This study analyzed and synthesized the current state of research on emotion perception within intelligent cockpits, aiming to provide valuable insights for designing, developing, and optimizing emotionally adaptive cockpit interaction systems. Using the Web of Science Core Collection, this study retrieved relevant publications on emotion recognition in intelligent cockpits from 2010 to 2024. Employing bibliometric tools such as CiteSpace and VOSviewer, we conducted a comprehensive review of the field's research landscape, focusing on publication trends, international collaborations, institutional and author contributions, co-citation analysis, and keyword clustering. The findings reveal that the field of emotion recognition in intelligent cockpits has undergone three distinct phases of quantitative growth. China, the United States, and the United Kingdom have established themselves as leaders in this domain. Current research priorities include optimizing multimodal emotion recognition technologies, developing real-time interactive systems, and applying deep learning and machine learning techniques. Future research directions are anticipated to focus on the integration of affective computing with autonomous driving and vehicular networks, the development of personalized emotion regulation strategies, privacy protection in emotion recognition systems, and the convergence of advanced technologies such as artificial intelligence, the Internet of Things, virtual reality, and augmented reality.
Citation: Lichen Sun, Xu Fang, Hongze Yang, Wenbo Zhong, Bo Li. Visualizing thematic evolution in intelligent cockpit emotion perception: A Bibliometric analysis with CiteSpace and VOSviewer[J]. Networks and Heterogeneous Media, 2025, 20(2): 428-459. doi: 10.3934/nhm.2025020
[1] | Tyson Loudon, Stephen Pankavich . Mathematical analysis and dynamic active subspaces for a long term model of HIV. Mathematical Biosciences and Engineering, 2017, 14(3): 709-733. doi: 10.3934/mbe.2017040 |
[2] | A. M. Elaiw, N. H. AlShamrani . Stability of HTLV/HIV dual infection model with mitosis and latency. Mathematical Biosciences and Engineering, 2021, 18(2): 1077-1120. doi: 10.3934/mbe.2021059 |
[3] | Ting Guo, Zhipeng Qiu . The effects of CTL immune response on HIV infection model with potent therapy, latently infected cells and cell-to-cell viral transmission. Mathematical Biosciences and Engineering, 2019, 16(6): 6822-6841. doi: 10.3934/mbe.2019341 |
[4] | Yicang Zhou, Yiming Shao, Yuhua Ruan, Jianqing Xu, Zhien Ma, Changlin Mei, Jianhong Wu . Modeling and prediction of HIV in China: transmission rates structured by infection ages. Mathematical Biosciences and Engineering, 2008, 5(2): 403-418. doi: 10.3934/mbe.2008.5.403 |
[5] | Cameron Browne . Immune response in virus model structured by cell infection-age. Mathematical Biosciences and Engineering, 2016, 13(5): 887-909. doi: 10.3934/mbe.2016022 |
[6] | Nara Bobko, Jorge P. Zubelli . A singularly perturbed HIV model with treatment and antigenic variation. Mathematical Biosciences and Engineering, 2015, 12(1): 1-21. doi: 10.3934/mbe.2015.12.1 |
[7] | A. M. Elaiw, N. H. AlShamrani . Analysis of an HTLV/HIV dual infection model with diffusion. Mathematical Biosciences and Engineering, 2021, 18(6): 9430-9473. doi: 10.3934/mbe.2021464 |
[8] | B. M. Adams, H. T. Banks, Hee-Dae Kwon, Hien T. Tran . Dynamic Multidrug Therapies for HIV: Optimal and STI Control Approaches. Mathematical Biosciences and Engineering, 2004, 1(2): 223-241. doi: 10.3934/mbe.2004.1.223 |
[9] | Sophia Y. Rong, Ting Guo, J. Tyler Smith, Xia Wang . The role of cell-to-cell transmission in HIV infection: insights from a mathematical modeling approach. Mathematical Biosciences and Engineering, 2023, 20(7): 12093-12117. doi: 10.3934/mbe.2023538 |
[10] | Tinevimbo Shiri, Winston Garira, Senelani D. Musekwa . A two-strain HIV-1 mathematical model to assess the effects of chemotherapy on disease parameters. Mathematical Biosciences and Engineering, 2005, 2(4): 811-832. doi: 10.3934/mbe.2005.2.811 |
This study analyzed and synthesized the current state of research on emotion perception within intelligent cockpits, aiming to provide valuable insights for designing, developing, and optimizing emotionally adaptive cockpit interaction systems. Using the Web of Science Core Collection, this study retrieved relevant publications on emotion recognition in intelligent cockpits from 2010 to 2024. Employing bibliometric tools such as CiteSpace and VOSviewer, we conducted a comprehensive review of the field's research landscape, focusing on publication trends, international collaborations, institutional and author contributions, co-citation analysis, and keyword clustering. The findings reveal that the field of emotion recognition in intelligent cockpits has undergone three distinct phases of quantitative growth. China, the United States, and the United Kingdom have established themselves as leaders in this domain. Current research priorities include optimizing multimodal emotion recognition technologies, developing real-time interactive systems, and applying deep learning and machine learning techniques. Future research directions are anticipated to focus on the integration of affective computing with autonomous driving and vehicular networks, the development of personalized emotion regulation strategies, privacy protection in emotion recognition systems, and the convergence of advanced technologies such as artificial intelligence, the Internet of Things, virtual reality, and augmented reality.
