In this work, we extended fractional optimal control (OC) theory by proving a version of Pontryagin's maximum principle and establishing sufficient optimality conditions for an OC problem. The dynamical system constraint in the OC problem under investigation is described by a generalized fractional derivative: the left-sided Caputo distributed-order fractional derivative with an arbitrary kernel. This approach provides a more versatile representation of dynamic processes, accommodating a broader range of memory effects and hereditary properties inherent in diverse physical, biological, and engineering systems.
Citation: Fátima Cruz, Ricardo Almeida, Natália Martins. A Pontryagin maximum principle for optimal control problems involving generalized distributional-order derivatives[J]. AIMS Mathematics, 2025, 10(5): 11939-11956. doi: 10.3934/math.2025539
[1] | Ailing Xiang, Liangchen Wang . Boundedness of a predator-prey model with density-dependent motilities and stage structure for the predator. Electronic Research Archive, 2022, 30(5): 1954-1972. doi: 10.3934/era.2022099 |
[2] | Jialu Tian, Ping Liu . Global dynamics of a modified Leslie-Gower predator-prey model with Beddington-DeAngelis functional response and prey-taxis. Electronic Research Archive, 2022, 30(3): 929-942. doi: 10.3934/era.2022048 |
[3] | Jiani Jin, Haokun Qi, Bing Liu . Hopf bifurcation induced by fear: A Leslie-Gower reaction-diffusion predator-prey model. Electronic Research Archive, 2024, 32(12): 6503-6534. doi: 10.3934/era.2024304 |
[4] | Xuemin Fan, Wenjie Zhang, Lu Xu . Global dynamics of a predator-prey model with prey-taxis and hunting cooperation. Electronic Research Archive, 2025, 33(3): 1610-1632. doi: 10.3934/era.2025076 |
[5] | Shuxia Pan . Asymptotic spreading in a delayed dispersal predator-prey system without comparison principle. Electronic Research Archive, 2019, 27(0): 89-99. doi: 10.3934/era.2019011 |
[6] | Yuan Tian, Yang Liu, Kaibiao Sun . Complex dynamics of a predator-prey fishery model: The impact of the Allee effect and bilateral intervention. Electronic Research Archive, 2024, 32(11): 6379-6404. doi: 10.3934/era.2024297 |
[7] | Érika Diz-Pita . Global dynamics of a predator-prey system with immigration in both species. Electronic Research Archive, 2024, 32(2): 762-778. doi: 10.3934/era.2024036 |
[8] | Miao Peng, Rui Lin, Zhengdi Zhang, Lei Huang . The dynamics of a delayed predator-prey model with square root functional response and stage structure. Electronic Research Archive, 2024, 32(5): 3275-3298. doi: 10.3934/era.2024150 |
[9] | Pinglan Wan . Dynamic behavior of stochastic predator-prey system. Electronic Research Archive, 2023, 31(5): 2925-2939. doi: 10.3934/era.2023147 |
[10] | Ling Xue, Min Zhang, Kun Zhao, Xiaoming Zheng . Controlled dynamics of a chemotaxis model with logarithmic sensitivity by physical boundary conditions. Electronic Research Archive, 2022, 30(12): 4530-4552. doi: 10.3934/era.2022230 |
In this work, we extended fractional optimal control (OC) theory by proving a version of Pontryagin's maximum principle and establishing sufficient optimality conditions for an OC problem. The dynamical system constraint in the OC problem under investigation is described by a generalized fractional derivative: the left-sided Caputo distributed-order fractional derivative with an arbitrary kernel. This approach provides a more versatile representation of dynamic processes, accommodating a broader range of memory effects and hereditary properties inherent in diverse physical, biological, and engineering systems.
This paper is devoted to the existence of weak solutions to the Cauchy problem for the two-component Novikov equation [18]
{mt+uvmx+(2vux+uvx)m=0,m=u−uxx,t>0,nt+uvnx+(2uvx+vux)n=0,n=v−vxx. | (1) |
Note that this system reduces respectively to the Novikov equation [23]
mt+3uuxm+u2mx=0, | (2) |
when
mt+2uxm+umx=0, | (3) |
when
The CH equation was proposed as a nonlinear model describing the unidirectional propagation of the shallow water waves over a flat bottom [1]. Based on the Hamiltonian theory of integrable systems, it was found earlier by using the method of recursion operator due to Fuchssteiner and Fokas [10]. It can also be obtained by using the tri-Hamiltonian duality approach related to the bi-Hamiltonian representation of the Korteweg-de Vries (KdV) equation [9,25]. The CH equation exhibits several remarkable properties. One is the the existence of the multi-peaked solitons on the line
The Novikov equation (2) can be viewed as a cubic generalization of the CH equation, which was introduced by Novikov [23,24] in the classification for a class of equations while they possesses higher-order generalized symmetries. Eq. (2) was proved to be integrable since it enjoys Lax-pair and bi-Hamiltonian structure [14], and is equivalent to the first equation in the negative flow of the Sawada-Kotera hierarchy via Liouville transformation [16]. The Novikov equation (2) also admits peaked solitons over the line
As the two-component generalization of Novikov equation (2), the so-called Geng-Xue system [11]
mt+3vuxm+uvmx=0,nt+3uvxn+uvnx=0, | (4) |
has been studied extensively [11,13]. The integrability [11,19], dynamics and structure of the peaked solitons of (4) [21] were discussed. In [13], well-posedness and wave breaking phenomena of the Cauchy problem of (4) were discussed. The single peakons and multi-peakons of system (4) were constructed in [21] by using compatibility of Lax-pair, which are not the weak solutions in the sense of distribution. Furthermore, the Geng-Xue system does not have the
The main object in this work is to investigate the existence of weak solutions to system (1). It is of great interest to understand the effect from interactions among the two-components, nonlinear dispersion and various nonlinear terms. More specifically, we shall consider the Cauchy problem of (1) and aim to leverage ideas from previous works on CH and Novikov equations. The weak solution of the Cauchy problem associated with (1) is established in Theorem 3.1.
The remainder of this paper is organized as follows. In the next section 2, we review some basic results and lemmas as well as invariant properties of momentum densities
In this section, we recall the local well-posedness, some properties of strong and weak solutions to equation (1) and several approximation results.
First, we introduce some notations. Throughout the paper, we denote the convolution by
With
{mt+uvmx+(2vux+uvx)m=0,m=u−uxx,t>0,x∈R,nt+uvnx+(2uvx+vux)n=0,n=v−vxx,u(0,x)=u0(x),v(0,x)=v0(x),x∈R. | (5) |
Note that if
{ut+uvux+Px∗(12u2xv+uuxvx+u2v)+12P∗(u2xvx)=0,t>0,x∈R,vt+uvvx+Px∗(12v2xu+vvxux+v2u)+12P∗(v2xux)=0,u(0,x)=u0(x),v(0,x)=v0(x),x∈R. | (6) |
Next we recall the local well-posedness and the conservation laws.
