This study analyzed and synthesized the current state of research on emotion perception within intelligent cockpits, aiming to provide valuable insights for designing, developing, and optimizing emotionally adaptive cockpit interaction systems. Using the Web of Science Core Collection, this study retrieved relevant publications on emotion recognition in intelligent cockpits from 2010 to 2024. Employing bibliometric tools such as CiteSpace and VOSviewer, we conducted a comprehensive review of the field's research landscape, focusing on publication trends, international collaborations, institutional and author contributions, co-citation analysis, and keyword clustering. The findings reveal that the field of emotion recognition in intelligent cockpits has undergone three distinct phases of quantitative growth. China, the United States, and the United Kingdom have established themselves as leaders in this domain. Current research priorities include optimizing multimodal emotion recognition technologies, developing real-time interactive systems, and applying deep learning and machine learning techniques. Future research directions are anticipated to focus on the integration of affective computing with autonomous driving and vehicular networks, the development of personalized emotion regulation strategies, privacy protection in emotion recognition systems, and the convergence of advanced technologies such as artificial intelligence, the Internet of Things, virtual reality, and augmented reality.
Citation: Lichen Sun, Xu Fang, Hongze Yang, Wenbo Zhong, Bo Li. Visualizing thematic evolution in intelligent cockpit emotion perception: A Bibliometric analysis with CiteSpace and VOSviewer[J]. Networks and Heterogeneous Media, 2025, 20(2): 428-459. doi: 10.3934/nhm.2025020
This study analyzed and synthesized the current state of research on emotion perception within intelligent cockpits, aiming to provide valuable insights for designing, developing, and optimizing emotionally adaptive cockpit interaction systems. Using the Web of Science Core Collection, this study retrieved relevant publications on emotion recognition in intelligent cockpits from 2010 to 2024. Employing bibliometric tools such as CiteSpace and VOSviewer, we conducted a comprehensive review of the field's research landscape, focusing on publication trends, international collaborations, institutional and author contributions, co-citation analysis, and keyword clustering. The findings reveal that the field of emotion recognition in intelligent cockpits has undergone three distinct phases of quantitative growth. China, the United States, and the United Kingdom have established themselves as leaders in this domain. Current research priorities include optimizing multimodal emotion recognition technologies, developing real-time interactive systems, and applying deep learning and machine learning techniques. Future research directions are anticipated to focus on the integration of affective computing with autonomous driving and vehicular networks, the development of personalized emotion regulation strategies, privacy protection in emotion recognition systems, and the convergence of advanced technologies such as artificial intelligence, the Internet of Things, virtual reality, and augmented reality.
| [1] | American Automobile Association. Aggressive Driving. AAA Exchange. (2021) Available from https://exchange.aaa.com/safety/driving-advice/aggressive-driving/. |
| [2] |