[1] | American Automobile Association. Aggressive Driving. AAA Exchange. (2021) Available from https://exchange.aaa.com/safety/driving-advice/aggressive-driving/. |
[2] |
S. H. Fairclough, C. Dobbins, Personal informatics and negative emotions during commuter driving: Effects of data visualization on cardiovascular reactivity mood, Int. J. Hum. Comput. Stud., 144 (2020), 102499. https://doi.org/10.1016/j.ijhcs.2020.102499 doi: 10.1016/j.ijhcs.2020.102499
![]() |
[3] |
J. Tan, W. S. He, The application value of human-vehicle interaction theory in intelligent cockpit design, Front. Bus. Econ. Manage., 13 (2024), 174–177. https://doi.org/10.54097/0edtqn79 doi: 10.54097/0edtqn79
![]() |
[4] |
F. Gao, X. Ge, J. Li, Y. Fan, Y. Li, R. Zhao, Intelligent cockpits for connected vehicles: Taxonomy, architecture, interaction technologies, and future directions, Sensors, 24 (2024), 5172. https://doi.org/10.3390/s24165172 doi: 10.3390/s24165172
![]() |
[5] |
W. Li, D. Cao, R. Tan, C. Wang, Z. Sun, Y. Li, et al., Intelligent cockpit for intelligent connected vehicles: Definition, taxonomy, technology and evaluation, IEEE Trans. Intell. Veh., 9 (2023), 3140–3153. https://doi.org/10.1109/TIV.2023.3339798 doi: 10.1109/TIV.2023.3339798
![]() |
[6] |
P. K. Murali, M. Kaboli, R. Dahiya, Intelligent in-vehicle interaction technologies, Adv. Intell. Syst., 4 (2022), 2100122. https://doi.org/10.1002/aisy.202100122 doi: 10.1002/aisy.202100122
![]() |
[7] | M. S. Alfaras, O. A. Karan, A review of advancements in driver emotion detection: Deep learning approaches and dataset analysis, in 2024 4th International Conference on Innovative Research in Applied Science, Engineering and Technology (IRASET), FEZ, Morocco, 2024, 1–9. https://doi.org/10.1109/IRASET60544.2024.10549432 |
[8] | S. Zepf, M. Dittrich, J. Hernandez, A. Schmitt, Towards empathetic car interfaces: Emotional triggers while driving, in CHI EA'19: CHI Conference on Human Factors in Computing Systems, Glasgow Scotland Uk, May 4–9, 2019, Association for Computing Machinery, New York, NY, USA, (2019), 1–6. https://doi.org/10.1145/3290607.3312883 |
[9] |
H. Tan, J. Sun, W. Wang, C. Zhu, User experience usability of driving: A bibliometric analysis of 2000–2019, Int. J. Hum. Comput. Interact., 37 (2021), 297–307. https://doi.org/10.1080/10447318.2020.1860519 doi: 10.1080/10447318.2020.1860519
![]() |
[10] |
W. Li, G. Li, R. Tan, C. Wang, Z. Sun, Y. Li, et al., Review and perspectives on human emotion for connected automated vehicles, Automot. Innov., 7 (2024), 4–44. https://doi.org/10.1007/s42154-023-00270-z doi: 10.1007/s42154-023-00270-z
![]() |
[11] |
J. Lu, Z. Peng, S. Yang, Y. Ma, R. Wang, Z. Pang, et al., A review of sensory interactions between autonomous vehicles and drivers, J. Syst. Archit., 141 (2023), 102932. https://doi.org/10.1016/j.sysarc.2023.102932 doi: 10.1016/j.sysarc.2023.102932
![]() |
[12] | G. Surwase, A. Sagar, B. S. Kademani, K. Bhanumurthy, Co-citation analysis: An overview. |
[13] |
K. P. Mainali, E. Slud, M. C. Singer, W. F. Fagan, A better index for analysis of co-occurrence and similarity, Sci. Adv., 8 (2022), eabj9204. https://doi.org/10.1126/sciadv.abj9204 doi: 10.1126/sciadv.abj9204
![]() |
[14] |
I. Frades, R. Matthiesen, Overview on techniques in cluster analysis, Bioinf. Methods Clin. Res., 593 (2010), 81–107. https://doi.org/10.1007/978-1-60327-194-3_5 doi: 10.1007/978-1-60327-194-3_5
![]() |
[15] |
H. Zhou, H. Yu, R. Hu, Topic evolution based on the probabilistic topic model: A review, Front. Comput. Sci., 11 (2017), 786–802. https://doi.org/10.1007/s11704-016-5426-5 doi: 10.1007/s11704-016-5426-5
![]() |
[16] |
Z. Shen, W. Ji, S. Yu, G. Cheng, Q. Yuan, Z. Han, et al., Mapping the knowledge of traffic collision reconstruction: A scientometric analysis in CiteSpace, VOSviewer, and SciMAT, Sci. Justice, 63 (2023), 19–37. https://doi.org/10.1016/j.scijus.2022.10.005 doi: 10.1016/j.scijus.2022.10.005
![]() |
[17] |
R. M. Hussein, F. S. Miften, L. E. George, Driver drowsiness detection methods using EEG signals: A systematic review, Comput. Methods Biomech. Biomed. Eng., 26 (2023), 1237–1249. https://doi.org/10.1080/10255842.2022.2112574 doi: 10.1080/10255842.2022.2112574
![]() |
[18] | L. Kluppels, F. P. da Silva, Inattention/Distraction. Selected Topics Psychology Traffic Safety, 53. |
[19] |
J. Díaz-García, I. González-Ponce, J. C. Ponce-Bordón, M. Á. López-Gajardo, I. Ramírez-Bravo, A. Rubio-Morales, et al., Mental load and fatigue assessment instruments: A systematic review, Int. J. Environ. Res. Public Health, 19 (2021), 419. https://doi.org/10.3390/ijerph19010419 doi: 10.3390/ijerph19010419
![]() |
[20] |
C. Chen, M. Song, Visualizing a field of research: A methodology of systematic scientometric reviews, PLOS One, 14 (2019), e0223994. https://doi.org/10.1371/journal.pone.0223994 doi: 10.1371/journal.pone.0223994
![]() |
[21] |
X. Ding, Z. Yang, Knowledge mapping of platform research: A visual analysis using VOSviewer and CiteSpace, Electron. Commer. Res., 22 (2022), 1–23. https://doi.org/10.1007/s10660-020-09410-7 doi: 10.1007/s10660-020-09410-7
![]() |
[22] |
C. Chen, CiteSpace Ⅱ: Detecting and visualizing emerging trends and transient patterns in scientific literature, J. Am. Soc. Inf. Sci. Technol., 57 (2006), 359–377. https://doi.org/10.1002/asi.20317 doi: 10.1002/asi.20317
![]() |
[23] |
