP(12v2xu+vuxvx+v2u)ρn(12v2xu+vuxvx+v2u)+ρnPx(12v2xux))dxR(ρnv)(ρn(vuux)+ρnPx(12u2xv+uuxvx+u2v)+ρnP(12u2xvx))dxR(ρnvx)(ρnx(uvux)+ρnP(12u2xv+uuxvx+u2v)ρn(12u2xv+uuxvx+u2v)+ρnPx(12u2xvx))dx. (43)

    And it is easy to get

    Hn(t)Hn(0)=t0Gu,vn(s)ds,t[0,T),n1. (44)

    Similarly, we get this estimate by using Young's inequality and Holder's inequality:

    |Gu,vn(t)|Ku,v(T),n1.

    An application of Lebesgue's dominated convergence theorem yields that for fixed a.e. tR+,

    limn[Hn(t)Hn(0)]=0.

    By these convergence above, for fixed tR+, we can get

    H(u,v)=limnHn(t)=limnHn(0)=H(u0,v0),

    which indicates that H(u,v) is a conserved density.

    Since L1(R)(L(R))(C0(R))=M(R). It is not too hard to show that for a.e. t[0,T),

    m(t,)3eu01v01tm0M(R).

    For any fixed T, t[0,T), we have proved

    (u(t,)uxx(t,))M(R).

    Therefore, in view of (24) and (25), we obtain that for all t[0,T), as n,

    unk(t,)unkxx(t,)u(t,)uxx(t,)inD(R).

    Since u^{n_k}(t, \cdot)-u^{n_k}_{xx}(t, \cdot)\geq 0 for all (t, x)\in{\mathbb R}_+\times \mathbb R , we deduce that for a.e. t\in [0, T)

    \begin{eqnarray*} \begin{aligned} u(t, \cdot)-u_{xx}(t, \cdot) \in {\mathcal {M}}^+(\mathbb R). \end{aligned} \end{eqnarray*}

    Similarly, we arrive at the conclusion:

    \begin{eqnarray*} \begin{aligned} v(t, \cdot)-v_{xx}(t, \cdot)\in {\mathcal {M}}^+(\mathbb R). \end{aligned} \end{eqnarray*}

    Finally, we show the uniqueness of the weak solutions of equation (6). Let (u, v) and (\bar{u}, \bar{v}) be two weak solutions of equation (6) in the class

    \begin{eqnarray*} \begin{aligned} (f, g)\in W^{1, \infty}({\mathbb R}_+\times \mathbb R)\cap L^\infty({\mathbb R}_+;H^1(\mathbb R))\times W^{1, \infty}({\mathbb R}_+\times \mathbb R)\cap L^\infty({\mathbb R}_+;H^1(\mathbb R)) \end{aligned} \end{eqnarray*}

    Note that

    \begin{eqnarray*} \begin{aligned} &\|u(t, \cdot)-u_{xx}(t, \cdot)\|_{{\mathcal {M}}(\mathbb R)}\leq 3e^{\|u_0\|_1\|v_0\|_1t}\|m_0\|_{{\mathcal {M}}(\mathbb R)}, \\ &\|v(t, \cdot)-v_{xx}(t, \cdot)\|_{{\mathcal {M}}(\mathbb R)}\leq 3e^{\|u_0\|_1\|v_0\|_1t}\|n_0\|_{{\mathcal {M}}(\mathbb R)}\quad {\rm for} \quad{\rm a.e.}\quad t\in[0, T). \end{aligned} \end{eqnarray*}

    Define

    \begin{eqnarray*} \begin{aligned} M(T) = \sup\limits_{t\in[0, T)}&\left\{\|u(t, \cdot)-u_{xx}(t, \cdot)\|_{{\mathcal {M}}(\mathbb R)}+\|v(t, \cdot)-v_{xx}(t, \cdot)\|_{{\mathcal {M}}(\mathbb R)}\right.\\ &\qquad\qquad\qquad\left.+\|\bar{u}(t, \cdot)-\bar{u}_{xx}(t, \cdot)\|_{{\mathcal {M}}(\mathbb R)}+\|\bar{v}(t, \cdot)-\bar{v}_{xx}(t, \cdot)\|_{{\mathcal {M}}(\mathbb R)}\right\}. \end{aligned} \end{eqnarray*}