S. H. Fairclough, C. Dobbins, Personal informatics and negative emotions during commuter driving: Effects of data visualization on cardiovascular reactivity mood, Int. J. Hum. Comput. Stud., 144 (2020), 102499. https://doi.org/10.1016/j.ijhcs.2020.102499 doi: 10.1016/j.ijhcs.2020.102499
|
| [3] |
J. Tan, W. S. He, The application value of human-vehicle interaction theory in intelligent cockpit design, Front. Bus. Econ. Manage., 13 (2024), 174–177. https://doi.org/10.54097/0edtqn79 doi: 10.54097/0edtqn79
|
| [4] |
F. Gao, X. Ge, J. Li, Y. Fan, Y. Li, R. Zhao, Intelligent cockpits for connected vehicles: Taxonomy, architecture, interaction technologies, and future directions, Sensors, 24 (2024), 5172. https://doi.org/10.3390/s24165172 doi: 10.3390/s24165172
|
| [5] |
W. Li, D. Cao, R. Tan, C. Wang, Z. Sun, Y. Li, et al., Intelligent cockpit for intelligent connected vehicles: Definition, taxonomy, technology and evaluation, IEEE Trans. Intell. Veh., 9 (2023), 3140–3153. https://doi.org/10.1109/TIV.2023.3339798 doi: 10.1109/TIV.2023.3339798
|
| [6] |
P. K. Murali, M. Kaboli, R. Dahiya, Intelligent in-vehicle interaction technologies, Adv. Intell. Syst., 4 (2022), 2100122. https://doi.org/10.1002/aisy.202100122 doi: 10.1002/aisy.202100122
|
| [7] | M. S. Alfaras, O. A. Karan, A review of advancements in driver emotion detection: Deep learning approaches and dataset analysis, in 2024 4th International Conference on Innovative Research in Applied Science, Engineering and Technology (IRASET), FEZ, Morocco, 2024, 1–9. https://doi.org/10.1109/IRASET60544.2024.10549432 |
| [8] | S. Zepf, M. Dittrich, J. Hernandez, A. Schmitt, Towards empathetic car interfaces: Emotional triggers while driving, in CHI EA'19: CHI Conference on Human Factors in Computing Systems, Glasgow Scotland Uk, May 4–9, 2019, Association for Computing Machinery, New York, NY, USA, (2019), 1–6. https://doi.org/10.1145/3290607.3312883 |
| [9] |
H. Tan, J. Sun, W. Wang, C. Zhu, User experience usability of driving: A bibliometric analysis of 2000–2019, Int. J. Hum. Comput. Interact., 37 (2021), 297–307. https://doi.org/10.1080/10447318.2020.1860519 doi: 10.1080/10447318.2020.1860519
|
| [10] |
W. Li, G. Li, R. Tan, C. Wang, Z. Sun, Y. Li, et al., Review and perspectives on human emotion for connected automated vehicles, Automot. Innov., 7 (2024), 4–44. https://doi.org/10.1007/s42154-023-00270-z doi: 10.1007/s42154-023-00270-z
|
| [11] |
J. Lu, Z. Peng, S. Yang, Y. Ma, R. Wang, Z. Pang, et al., A review of sensory interactions between autonomous vehicles and drivers, J. Syst. Archit., 141 (2023), 102932. https://doi.org/10.1016/j.sysarc.2023.102932 doi: 10.1016/j.sysarc.2023.102932
|
| [12] | G. Surwase, A. Sagar, B. S. Kademani, K. Bhanumurthy, Co-citation analysis: An overview. |
| [13] |
K. P. Mainali, E. Slud, M. C. Singer, W. F. Fagan, A better index for analysis of co-occurrence and similarity, Sci. Adv., 8 (2022), eabj9204. https://doi.org/10.1126/sciadv.abj9204 doi: 10.1126/sciadv.abj9204
|
| [14] |
I. Frades, R. Matthiesen, Overview on techniques in cluster analysis, Bioinf. Methods Clin. Res., 593 (2010), 81–107. https://doi.org/10.1007/978-1-60327-194-3_5 doi: 10.1007/978-1-60327-194-3_5
|
| [15] |
H. Zhou, H. Yu, R. Hu, Topic evolution based on the probabilistic topic model: A review, Front. Comput. Sci., 11 (2017), 786–802. https://doi.org/10.1007/s11704-016-5426-5 doi: 10.1007/s11704-016-5426-5
|
| [16] |
