We propose a model for frequency-dependent damping in the linear wave equation. After proving well-posedness of the problem, we study qualitative properties of the energy. In the one-dimensional case, we provide an explicit analysis for special choices of the damping operator. Finally, we show, in special cases, that solutions split into a dissipative and a conservative part.
Citation: Francesco Maddalena, Gianluca Orlando. Frequency-dependent damping in the linear wave equation[J]. Networks and Heterogeneous Media, 2025, 20(2): 406-427. doi: 10.3934/nhm.2025019
We propose a model for frequency-dependent damping in the linear wave equation. After proving well-posedness of the problem, we study qualitative properties of the energy. In the one-dimensional case, we provide an explicit analysis for special choices of the damping operator. Finally, we show, in special cases, that solutions split into a dissipative and a conservative part.
| [1] | B. Brogliato, Nonsmooth Mechanics, Switzerland: Springer, 2016. https://doi.org/10.1007/978-3-319-28664-8 |
| [2] | M. Nosonovsky, B. Bhushan, Multiscale Dissipative Mechanisms and Hierarchical Surfaces: Friction, Superhydrophobicity, and Biomimetics, Springer, 2008. https://doi.org/10.1007/978-3-540-78425-8 |
| [3] | M. Nosonovsky, V. Mortazavi, Friction-induced Vibrations and Self-Organization: Mechanics and Non-Equilibrium Thermodynamics of Sliding Contact, Boca Raton: CRC Press, 2013. https://doi.org/10.1201/b15470 |
| [4] | M. Ikawa, Hyperbolic Partial Differential Equations and Wave Phenomena, Providence, RI: American Mathematical Society, 2000. |
| [5] |
F. Zhou, C. Sun, X. Li, Dynamics for the damped wave equations on time-dependent domains, Discrete Cont. Dyn-B, 23 (2018), 1645–1674. https://doi.org/10.3934/dcdsb.2018068 doi: 10.3934/dcdsb.2018068
|
| [6] |
M. D'Abbicco, M. Ebert, Sharp $L^p-L^q$ estimates for evolution equations with damped oscillations, Math. Ann., 392 (2025), 153–195. https://doi.org/10.1007/s00208-025-03092-y doi: 10.1007/s00208-025-03092-y
|
| [7] |
G. M. Coclite, G. Devillanova, F. Maddalena, Waves in flexural beams with nonlinear adhesive interaction, Milan J. Math., 89 (2021), 329–344. https://doi.org/10.1007/s00032-021-00338-7 doi: 10.1007/s00032-021-00338-7
|
| [8] |
G. M. Coclite, G. Florio, M. Ligabò, F. Maddalena, Nonlinear waves in adhesive strings, SIAM J. Appl. Math., 77 (2017), 347–360. https://doi.org/10.1137/16M1069109 doi: 10.1137/16M1069109
|
| [9] |
G. M. Coclite, N. De Nitti, F. Maddalena, G. Orlando, E. Zuazua, Exponential convergence to steady-states for trajectories of a damped dynamical system modeling adhesive strings, Math. Mod. Meth. Appl. Sci., 34 (2024), 1445–1482. https://doi.org/10.1142/S021820252450026X doi: 10.1142/S021820252450026X
|
| [10] |
R. Burridge, J. B. Keller, Peeling, slipping and cracking—some one-dimensional freeboundary problems in mechanics, SIAM Rev., 20 (1978), 31–61. https://doi.org/10.1137/1020003 doi: 10.1137/1020003
|
| [11] |
G. Lazzaroni, R. Molinarolo, F. Riva, F. Solombrino, On the wave equation on moving domains: Regularity, energy balance and application to dynamic debonding, Interfaces Free Boundaries, 25 (2023), 401–454. https://doi.org/10.4171/ifb/485 doi: 10.4171/ifb/485
|
| [12] |
G. Lazzaroni, R. Molinarolo, F. Solombrino, Radial solutions for a dynamic debonding model in dimension two, SIAM Rev., 219 (2022), 112822. https://doi.org/10.1016/j.na.2022.112822 doi: 10.1016/j.na.2022.112822
|
| [13] |
F. Maddalena, D. Percivale, Variational models for peeling problems, Interfaces Free Boundaries, 10 (2008), 503–516. https://doi.org/10.4171/ifb/199 doi: 10.4171/ifb/199
|
| [14] |
G. Dal Maso, G. Lazzaroni, L. Nardini., Existence and uniqueness of dynamic evolutions for a peeling test in dimension one, J. Differ. Equations, 261 (2016), 4897–4923. https://doi.org/10.1016/j.jde.2016.07.012 doi: 10.1016/j.jde.2016.07.012
|
| [15] |
J. Cooper, C. Bardos, A nonlinear wave equation in a time dependent domain, J. Math. Anal. Appl., 42 (1973), 29–60. https://doi.org/10.1016/0022-247X(73)90120-0 doi: 10.1016/0022-247X(73)90120-0
|
| [16] |
S. G. Georgiev, K. Zennir, Classical solutions for a class of IVP for nonlinear two-dimensional wave equations via new fixed point approach, Partial Differ. Equ. Appl. Math., 2 (2020), 100014. https://doi.org/10.1016/j.padiff.2020.100014 doi: 10.1016/j.padiff.2020.100014
|
| [17] | A. Haraux, Semi-Linear Hyperbolic Problems in Bounded Domains, CRC Press, 1987. |
| [18] | M. Reed, B. Simon, Methods of Modern Mathematical Physics. Volume Ⅰ: Functional Analysis, New York: Academic Press, 1980. |