    Then for fixed T , we obtain M(T)<\infty . For all (t, x)\in[0, T)\times \mathbb R , in view of (11), we find that

    \begin{eqnarray} \begin{aligned} &\|u(t, \cdot)\|_{L^1}\leq \|P\|_{L^1}M(T) = M(T), \\ &\|u_x(t, \cdot)\|_{L^1}\leq \|P_x\|_{L^1}M(T) = M(T), \\ &\|v(t, \cdot)\|_{L^1}, \|v_x(t, \cdot)\|_{L^1}, \|\bar{u}(t, \cdot)\|_{L^1}, \|\bar{u}_x(t, \cdot)\|_{L^1}, \|\bar{v}(t, \cdot)\|_{L^1}\, {\rm{and}}\, \|\bar{v}_x(t, \cdot)\|_{L^1}\leq M(T). \end{aligned} \end{eqnarray} (45)

    On the other hand, from (29) and (30), we have

    \begin{eqnarray} \begin{aligned} &\|u(t, \cdot)\|_{L^\infty}\leq \|m_0\|_{{\mathcal {M}}(\mathbb R)}\leq N, \qquad \|u_x(t, \cdot)\|_{L^\infty}\leq \|m_0\|_{{\mathcal {M}}(\mathbb R)}\leq N, \\ &\|v(t, \cdot)\|_{L^\infty}\leq \|n_0\|_{{\mathcal {M}}(\mathbb R)}\leq N, \qquad \|v_x(t, \cdot)\|_{L^\infty}\leq \|n_0\|_{{\mathcal {M}}(\mathbb R)}\leq N, \\ &\|\bar{u}(t, \cdot)\|_{L^\infty}, \|\bar{u}_x(t, \cdot)\|_{L^\infty}, \|\bar{v}(t, \cdot)\|_{L^\infty}\, {\rm{and}}\, \|\bar{v}_x(t, \cdot)\|_{L^\infty}\leq N. \end{aligned} \end{eqnarray} (46)

    Let us define

    \begin{eqnarray*} \begin{aligned} \hat{u}(t, x) = u(t, x)-\bar{u}(t, x)\quad {\rm{and}}\quad \hat{v}(t, x) = v(t, x)-\bar{v}(t, x), \quad (t, x)\in[0, T)\times\mathbb R. \end{aligned} \end{eqnarray*}

    Convoluting equation (6) for (u, v) and (\bar{u}, \bar{v}) with \rho_n , we have that for a.e. t\in[0, T) and all n\geq 1 ,

    \begin{eqnarray} \begin{aligned} {\frac d{dt}}\int_{\mathbb R}|\rho_n\ast\hat{u}|dx = &\int_{\mathbb R}\rho_n\ast\hat{u}_t{\rm{sgn}}(\rho_n\ast\hat{u})dx\\ = &-\int_{\mathbb R}\rho_n\ast\left(\hat{u}vu_x+\bar{u}u_x\hat{v}+\bar{u}\bar{v}\hat{u}_x\right){\rm{sgn}}(\rho_n\ast\hat{u})dx\\ & -\int_{\mathbb R}\rho_n\ast P_{xx}{\rm{*}}({\frac 12}\hat{u}(u_x+\bar{u}_x)v+{\frac 12}\bar{u}^2_x\hat{v}+\hat{u}u_xv_x+\bar{u}v_x\hat{u}_x\\ &+\bar{u}\bar{u}_x\hat{v}_x+\hat{u}(u+\bar{u})v+u^2\hat{v}){\rm{sgn}}(\rho_{nx}\ast\hat{u})dx\\ &-\int_{\mathbb R}\rho_n\ast{\frac 12}P\ast\left(\hat{u}_x(u_x+\bar{u}_x)v_x+\bar{u}^2_x\hat{v}_x\right){\rm{sgn}}(\rho_n\ast\hat{u})dx. \end{aligned} \end{eqnarray} (47)