Lemma 2.1. [12] Let
u,v∈C([0,T);Hs(R))∩C1([0,T);Hs−1(R)) |
Moreover, the solution depends continuously on the initial data, i.e. the mapping
Lemma 2.2. [12] Let
∫R(u2(t,x)+u2x(t,x))dx=∫R(u20+u20x)dx,∫R(v2(t,x)+v2x(t,x))dx=∫R(v20+v20x)dx,∫R(u(t,x)v(t,x)+ux(t,x)vx(t,x))dx=∫R(u0v0+u0xv0x)dx. |
Moreover, we have
|u(t,x)|≤√22‖u0‖1,|v(t,x)|≤√22‖v0‖1. |
Note that equation (1) has the solitary waves with corner at their peaks. Obviously, such solitons are not strong solutions to equation (6). In order to provide a mathematical framework for the study of these solitons, we define the notion of weak solutions to equation (6). Let
Fu(u,v)=uvux+Px∗(12u2xv+uuxvx+u2v)+12P∗(u2xvx),Fv(u,v)=uvvx+Px∗(12v2xu+vvxux+v2u)+12P∗(v2xux). |
Then equation (6) can be written as
{ut+Fu(u,v)=0,vt+Fv(u,v)=0,u(0,x)=u0(x),v(0,x)=v0(x). | (7) |
Lemma 2.3. [22] Let
f,g∈L2((0,T);H1(R))anddfdt,dgdt∈L2((0,T);H−1(R)), |
then
⟨f(t),g(t)⟩−⟨f(s),g(s)⟩=∫ts⟨df(τ)dτ,g(τ)⟩dτ+∫ts⟨dg(τ)dτ,f(τ)⟩dτ |
for all
Throughout this paper, let
ρn=(∫Rρ(ξ)dξ)−1nρ(nx),x∈R,n≥1, |
where
ρ(x)={e1x2−1,for|x|<1,0,for|x|≥1. |
Next, we recall two crucial approximation results and two identities.
Lemma 2.4. [7] Let
[ρn∗(fμ)−(ρn∗f)(ρn∗μ)]→0,asn→∞inL1(R). |
Lemma 2.5. [7] Let
ρn∗(fg)−(ρn∗f)(ρn∗g)→0,asn→∞inL∞(R). |
Lemma 2.6. [7] Assume that
ddt∫R|ρn∗u|dx=∫R(ρn∗ut)sgn(ρn∗u)dx |
and
ddt∫R|ρn∗ux|dx=∫R(ρn∗uxt)sgn(ρn∗ux)dx. |
Consider the flow governed by
{dq(t,x)dt=(uv)(t,q),t>0,x∈R,q(0,x)=x,x∈R. | (8) |
Applying classical results in the theory of ODEs, one can obtain the following useful result on the above initial value problem.
Lemma 2.7. [12] Let
qx=exp(∫t0(uv)x(s,q(s,x))ds),∀(t,x)∈[0,T)×R. |
Furthermore, setting
m(t,q)=exp(−∫t0(2vux+uvx)(s,q(s,x))ds)m0,n(t,q)=exp(−∫t0(2uvx+vux)(s,q(s,x))ds)n0,∀(t,x)∈[0,T)×R. |
Theorem 2.8. Let
u,v∈C([0,T);Hs(R))∩C1([0,T);Hs−1(R)). |
Set
(i).m(t,⋅)≥0,n(t,⋅)≥0,u(t,⋅)≥0,v(t,⋅)≥0and|ux(t,⋅)|≤u(t,⋅),|vx(t,⋅)|≤v(t,⋅)onR;(ii).‖u(t,⋅)‖L1≤‖m(t,⋅)‖L1,‖u(t,⋅)‖L∞≤√22‖u(t,⋅)‖1=√22‖u0‖1,and‖v(t,⋅)‖L1≤‖n(t,⋅)‖L1,‖v(t,⋅)‖L∞≤√22‖v(t,⋅)‖1=√22‖v0‖1;(iii).‖ux(t,⋅)‖L1≤‖m(t,⋅)‖L1and‖vx(t,⋅)‖L1≤‖n(t,⋅)‖L1. |
Moreover, if
‖m(t,⋅)‖L1≤e‖u0‖1‖v0‖1t‖m0‖L1and‖n(t,⋅)‖L1≤e‖u0‖1‖v0‖1t‖n0‖L1. |
Proof. Let
u(t,x)=e−x2∫x−∞eym(t,y)dy+ex2∫∞xe−ym(t,y)dy, | (9) |
and
ux(t,x)=−e−x2∫x−∞eym(t,y)dy+ex2∫∞xe−ym(t,y)dy. | (10) |
From the above two relations and
|ux(t,x)|≤u(t,x)≤√22‖u(t,x)‖1. |
In view of Lemma 2.2, we obtain that
u(t,x)≤√22‖u0‖1,∀(t,x)∈R+×R. |
Since
((mn)13)t+((mn)13uv)x=0, |
it immediately follows that
ddt∫Rm(t,x)dx=−∫∞−∞(uvmx+(2vux+uvx)m)dx=∫∞−∞(vuxm−(uvm)x)dx≤‖u‖L∞‖v‖L∞∫∞−∞m(t,x)dx≤‖u0‖1‖v0‖1∫∞−∞m(t,x)dx. |
Since
‖m(t,⋅)‖L1≤e‖u0‖1‖v0‖1t‖m0‖L1. |
Similarly, we find
‖n(t,⋅)‖L1≤e‖u0‖1‖v0‖1t‖n0‖L1. |
This completes the proof of Theorem 2.8.