Y. Lian, J. Xie, The evolution of digital cultural heritage research: identifying key trends, hotspots, and challenges through bibliometric analysis, Sustainability, 16 (2024), 7125. https://doi.org/10.3390/su16167125 doi: 10.3390/su16167125
![]() |
[24] |
N. J. V. Eck, L. Waltman, Citation-based clustering of publications using CitNetExplorer and VOSviewer, Scientometrics, 111 (2017), 1053–1070. https://doi.org/10.1007/s11192-017-2300-7 doi: 10.1007/s11192-017-2300-7
![]() |
[25] |
N. Andrade-Valbuena, H. Baier-Fuentes, M. Gaviria-Marin, An overview of sustainable entrepreneurship in tourism, destination, and hospitality research based on the web of science, Sustainability, 14 (2022), 14944. https://doi.org/10.3390/su142214944 doi: 10.3390/su142214944
![]() |
[26] |
H. Small, E. Sweeney, E. Greenlee, Clustering the science citation index using co-citations. Ⅱ. Mapping science, Scientometrics, 8 (1985), 321–340. https://doi.org/10.1007/BF02018057 doi: 10.1007/BF02018057
![]() |
[27] |
D. O. Oyewola, E. G. Dada, Exploring machine learning: A scientometrics approach using bibliometrix and VOSviewer, SN Appl. Sci., 4 (2022), 143. https://doi.org/10.1007/s42452-022-05027-7 doi: 10.1007/s42452-022-05027-7
![]() |
[28] | A. Thirumagal, M. Murugan, M. Thamaraiselvi, M. Mani, Application of Lotka's law Price's square root and pareto principle on research publications of manonmaniam sundaranar university—A scientometric analysis, Lib. Philos. Pract., (2020), 1–15. |
[29] |
S. M. Lawani, Bibliometrics: Its theoretical foundations, methods and applications, Libri, 31 (1981), 294–315. https://doi.org/10.1515/libr.1981.31.1.294 doi: 10.1515/libr.1981.31.1.294
![]() |
[30] |
T. Singh, M. Kumari, Burst: Real-time events burst detection in social text stream, J. Supercomput., 77 (2021), 11228–11256. https://doi.org/10.1007/s11227-021-03717-4 doi: 10.1007/s11227-021-03717-4
![]() |
[31] |
W. Xie, F. Zhu, J. Jiang, E. Lim, K. Wang, Topicsketch: Real-time bursty topic detection from twitter, IEEE Trans. Knowl. Data Eng., 28 (2016), 2216–2229. https://doi.org/10.1109/TKDE.2016.2556661 doi: 10.1109/TKDE.2016.2556661
![]() |
[32] |
S. Xu, X. Zhang, L. Feng, W. Yang, Disruption risks in supply chain management: A literature review based on bibliometric analysis, Int. J. Prod. Res., 58 (2020), 3508–3526. https://doi.org/10.1080/00207543.2020.1717012 doi: 10.1080/00207543.2020.1717012
![]() |
[33] |
C. Mejia, M. Wu, Y. Zhang, Y. Kajikawa, Exploring topics in bibliometric research through citation networks and semantic analysis, Front. Res. Metr. Anal., 6 (2021), 742311. https://doi.org/10.3389/frma.2021.742311 doi: 10.3389/frma.2021.742311
![]() |
[34] |
A. Mollahosseini, B. Hasani, M. H. Mahoor, Affectnet: A database for facial expression, valence, and arousal computing in the wild, IEEE Trans. Affect. Comput., 10 (2017), 18–31. https://doi.org/10.1109/TAFFC.2017.2740923 doi: 10.1109/TAFFC.2017.2740923
![]() |
[35] |
T. Song, W. Zheng, P. Song, Z. Cui, EEG emotion recognition using dynamical graph convolutional neural networks, IEEE Trans. Affect. Comput., 11 (2018), 532–541. https://doi.org/10.1109/TAFFC.2018.2817622 doi: 10.1109/TAFFC.2018.2817622
![]() |
[36] |
L. F. Barrett, R. Adolphs, S. Marsella, A. M. Martinez, S. D. Pollak, Emotional expressions reconsidered: Challenges to inferring emotion from human facial movements, Psychol. Sci. Public Interest, 20 (2019), 1–68. https://doi.org/10.1177/1529100619832930 doi: 10.1177/1529100619832930
![]() |
[37] |
S. M. Alarcao, M. J. Fonseca, Emotions recognition using EEG signals: A survey, IEEE Trans. Affect. Comput., 10 (2017), 374–393. https://doi.org/10.1109/TAFFC.2017.2712871 doi: 10.1109/TAFFC.2017.2712871
![]() |
[38] |
S. Li, W. Deng, Deep facial expression recognition: A survey, IEEE Trans. Affect. Comput., 13 (2020), 1195–1215. https://doi.org/10.1109/TAFFC.2020.2980176 doi: 10.1109/TAFFC.2020.2980176
![]() |
[39] |
S. Katsigiannis, N. Ramzan, DREAMER: A database for emotion recognition through EEG and ECG signals from wireless low-cost off-the-shelf devices, IEEE J. Biomed. Health Inform., 22 (2017), 98–107. https://doi.org/10.1109/JBHI.2017.2688239 doi: 10.1109/JBHI.2017.2688239
![]() |
[40] |
S. Minaee, M. Minaei, A. Abdolrashidi, Deep-emotion: Facial expression recognition using attentional convolutional network, Sensors, 21 (2021), 3046. https://doi.org/10.3390/s21093046 doi: 10.3390/s21093046
![]() |
[41] |
S. Zepf, J. Hernandez, A. Schmitt, W. Minker, R. W. Picard, Driver emotion recognition for intelligent vehicles: A survey, ACM Comput. Surv., 53 (2020), 1–30. https://doi.org/10.1145/3388790 doi: 10.1145/3388790
![]() |
[42] |
K. Othman, Public acceptance and perception of autonomous vehicles: A comprehensive review, AI Ethics, 1 (2021), 355–387. https://doi.org/10.1007/s43681-021-00041-8 doi: 10.1007/s43681-021-00041-8
![]() |
[43] |
G. Li, W. Lai, X. Sui, X. Li, X. Qu, T. Zhang, et al., Influence of traffic congestion on driver behavior in post-congestion driving, Accid. Anal. Prev., 141 (2020), 105508. https://doi.org/10.1016/j.aap.2020.105508 doi: 10.1016/j.aap.2020.105508
![]() |
[44] |
B. Yang, X. Yuan, Z. Ying, J. Zhang, B. Song, Y. Song, et al., HOGN-TVGN: Human-inspired embodied object goal navigation based on time-varying knowledge graph inference networks for robots, Adv. Eng. Inform., 62 (2024), 102671. https://doi.org/10.1016/j.aei.2024.102671 doi: 10.1016/j.aei.2024.102671