    Using (46) and Young's inequality, we infer that for a.e. t\in[0, T) and all n\geq 1

    \begin{eqnarray} \begin{aligned} &{\frac d{dt}}\int_{\mathbb R}|\rho_n\ast\hat{u}|dx\\ &\leq C\left(\int_{\mathbb R}|\rho_n\ast\hat{u}|dx+\int_{\mathbb R}|\rho_n\ast\hat{u}_x|dx+\int_{\mathbb R}|\rho_n\ast\hat{v}|dx+\int_{\mathbb R}|\rho_n\ast\hat{v}_x|dx\right). \end{aligned} \end{eqnarray} (48)

    where C is a constant depending on N . Similarly, convoluting equation (6) for (u, v) and (\bar{u}, \bar{v}) with \rho_{n, x} , it follows that

    \begin{eqnarray} \begin{aligned} {\frac d{dt}}\int_{\mathbb R}|\rho_n\ast\hat{u}_x|dx = &\int_{\mathbb R}\rho_n\ast\hat{u}_{xt}{\rm{sgn}}(\rho_{nx}\ast\hat{u})dx\\ = &-\int_{\mathbb R}\rho_n\ast\left(\hat{u}vu_x+\bar{u}u_x\hat{v}+\bar{u}\bar{v}\hat{u}_x\right)_x{\rm{sgn}}(\rho_{nx}\ast\hat{u})dx\\ -&\int_{\mathbb R}\rho_n\ast P_{xx}\ast({\frac 12}\hat{u}(u_x+\bar{u}_x)v+{\frac 12}\bar{u}^2_x\hat{v}+\hat{u}u_xv_x+\bar{u}v_x\hat{u}_x\\ &\qquad\qquad+\bar{u}\bar{u}_x\hat{v}_x+\hat{u}(u+\bar{u})v+u^2\hat{v}){\rm{sgn}}(\rho_{nx}\ast\hat{u})dx\\ -&\int_{\mathbb R}\rho_n\ast{\frac 12}P_x\ast\left(\hat{u}_x(u_x+\bar{u}_x)v_x+\bar{u}^2_x\hat{v}_x\right){\rm{sgn}}(\rho_{nx}\ast\hat{u})dx\\ = &I_1+I_2+I_3. \end{aligned} \end{eqnarray} (49)

    For the term I_1 , we have

    \begin{eqnarray*} \begin{aligned} &I_1\\ = &-\int_{\mathbb R}\rho_n\ast(\hat{u}_xvu_x+\hat{u}u_xv_x+\hat{u}vu_{xx}+\bar{u}_xu_{x}\hat{v}+\bar{u}u_{xx}\hat{v}+\bar{u}u_x\hat{v}_x\\ &\qquad\qquad\qquad\qquad+\bar{u}_x\bar{v}\hat{u}_x+\bar{u}\bar{v}_x\hat{u}_x+\bar{u}\bar{v}\hat{u}_{xx}){\rm{sgn}}(\rho_{nx}\ast \hat{u})dx\\ &\leq C\left(\int_{\mathbb R}|\rho_n\ast\hat{u}|dx+\int_{\mathbb R}|\rho_n\ast\hat{u}_x|dx+\int_{\mathbb R}|\rho_n\ast\hat{v}|dx+\int_{\mathbb R}|\rho_n\ast\hat{v}_x|dx\right)\\ &\qquad\qquad\qquad\qquad-\int_{\mathbb R}\rho_n\ast(\hat{u}vu_{xx}+\bar{u}u_{xx}\hat{v}+\bar{u}\bar{v}\hat{u}_{xx}){\rm{sgn}}(\rho_{nx}\ast \hat{u})dx\\ &\leq C\left(\int_{\mathbb R}|\rho_n\ast\hat{u}|dx+\int_{\mathbb R}|\rho_n\ast\hat{u}_x|dx+\int_{\mathbb R}|\rho_n\ast\hat{v}|dx+\int_{\mathbb R}|\rho_n\ast\hat{v}_x|dx\right)\\ &-\int_{\mathbb R}(\rho_n\ast\hat{u}v)(\rho_n\ast u_{xx}){\rm{sgn}}(\rho_{nx}\ast \hat{u})dx-\int_{\mathbb R}(\rho_n\ast\bar{u}\hat{v})(\rho_n\ast u_{xx}){\rm{sgn}}(\rho_{nx}\ast \hat{u})dx\\ &\qquad\qquad\qquad\qquad-\int_{\mathbb R}(\rho_n\ast\bar{u}\bar{v})(\rho_n\ast \hat{u}_{xx}){\rm{sgn}}(\rho_{nx}\ast \hat{u})dx+R_n(t) \end{aligned} \end{eqnarray*}
    \begin{eqnarray} \begin{aligned}&\leq C\left(\int_{\mathbb R}|\rho_n\ast\hat{u}|dx+\int_{\mathbb R}|\rho_n\ast\hat{u}_x|dx+\int_{\mathbb R}|\rho_n\ast\hat{v}|dx+\int_{\mathbb R}|\rho_n\ast\hat{v}_x|dx\right)\\ &+\int_{\mathbb R}(\rho_n\ast(\hat{u}v)_x)(\rho_n\ast u_x){\rm{sgn}}(\rho_{nx}\ast \hat{u})dx+\int_{\mathbb R}(\rho_n\ast(\bar{u}\hat{v})_x)(\rho_n\ast u_x){\rm{sgn}}(\rho_{nx}\ast \hat{u})dx\\ &\qquad\qquad\qquad\qquad+\int_{\mathbb R}(\rho_n\ast(\bar{u}\bar{v})_x)(\rho_n\ast \hat{u}_x){\rm{sgn}}(\rho_{nx}\ast \hat{u})dx+R_n(t)\\ &\leq C\left(\int_{\mathbb R}|\rho_n\ast\hat{u}|dx+\int_{\mathbb R}|\rho_n\ast\hat{u}_x|dx+\int_{\mathbb R}|\rho_n\ast\hat{v}|dx+\int_{\mathbb R}|\rho_n\ast\hat{v}_x|dx\right) +R_n(t), \end{aligned} \end{eqnarray} (50)