In this section, we will prove that there exists a unique global weak solution to equation (6), provided the initial data
Theorem 3.1. Let
u,v∈W1,∞(Rx×R)∩L∞(R+;H1(R)) |
with the initial data
Proof. First, we shall prove
‖u0‖L1=‖P∗m0‖L1=sup‖f‖L∞≤1∫Rf(x)(P∗m0)(x)dx=sup‖f‖L∞≤1∫Rf(x)∫RP(x−y)dm0(y)dx=sup‖f‖L∞≤1∫R(P∗f)(y)dm0(y)≤sup‖f‖L∞≤1‖P‖L1‖f‖L∞‖m0‖M(R)=‖m0‖M(R). | (11) |
Similarly, we have
‖v0‖L1≤‖n0‖M(R). | (12) |
We first prove that there exists a corresponding
Let us define
un0⟶u0H1(R),n→∞,vn0⟶v0H1(R),n→∞, | (13) |
and for all
‖un0‖1=‖ρn∗u0‖1≤‖u0‖1,‖vn0‖1≤‖v0‖1,‖un0‖L1=‖ρn∗u0‖L1≤‖u0‖L1,‖vn0‖L1≤‖v0‖L1, | (14) |
in view of Young's inequality. Note that for all
mn0=un0−un0,xx=ρn∗m0≥0,andnn0=vn0−vn0,xx=ρn∗v0≥0. |
Comparing with the proof of relation (11) and (12), we get
‖mn0‖L1≤‖m0‖M(R),and‖nn0‖L1≤‖n0‖M(R),n≥1. | (15) |
By Theorem 2.8, we obtain that there exists a global strong solution
un=un(⋅,un0),vn=vn(⋅,vn0)∈C([0,T);Hs(R))∩C1([0,T);Hs−1(R)) |
for every
‖unx(t,⋅)‖L∞≤‖un(t,⋅)‖L∞≤‖un(t,⋅)‖1=‖un0‖1≤‖u0‖1,‖vnx(t,⋅)‖L∞≤‖vn(t,⋅)‖L∞≤‖vn(t,⋅)‖1=‖vn0‖1≤‖v0‖1. | (16) |
By the above inequality, we have
‖un(t,⋅)vn(t,⋅)unx(t,⋅)‖L2≤‖un(t,⋅)‖L∞‖vn(t,⋅)‖L∞‖unx(t,⋅)‖L2≤‖un(t,⋅)‖21‖vn(t,⋅)‖1≤‖u0‖21‖v0‖1. | (17) |
Similarly, we have
‖vn(t,⋅)un(t,⋅)vnx(t,⋅)‖L2≤‖v0‖21‖u0‖1. | (18) |
By Young's inequality and (16), for all
‖Px∗(12(unx)2vn+ununxvnx+(un)2vn)+12P∗((unx)2vnx)‖L2≤‖Px‖L2‖12(unx)2vn+ununxvnx+(un)2vn‖L1+12‖P‖L2‖(unx)2vnx‖L1≤12‖unx‖2L2‖vn‖L∞+12‖un‖L∞‖unx‖L2‖vnx‖L2+‖un‖2L2‖vn‖L∞+12‖vnx‖L∞‖unx‖2L2≤52‖un‖21‖vn‖1≤52‖u0‖21‖v0‖1. | (19) |
Similarly, we get
‖Px∗(12(vnx)2un+vnunxvnx+(vn)2un)+12P∗((vnx)2unx)‖L2≤52‖v0‖21‖u0‖1. | (20) |
Combining (17)-(20) with equation (6) for all
‖ddtun(t,⋅)‖L2≤72‖u0‖21‖v0‖1,and‖ddtvn(t,⋅)‖L2≤72‖v0‖21‖u0‖1. | (21) |
For fixed
∫T0∫R([un(t,x)]2+[unx(t,x)]2+[unt(t,x)]2)dxdt≤(‖u0‖21+494‖u0‖41‖v0‖21)T,∫T0∫R([vn(t,x)]2+[vnx(t,x)]2+[vnt(t,x)]2)dxdt≤(‖v0‖21+494‖v0‖41‖u0‖21)T. | (22) |
It follows that the sequence
unk⇀uweaklyinH1(0,T)×R)fornk→∞ | (23) |
and
unk⟶u,a.e.on(0,T)×Rfornk→∞, | (24) |
for some
V[unkx(t,⋅)]=‖unkxx(t,⋅)‖L1≤‖unk(t,⋅)‖L1+‖mnk(t,⋅)‖L1≤2‖mnk(t,⋅)‖L1≤2e‖unk0‖1‖vnk0‖1t‖mnk0‖L1≤2e‖u0‖1‖v0‖1t‖m0‖M(R) |
and
‖unkx(t,⋅)‖L∞≤‖unk(t,⋅)‖1=‖unk0(t,⋅)‖1≤‖u0‖1. |
Applying Helly's theorem, we obtain that there exists a subsequence, denoted again by
V[ˆu(t,⋅)]≤2e‖u0‖1‖v0‖1t‖m0‖M(R). |
Since for almost all
unkx⟶uxa.e.on(0,T)×Rfornk→∞, | (25) |
and for a.e.
V[ux(t,⋅)]=‖uxx(t,⋅)‖M(R)≤2e‖u0‖1‖v0‖1t‖m0‖M(R). |
We can analogously extract a subsequence of
vnk⟶va.e.on(0,T)×Rfornk→∞andvnkx⟶vxa.e.on(0,T)×Rfornk→∞. | (26) |
By Theorem 2.8
‖12(unx)2vn+ununxvnx+(un)2vn+12(unx)2vnx‖L1≤3‖u0‖21‖v0‖1. |
For fixed
Px∗[12(unx)2vn+ununxvnx+(un)2vn]+P∗(12(unx)2vnx)⟶Px∗[12u2xvn+uuxvx+u2v]+P∗(12u2xvx),asn→∞. | (27) |
We can analogously obtain that
Px∗[12(vnx)2un+vnvnxunx+(vn)2un]+P∗(12(vnx)2unx)⟶Px∗[12v2xun+vvxux+v2u]+P∗(12v2xux),asn→∞. | (28) |
Combining (24)-(26) with (27) and (28), we deduce that
Since
u∈Cw,loc(R+;H1(R)). |
For a.e.
‖u(t,⋅)‖L∞≤‖u(t,⋅)‖1≤lim infnk→∞‖un(t,⋅)‖1=lim infnk→∞‖unk0(t,⋅)‖1≤lim infnk→∞‖P‖1‖mnk0(t,⋅)‖L1≤‖m0‖M(R), | (29) |
for a.e.
u∈L∞(R+×R)∩L∞(R+;H1(R)). |
Note that by Theorem 2.8 and (15), we have
‖unx(t,⋅)‖L∞≤‖un(t,⋅)‖L∞≤‖un(t,⋅)‖1≤‖P‖1‖mn0(t,⋅)‖L1≤‖m0(t,⋅)‖M(R). | (30) |
Combining this with (25), we deduce that
ux∈L∞(R+×R). |
This shows that
u∈W1,∞(R+×R)∩L∞(R+;H1(R)). |
Taking the same way as
v∈W1,∞(R+×R)∩L∞(R+;H1(R)). |
Please note that we use the subsequence of
Now, by a regularization technique, we prove that
{ρn∗ut+ρn∗(uvux)+ρn∗Px∗(12u2xv+uuxvx+u2v)+12ρn∗P∗(u2xvx)=0,ρn∗vt+ρn∗(uvvx)+ρn∗Px∗(12v2xv+vuxvx+v2u)+12ρn∗P∗(v2xux)=0. | (31) |
By differentiation of the first equation of (31), we obtain
ρn∗uxt+ρn∗(uvux)x+ρn∗Px∗(12u2xvx)+ρn∗Pxx∗(12u2xv+uuxvx+u2v)=0. | (32) |
Note that
ρn∗uxt+ρnx∗(uvux)+ρn∗P∗(12u2xv+uuxvx+u2v)−ρn∗(12u2xv+uuxvx+u2v)+ρn∗Px∗(12u2xvx)=0. | (33) |
Take these two equation (32) and (33) into the integration below, we obtain
12ddt∫R(ρn∗u)2+(ρn∗ux)2dx=∫R(ρn∗u)(ρn∗ut)+(ρn∗ux)(ρn∗uxt)dx=−∫R(ρn∗u)(ρn∗(uvux)+ρn∗Px∗(12u2xv+uuxvx+u2v)+ρn∗P∗(12u2xvx))dx−∫R(ρn∗ux)(ρnx∗(uvux)+ρn∗P∗(12u2xv+uuxvx+u2v)−ρn∗(12u2xv+uuxvx+u2v)+ρn∗Px∗(12u2xvx))dx. | (34) |
Note that
limn→∞‖ρn∗u−u‖L2=limn→∞‖ρn∗(uvux)−uvux‖L2=0. |
Therefore, by using H
∫R(ρn∗u)(ρn∗(uvux))dx⟶∫Ru2vuxdx,asn→∞. |
Similarly, for a.e.