![]() |
[45] |
F. Hachicha, M. Argoubi, K. Guesmi, The knowledge domain and emerging trends in behavioral finance: A scientometric analysis, Res. Int. Bus. Finance, 70 (2024), 102404. https://doi.org/10.1016/j.ribaf.2024.102404 doi: 10.1016/j.ribaf.2024.102404
![]() |
[46] |
R. B. Zajonc, Emotion and facial efference: A theory reclaimed, Science, 228 (1985), 15–21. https://doi.org/10.1126/science.3883492 doi: 10.1126/science.3883492
![]() |
[47] |
M. Sekadakis, M. Kallidoni, C. Katrakazas, S. Trösterer, C. Marx, P. Moertl, et al., The HADRIAN novel human-machine interface prototype for automated driving: Safety and impact assessment, Eur. Transp. Res. Rev., 16 (2024), 64. https://doi.org/10.1186/s12544-024-00689-3 doi: 10.1186/s12544-024-00689-3
![]() |
[48] |
H. Li, T. Peng, B. Wang, R. Zhang, B. Gao, N. Qiao, et al., Safedrive dreamer: Navigating safety-critical scenarios in autonomous driving with world models, Alex. Eng. J., 111 (2025), 92–106. https://doi.org/10.1016/j.aej.2024.10.039 doi: 10.1016/j.aej.2024.10.039
![]() |
[49] |
A. Gupta, S. Jain, P. Choudhary, M. Parida, Dynamic object detection using sparse LiDAR data for autonomous machine driving and road safety applications, Expert Syst. Appl., 255 (2024), 124636. https://doi.org/10.1016/j.eswa.2024.124636 doi: 10.1016/j.eswa.2024.124636
![]() |
[50] |
D. Forbes, C. A. LeardMann, E. Lawrence-Wood, J. Villalobos, K. Madden, I. Gutierrez, et al., Three-item dimensions of anger reactions scale, JAMA Netw. Open, 7 (2024), e2354741. https://doi.org/10.1001/jamanetworkopen.2023.54741 doi: 10.1001/jamanetworkopen.2023.54741
![]() |
[51] |
Q. Zhang, Y. Ge, W. Qu, The effect of relaxing music on driving anger and performance in a simulated car-following task, Hum. Factors Ergon. Manuf. Serv. Ind., 34 (2024), 386–395. https://doi.org/10.1002/hfm.21031 doi: 10.1002/hfm.21031
![]() |
[52] |
P. K. Sahu, N. F. Marazi, B. B. Majumdar, A. Maji, A. Pani, How are sociodemographic differences contributing to red light violation behavior? The underlying role of gender, age, driving experience, and income, Transp. Lett., 17 (2024), 341–355. https://doi.org/10.1080/19427867.2024.2348846 doi: 10.1080/19427867.2024.2348846
![]() |
[53] |
A. Hassan, C. Lee, K. Cramer, K. Lafreniere, Analysis of driver characteristics, self-reported psychology measures and driving performance measures associated with aggressive driving, Accid. Anal. Prev., 188 (2023), 107097. https://doi.org/10.1016/j.aap.2023.107097 doi: 10.1016/j.aap.2023.107097
![]() |
[54] |
Y. Sun, R. Wang, H. Zhang, N. Ding, S. Ferreira, X. Shi, Driving fingerprinting enhances drowsy driving detection: Tailoring to individual driver characteristics, Accid. Anal. Prev., 208 (2024), 107812. https://doi.org/10.1016/j.aap.2024.107812 doi: 10.1016/j.aap.2024.107812
![]() |
[55] |
N. S. Baker, C. VanHook, D. Ziminski, J. Costa, M. Mitchell, N. Lovelady, "I am a survivor!": Violently injured Black men's perceptions of labeling after a violent firearm injury, J. Urban Health, 101 (2024), 535–543. https://doi.org/10.1007/s11524-024-00874-8 doi: 10.1007/s11524-024-00874-8
![]() |
[56] |
K. Mohan, A. Seal, O. Krejcar, A. Yazidi, Facial expression recognition using local gravitational force descriptor-based deep convolution neural networks, IEEE Trans. Instrum. Meas., 70 (2020), 1–12. https://doi.org/10.1109/TIM.2020.3031835 doi: 10.1109/TIM.2020.3031835
![]() |
[57] |
Z. Fang, A high-efficient hybrid physics-informed neural networks based on convolutional neural network, IEEE Trans. Neural Netw. Learn. Syst., 33 (2021), 5514–5526. https://doi.org/10.1109/TNNLS.2021.3070878 doi: 10.1109/TNNLS.2021.3070878
![]() |
[58] |
S. V. Georgakopoulos, K. Kottari, K. Delibasis, V. P. Plagianakos, I. Maglogiannis, Pose recognition using convolutional neural networks on omni-directional images, Neurocomputing, 280 (2018), 23–31. https://doi.org/10.1016/j.neucom.2017.08.071 doi: 10.1016/j.neucom.2017.08.071
![]() |
[59] |
G. Xiang, S. Yao, H. Deng, H. Wu, X. Wang, Q. Xu, et al., A multi-modal driver emotion dataset and study: Including facial expressions and synchronized physiological signals, Eng. Appl. Artif. Intell., 130 (2024), 107772. https://doi.org/10.1016/j.engappai.2023.107772 doi: 10.1016/j.engappai.2023.107772
![]() |
[60] |
Y. Luo, X. Qin, C. Chai, C. Tang, G. Li, W. Li, Steerable self-driving data visualization, IEEE Trans. Knowl. Data Eng., 34 (2020), 475–490. https://doi.org/10.1109/TKDE.2020.2981464 doi: 10.1109/TKDE.2020.2981464
![]() |
[61] |
Y. Q. Liu, X. Y. Wang, The analysis of driver's behavioral tendency under different emotional states based on a Bayesian Network, IEEE Trans. Affect. Comput., 14 (2020), 165–177. https://doi.org/10.1109/TAFFC.2020.3027720 doi: 10.1109/TAFFC.2020.3027720
![]() |
[62] |
Y. Shi, M. Boffi, B. E. A. Piga, L. Mussone, G. Caruso, Perception of driving simulations: Can the level of detail of virtual scenarios affect the driver's behavior and emotions?, IEEE Trans. Veh. Technol., 71 (2022), 3429–3442. https://doi.org/10.1109/TVT.2022.3152982 doi: 10.1109/TVT.2022.3152982
![]() |
[63] |
D. Zhang, X. Jiao, T. Zhang, Lane-changing and overtaking trajectory planning for autonomous vehicles with multi-performance optimization considering static and dynamic obstacles, Rob. Auton. Syst., 182 (2024), 104797. https://doi.org/10.1016/j.robot.2024.104797 doi: 10.1016/j.robot.2024.104797