Z. Shen, W. Ji, S. Yu, G. Cheng, Q. Yuan, Z. Han, et al., Mapping the knowledge of traffic collision reconstruction: A scientometric analysis in CiteSpace, VOSviewer, and SciMAT, Sci. Justice, 63 (2023), 19–37. https://doi.org/10.1016/j.scijus.2022.10.005 doi: 10.1016/j.scijus.2022.10.005
|
| [17] |
R. M. Hussein, F. S. Miften, L. E. George, Driver drowsiness detection methods using EEG signals: A systematic review, Comput. Methods Biomech. Biomed. Eng., 26 (2023), 1237–1249. https://doi.org/10.1080/10255842.2022.2112574 doi: 10.1080/10255842.2022.2112574
|
| [18] | L. Kluppels, F. P. da Silva, Inattention/Distraction. Selected Topics Psychology Traffic Safety, 53. |
| [19] |
J. Díaz-García, I. González-Ponce, J. C. Ponce-Bordón, M. Á. López-Gajardo, I. Ramírez-Bravo, A. Rubio-Morales, et al., Mental load and fatigue assessment instruments: A systematic review, Int. J. Environ. Res. Public Health, 19 (2021), 419. https://doi.org/10.3390/ijerph19010419 doi: 10.3390/ijerph19010419
|
| [20] |
C. Chen, M. Song, Visualizing a field of research: A methodology of systematic scientometric reviews, PLOS One, 14 (2019), e0223994. https://doi.org/10.1371/journal.pone.0223994 doi: 10.1371/journal.pone.0223994
|
| [21] |
X. Ding, Z. Yang, Knowledge mapping of platform research: A visual analysis using VOSviewer and CiteSpace, Electron. Commer. Res., 22 (2022), 1–23. https://doi.org/10.1007/s10660-020-09410-7 doi: 10.1007/s10660-020-09410-7
|
| [22] |
C. Chen, CiteSpace Ⅱ: Detecting and visualizing emerging trends and transient patterns in scientific literature, J. Am. Soc. Inf. Sci. Technol., 57 (2006), 359–377. https://doi.org/10.1002/asi.20317 doi: 10.1002/asi.20317
|
| [23] |
Y. Lian, J. Xie, The evolution of digital cultural heritage research: identifying key trends, hotspots, and challenges through bibliometric analysis, Sustainability, 16 (2024), 7125. https://doi.org/10.3390/su16167125 doi: 10.3390/su16167125
|
| [24] |
N. J. V. Eck, L. Waltman, Citation-based clustering of publications using CitNetExplorer and VOSviewer, Scientometrics, 111 (2017), 1053–1070. https://doi.org/10.1007/s11192-017-2300-7 doi: 10.1007/s11192-017-2300-7
|
| [25] |
N. Andrade-Valbuena, H. Baier-Fuentes, M. Gaviria-Marin, An overview of sustainable entrepreneurship in tourism, destination, and hospitality research based on the web of science, Sustainability, 14 (2022), 14944. https://doi.org/10.3390/su142214944 doi: 10.3390/su142214944
|
| [26] |
H. Small, E. Sweeney, E. Greenlee, Clustering the science citation index using co-citations. Ⅱ. Mapping science, Scientometrics, 8 (1985), 321–340. https://doi.org/10.1007/BF02018057 doi: 10.1007/BF02018057
|
| [27] |
D. O. Oyewola, E. G. Dada, Exploring machine learning: A scientometrics approach using bibliometrix and VOSviewer, SN Appl. Sci., 4 (2022), 143. https://doi.org/10.1007/s42452-022-05027-7 doi: 10.1007/s42452-022-05027-7
|
| [28] | A. Thirumagal, M. Murugan, M. Thamaraiselvi, M. Mani, Application of Lotka's law Price's square root and pareto principle on research publications of manonmaniam sundaranar university—A scientometric analysis, Lib. Philos. Pract., (2020), 1–15. |
| [29] |
S. M. Lawani, Bibliometrics: Its theoretical foundations, methods and applications, Libri, 31 (1981), 294–315. https://doi.org/10.1515/libr.1981.31.1.294 doi: 10.1515/libr.1981.31.1.294
|
| [30] |
T. Singh, M. Kumari, Burst: Real-time events burst detection in social text stream, J. Supercomput., 77 (2021), 11228–11256. https://doi.org/10.1007/s11227-021-03717-4 doi: 10.1007/s11227-021-03717-4