∫R(ρn∗u)(ρn∗Px∗(12u2xv+uuxvx+u2v))dx⟶∫RuPx∗(12u2xv+uuxvx+u2v)dx,asn→∞, |
∫R(ρn∗u)(ρn∗P∗(12u2xvx))dx⟶∫RuP∗(12u2xvx)dx,asn→∞, |
∫R(ρn∗ux)(ρn∗P∗(12u2xv+uuxvx+u2v))dx⟶∫RuxP∗(12u2xv+uuxvx+u2v)dx,asn→∞, |
∫R(ρn∗ux)(ρn∗(12u2xv+uuxvx+u2v))dx⟶∫Rux(12u2xv+uuxvx+u2v)dx,asn→∞, |
∫R(ρn∗ux)(ρn∗Px∗(12u2xvx))dx⟶∫RuxPx∗(12u2xvx)dx,asn→∞, |
as
∫R(ρn∗ux)(ρnx∗(uvux))dx=−∫R(ρn,xx∗u)(ρ∗(uvux))dx+∫R(ρn,xx∗u)(ρn∗uv)(ρn∗ux)dx+12∫R(ρn∗ux)2(ρn∗(uv)x)dx. | (35) |
Observe that
∫R(ρn∗ux)2(ρn∗(uv)x)dx⟶∫Ru2x(uv)xdx,asn→∞. |
On the other hand
‖ρnxx∗u‖L1≤‖uxx‖M(R)≤2e‖u0‖1‖v0‖1t‖m0‖M(R),∀t∈[0,T). |
As
‖(ρn∗uv)(ρn∗ux)−(ρn∗(uvux))‖L∞→0,n→∞. |
Therefore,
∫R(ρn,xx∗u)((ρn∗uv)(ρn∗ux)−ρn∗(uvux))dx→0,n→∞. |
In view of the above relations and (35), we obtain
∫R(ρn∗ux)(ρnx∗(uvux))dx→12∫Ru2x(uv)xdx,n→∞. | (36) |
Let us define
Eun(t)=∫R(ρn∗u)2+(ρn∗ux)2dx, | (37) |
and
Gun(t)=−2∫R(ρn∗u)(ρn∗(uvux)+ρn∗Px∗(12u2xv+uuxvx+u2v)+ρn∗P∗(12u2xvx))dx−2∫R(ρn∗ux)(ρnx∗(uvux)+ρn∗P∗(12u2xv+uuxvx+u2v)−ρn∗(12u2xv+uuxvx+u2v)+ρn∗Px∗(12u2xvx))dx. |
We have proved that for fixed
{ddtEun(t)=Gun(t),n≥1,Gun(t)→0,n→∞. | (38) |
Therefore, we get
Eun(t)−Eun(0)=∫t0Gun(s)ds,t∈[0,T),n≥1. | (39) |
By Young's inequality and H
|Gun(t)|≤Ku(T),n≥1. |
In view of (38) and (39), an application of Lebesgue's dominated convergence theorem yields that for fixed a.e.
limn→∞(Eun(t)−Eun(0))=0. |
By (24) and the above relation, for fixed
Eu(u)=limn→∞Eun(t)=limn→∞Eun(0)=Eu(u0). |
By Theorem 2.8, we infer that for all fixed
Next, we prove that
By differentiation of the second equation of (31), we obtain this relation:
ρn∗vxt+ρnx∗(uvvx)+ρn∗P∗(12v2xu+vuxvx+v2u)−ρn∗(12v2xu+vuxvx+v2u)+ρn∗Px∗(12v2xux)=0. | (40) |
In view of (31), (33) and (40), we obtain
ddt∫R(ρn∗u)(ρn∗v)+(ρn∗ux)(ρn∗vx)dx=∫R(ρn∗u)(ρn∗vt)+(ρn∗ux)(ρn∗vxt)+(ρn∗ut)(ρn∗v)+(ρn∗uxt)(ρn∗vx)dx=−∫R(ρn∗u)(ρn∗(uvvx)+ρn∗Px∗(12v2xu+vuxvx+v2u) |
+ρn∗P∗(12v2xux))dx−∫R(ρn∗ux)(ρnx∗(uvvx)+ρn∗P∗(12v2xu+vuxvx+v2u)−ρn∗(12v2xu+vuxvx+v2u)+ρn∗Px∗(12v2xux))dx−∫R(ρn∗v)(ρn∗(vuux)+ρn∗Px∗(12u2xv+uuxvx+u2v)+ρn∗P∗(12u2xvx))dx−∫R(ρn∗vx)(ρnx∗(uvux)+ρn∗P∗(12u2xv+uuxvx+u2v)−ρn∗(12u2xv+uuxvx+u2v)+ρn∗Px∗(12u2xvx))dx. | (41) |
We can analogously get the similar convergence like the case
It is nature to define
Hn(t)=∫R(ρn∗u)(ρn∗v)+(ρn∗ux)(ρn∗vx)dx, | (42) |
and
Gu,vn(t)=−∫R(ρn∗u)(ρn∗(uvvx)+ρn∗Px∗(12v2xu+vuxvx+v2u)+ρn∗P∗(12v2xux))dx−∫R(ρn∗ux)(ρnx∗(uvvx)+ρn∗P∗(12v2xu+vuxvx+v2u)−ρn∗(12v2xu+vuxvx+v2u)+ρn∗Px∗(12v2xux))dx−∫R(ρn∗v)(ρn∗(vuux)+ρn∗Px∗(12u2xv+uuxvx+u2v)+ρn∗P∗(12u2xvx))dx−∫R(ρn∗vx)(ρnx∗(uvux)+ρn∗P∗(12u2xv+uuxvx+u2v)−ρn∗(12u2xv+uuxvx+u2v)+ρn∗Px∗(12u2xvx))dx. | (43) |
And it is easy to get
Hn(t)−Hn(0)=∫t0Gu,vn(s)ds,t∈[0,T),n≥1. | (44) |
Similarly, we get this estimate by using Young's inequality and Holder's inequality:
|Gu,vn(t)|≤Ku,v(T),n≥1. |
An application of Lebesgue's dominated convergence theorem yields that for fixed a.e.