![]() |
[64] |
X. Zhang, Y. Sun, Y. Zhang, A task modeling method of intelligent human-computer interaction in aircraft cockpits based on information load flow, IEEE Trans. Aerosp. Electron. Syst., 58 (2022), 5619–5634. https://doi.org/10.1109/TAES.2022.3175187 doi: 10.1109/TAES.2022.3175187
![]() |
[65] |
A. Bhat, S. Aoki, R. Rajkumar, Tools and methodologies for autonomous driving systems, Proc. IEEE, 106 (2018), 1700–1716. https://doi.org/10.1109/JPROC.2018.2841339 doi: 10.1109/JPROC.2018.2841339
![]() |
[66] |
S. Lyu, D. Wang, X. Yang, C. Miao, Driver profiling using trajectories on arbitrary roads by clustering roads and drivers successively, Memetic Comput., 16 (2024), 255–267. https://doi.org/10.1007/s12293-024-00416-4 doi: 10.1007/s12293-024-00416-4
![]() |
[67] |
J. Lee, K. Jang, Characterizing driver behavior using naturalistic driving data, Accid. Anal. Prev., 208 (2024), 107779. https://doi.org/10.1016/j.aap.2024.107779 doi: 10.1016/j.aap.2024.107779
![]() |
[68] |
Z. Sun, R. Zhang, X. Zhu, The progress and trend of digital twin research over the last 20 years: A bibliometrics-based visualization analysis, J. Manuf. Syst., 74 (2024), 1–15. https://doi.org/10.1016/j.jmsy.2024.02.016 doi: 10.1016/j.jmsy.2024.02.016
![]() |
[69] |
W. Li, Y. Wu, H. Xiao, S. Li, R. Tan, Z. Deng, et al., Brain-inspired driver emotion detection for intelligent cockpits based on real driving data, IEEE Intell. Transp. Syst. Mag., 16 (2023), 62–80. https://doi.org/10.1109/MITS.2023.3339758 doi: 10.1109/MITS.2023.3339758
![]() |
[70] |
W. Li, J. Xue, R. Tan, C. Wang, Z. Deng, S. Li, et al., Global-local-feature-fused driver speech emotion detection for intelligent cockpit in automated driving, IEEE Trans. Intell. Veh., 8 (2023), 2684–2697. https://doi.org/10.1109/TIV.2023.3259988 doi: 10.1109/TIV.2023.3259988
![]() |
[71] |
S. Rathore, J. H. Park, A blockchain-based deep learning approach for cyber security in next generation industrial cyber-physical systems, IEEE Trans. Ind. Inform., 17 (2020), 5522–5532. https://doi.org/10.1109/TII.2020.3040968 doi: 10.1109/TII.2020.3040968
![]() |
[72] |
H. Y. Lai, Advancements in intelligent driving assistance: A machine learning approach to identify real-time driving strategies using environmental, eye movement, control-related, and kinetic-related data, Adv. Eng. Inform., 62 (2024), 102745. https://doi.org/10.1016/j.aei.2024.102745 doi: 10.1016/j.aei.2024.102745
![]() |
[73] |
X. Lu, Y. Gong, H. Zhang, H. Tan, Q. Zheng, L. Xu, et al., An intelligent cockpit tailored carpet for human-vehicle interaction enhancement and driving intention recognition, Adv. Funct. Mater., 34 (2024), 2405321. https://doi.org/10.1002/adfm.202405321 doi: 10.1002/adfm.202405321
![]() |
[74] |
D. F. Zhang, Y. F. Li, Y. L. Li, Fine-grained satisfaction analysis of in-vehicle infotainment systems using improved kano model and cumulative prospect theory, IEEE Trans. Intell. Transp. Syst., 25 (2024), 15547–15561. https://doi.org/10.1109/TITS.2024.3473534 doi: 10.1109/TITS.2024.3473534
![]() |
[75] |
A. Lajunen, Y. Yang, A. Emadi, Review of cabin thermal management for electrified passenger vehicles, IEEE Trans. Veh. Technol., 69 (2020), 6025–6040. https://doi.org/10.1109/TVT.2020.2988468 doi: 10.1109/TVT.2020.2988468
![]() |
[76] |
W. Li, G. Zeng, J. Zhang, Y. Xu, Y. Xing, R. Zhou, et al., Cogemonet: A cognitive-feature-augmented driver emotion recognition model for smart cockpit, IEEE Trans. Comput. Soc. Syst., 9 (2021), 667–678. https://doi.org/10.1109/TCSS.2021.3127935 doi: 10.1109/TCSS.2021.3127935
![]() |
[77] |
P. K. Sharma, P. Chakraborty, A review of driver gaze estimation and application in gaze behavior understanding, Eng. Appl. Artif. Intell., 133 (2024), 108117. https://doi.org/10.1016/j.engappai.2024.108117 doi: 10.1016/j.engappai.2024.108117
![]() |
[78] | D. Chang, R. Fan, Z. Sun, A deep belief network and case reasoning based decision model for emergency rescue, Int. J. Comput. Commun. Control, 15 (2020). https://doi.org/10.15837/ijccc.2020.3.3836 |
[79] |
B. Wang, L. Yu, B. Zhang, AL-MobileNet: A novel model for 2D gesture recognition in intelligent cockpit based on multi-modal data, Artif. Intell. Rev., 57 (2024), 282. https://doi.org/10.1007/s10462-024-10930-z doi: 10.1007/s10462-024-10930-z
![]() |
[80] |
J. Yang, S. Xing, Y. Chen, R. Qiu, C. Hua, D. Dong, A comprehensive evaluation model for the intelligent automobile cockpit comfort, Sci. Rep., 12 (2022), 15014. https://doi.org/10.1038/s41598-022-19261-x doi: 10.1038/s41598-022-19261-x
![]() |
[81] |
L. Morra, F. Lamberti, F. G. Pratticó, F. La Rosa, P. Montuschi, Building trust in autonomous vehicles: Role of virtual reality driving simulators in HMI design, IEEE Trans. Veh. Technol., 68 (2019), 9438–9450. https://doi.org/10.1109/TVT.2019.2933601 doi: 10.1109/TVT.2019.2933601
![]() |
[82] |
X. Bai, P. Dong, Y. Huang, Y. Li, C. Chen, An AR-based meta vehicle road cooperation testing systems: Framework, components modeling and an implementation example, IEEE Int. Things J., 11 (2024), 23460–23474. https://doi.org/10.1109/JIOT.2024.3386692 doi: 10.1109/JIOT.2024.3386692
![]() |
1. | Xia Wang, Yuefen Chen, Shengqiang Liu, Xinyu Song, A class of delayed virus dynamics models with multiple target cells, 2013, 32, 0101-8205, 211, 10.1007/s40314-013-0004-z | |