|
| [31] |
W. Xie, F. Zhu, J. Jiang, E. Lim, K. Wang, Topicsketch: Real-time bursty topic detection from twitter, IEEE Trans. Knowl. Data Eng., 28 (2016), 2216–2229. https://doi.org/10.1109/TKDE.2016.2556661 doi: 10.1109/TKDE.2016.2556661
|
| [32] |
S. Xu, X. Zhang, L. Feng, W. Yang, Disruption risks in supply chain management: A literature review based on bibliometric analysis, Int. J. Prod. Res., 58 (2020), 3508–3526. https://doi.org/10.1080/00207543.2020.1717012 doi: 10.1080/00207543.2020.1717012
|
| [33] |
C. Mejia, M. Wu, Y. Zhang, Y. Kajikawa, Exploring topics in bibliometric research through citation networks and semantic analysis, Front. Res. Metr. Anal., 6 (2021), 742311. https://doi.org/10.3389/frma.2021.742311 doi: 10.3389/frma.2021.742311
|
| [34] |
A. Mollahosseini, B. Hasani, M. H. Mahoor, Affectnet: A database for facial expression, valence, and arousal computing in the wild, IEEE Trans. Affect. Comput., 10 (2017), 18–31. https://doi.org/10.1109/TAFFC.2017.2740923 doi: 10.1109/TAFFC.2017.2740923
|
| [35] |
T. Song, W. Zheng, P. Song, Z. Cui, EEG emotion recognition using dynamical graph convolutional neural networks, IEEE Trans. Affect. Comput., 11 (2018), 532–541. https://doi.org/10.1109/TAFFC.2018.2817622 doi: 10.1109/TAFFC.2018.2817622
|
| [36] |
L. F. Barrett, R. Adolphs, S. Marsella, A. M. Martinez, S. D. Pollak, Emotional expressions reconsidered: Challenges to inferring emotion from human facial movements, Psychol. Sci. Public Interest, 20 (2019), 1–68. https://doi.org/10.1177/1529100619832930 doi: 10.1177/1529100619832930
|
| [37] |
S. M. Alarcao, M. J. Fonseca, Emotions recognition using EEG signals: A survey, IEEE Trans. Affect. Comput., 10 (2017), 374–393. https://doi.org/10.1109/TAFFC.2017.2712871 doi: 10.1109/TAFFC.2017.2712871
|
| [38] |
S. Li, W. Deng, Deep facial expression recognition: A survey, IEEE Trans. Affect. Comput., 13 (2020), 1195–1215. https://doi.org/10.1109/TAFFC.2020.2980176 doi: 10.1109/TAFFC.2020.2980176
|
| [39] |
S. Katsigiannis, N. Ramzan, DREAMER: A database for emotion recognition through EEG and ECG signals from wireless low-cost off-the-shelf devices, IEEE J. Biomed. Health Inform., 22 (2017), 98–107. https://doi.org/10.1109/JBHI.2017.2688239 doi: 10.1109/JBHI.2017.2688239
|
| [40] |
S. Minaee, M. Minaei, A. Abdolrashidi, Deep-emotion: Facial expression recognition using attentional convolutional network, Sensors, 21 (2021), 3046. https://doi.org/10.3390/s21093046 doi: 10.3390/s21093046
|
| [41] |
S. Zepf, J. Hernandez, A. Schmitt, W. Minker, R. W. Picard, Driver emotion recognition for intelligent vehicles: A survey, ACM Comput. Surv., 53 (2020), 1–30. https://doi.org/10.1145/3388790 doi: 10.1145/3388790
|
| [42] |
K. Othman, Public acceptance and perception of autonomous vehicles: A comprehensive review, AI Ethics, 1 (2021), 355–387. https://doi.org/10.1007/s43681-021-00041-8 doi: 10.1007/s43681-021-00041-8
|
| [43] |
G. Li, W. Lai, X. Sui, X. Li, X. Qu, T. Zhang, et al., Influence of traffic congestion on driver behavior in post-congestion driving, Accid. Anal. Prev., 141 (2020), 105508. https://doi.org/10.1016/j.aap.2020.105508 doi: 10.1016/j.aap.2020.105508
|
| [44] |
B. Yang, X. Yuan, Z. Ying, J. Zhang, B. Song, Y. Song, et al., HOGN-TVGN: Human-inspired embodied object goal navigation based on time-varying knowledge graph inference networks for robots, Adv. Eng. Inform., 62 (2024), 102671. https://doi.org/10.1016/j.aei.2024.102671 doi: 10.1016/j.aei.2024.102671