limn→∞[Hn(t)−Hn(0)]=0. |
By these convergence above, for fixed
H(u,v)=limn→∞Hn(t)=limn→∞Hn(0)=H(u0,v0), |
which indicates that
Since
‖m(t,⋅)‖≤3e‖u0‖1‖v0‖1t‖m0‖M(R). |
For any fixed
(u(t,⋅)−uxx(t,⋅))∈M(R). |
Therefore, in view of (24) and (25), we obtain that for all
unk(t,⋅)−unkxx(t,⋅)→u(t,⋅)−uxx(t,⋅)inD′(R). |
Since
\begin{eqnarray*} \begin{aligned} u(t, \cdot)-u_{xx}(t, \cdot) \in {\mathcal {M}}^+(\mathbb R). \end{aligned} \end{eqnarray*} |
Similarly, we arrive at the conclusion:
\begin{eqnarray*} \begin{aligned} v(t, \cdot)-v_{xx}(t, \cdot)\in {\mathcal {M}}^+(\mathbb R). \end{aligned} \end{eqnarray*} |
Finally, we show the uniqueness of the weak solutions of equation (6). Let
\begin{eqnarray*} \begin{aligned} (f, g)\in W^{1, \infty}({\mathbb R}_+\times \mathbb R)\cap L^\infty({\mathbb R}_+;H^1(\mathbb R))\times W^{1, \infty}({\mathbb R}_+\times \mathbb R)\cap L^\infty({\mathbb R}_+;H^1(\mathbb R)) \end{aligned} \end{eqnarray*} |
Note that
\begin{eqnarray*} \begin{aligned} &\|u(t, \cdot)-u_{xx}(t, \cdot)\|_{{\mathcal {M}}(\mathbb R)}\leq 3e^{\|u_0\|_1\|v_0\|_1t}\|m_0\|_{{\mathcal {M}}(\mathbb R)}, \\ &\|v(t, \cdot)-v_{xx}(t, \cdot)\|_{{\mathcal {M}}(\mathbb R)}\leq 3e^{\|u_0\|_1\|v_0\|_1t}\|n_0\|_{{\mathcal {M}}(\mathbb R)}\quad {\rm for} \quad{\rm a.e.}\quad t\in[0, T). \end{aligned} \end{eqnarray*} |
Define
\begin{eqnarray*} \begin{aligned} M(T) = \sup\limits_{t\in[0, T)}&\left\{\|u(t, \cdot)-u_{xx}(t, \cdot)\|_{{\mathcal {M}}(\mathbb R)}+\|v(t, \cdot)-v_{xx}(t, \cdot)\|_{{\mathcal {M}}(\mathbb R)}\right.\\ &\qquad\qquad\qquad\left.+\|\bar{u}(t, \cdot)-\bar{u}_{xx}(t, \cdot)\|_{{\mathcal {M}}(\mathbb R)}+\|\bar{v}(t, \cdot)-\bar{v}_{xx}(t, \cdot)\|_{{\mathcal {M}}(\mathbb R)}\right\}. \end{aligned} \end{eqnarray*} |
Then for fixed
\begin{eqnarray} \begin{aligned} &\|u(t, \cdot)\|_{L^1}\leq \|P\|_{L^1}M(T) = M(T), \\ &\|u_x(t, \cdot)\|_{L^1}\leq \|P_x\|_{L^1}M(T) = M(T), \\ &\|v(t, \cdot)\|_{L^1}, \|v_x(t, \cdot)\|_{L^1}, \|\bar{u}(t, \cdot)\|_{L^1}, \|\bar{u}_x(t, \cdot)\|_{L^1}, \|\bar{v}(t, \cdot)\|_{L^1}\, {\rm{and}}\, \|\bar{v}_x(t, \cdot)\|_{L^1}\leq M(T). \end{aligned} \end{eqnarray} | (45) |
On the other hand, from (29) and (30), we have
\begin{eqnarray} \begin{aligned} &\|u(t, \cdot)\|_{L^\infty}\leq \|m_0\|_{{\mathcal {M}}(\mathbb R)}\leq N, \qquad \|u_x(t, \cdot)\|_{L^\infty}\leq \|m_0\|_{{\mathcal {M}}(\mathbb R)}\leq N, \\ &\|v(t, \cdot)\|_{L^\infty}\leq \|n_0\|_{{\mathcal {M}}(\mathbb R)}\leq N, \qquad \|v_x(t, \cdot)\|_{L^\infty}\leq \|n_0\|_{{\mathcal {M}}(\mathbb R)}\leq N, \\ &\|\bar{u}(t, \cdot)\|_{L^\infty}, \|\bar{u}_x(t, \cdot)\|_{L^\infty}, \|\bar{v}(t, \cdot)\|_{L^\infty}\, {\rm{and}}\, \|\bar{v}_x(t, \cdot)\|_{L^\infty}\leq N. \end{aligned} \end{eqnarray} | (46) |
Let us define
\begin{eqnarray*} \begin{aligned} \hat{u}(t, x) = u(t, x)-\bar{u}(t, x)\quad {\rm{and}}\quad \hat{v}(t, x) = v(t, x)-\bar{v}(t, x), \quad (t, x)\in[0, T)\times\mathbb R. \end{aligned} \end{eqnarray*} |
Convoluting equation (6) for
\begin{eqnarray} \begin{aligned} {\frac d{dt}}\int_{\mathbb R}|\rho_n\ast\hat{u}|dx = &\int_{\mathbb R}\rho_n\ast\hat{u}_t{\rm{sgn}}(\rho_n\ast\hat{u})dx\\ = &-\int_{\mathbb R}\rho_n\ast\left(\hat{u}vu_x+\bar{u}u_x\hat{v}+\bar{u}\bar{v}\hat{u}_x\right){\rm{sgn}}(\rho_n\ast\hat{u})dx\\ & -\int_{\mathbb R}\rho_n\ast P_{xx}{\rm{*}}({\frac 12}\hat{u}(u_x+\bar{u}_x)v+{\frac 12}\bar{u}^2_x\hat{v}+\hat{u}u_xv_x+\bar{u}v_x\hat{u}_x\\ &+\bar{u}\bar{u}_x\hat{v}_x+\hat{u}(u+\bar{u})v+u^2\hat{v}){\rm{sgn}}(\rho_{nx}\ast\hat{u})dx\\ &-\int_{\mathbb R}\rho_n\ast{\frac 12}P\ast\left(\hat{u}_x(u_x+\bar{u}_x)v_x+\bar{u}^2_x\hat{v}_x\right){\rm{sgn}}(\rho_n\ast\hat{u})dx. \end{aligned} \end{eqnarray} | (47) |
Using (46) and Young's inequality, we infer that for a.e.