2. | GLOBAL DYNAMICS IN A MULTI-GROUP EPIDEMIC MODEL FOR DISEASE WITH LATENCY SPREADING AND NONLINEAR TRANSMISSION RATE, 2016, 6, 2156-907X, 47, 10.11948/2016005 | |
3. | Gang Huang, Jinliang Wang, Jian Zu, Global dynamics of multi-group dengue disease model with latency distributions, 2015, 38, 01704214, 2703, 10.1002/mma.3252 | |
4. | Gang Huang, Yueping Dong, A note on global properties for a stage structured predator–prey model with mutual interference, 2018, 2018, 1687-1847, 10.1186/s13662-018-1767-8 | |
5. | Lianwen Wang, Zhijun Liu, Xingan Zhang, Global dynamics of an SVEIR epidemic model with distributed delay and nonlinear incidence, 2016, 284, 00963003, 47, 10.1016/j.amc.2016.02.058 | |
6. | Zhisheng Shuai, Joseph H. Tien, P. van den Driessche, Cholera Models with Hyperinfectivity and Temporary Immunity, 2012, 74, 0092-8240, 2423, 10.1007/s11538-012-9759-4 | |
7. | Gang Huang, Anping Liu, A note on global stability for a heroin epidemic model with distributed delay, 2013, 26, 08939659, 687, 10.1016/j.aml.2013.01.010 | |
8. | Sveir epidemiological model with varying infectivity and distributed delays, 2011, 8, 1551-0018, 875, 10.3934/mbe.2011.8.875 | |
9. | Xiulan Lai, Xingfu Zou, Modeling HIV-1 Virus Dynamics with Both Virus-to-Cell Infection and Cell-to-Cell Transmission, 2014, 74, 0036-1399, 898, 10.1137/130930145 | |
10. | Yoji Otani, Tsuyoshi Kajiwara, Toru Sasaki, Lyapunov functionals for multistrain models with infinite delay, 2017, 22, 1553-524X, 507, 10.3934/dcdsb.2017025 | |
11. | Hongying Shu, Yuming Chen, Lin Wang, Impacts of the Cell-Free and Cell-to-Cell Infection Modes on Viral Dynamics, 2018, 30, 1040-7294, 1817, 10.1007/s10884-017-9622-2 | |
12. | Xichao Duan, Sanling Yuan, Zhipeng Qiu, Junling Ma, Global stability of an SVEIR epidemic model with ages of vaccination and latency, 2014, 68, 08981221, 288, 10.1016/j.camwa.2014.06.002 | |
13. | C. Connell McCluskey, Global stability for an SIR epidemic model with delay and nonlinear incidence, 2010, 11, 14681218, 3106, 10.1016/j.nonrwa.2009.11.005 | |
14. | Haitao Song, Shengqiang Liu, Weihua Jiang, Global dynamics of a multistage SIR model with distributed delays and nonlinear incidence rate, 2016, 01704214, 10.1002/mma.4130 | |
15. | Mingwang Shen, Yanni Xiao, Global Stability of a Multi-group SVEIR Epidemiological Model with the Vaccination Age and Infection Age, 2016, 144, 0167-8019, 137, 10.1007/s10440-016-0044-7 | |
16. | Kasia A. Pawelek, Shengqiang Liu, Faranak Pahlevani, Libin Rong, A model of HIV-1 infection with two time delays: Mathematical analysis and comparison with patient data, 2012, 235, 00255564, 98, 10.1016/j.mbs.2011.11.002 | |
17. | Shifei Wang, Dingyu Zou, Global stability of in-host viral models with humoral immunity and intracellular delays, 2012, 36, 0307904X, 1313, 10.1016/j.apm.2011.07.086 | |
18. | 培译 栾, Lyapunov Functions for Higher-Dimensional Epidemiological Models, 2020, 09, 2324-7991, 2222, 10.12677/AAM.2020.912259 | |
19. | Paul Georgescu, Hong Zhang, A Lyapunov functional for a SIRI model with nonlinear incidence of infection and relapse, 2013, 219, 00963003, 8496, 10.1016/j.amc.2013.02.044 | |
20. | Haitao Song, Weihua Jiang, Shengqiang Liu, Global dynamics of two heterogeneous SIR models with nonlinear incidence and delays, 2016, 09, 1793-5245, 1650046, 10.1142/S1793524516500467 | |
21. | Lili Liu, Xianning Liu, Jinliang Wang, Threshold dynamics of a delayed multi-group heroin epidemic model in heterogeneous populations, 2016, 21, 1531-3492, 2615, 10.3934/dcdsb.2016064 | |
22. | Lei Wang, Zhidong Teng, Long Zhang, Global Behaviors of a Class of Discrete SIRS Epidemic Models with Nonlinear Incidence Rate, 2014, 2014, 1085-3375, 1, 10.1155/2014/249623 | |
23. | Shengqiang Liu, Xinxin Wang, Lin Wang, Haitao Song, Competitive Exclusion in Delayed Chemostat Models with Differential Removal Rates, 2014, 74, 0036-1399, 634, 10.1137/130921386 | |
24. | Xinxin Wang, Shengqiang Liu, An epidemic model with different distributed latencies and nonlinear incidence rate, 2014, 241, 00963003, 259, 10.1016/j.amc.2014.05.032 | |
25. | Suxia Zhang, Hongbin Guo, Global analysis of age-structured multi-stage epidemic models for infectious diseases, 2018, 337, 00963003, 214, 10.1016/j.amc.2018.05.020 | |
26. | Lyapunov functions and global stability for SIR and SEIR models withage-dependent susceptibility, 2013, 10, 1551-0018, 369, 10.3934/mbe.2013.10.369 | |
27. | Marco Ferrante, Elisabetta Ferraris, Carles Rovira, On a stochastic epidemic SEIHR model and its diffusion approximation, 2016, 25, 1133-0686, 482, 10.1007/s11749-015-0465-z | |
28. | Rui Xu, Global stability of an HIV-1 infection model with saturation infection and intracellular delay, 2011, 375, 0022247X, 75, 10.1016/j.jmaa.2010.08.055 | |
29. | Gang Huang, Yasuhiro Takeuchi, Wanbiao Ma, Lyapunov Functionals for Delay Differential Equations Model of Viral Infections, 2010, 70, 0036-1399, 2693, 10.1137/090780821 | |
30. | Haitao Song, Shengqiang Liu, Weihua Jiang, Jinliang Wang, Global stability and periodic oscillations for an SIV infection model with immune response and intracellular delays, 2014, 38, 0307904X, 6108, 10.1016/j.apm.2014.05.017 | |
31. | Jinliang Wang, Shengqiang Liu, The stability analysis of a general viral infection model with distributed delays and multi-staged infected progression, 2015, 20, 10075704, 263, 10.1016/j.cnsns.2014.04.027 | |