    where C is a constant depending on M(T) , N , \|u_0\|_1 and \|v_0\|_1 and R_n(t) satisfies

    \begin{eqnarray} \left\{ \begin{aligned} &R_n(t)\longrightarrow 0, \qquad n\rightarrow\infty, \\ &|R_n(t)|\leq \kappa(T), \;\;\, n\geq 1, \;\;t\in[0, T). \end{aligned} \right. \end{eqnarray} (51)

    For the second term I_2 , we find

    \begin{eqnarray} \begin{aligned} &I_2\\ = -&\int_{\mathbb R}\rho_n\ast P_{xx}\ast\left({\frac 12}\hat{u}(u_x+\bar{u}_x)v+{\frac 12}\bar{u}^2_x\hat{v}+\hat{u}u_xv_x+\bar{u}v_x\hat{u}_x\right.\\ &\qquad+\left.\bar{u}\bar{u}_x\hat{v}_x+\hat{u}(u+\bar{u})v+u^2\hat{v}\right){\rm{sgn}}(\rho_{nx}\ast\hat{u})dx\\ \leq& 2\int_{\mathbb R}\rho_n\ast\left|{\frac 12}\hat{u}(u_x+\bar{u}_x)v+{\frac 12}\bar{u}^2_x\hat{v}+\hat{u}u_xv_x+\bar{u}v_x\hat{u}_x+\bar{u}\bar{u}_x\hat{v}_x+\hat{u}(u+\bar{u})v+u^2\hat{v}\right|dx\\ \leq& C\left(\int_{\mathbb R}|\rho_n\ast\hat{u}|dx+\int_{\mathbb R}|\rho_n\ast\hat{u}_x|dx+\int_{\mathbb R}|\rho_n\ast\hat{v}|dx+\int_{\mathbb R}|\rho_n\ast\hat{v}_x|dx\right). \end{aligned} \end{eqnarray} (52)

    For the final term I_3 , we have

    \begin{eqnarray} \begin{aligned} I_3 = -&\int_{\mathbb R}\rho_n\ast{\frac 12}P_x\ast\left(\hat{u}_x(u_x+\bar{u}_x)v_x+\bar{u}^2_x\hat{v}_x\right){\rm{sgn}}(\rho_{nx}\ast\hat{u})dx\\ \leq& C\left(\int_{\mathbb R}|\rho_n\ast\hat{u}|dx+\int_{\mathbb R}|\rho_n\ast\hat{u}_x|dx+\int_{\mathbb R}|\rho_n\ast\hat{v}|dx+\int_{\mathbb R}|\rho_n\ast\hat{v}_x|dx\right). \end{aligned} \end{eqnarray} (53)