|
| [45] |
F. Hachicha, M. Argoubi, K. Guesmi, The knowledge domain and emerging trends in behavioral finance: A scientometric analysis, Res. Int. Bus. Finance, 70 (2024), 102404. https://doi.org/10.1016/j.ribaf.2024.102404 doi: 10.1016/j.ribaf.2024.102404
|
| [46] |
R. B. Zajonc, Emotion and facial efference: A theory reclaimed, Science, 228 (1985), 15–21. https://doi.org/10.1126/science.3883492 doi: 10.1126/science.3883492
|
| [47] |
M. Sekadakis, M. Kallidoni, C. Katrakazas, S. Trösterer, C. Marx, P. Moertl, et al., The HADRIAN novel human-machine interface prototype for automated driving: Safety and impact assessment, Eur. Transp. Res. Rev., 16 (2024), 64. https://doi.org/10.1186/s12544-024-00689-3 doi: 10.1186/s12544-024-00689-3
|
| [48] |
H. Li, T. Peng, B. Wang, R. Zhang, B. Gao, N. Qiao, et al., Safedrive dreamer: Navigating safety-critical scenarios in autonomous driving with world models, Alex. Eng. J., 111 (2025), 92–106. https://doi.org/10.1016/j.aej.2024.10.039 doi: 10.1016/j.aej.2024.10.039
|
| [49] |
A. Gupta, S. Jain, P. Choudhary, M. Parida, Dynamic object detection using sparse LiDAR data for autonomous machine driving and road safety applications, Expert Syst. Appl., 255 (2024), 124636. https://doi.org/10.1016/j.eswa.2024.124636 doi: 10.1016/j.eswa.2024.124636
|
| [50] |
D. Forbes, C. A. LeardMann, E. Lawrence-Wood, J. Villalobos, K. Madden, I. Gutierrez, et al., Three-item dimensions of anger reactions scale, JAMA Netw. Open, 7 (2024), e2354741. https://doi.org/10.1001/jamanetworkopen.2023.54741 doi: 10.1001/jamanetworkopen.2023.54741
|
| [51] |
Q. Zhang, Y. Ge, W. Qu, The effect of relaxing music on driving anger and performance in a simulated car-following task, Hum. Factors Ergon. Manuf. Serv. Ind., 34 (2024), 386–395. https://doi.org/10.1002/hfm.21031 doi: 10.1002/hfm.21031
|
| [52] |
P. K. Sahu, N. F. Marazi, B. B. Majumdar, A. Maji, A. Pani, How are sociodemographic differences contributing to red light violation behavior? The underlying role of gender, age, driving experience, and income, Transp. Lett., 17 (2024), 341–355. https://doi.org/10.1080/19427867.2024.2348846 doi: 10.1080/19427867.2024.2348846
|
| [53] |
A. Hassan, C. Lee, K. Cramer, K. Lafreniere, Analysis of driver characteristics, self-reported psychology measures and driving performance measures associated with aggressive driving, Accid. Anal. Prev., 188 (2023), 107097. https://doi.org/10.1016/j.aap.2023.107097 doi: 10.1016/j.aap.2023.107097
|
| [54] |
Y. Sun, R. Wang, H. Zhang, N. Ding, S. Ferreira, X. Shi, Driving fingerprinting enhances drowsy driving detection: Tailoring to individual driver characteristics, Accid. Anal. Prev., 208 (2024), 107812. https://doi.org/10.1016/j.aap.2024.107812 doi: 10.1016/j.aap.2024.107812
|
| [55] |
N. S. Baker, C. VanHook, D. Ziminski, J. Costa, M. Mitchell, N. Lovelady, "I am a survivor!": Violently injured Black men's perceptions of labeling after a violent firearm injury, J. Urban Health, 101 (2024), 535–543. https://doi.org/10.1007/s11524-024-00874-8 doi: 10.1007/s11524-024-00874-8
|
| [56] |
K. Mohan, A. Seal, O. Krejcar, A. Yazidi, Facial expression recognition using local gravitational force descriptor-based deep convolution neural networks, IEEE Trans. Instrum. Meas., 70 (2020), 1–12. https://doi.org/10.1109/TIM.2020.3031835 doi: 10.1109/TIM.2020.3031835
|
| [57] |