32. | Xinzhi Liu, Peter Stechlinski, 2017, Chapter 4, 978-3-319-53206-6, 83, 10.1007/978-3-319-53208-0_4 | |
33. | Michael Y. Li, Hongying Shu, Global Dynamics of an In-host Viral Model with Intracellular Delay, 2010, 72, 0092-8240, 1492, 10.1007/s11538-010-9503-x | |
34. | Pierre Magal, Connell McCluskey, Two-Group Infection Age Model Including an Application to Nosocomial Infection, 2013, 73, 0036-1399, 1058, 10.1137/120882056 | |
35. | Lili Liu, Rui Xu, Zhen Jin, Global dynamics of a spatial heterogeneous viral infection model with intracellular delay and nonlocal diffusion, 2020, 82, 0307904X, 150, 10.1016/j.apm.2020.01.035 | |
36. | Li-Ming Cai, Bao-Zhu Guo, Xue-Zhi Li, Global stability for a delayed HIV-1 infection model with nonlinear incidence of infection, 2012, 219, 00963003, 617, 10.1016/j.amc.2012.06.051 | |
37. | Horst R. Thieme, Hal L. Smith, Chemostats and epidemics: Competition for nutrients/hosts, 2013, 10, 1551-0018, 1635, 10.3934/mbe.2013.10.1635 | |
38. | Chuncheng Wang, Dejun Fan, Ling Xia, Xiaoyu Yi, Global stability for a multi-group SVIR model with age of vaccination, 2018, 11, 1793-5245, 1850068, 10.1142/S1793524518500687 | |
39. | Gang Huang, Yasuhiro Takeuchi, Wanbiao Ma, Daijun Wei, Global Stability for Delay SIR and SEIR Epidemic Models with Nonlinear Incidence Rate, 2010, 72, 0092-8240, 1192, 10.1007/s11538-009-9487-6 | |
40. | Michael Y. Li, Hongying Shu, Impact of Intracellular Delays and Target-Cell Dynamics on In Vivo Viral Infections, 2010, 70, 0036-1399, 2434, 10.1137/090779322 | |
41. | JINLIANG WANG, JIAN ZU, XIANNING LIU, GANG HUANG, JIMIN ZHANG, GLOBAL DYNAMICS OF A MULTI-GROUP EPIDEMIC MODEL WITH GENERAL RELAPSE DISTRIBUTION AND NONLINEAR INCIDENCE RATE, 2012, 20, 0218-3390, 235, 10.1142/S021833901250009X | |
42. | Ying Lv, Zhixing Hu, Fucheng Liao, The stability and Hopf bifurcation for an HIV model with saturated infection rate and double delays, 2018, 11, 1793-5245, 1850040, 10.1142/S1793524518500407 | |
43. | Gang Huang, Yasuhiro Takeuchi, Global analysis on delay epidemiological dynamic models with nonlinear incidence, 2011, 63, 0303-6812, 125, 10.1007/s00285-010-0368-2 | |
44. | Impact of heterogeneity on the dynamics of an SEIR epidemic model, 2012, 9, 1551-0018, 393, 10.3934/mbe.2012.9.393 | |
45. | JINLIANG WANG, YASUHIRO TAKEUCHI, SHENGQIANG LIU, A MULTI-GROUP SVEIR EPIDEMIC MODEL WITH DISTRIBUTED DELAY AND VACCINATION, 2012, 05, 1793-5245, 1260001, 10.1142/S1793524512600017 | |
46. | Global properties of a delayed SIR epidemic model with multiple parallel infectious stages, 2012, 9, 1551-0018, 685, 10.3934/mbe.2012.9.685 | |
47. | O. Sharomi, A.B. Gumel, Dynamical analysis of a sex-structured Chlamydia trachomatis transmission model with time delay, 2011, 12, 14681218, 837, 10.1016/j.nonrwa.2010.08.010 | |
48. | Yan Li, Wan-Tong Li, Fei-Ying Yang, Traveling waves for a nonlocal dispersal SIR model with delay and external supplies, 2014, 247, 00963003, 723, 10.1016/j.amc.2014.09.072 | |
49. | Yuming Chen, Junyuan Yang, Fengqin Zhang, The global stability of an SIRS model with infection age, 2014, 11, 1551-0018, 449, 10.3934/mbe.2014.11.449 | |
50. | C. Connell McCluskey, Using Lyapunov Functions to Construct Lyapunov Functionals for Delay Differential Equations, 2015, 14, 1536-0040, 1, 10.1137/140971683 | |
51. | Leonid Shaikhet, Andrei Korobeinikov, Stability of a stochastic model for HIV-1 dynamics within a host, 2016, 95, 0003-6811, 1228, 10.1080/00036811.2015.1058363 | |
52. | Bedr'Eddine Ainseba, Houssein Ayoub, Michel Langlais, An Age-Structured Model for T Cell Homeostasis in Vivo, 2014, 74, 0036-1399, 1463, 10.1137/130949610 | |
53. | Paul Georgescu, Daniel Maxin, Hong Zhang, Global stability results for models of commensalism, 2017, 10, 1793-5245, 1750037, 10.1142/S1793524517500371 | |
54. | Jinliang Wang, Jiying Lang, Yuming Chen, Global threshold dynamics of an SVIR model with age-dependent infection and relapse, 2017, 11, 1751-3758, 427, 10.1080/17513758.2016.1226436 | |
55. | Michael T. Meehan, Daniel G. Cocks, Johannes Müller, Emma S. McBryde, Global stability properties of a class of renewal epidemic models, 2019, 78, 0303-6812, 1713, 10.1007/s00285-018-01324-1 | |
56. | Horst R. Thieme, Global stability of the endemic equilibrium in infinite dimension: Lyapunov functions and positive operators, 2011, 250, 00220396, 3772, 10.1016/j.jde.2011.01.007 | |
57. | B. G. Sampath Aruna Pradeep, Wanbiao Ma, Wei Wang, Stability and Hopf bifurcation analysis of an SEIR model with nonlinear incidence rate and relapse, 2017, 20, 0972-0510, 483, 10.1080/09720510.2016.1228321 | |
58. | Bentout Soufiane, Tarik Mohammed Touaoula, Global analysis of an infection age model with a class of nonlinear incidence rates, 2016, 434, 0022247X, 1211, 10.1016/j.jmaa.2015.09.066 | |
59. | Tianhu Yu, Dengqing Cao, Shengqiang Liu, Epidemic model with group mixing: Stability and optimal control based on limited vaccination resources, 2018, 61, 10075704, 54, 10.1016/j.cnsns.2018.01.011 | |
60. | P. Magal, C.C. McCluskey, G.F. Webb, Lyapunov functional and global asymptotic stability for an infection-age model, 2010, 89, 0003-6811, 1109, 10.1080/00036810903208122 | |
61. | Global stability for an SEI epidemiological model with continuous age-structure in the exposed and infectious classes, 2012, 9, 1551-0018, 819, 10.3934/mbe.2012.9.819 | |