    Adding these three terms, we obtain

    \begin{eqnarray} \begin{aligned} &{\frac d{dt}}\int_{\mathbb R}|\rho_n\ast\hat{u}_x|dx\\ &\leq C\left(\int_{\mathbb R}|\rho_n\ast\hat{u}|dx+\int_{\mathbb R}|\rho_n\ast\hat{u}_x|dx+\int_{\mathbb R}|\rho_n\ast\hat{v}|dx+\int_{\mathbb R}|\rho_n\ast\hat{v}_x|dx\right)+R_n(t). \end{aligned} \end{eqnarray} (54)

    For these terms {\frac d{dt}}\int_{\mathbb R}|\rho_n\ast\hat{v}|dx and {\frac d{dt}}\int_{\mathbb R}|\rho_n\ast\hat{v}_x|dx , we have similar results:

    \begin{eqnarray} \begin{aligned} &{\frac d{dt}}\int_{\mathbb R}|\rho_n\ast\hat{v}|dx\\ &\leq C\left(\int_{\mathbb R}|\rho_n\ast\hat{u}|dx+\int_{\mathbb R}|\rho_n\ast\hat{u}_x|dx+\int_{\mathbb R}|\rho_n\ast\hat{v}|dx+\int_{\mathbb R}|\rho_n\ast\hat{v}_x|dx\right), \\ &{\frac d{dt}}\int_{\mathbb R}|\rho_n\ast\hat{v}_x|dx\\ &\leq C\left(\int_{\mathbb R}|\rho_n\ast\hat{u}|dx+\int_{\mathbb R}|\rho_n\ast\hat{u}_x|dx+\int_{\mathbb R}|\rho_n\ast\hat{v}|dx+\int_{\mathbb R}|\rho_n\ast\hat{v}_x|dx\right)+R_n(t). \end{aligned} \end{eqnarray} (55)

    From (48), (54) and (55), we infer that

    \begin{eqnarray} \begin{aligned} &{\frac d{dt}}\left(\int_{\mathbb R}|\rho_n\ast\hat{u}|dx+\int_{\mathbb R}|\rho_n\ast\hat{u}_x|dx+\int_{\mathbb R}|\rho_n\ast\hat{v}|dx+\int_{\mathbb R}|\rho_n\ast\hat{v}_x|dx\right)\\ &\leq C\left(\int_{\mathbb R}|\rho_n\ast\hat{u}|dx+\int_{\mathbb R}|\rho_n\ast\hat{u}_x|dx+\int_{\mathbb R}|\rho_n\ast\hat{v}|dx+\int_{\mathbb R}|\rho_n\ast\hat{v}_x|dx\right)+R_n(t). \end{aligned} \end{eqnarray} (56)

    If \int_{\mathbb R}|\rho_n\ast\hat{u}|dx+\int_{\mathbb R}|\rho_n\ast\hat{u}_x|dx+\int_{\mathbb R}|\rho_n\ast\hat{v}|dx+\int_{\mathbb R}|\rho_n\ast\hat{v}_x|dx\ne 0 , then by Gronwall's inequality, we obtain

    \begin{eqnarray} \begin{aligned} &\left(\int_{\mathbb R}|\rho_n\ast\hat{u}|dx+\int_{\mathbb R}|\rho_n\ast\hat{u}_x|dx+\int_{\mathbb R}|\rho_n\ast\hat{v}|dx+\int_{\mathbb R}|\rho_n\ast\hat{v}_x|dx\right)\\ &\leq e^{\int^t_0C+\tilde{R}_n(\tau)d\tau}\left(|\rho_n\ast\hat{u}|+|\rho_n\ast\hat{u}_x|+|\rho_n\ast\hat{v}|+|\rho_n\ast\hat{v}_x|\right)(0, x), \end{aligned} \end{eqnarray} (57)

    where \tilde{R}_n(t) = R_n(t) \left(\int_{\mathbb R}|\rho_n\ast\hat{u}|dx+\int_{\mathbb R}|\rho_n\ast\hat{u}_x|dx+\int_{\mathbb R}|\rho_n\ast\hat{v}|dx+\int_{\mathbb R}|\rho_n\ast\hat{v}_x|dx\right)^{-1} . From Lebesgue's dominated convergence theorem, it follows that