Z. Fang, A high-efficient hybrid physics-informed neural networks based on convolutional neural network, IEEE Trans. Neural Netw. Learn. Syst., 33 (2021), 5514–5526. https://doi.org/10.1109/TNNLS.2021.3070878 doi: 10.1109/TNNLS.2021.3070878
|
| [58] |
S. V. Georgakopoulos, K. Kottari, K. Delibasis, V. P. Plagianakos, I. Maglogiannis, Pose recognition using convolutional neural networks on omni-directional images, Neurocomputing, 280 (2018), 23–31. https://doi.org/10.1016/j.neucom.2017.08.071 doi: 10.1016/j.neucom.2017.08.071
|
| [59] |
G. Xiang, S. Yao, H. Deng, H. Wu, X. Wang, Q. Xu, et al., A multi-modal driver emotion dataset and study: Including facial expressions and synchronized physiological signals, Eng. Appl. Artif. Intell., 130 (2024), 107772. https://doi.org/10.1016/j.engappai.2023.107772 doi: 10.1016/j.engappai.2023.107772
|
| [60] |
Y. Luo, X. Qin, C. Chai, C. Tang, G. Li, W. Li, Steerable self-driving data visualization, IEEE Trans. Knowl. Data Eng., 34 (2020), 475–490. https://doi.org/10.1109/TKDE.2020.2981464 doi: 10.1109/TKDE.2020.2981464
|
| [61] |
Y. Q. Liu, X. Y. Wang, The analysis of driver's behavioral tendency under different emotional states based on a Bayesian Network, IEEE Trans. Affect. Comput., 14 (2020), 165–177. https://doi.org/10.1109/TAFFC.2020.3027720 doi: 10.1109/TAFFC.2020.3027720
|
| [62] |
Y. Shi, M. Boffi, B. E. A. Piga, L. Mussone, G. Caruso, Perception of driving simulations: Can the level of detail of virtual scenarios affect the driver's behavior and emotions?, IEEE Trans. Veh. Technol., 71 (2022), 3429–3442. https://doi.org/10.1109/TVT.2022.3152982 doi: 10.1109/TVT.2022.3152982
|
| [63] |
D. Zhang, X. Jiao, T. Zhang, Lane-changing and overtaking trajectory planning for autonomous vehicles with multi-performance optimization considering static and dynamic obstacles, Rob. Auton. Syst., 182 (2024), 104797. https://doi.org/10.1016/j.robot.2024.104797 doi: 10.1016/j.robot.2024.104797
|
| [64] |
X. Zhang, Y. Sun, Y. Zhang, A task modeling method of intelligent human-computer interaction in aircraft cockpits based on information load flow, IEEE Trans. Aerosp. Electron. Syst., 58 (2022), 5619–5634. https://doi.org/10.1109/TAES.2022.3175187 doi: 10.1109/TAES.2022.3175187
|
| [65] |
A. Bhat, S. Aoki, R. Rajkumar, Tools and methodologies for autonomous driving systems, Proc. IEEE, 106 (2018), 1700–1716. https://doi.org/10.1109/JPROC.2018.2841339 doi: 10.1109/JPROC.2018.2841339
|
| [66] |
S. Lyu, D. Wang, X. Yang, C. Miao, Driver profiling using trajectories on arbitrary roads by clustering roads and drivers successively, Memetic Comput., 16 (2024), 255–267. https://doi.org/10.1007/s12293-024-00416-4 doi: 10.1007/s12293-024-00416-4
|
| [67] |
J. Lee, K. Jang, Characterizing driver behavior using naturalistic driving data, Accid. Anal. Prev., 208 (2024), 107779. https://doi.org/10.1016/j.aap.2024.107779 doi: 10.1016/j.aap.2024.107779
|
| [68] |
Z. Sun, R. Zhang, X. Zhu, The progress and trend of digital twin research over the last 20 years: A bibliometrics-based visualization analysis, J. Manuf. Syst., 74 (2024), 1–15. https://doi.org/10.1016/j.jmsy.2024.02.016 doi: 10.1016/j.jmsy.2024.02.016
|
| [69] |
W. Li, Y. Wu, H. Xiao, S. Li, R. Tan, Z. Deng, et al., Brain-inspired driver emotion detection for intelligent cockpits based on real driving data, IEEE Intell. Transp. Syst. Mag., 16 (2023), 62–80. https://doi.org/10.1109/MITS.2023.3339758 doi: 10.1109/MITS.2023.3339758
|
| [70] |