\begin{eqnarray} \begin{aligned} &{\frac d{dt}}\int_{\mathbb R}|\rho_n\ast\hat{u}|dx\\ &\leq C\left(\int_{\mathbb R}|\rho_n\ast\hat{u}|dx+\int_{\mathbb R}|\rho_n\ast\hat{u}_x|dx+\int_{\mathbb R}|\rho_n\ast\hat{v}|dx+\int_{\mathbb R}|\rho_n\ast\hat{v}_x|dx\right). \end{aligned} \end{eqnarray} | (48) |
where
\begin{eqnarray} \begin{aligned} {\frac d{dt}}\int_{\mathbb R}|\rho_n\ast\hat{u}_x|dx = &\int_{\mathbb R}\rho_n\ast\hat{u}_{xt}{\rm{sgn}}(\rho_{nx}\ast\hat{u})dx\\ = &-\int_{\mathbb R}\rho_n\ast\left(\hat{u}vu_x+\bar{u}u_x\hat{v}+\bar{u}\bar{v}\hat{u}_x\right)_x{\rm{sgn}}(\rho_{nx}\ast\hat{u})dx\\ -&\int_{\mathbb R}\rho_n\ast P_{xx}\ast({\frac 12}\hat{u}(u_x+\bar{u}_x)v+{\frac 12}\bar{u}^2_x\hat{v}+\hat{u}u_xv_x+\bar{u}v_x\hat{u}_x\\ &\qquad\qquad+\bar{u}\bar{u}_x\hat{v}_x+\hat{u}(u+\bar{u})v+u^2\hat{v}){\rm{sgn}}(\rho_{nx}\ast\hat{u})dx\\ -&\int_{\mathbb R}\rho_n\ast{\frac 12}P_x\ast\left(\hat{u}_x(u_x+\bar{u}_x)v_x+\bar{u}^2_x\hat{v}_x\right){\rm{sgn}}(\rho_{nx}\ast\hat{u})dx\\ = &I_1+I_2+I_3. \end{aligned} \end{eqnarray} | (49) |
For the term
\begin{eqnarray*} \begin{aligned} &I_1\\ = &-\int_{\mathbb R}\rho_n\ast(\hat{u}_xvu_x+\hat{u}u_xv_x+\hat{u}vu_{xx}+\bar{u}_xu_{x}\hat{v}+\bar{u}u_{xx}\hat{v}+\bar{u}u_x\hat{v}_x\\ &\qquad\qquad\qquad\qquad+\bar{u}_x\bar{v}\hat{u}_x+\bar{u}\bar{v}_x\hat{u}_x+\bar{u}\bar{v}\hat{u}_{xx}){\rm{sgn}}(\rho_{nx}\ast \hat{u})dx\\ &\leq C\left(\int_{\mathbb R}|\rho_n\ast\hat{u}|dx+\int_{\mathbb R}|\rho_n\ast\hat{u}_x|dx+\int_{\mathbb R}|\rho_n\ast\hat{v}|dx+\int_{\mathbb R}|\rho_n\ast\hat{v}_x|dx\right)\\ &\qquad\qquad\qquad\qquad-\int_{\mathbb R}\rho_n\ast(\hat{u}vu_{xx}+\bar{u}u_{xx}\hat{v}+\bar{u}\bar{v}\hat{u}_{xx}){\rm{sgn}}(\rho_{nx}\ast \hat{u})dx\\ &\leq C\left(\int_{\mathbb R}|\rho_n\ast\hat{u}|dx+\int_{\mathbb R}|\rho_n\ast\hat{u}_x|dx+\int_{\mathbb R}|\rho_n\ast\hat{v}|dx+\int_{\mathbb R}|\rho_n\ast\hat{v}_x|dx\right)\\ &-\int_{\mathbb R}(\rho_n\ast\hat{u}v)(\rho_n\ast u_{xx}){\rm{sgn}}(\rho_{nx}\ast \hat{u})dx-\int_{\mathbb R}(\rho_n\ast\bar{u}\hat{v})(\rho_n\ast u_{xx}){\rm{sgn}}(\rho_{nx}\ast \hat{u})dx\\ &\qquad\qquad\qquad\qquad-\int_{\mathbb R}(\rho_n\ast\bar{u}\bar{v})(\rho_n\ast \hat{u}_{xx}){\rm{sgn}}(\rho_{nx}\ast \hat{u})dx+R_n(t) \end{aligned} \end{eqnarray*} |
\begin{eqnarray} \begin{aligned}&\leq C\left(\int_{\mathbb R}|\rho_n\ast\hat{u}|dx+\int_{\mathbb R}|\rho_n\ast\hat{u}_x|dx+\int_{\mathbb R}|\rho_n\ast\hat{v}|dx+\int_{\mathbb R}|\rho_n\ast\hat{v}_x|dx\right)\\ &+\int_{\mathbb R}(\rho_n\ast(\hat{u}v)_x)(\rho_n\ast u_x){\rm{sgn}}(\rho_{nx}\ast \hat{u})dx+\int_{\mathbb R}(\rho_n\ast(\bar{u}\hat{v})_x)(\rho_n\ast u_x){\rm{sgn}}(\rho_{nx}\ast \hat{u})dx\\ &\qquad\qquad\qquad\qquad+\int_{\mathbb R}(\rho_n\ast(\bar{u}\bar{v})_x)(\rho_n\ast \hat{u}_x){\rm{sgn}}(\rho_{nx}\ast \hat{u})dx+R_n(t)\\ &\leq C\left(\int_{\mathbb R}|\rho_n\ast\hat{u}|dx+\int_{\mathbb R}|\rho_n\ast\hat{u}_x|dx+\int_{\mathbb R}|\rho_n\ast\hat{v}|dx+\int_{\mathbb R}|\rho_n\ast\hat{v}_x|dx\right) +R_n(t), \end{aligned} \end{eqnarray} | (50) |
where C is a constant depending on
\begin{eqnarray} \left\{ \begin{aligned} &R_n(t)\longrightarrow 0, \qquad n\rightarrow\infty, \\ &|R_n(t)|\leq \kappa(T), \;\;\, n\geq 1, \;\;t\in[0, T). \end{aligned} \right. \end{eqnarray} | (51) |
For the second term
\begin{eqnarray} \begin{aligned} &I_2\\ = -&\int_{\mathbb R}\rho_n\ast P_{xx}\ast\left({\frac 12}\hat{u}(u_x+\bar{u}_x)v+{\frac 12}\bar{u}^2_x\hat{v}+\hat{u}u_xv_x+\bar{u}v_x\hat{u}_x\right.\\ &\qquad+\left.\bar{u}\bar{u}_x\hat{v}_x+\hat{u}(u+\bar{u})v+u^2\hat{v}\right){\rm{sgn}}(\rho_{nx}\ast\hat{u})dx\\ \leq& 2\int_{\mathbb R}\rho_n\ast\left|{\frac 12}\hat{u}(u_x+\bar{u}_x)v+{\frac 12}\bar{u}^2_x\hat{v}+\hat{u}u_xv_x+\bar{u}v_x\hat{u}_x+\bar{u}\bar{u}_x\hat{v}_x+\hat{u}(u+\bar{u})v+u^2\hat{v}\right|dx\\ \leq& C\left(\int_{\mathbb R}|\rho_n\ast\hat{u}|dx+\int_{\mathbb R}|\rho_n\ast\hat{u}_x|dx+\int_{\mathbb R}|\rho_n\ast\hat{v}|dx+\int_{\mathbb R}|\rho_n\ast\hat{v}_x|dx\right). \end{aligned} \end{eqnarray} | (52) |
For the final term
\begin{eqnarray} \begin{aligned} I_3 = -&\int_{\mathbb R}\rho_n\ast{\frac 12}P_x\ast\left(\hat{u}_x(u_x+\bar{u}_x)v_x+\bar{u}^2_x\hat{v}_x\right){\rm{sgn}}(\rho_{nx}\ast\hat{u})dx\\ \leq& C\left(\int_{\mathbb R}|\rho_n\ast\hat{u}|dx+\int_{\mathbb R}|\rho_n\ast\hat{u}_x|dx+\int_{\mathbb R}|\rho_n\ast\hat{v}|dx+\int_{\mathbb R}|\rho_n\ast\hat{v}_x|dx\right). \end{aligned} \end{eqnarray} | (53) |
Adding these three terms, we obtain
\begin{eqnarray} \begin{aligned} &{\frac d{dt}}\int_{\mathbb R}|\rho_n\ast\hat{u}_x|dx\\ &\leq C\left(\int_{\mathbb R}|\rho_n\ast\hat{u}|dx+\int_{\mathbb R}|\rho_n\ast\hat{u}_x|dx+\int_{\mathbb R}|\rho_n\ast\hat{v}|dx+\int_{\mathbb R}|\rho_n\ast\hat{v}_x|dx\right)+R_n(t). \end{aligned} \end{eqnarray} | (54) |
For these terms
\begin{eqnarray} \begin{aligned} &{\frac d{dt}}\int_{\mathbb R}|\rho_n\ast\hat{v}|dx\\ &\leq C\left(\int_{\mathbb R}|\rho_n\ast\hat{u}|dx+\int_{\mathbb R}|\rho_n\ast\hat{u}_x|dx+\int_{\mathbb R}|\rho_n\ast\hat{v}|dx+\int_{\mathbb R}|\rho_n\ast\hat{v}_x|dx\right), \\ &{\frac d{dt}}\int_{\mathbb R}|\rho_n\ast\hat{v}_x|dx\\ &\leq C\left(\int_{\mathbb R}|\rho_n\ast\hat{u}|dx+\int_{\mathbb R}|\rho_n\ast\hat{u}_x|dx+\int_{\mathbb R}|\rho_n\ast\hat{v}|dx+\int_{\mathbb R}|\rho_n\ast\hat{v}_x|dx\right)+R_n(t). \end{aligned} \end{eqnarray} | (55) |