    \begin{eqnarray} \begin{aligned} &\left(\int_{\mathbb R}|\rho_n\ast\hat{u}|dx+\int_{\mathbb R}|\rho_n\ast\hat{u}_x|dx+\int_{\mathbb R}|\rho_n\ast\hat{v}|dx+\int_{\mathbb R}|\rho_n\ast\hat{v}_x|dx\right)\\ &\leq e^{Ct}\left(|\rho_n\ast\hat{u}|+|\rho_n\ast\hat{u}_x|+|\rho_n\ast\hat{v}|+|\rho_n\ast\hat{v}_x|\right)(0, x), \end{aligned} \end{eqnarray} (58)

    As T is arbitrary, \hat{u}_0 = \hat{u}_{0x} = \hat{v}_0 = \hat{v}_{0, x} = 0 , we obtain (u, v) = (\bar{u}, \bar{v}) . This completes the proof of theorem 3.1.



    [1] O. P. Agrawal, A general formulation and solution scheme for fractional optimal control problems, Nonlinear Dyn., 38 (2004), 323–337. https://doi.org/10.1007/s11071-004-3764-6 doi: 10.1007/s11071-004-3764-6
    [2] O. P. Agrawal, A formulation and a numerical scheme for fractional optimal control problems, IFAC Proc. Vol., 39 (2006), 68–72. https://doi.org/10.3182/20060719-3-PT-4902.00011 doi: 10.3182/20060719-3-PT-4902.00011
    [3] R. Almeida, A Caputo fractional derivative of a function with respect to another function, Commun. Nonlinear Sci. Numer. Simul., 44 (2017), 460–481. https://doi.org/10.1016/j.cnsns.2016.09.006 doi: 10.1016/j.cnsns.2016.09.006
    [4] R. Almeida, A. B. Malinowska, M. T. T. Monteiro, Fractional differential equations with a Caputo derivative with respect to a kernel function and their applications, Math. Methods Appl. Sci., 41 (2018), 336–352. https://doi.org/10.1002/mma.4617 doi: 10.1002/mma.4617
    [5] M. Bergounioux, L. Bourdin, Pontryagin maximum principle for general Caputo fractional optimal control problems with Bolza cost and terminal constraints, ESAIM Control Optim. Calc. Var., 26 (2020), 35. https://doi.org/10.1051/cocv/2019021 doi: 10.1051/cocv/2019021
    [6] A. Boukhouima, K. Hattaf, E. M. Lotfi, M. Mahrouf, D. F. M. Torres, N. Yousfi, Lyapunov functions for fractional-order systems in biology: Methods and applications, Chaos Solitons Fractals, 140 (2020), 110224. https://doi.org/10.1016/j.chaos.2020.110224 doi: 10.1016/j.chaos.2020.110224
    [7] B. van Brunt, The calculus of variations, New York: Springer, 2003. https://doi.org/10.1007/b97436
    [8] M. Caputo, Mean fractional-order-derivatives differential equations and filters, Ann. Univ. Ferrara, 41 (1995), 73–84. https://doi.org/10.1007/BF02826009 doi: 10.1007/BF02826009
    [9] J. F. Chen, H. T. Quan, Optimal control theory for maximum power of Brownian heat engines, Phys. Rev. E, 110 (2024), L042105. https://doi.org/10.1103/PhysRevE.110.L042105 doi: 10.1103/PhysRevE.110.L042105
    [10] F. Cruz, R. Almeida, N. Martins, Optimality conditions for variational problems involving distributed-order fractional derivatives with arbitrary kernels, AIMS Mathematics, 6 (2021), 5351–5369. https://doi.org/10.3934/math.2021315 doi: 10.3934/math.2021315
    [11] A. N. Daryina, A. I. Diveev, D. Yu. Karamzin, F. L. Pereira, E. A. Sofronova, R. A. Chertovskikh, Regular approximations of the fastest motion of mobile robot under bounded state variables, Comput. Math. Math. Phys., 62 (2022), 1539–1558. https://doi.org/10.1134/S0965542522090093 doi: 10.1134/S0965542522090093
    [12] K. Diethelm, N. J. Ford, Analysis of fractional differential equations, J. Math. Anal. Appl., 265 (2002), 229–248. https://doi.org/10.1006/jmaa.2000.7194 doi: 10.1006/jmaa.2000.7194