W. Li, J. Xue, R. Tan, C. Wang, Z. Deng, S. Li, et al., Global-local-feature-fused driver speech emotion detection for intelligent cockpit in automated driving, IEEE Trans. Intell. Veh., 8 (2023), 2684–2697. https://doi.org/10.1109/TIV.2023.3259988 doi: 10.1109/TIV.2023.3259988
|
| [71] |
S. Rathore, J. H. Park, A blockchain-based deep learning approach for cyber security in next generation industrial cyber-physical systems, IEEE Trans. Ind. Inform., 17 (2020), 5522–5532. https://doi.org/10.1109/TII.2020.3040968 doi: 10.1109/TII.2020.3040968
|
| [72] |
H. Y. Lai, Advancements in intelligent driving assistance: A machine learning approach to identify real-time driving strategies using environmental, eye movement, control-related, and kinetic-related data, Adv. Eng. Inform., 62 (2024), 102745. https://doi.org/10.1016/j.aei.2024.102745 doi: 10.1016/j.aei.2024.102745
|
| [73] |
X. Lu, Y. Gong, H. Zhang, H. Tan, Q. Zheng, L. Xu, et al., An intelligent cockpit tailored carpet for human-vehicle interaction enhancement and driving intention recognition, Adv. Funct. Mater., 34 (2024), 2405321. https://doi.org/10.1002/adfm.202405321 doi: 10.1002/adfm.202405321
|
| [74] |
D. F. Zhang, Y. F. Li, Y. L. Li, Fine-grained satisfaction analysis of in-vehicle infotainment systems using improved kano model and cumulative prospect theory, IEEE Trans. Intell. Transp. Syst., 25 (2024), 15547–15561. https://doi.org/10.1109/TITS.2024.3473534 doi: 10.1109/TITS.2024.3473534
|
| [75] |
A. Lajunen, Y. Yang, A. Emadi, Review of cabin thermal management for electrified passenger vehicles, IEEE Trans. Veh. Technol., 69 (2020), 6025–6040. https://doi.org/10.1109/TVT.2020.2988468 doi: 10.1109/TVT.2020.2988468
|
| [76] |
W. Li, G. Zeng, J. Zhang, Y. Xu, Y. Xing, R. Zhou, et al., Cogemonet: A cognitive-feature-augmented driver emotion recognition model for smart cockpit, IEEE Trans. Comput. Soc. Syst., 9 (2021), 667–678. https://doi.org/10.1109/TCSS.2021.3127935 doi: 10.1109/TCSS.2021.3127935
|
| [77] |
P. K. Sharma, P. Chakraborty, A review of driver gaze estimation and application in gaze behavior understanding, Eng. Appl. Artif. Intell., 133 (2024), 108117. https://doi.org/10.1016/j.engappai.2024.108117 doi: 10.1016/j.engappai.2024.108117
|
| [78] | D. Chang, R. Fan, Z. Sun, A deep belief network and case reasoning based decision model for emergency rescue, Int. J. Comput. Commun. Control, 15 (2020). https://doi.org/10.15837/ijccc.2020.3.3836 |
| [79] |
B. Wang, L. Yu, B. Zhang, AL-MobileNet: A novel model for 2D gesture recognition in intelligent cockpit based on multi-modal data, Artif. Intell. Rev., 57 (2024), 282. https://doi.org/10.1007/s10462-024-10930-z doi: 10.1007/s10462-024-10930-z
|
| [80] |
J. Yang, S. Xing, Y. Chen, R. Qiu, C. Hua, D. Dong, A comprehensive evaluation model for the intelligent automobile cockpit comfort, Sci. Rep., 12 (2022), 15014. https://doi.org/10.1038/s41598-022-19261-x doi: 10.1038/s41598-022-19261-x
|
| [81] |
L. Morra, F. Lamberti, F. G. Pratticó, F. La Rosa, P. Montuschi, Building trust in autonomous vehicles: Role of virtual reality driving simulators in HMI design, IEEE Trans. Veh. Technol., 68 (2019), 9438–9450. https://doi.org/10.1109/TVT.2019.2933601 doi: 10.1109/TVT.2019.2933601
|
| [82] |
X. Bai, P. Dong, Y. Huang, Y. Li, C. Chen, An AR-based meta vehicle road cooperation testing systems: Framework, components modeling and an implementation example, IEEE Int. Things J., 11 (2024), 23460–23474. https://doi.org/10.1109/JIOT.2024.3386692 doi: 10.1109/JIOT.2024.3386692
|