From (48), (54) and (55), we infer that
\begin{eqnarray} \begin{aligned} &{\frac d{dt}}\left(\int_{\mathbb R}|\rho_n\ast\hat{u}|dx+\int_{\mathbb R}|\rho_n\ast\hat{u}_x|dx+\int_{\mathbb R}|\rho_n\ast\hat{v}|dx+\int_{\mathbb R}|\rho_n\ast\hat{v}_x|dx\right)\\ &\leq C\left(\int_{\mathbb R}|\rho_n\ast\hat{u}|dx+\int_{\mathbb R}|\rho_n\ast\hat{u}_x|dx+\int_{\mathbb R}|\rho_n\ast\hat{v}|dx+\int_{\mathbb R}|\rho_n\ast\hat{v}_x|dx\right)+R_n(t). \end{aligned} \end{eqnarray} | (56) |
If
\begin{eqnarray} \begin{aligned} &\left(\int_{\mathbb R}|\rho_n\ast\hat{u}|dx+\int_{\mathbb R}|\rho_n\ast\hat{u}_x|dx+\int_{\mathbb R}|\rho_n\ast\hat{v}|dx+\int_{\mathbb R}|\rho_n\ast\hat{v}_x|dx\right)\\ &\leq e^{\int^t_0C+\tilde{R}_n(\tau)d\tau}\left(|\rho_n\ast\hat{u}|+|\rho_n\ast\hat{u}_x|+|\rho_n\ast\hat{v}|+|\rho_n\ast\hat{v}_x|\right)(0, x), \end{aligned} \end{eqnarray} | (57) |
where
\begin{eqnarray} \begin{aligned} &\left(\int_{\mathbb R}|\rho_n\ast\hat{u}|dx+\int_{\mathbb R}|\rho_n\ast\hat{u}_x|dx+\int_{\mathbb R}|\rho_n\ast\hat{v}|dx+\int_{\mathbb R}|\rho_n\ast\hat{v}_x|dx\right)\\ &\leq e^{Ct}\left(|\rho_n\ast\hat{u}|+|\rho_n\ast\hat{u}_x|+|\rho_n\ast\hat{v}|+|\rho_n\ast\hat{v}_x|\right)(0, x), \end{aligned} \end{eqnarray} | (58) |
As
[1] |
O. P. Agrawal, A general formulation and solution scheme for fractional optimal control problems, Nonlinear Dyn., 38 (2004), 323–337. https://doi.org/10.1007/s11071-004-3764-6 doi: 10.1007/s11071-004-3764-6
![]() |
[2] |
O. P. Agrawal, A formulation and a numerical scheme for fractional optimal control problems, IFAC Proc. Vol., 39 (2006), 68–72. https://doi.org/10.3182/20060719-3-PT-4902.00011 doi: 10.3182/20060719-3-PT-4902.00011
![]() |
[3] |
R. Almeida, A Caputo fractional derivative of a function with respect to another function, Commun. Nonlinear Sci. Numer. Simul., 44 (2017), 460–481. https://doi.org/10.1016/j.cnsns.2016.09.006 doi: 10.1016/j.cnsns.2016.09.006
![]() |
[4] |
R. Almeida, A. B. Malinowska, M. T. T. Monteiro, Fractional differential equations with a Caputo derivative with respect to a kernel function and their applications, Math. Methods Appl. Sci., 41 (2018), 336–352. https://doi.org/10.1002/mma.4617 doi: 10.1002/mma.4617
![]() |
[5] |
M. Bergounioux, L. Bourdin, Pontryagin maximum principle for general Caputo fractional optimal control problems with Bolza cost and terminal constraints, ESAIM Control Optim. Calc. Var., 26 (2020), 35. https://doi.org/10.1051/cocv/2019021 doi: 10.1051/cocv/2019021
![]() |
[6] |
A. Boukhouima, K. Hattaf, E. M. Lotfi, M. Mahrouf, D. F. M. Torres, N. Yousfi, Lyapunov functions for fractional-order systems in biology: Methods and applications, Chaos Solitons Fractals, 140 (2020), 110224. https://doi.org/10.1016/j.chaos.2020.110224 doi: 10.1016/j.chaos.2020.110224
![]() |
[7] | B. van Brunt, The calculus of variations, New York: Springer, 2003. https://doi.org/10.1007/b97436 |
[8] |
M. Caputo, Mean fractional-order-derivatives differential equations and filters, Ann. Univ. Ferrara, 41 (1995), 73–84. https://doi.org/10.1007/BF02826009 doi: 10.1007/BF02826009
![]() |
[9] |
J. F. Chen, H. T. Quan, Optimal control theory for maximum power of Brownian heat engines, Phys. Rev. E, 110 (2024), L042105. https://doi.org/10.1103/PhysRevE.110.L042105 doi: 10.1103/PhysRevE.110.L042105
![]() |
[10] |
F. Cruz, R. Almeida, N. Martins, Optimality conditions for variational problems involving distributed-order fractional derivatives with arbitrary kernels, AIMS Mathematics, 6 (2021), 5351–5369. https://doi.org/10.3934/math.2021315 doi: 10.3934/math.2021315
![]() |
[11] |
A. N. Daryina, A. I. Diveev, D. Yu. Karamzin, F. L. Pereira, E. A. Sofronova, R. A. Chertovskikh, Regular approximations of the fastest motion of mobile robot under bounded state variables, Comput. Math. Math. Phys., 62 (2022), 1539–1558. https://doi.org/10.1134/S0965542522090093 doi: 10.1134/S0965542522090093
![]() |
[12] |
K. Diethelm, N. J. Ford, Analysis of fractional differential equations, J. Math. Anal. Appl., 265 (2002), 229–248. https://doi.org/10.1006/jmaa.2000.7194 doi: 10.1006/jmaa.2000.7194
![]() |
[13] |
W. Ding, S. Patnaik, S. Sidhardh, F. Semperlotti, Applications of distributed-order fractional operators: A review, Entropy, 23 (2021), 110. https://doi.org/10.3390/e23010110 doi: 10.3390/e23010110
![]() |
[14] | G. S. F. Frederico, D. F. M. Torres, Fractional optimal control in the sense of Caputo and the fractional Noether's theorem, Int. Math. Forum, 3 (2008), 479–493. |
[15] |
G. S. F. Frederico, D. F. M. Torres, Fractional conservation laws in optimal control theory, Nonlinear Dyn., 53 (2008), 215–222. https://doi.org/10.1007/s11071-007-9309-z doi: 10.1007/s11071-007-9309-z
![]() |
[16] |
J. J. Gasimov, J. A. Asadzade, N. I. Mahmudov, Pontryagin maximum principle for fractional delay differential equations and controlled weakly singular Volterra delay integral equations, Qual. Theory Dyn. Syst., 23 (2024), 213. https://doi.org/10.1007/s12346-024-01049-1 doi: 10.1007/s12346-024-01049-1
![]() |
[17] | H. P. Geering, Optimal control with engineering applications, Heidelberg: Springer Berlin, 2007. https://doi.org/10.1007/978-3-540-69438-0 |
[18] |