    [13] W. Ding, S. Patnaik, S. Sidhardh, F. Semperlotti, Applications of distributed-order fractional operators: A review, Entropy, 23 (2021), 110. https://doi.org/10.3390/e23010110 doi: 10.3390/e23010110
    [14] G. S. F. Frederico, D. F. M. Torres, Fractional optimal control in the sense of Caputo and the fractional Noether's theorem, Int. Math. Forum, 3 (2008), 479–493.
    [15] G. S. F. Frederico, D. F. M. Torres, Fractional conservation laws in optimal control theory, Nonlinear Dyn., 53 (2008), 215–222. https://doi.org/10.1007/s11071-007-9309-z doi: 10.1007/s11071-007-9309-z
    [16] J. J. Gasimov, J. A. Asadzade, N. I. Mahmudov, Pontryagin maximum principle for fractional delay differential equations and controlled weakly singular Volterra delay integral equations, Qual. Theory Dyn. Syst., 23 (2024), 213. https://doi.org/10.1007/s12346-024-01049-1 doi: 10.1007/s12346-024-01049-1
    [17] H. P. Geering, Optimal control with engineering applications, Heidelberg: Springer Berlin, 2007. https://doi.org/10.1007/978-3-540-69438-0
    [18] J. Jiang, The distributed order models to characterize the flow and heat transfer of viscoelastic fluid between coaxial cylinders, Phys. Scr., 99 (2024), 015233. https://doi.org/10.1088/1402-4896/ad1379 doi: 10.1088/1402-4896/ad1379
    [19] R. Kamocki, Pontryagin maximum principle for fractional ordinary optimal control problems, Math. Methods Appl. Sci., 37 (2014), 1668–1686. https://doi.org/10.1002/mma.2928 doi: 10.1002/mma.2928
    [20] R. Kamocki, Pontryagin's maximum principle for a fractional integro-differential Lagrange problem, Commun. Nonlinear Sci. Numer. Simul., 128 (2024), 107598. https://doi.org/10.1016/j.cnsns.2023.107598 doi: 10.1016/j.cnsns.2023.107598
    [21] S. L. Khalaf, K. K. Kassid, A. R. Khudair, A numerical method for solving quadratic fractional optimal control problems, Results Control Optim., 13 (2023), 100330. https://doi.org/10.1016/j.rico.2023.100330 doi: 10.1016/j.rico.2023.100330
    [22] A. A. Kilbas, H. M. Srivastava, J. J. Trujillo, Theory and applications of fractional differential equations, In: North-Holland mathematics studies, Elsevier, 204 (2006), 1–523.
    [23] D. Kumar, J. Singh, Fractional calculus in medical and health science, Boca Raton: CRC Press, 2020. https://doi.org/10.1201/9780429340567
    [24] S. Lenhart, J. T. Workman, Optimal control applied to biological models, New York: Chapman & Hall/CRC, 2007. https://doi.org/10.1201/9781420011418
    [25] W. Li, S. Wang, V. Rehbock, Numerical solution of fractional optimal control, J. Optim. Theory Appl., 180 (2019), 556–573. https://doi.org/10.1007/s10957-018-1418-y doi: 10.1007/s10957-018-1418-y
    [26] D. Liberzon, Calculus of variations and optimal control theory: A concise introduction, Princeton University Press, 2012.
    [27] A. Lotfi, M. Dehghan, S. A. Yousefi, A numerical technique for solving fractional optimal control problems, Comput. Math. Appl., 62 (2011), 1055–1067. https://doi.org/10.1016/j.camwa.2011.03.044 doi: 10.1016/j.camwa.2011.03.044
    [28] F. Ndairou, I. Area, J. J. Nieto, C. J. Silva, D. F. M. Torres, Fractional model of COVID-19 applied to Galicia, Spain and Portugal, Chaos Solitons Fract., 144 (2021), 110652. https://doi.org/10.1016/j.chaos.2021.110652 doi: 10.1016/j.chaos.2021.110652
    [29] F. Ndairou, D. F. M. Torres, Distributed-order non-local optimal control, Axioms, 9 (2020), 124. https://doi.org/10.3390/axioms9040124 doi: 10.3390/axioms9040124