62. | Quentin Richard, Jacek Banasiak, Global stability in a competitive infection-age structured model, 2020, 15, 0973-5348, 54, 10.1051/mmnp/2020007 | |
63. | Mohamed Nor Frioui, Sofiane El-hadi Miri, Tarik Mohamed Touaoula, Unified Lyapunov functional for an age-structured virus model with very general nonlinear infection response, 2018, 58, 1598-5865, 47, 10.1007/s12190-017-1133-0 | |
64. | Yoji Otani, Tsuyoshi Kajiwara, Toru Sasaki, Lyapunov functionals for virus-immune models with infinite delay, 2015, 20, 1531-3492, 3093, 10.3934/dcdsb.2015.20.3093 | |
65. | Xavier Bardina, Marco Ferrante, Carles Rovira, Stochastic Epidemic SEIRS Models with a Constant Latency Period, 2017, 14, 1660-5446, 10.1007/s00009-017-0977-8 | |
66. | Global asymptotic properties of staged models with multiple progression pathways for infectious diseases, 2011, 8, 1551-0018, 1019, 10.3934/mbe.2011.8.1019 | |
67. | Jinliang Wang, Jingmei Pang, Xianning Liu, Modelling diseases with relapse and nonlinear incidence of infection: a multi-group epidemic model, 2014, 8, 1751-3758, 99, 10.1080/17513758.2014.912682 | |
68. | Michael Y. Li, Zhisheng Shuai, Chuncheng Wang, Global stability of multi-group epidemic models with distributed delays, 2010, 361, 0022247X, 38, 10.1016/j.jmaa.2009.09.017 | |
69. | Jinliang Wang, Ran Zhang, Toshikazu Kuniya, The dynamics of an SVIR epidemiological model with infection age: Table 1., 2016, 81, 0272-4960, 321, 10.1093/imamat/hxv039 | |
70. | A note for the global stability of a delay differential equation of hepatitis B virus infection, 2011, 8, 1551-0018, 689, 10.3934/mbe.2011.8.689 | |
71. | Jinliang Wang, Ran Zhang, Toshikazu Kuniya, The stability analysis of an SVEIR model with continuous age-structure in the exposed and infectious classes, 2015, 9, 1751-3758, 73, 10.1080/17513758.2015.1006696 | |
72. | Michael Y. Li, Hongying Shu, Global dynamics of a mathematical model for HTLV-I infection of CD4+ T cells with delayed CTL response, 2012, 13, 14681218, 1080, 10.1016/j.nonrwa.2011.02.026 | |
73. | Salih Djilali, Tarik Mohammed Touaoula, Sofiane El-Hadi Miri, A Heroin Epidemic Model: Very General Non Linear Incidence, Treat-Age, and Global Stability, 2017, 152, 0167-8019, 171, 10.1007/s10440-017-0117-2 | |
74. | Shengqiang Liu, Shaokai Wang, Lin Wang, Global dynamics of delay epidemic models with nonlinear incidence rate and relapse, 2011, 12, 14681218, 119, 10.1016/j.nonrwa.2010.06.001 | |
75. | Liming Cai, Bin Fang, Xuezhi Li, A note of a staged progression HIV model with imperfect vaccine, 2014, 234, 00963003, 412, 10.1016/j.amc.2014.01.179 | |
76. | Yasin Ucakan, Seda Gulen, Kevser Koklu, Analysing of Tuberculosis in Turkey through SIR, SEIR and BSEIR Mathematical Models, 2021, 27, 1387-3954, 179, 10.1080/13873954.2021.1881560 | |
77. | Soufiane Bentout, Salih Djilali, Sunil Kumar, Tarik Mohammed Touaoula, Threshold dynamics of difference equations for SEIR model with nonlinear incidence function and infinite delay, 2021, 136, 2190-5444, 10.1140/epjp/s13360-021-01466-0 | |
78. | Chunyue Wang, Jinliang Wang, Ran Zhang, Global analysis on an age‐space structured vaccination model with Neumann boundary condition, 2022, 45, 0170-4214, 1640, 10.1002/mma.7879 | |
79. | Vijay Pal Bajiya, Jai Prakash Tripathi, Vipul Kakkar, Jinshan Wang, Guiquan Sun, Global Dynamics of a Multi-group SEIR Epidemic Model with Infection Age, 2021, 42, 0252-9599, 833, 10.1007/s11401-021-0294-1 | |
80. | Qianqian Cui, Jiabo Xu, Qiang Zhang, Kai Wang, An NSFD scheme for SIR epidemic models of childhood diseases with constant vaccination strategy, 2014, 2014, 1687-1847, 10.1186/1687-1847-2014-172 | |
81. | S.Y. Tchoumi, H. Rwezaura, J.M. Tchuenche, A mathematical model with numerical simulations for malaria transmission dynamics with differential susceptibility and partial immunity, 2023, 3, 27724425, 100165, 10.1016/j.health.2023.100165 | |
82. | Jiaxin Nan, Wanbiao Ma, Stability and persistence analysis of a microorganism flocculation model with infinite delay, 2023, 20, 1551-0018, 10815, 10.3934/mbe.2023480 | |
83. | Aboudramane Guiro, Dramane Ouedraogo, Harouna Ouedraogo, 2023, Chapter 10, 978-3-031-27660-6, 259, 10.1007/978-3-031-27661-3_10 | |
84. | Ying He, Junlong Tao, Bo Bi, Stationary distribution for a three-dimensional stochastic viral infection model with general distributed delay, 2023, 20, 1551-0018, 18018, 10.3934/mbe.2023800 | |
85. | F. Najm, R. Yafia, M. A. Aziz Alaoui, A. Aghriche, A. Moussaoui, A survey on constructing Lyapunov functions for reaction-diffusion systems with delay and their application in biology, 2023, 10, 23129794, 965, 10.23939/mmc2023.03.965 | |
86. | Abderrazak NABTi, Dynamical analysis of an age-structured SEIR model with relapse, 2024, 75, 0044-2275, 10.1007/s00033-024-02227-6 | |
87. | Jinxiang Zhan, Yongchang Wei, Dynamical behavior of a stochastic non-autonomous distributed delay heroin epidemic model with regime-switching, 2024, 184, 09600779, 115024, 10.1016/j.chaos.2024.115024 | |
88. | Narges M. Shahtori, S. Farokh Atashzar, Temporal Dynamics and Interplay of Transmission Rate, Vaccination, and Mutation in Epidemic Modeling: A Poisson Point Process Approach, 2024, 11, 2327-4697, 5023, 10.1109/TNSE.2024.3421308 | |
89. | Isam Al‐Darabsah, Global Dynamics of a Within‐Host Model for Immune Response With a Generic Distributed Delay, 2025, 0170-4214, 10.1002/mma.11021 |