J. Jiang, The distributed order models to characterize the flow and heat transfer of viscoelastic fluid between coaxial cylinders, Phys. Scr., 99 (2024), 015233. https://doi.org/10.1088/1402-4896/ad1379 doi: 10.1088/1402-4896/ad1379
![]() |
[19] |
R. Kamocki, Pontryagin maximum principle for fractional ordinary optimal control problems, Math. Methods Appl. Sci., 37 (2014), 1668–1686. https://doi.org/10.1002/mma.2928 doi: 10.1002/mma.2928
![]() |
[20] |
R. Kamocki, Pontryagin's maximum principle for a fractional integro-differential Lagrange problem, Commun. Nonlinear Sci. Numer. Simul., 128 (2024), 107598. https://doi.org/10.1016/j.cnsns.2023.107598 doi: 10.1016/j.cnsns.2023.107598
![]() |
[21] |
S. L. Khalaf, K. K. Kassid, A. R. Khudair, A numerical method for solving quadratic fractional optimal control problems, Results Control Optim., 13 (2023), 100330. https://doi.org/10.1016/j.rico.2023.100330 doi: 10.1016/j.rico.2023.100330
![]() |
[22] | A. A. Kilbas, H. M. Srivastava, J. J. Trujillo, Theory and applications of fractional differential equations, In: North-Holland mathematics studies, Elsevier, 204 (2006), 1–523. |
[23] | D. Kumar, J. Singh, Fractional calculus in medical and health science, Boca Raton: CRC Press, 2020. https://doi.org/10.1201/9780429340567 |
[24] | S. Lenhart, J. T. Workman, Optimal control applied to biological models, New York: Chapman & Hall/CRC, 2007. https://doi.org/10.1201/9781420011418 |
[25] |
W. Li, S. Wang, V. Rehbock, Numerical solution of fractional optimal control, J. Optim. Theory Appl., 180 (2019), 556–573. https://doi.org/10.1007/s10957-018-1418-y doi: 10.1007/s10957-018-1418-y
![]() |
[26] | D. Liberzon, Calculus of variations and optimal control theory: A concise introduction, Princeton University Press, 2012. |
[27] |
A. Lotfi, M. Dehghan, S. A. Yousefi, A numerical technique for solving fractional optimal control problems, Comput. Math. Appl., 62 (2011), 1055–1067. https://doi.org/10.1016/j.camwa.2011.03.044 doi: 10.1016/j.camwa.2011.03.044
![]() |
[28] |
F. Ndairou, I. Area, J. J. Nieto, C. J. Silva, D. F. M. Torres, Fractional model of COVID-19 applied to Galicia, Spain and Portugal, Chaos Solitons Fract., 144 (2021), 110652. https://doi.org/10.1016/j.chaos.2021.110652 doi: 10.1016/j.chaos.2021.110652
![]() |
[29] |
F. Ndairou, D. F. M. Torres, Distributed-order non-local optimal control, Axioms, 9 (2020), 124. https://doi.org/10.3390/axioms9040124 doi: 10.3390/axioms9040124
![]() |
[30] |
F. Ndairou, D. F. M. Torres, Pontryagin maximum principle for distributed-order fractional systems, Mathematics, 9 (2021), 1883. https://doi.org/10.3390/math9161883 doi: 10.3390/math9161883
![]() |
[31] |
K. B. Oldham, Fractional differential equations in electrochemistry, Adv. Eng. Softw., 41 (2010), 9–12. https://doi.org/10.1016/j.advengsoft.2008.12.012 doi: 10.1016/j.advengsoft.2008.12.012
![]() |
[32] |
S. F. Omid, S. Javad, D. F. M. Torres, A necessary condition of Pontryagin type for fuzzy fractional optimal control problems, Discrete Contin. Dyn. Syst. Ser. S, 11 (2018), 59–76. https://doi.org/10.3934/dcdss.2018004 doi: 10.3934/dcdss.2018004
![]() |
[33] |
R. Ozarslan, E. Bas, D. Baleanu, B. Acay, Fractional physical problems including wind-influenced projectile motion with Mittag-Leffler kernel, AIMS Mathematics, 5 (2020), 467–481. https://doi.org/10.3934/math.2020031 doi: 10.3934/math.2020031
![]() |
[34] | L. S. Pontryagin, V. G. Boltyanskij, R. V. Gamkrelidze, E. F. Mishchenko, The mathematical theory of optimal processes, New York: John Wiley & Sons, 1962. |
[35] |
F. Riewe, Mechanics with fractional derivatives, Phys. Rev. E, 55 (1997), 3581–3592. https://doi.org/10.1103/PhysRevE.55.3581 doi: 10.1103/PhysRevE.55.3581
![]() |
[36] | R. T. Rockafellar, Convex analysis, Princeton University Press, 1997. |
[37] |
S. Rogosin, M. Karpiyenya, Fractional models for analysis of economic risks, Fract. Calc. Appl. Anal., 26 (2023), 2602–2617. https://doi.org/10.1007/s13540-023-00202-y doi: 10.1007/s13540-023-00202-y
![]() |
[38] | S. G. Samko, A. A. Kilbas, O. I. Marichev, Fractional integrals and derivatives: Theory and applications, Gordon and Breach Science Publishers, 1993. |
[39] | A. Seierstad, K. Sydsaeter, Optimal control theory with economic applications, 1 Eds., North Holland, 1987. |
[40] |
J. V. C. Sousa, E. C. Oliveira, A Gronwall inequality and the Cauchy-type problem by means of \psi-Hilfer operator, Differ. Equ. Appl., 11 (2019), 87–106. http://dx.doi.org/10.7153/dea-2019-11-02 doi: 10.7153/dea-2019-11-02
![]() |
[41] | D. Tonon, M. S. Aronna, D. Kalise, Optimal control: Novel directions and applications, Springer International Publishing, 2017. |
[42] |
X. Yi, Z. Gong, C. Liu, H. T. Cheong, K. L. Teo, S. Wang, A control parameterization method for solving combined fractional optimal parameter selection and optimal control problems, Commun. Nonlinear Sci. Numer. Simul., 141 (2025), 108462. https://doi.org/10.1016/j.cnsns.2024.108462 doi: 10.1016/j.cnsns.2024.108462
![]() |
1. | Byungsoo Moon, Orbital stability of periodic peakons for the generalized modified Camassa-Holm equation, 2021, 14, 1937-1632, 4409, 10.3934/dcdss.2021123 | |
2. | K.H. Karlsen, Ya. Rybalko, Global semigroup of conservative weak solutions of the two-component Novikov equation, 2025, 86, 14681218, 104393, 10.1016/j.nonrwa.2025.104393 |