    [30] F. Ndairou, D. F. M. Torres, Pontryagin maximum principle for distributed-order fractional systems, Mathematics, 9 (2021), 1883. https://doi.org/10.3390/math9161883 doi: 10.3390/math9161883
    [31] K. B. Oldham, Fractional differential equations in electrochemistry, Adv. Eng. Softw., 41 (2010), 9–12. https://doi.org/10.1016/j.advengsoft.2008.12.012 doi: 10.1016/j.advengsoft.2008.12.012
    [32] S. F. Omid, S. Javad, D. F. M. Torres, A necessary condition of Pontryagin type for fuzzy fractional optimal control problems, Discrete Contin. Dyn. Syst. Ser. S, 11 (2018), 59–76. https://doi.org/10.3934/dcdss.2018004 doi: 10.3934/dcdss.2018004
    [33] R. Ozarslan, E. Bas, D. Baleanu, B. Acay, Fractional physical problems including wind-influenced projectile motion with Mittag-Leffler kernel, AIMS Mathematics, 5 (2020), 467–481. https://doi.org/10.3934/math.2020031 doi: 10.3934/math.2020031
    [34] L. S. Pontryagin, V. G. Boltyanskij, R. V. Gamkrelidze, E. F. Mishchenko, The mathematical theory of optimal processes, New York: John Wiley & Sons, 1962.
    [35] F. Riewe, Mechanics with fractional derivatives, Phys. Rev. E, 55 (1997), 3581–3592. https://doi.org/10.1103/PhysRevE.55.3581 doi: 10.1103/PhysRevE.55.3581
    [36] R. T. Rockafellar, Convex analysis, Princeton University Press, 1997.
    [37] S. Rogosin, M. Karpiyenya, Fractional models for analysis of economic risks, Fract. Calc. Appl. Anal., 26 (2023), 2602–2617. https://doi.org/10.1007/s13540-023-00202-y doi: 10.1007/s13540-023-00202-y
    [38] S. G. Samko, A. A. Kilbas, O. I. Marichev, Fractional integrals and derivatives: Theory and applications, Gordon and Breach Science Publishers, 1993.
    [39] A. Seierstad, K. Sydsaeter, Optimal control theory with economic applications, 1 Eds., North Holland, 1987.
    [40] J. V. C. Sousa, E. C. Oliveira, A Gronwall inequality and the Cauchy-type problem by means of \psi-Hilfer operator, Differ. Equ. Appl., 11 (2019), 87–106. http://dx.doi.org/10.7153/dea-2019-11-02 doi: 10.7153/dea-2019-11-02
    [41] D. Tonon, M. S. Aronna, D. Kalise, Optimal control: Novel directions and applications, Springer International Publishing, 2017.
    [42] X. Yi, Z. Gong, C. Liu, H. T. Cheong, K. L. Teo, S. Wang, A control parameterization method for solving combined fractional optimal parameter selection and optimal control problems, Commun. Nonlinear Sci. Numer. Simul., 141 (2025), 108462. https://doi.org/10.1016/j.cnsns.2024.108462 doi: 10.1016/j.cnsns.2024.108462
  • This article has been cited by:

    1. Byungsoo Moon, Orbital stability of periodic peakons for the generalized modified Camassa-Holm equation, 2021, 14, 1937-1632, 4409, 10.3934/dcdss.2021123
    2. K.H. Karlsen, Ya. Rybalko, Global semigroup of conservative weak solutions of the two-component Novikov equation, 2025, 86, 14681218, 104393, 10.1016/j.nonrwa.2025.104393
  • Reader Comments
  • © 2025 the Author(s), licensee AIMS Press. This is an open access article distributed under the terms of the Creative Commons Attribution License (http://creativecommons.org/licenses/by/4.0)
通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索

Metrics

Article views(163) PDF downloads(26) Cited by(0)

Other Articles By Authors

/

DownLoad:  Full-Size Img  PowerPoint
Return
Return

Catalog