This paper aimed to establish optimality conditions and develop an efficient solution method for unconstrained fuzzy optimization problems using the steepest descent method, based on the granular differentiability and granular convexity of fuzzy mappings. First, building upon the gr-difference for fuzzy numbers, the granular gradient, gr-differentiable and twice gr-differentiable of fuzzy mappings were researched. Furthermore, the efficient solution of fuzzy optimization was introduced under the granular convexity of fuzzy mappings. Finally, we proposed a steepest descent method for fuzzy optimization problems by employing the characterization function of fuzzy mappings. Our analysis demonstrated that the proposed method converged linearly under standard convexity conditions.
Citation: Shexiang Hai, Liang He. The steepest descent method for fuzzy optimization problems under granular differentiability[J]. AIMS Mathematics, 2025, 10(4): 10163-10186. doi: 10.3934/math.2025463
[1] | Rinaldo M. Colombo, Mauro Garavello . A Well Posed Riemann Problem for the --System at a Junction. Networks and Heterogeneous Media, 2006, 1(3): 495-511. doi: 10.3934/nhm.2006.1.495 |
[2] | Yannick Holle, Michael Herty, Michael Westdickenberg . New coupling conditions for isentropic flow on networks. Networks and Heterogeneous Media, 2020, 15(4): 605-631. doi: 10.3934/nhm.2020016 |
[3] | Gabriella Bretti, Roberto Natalini, Benedetto Piccoli . Numerical approximations of a traffic flow model on networks. Networks and Heterogeneous Media, 2006, 1(1): 57-84. doi: 10.3934/nhm.2006.1.57 |
[4] | Jens Lang, Pascal Mindt . Entropy-preserving coupling conditions for one-dimensional Euler systems at junctions. Networks and Heterogeneous Media, 2018, 13(1): 177-190. doi: 10.3934/nhm.2018008 |
[5] | Michael Herty, Niklas Kolbe, Siegfried Müller . Central schemes for networked scalar conservation laws. Networks and Heterogeneous Media, 2023, 18(1): 310-340. doi: 10.3934/nhm.2023012 |
[6] | Samitha Samaranayake, Axel Parmentier, Ethan Xuan, Alexandre Bayen . A mathematical framework for delay analysis in single source networks. Networks and Heterogeneous Media, 2017, 12(1): 113-145. doi: 10.3934/nhm.2017005 |
[7] | Jan Friedrich, Simone Göttlich, Annika Uphoff . Conservation laws with discontinuous flux function on networks: a splitting algorithm. Networks and Heterogeneous Media, 2023, 18(1): 1-28. doi: 10.3934/nhm.2023001 |
[8] | Caterina Balzotti, Maya Briani, Benedetto Piccoli . Emissions minimization on road networks via Generic Second Order Models. Networks and Heterogeneous Media, 2023, 18(2): 694-722. doi: 10.3934/nhm.2023030 |
[9] | Michael Herty, J.-P. Lebacque, S. Moutari . A novel model for intersections of vehicular traffic flow. Networks and Heterogeneous Media, 2009, 4(4): 813-826. doi: 10.3934/nhm.2009.4.813 |
[10] | Gunhild A. Reigstad . Numerical network models and entropy principles for isothermal junction flow. Networks and Heterogeneous Media, 2014, 9(1): 65-95. doi: 10.3934/nhm.2014.9.65 |
This paper aimed to establish optimality conditions and develop an efficient solution method for unconstrained fuzzy optimization problems using the steepest descent method, based on the granular differentiability and granular convexity of fuzzy mappings. First, building upon the gr-difference for fuzzy numbers, the granular gradient, gr-differentiable and twice gr-differentiable of fuzzy mappings were researched. Furthermore, the efficient solution of fuzzy optimization was introduced under the granular convexity of fuzzy mappings. Finally, we proposed a steepest descent method for fuzzy optimization problems by employing the characterization function of fuzzy mappings. Our analysis demonstrated that the proposed method converged linearly under standard convexity conditions.
[1] |
R. E. Bellman, L. A. Zadeh, Decision-making in a fuzzy environment, Management Sci., 17 (1970), 141–164. https://doi.org/10.1287/mnsc.17.4.B141 doi: 10.1287/mnsc.17.4.B141
![]() |
[2] |
D. Qiu, C. X. Ouyang, Optimality conditions for fuzzy optimization in several variables under generalized differentiability, Fuzzy Sets Syst., 434 (2022), 1–19. https://doi.org/10.1016/j.fss.2021.05.006 doi: 10.1016/j.fss.2021.05.006
![]() |
[3] |
F. F. Shi, G. J. Ye, W. Liu, S. Treanţâ, Optimality and duality for nonconvex fuzzy optimization using granular differentiability method, Inf. Sci., 684 (2024), 121287. https://doi.org/10.1016/j.ins.2024.121287 doi: 10.1016/j.ins.2024.121287
![]() |
[4] |
M. L. Puri, D. A. Ralescu, Differentials of fuzzy functions, J. Math. Anal. Appl., 91 (1983), 552–558. https://doi.org/10.1016/0022-247X(83)90169-5 doi: 10.1016/0022-247X(83)90169-5
![]() |
[5] |
G. X. Wang, C. X. Wu, Directional derivatives and subdifferential of convex fuzzy mappings and application in convex fuzzy programming, Fuzzy Sets Syst., 138 (2003), 559–591. https://doi.org/10.1016/S0165-0114(02)00440-2 doi: 10.1016/S0165-0114(02)00440-2
![]() |
[6] |
B. Bede, S. G. Gal, Generalizations of the differentiability of fuzzy-number-valued functions with applications to fuzzy differential equations, Fuzzy Sets Syst., 151 (2005), 581–599. https://doi.org/10.1016/j.fss.2004.08.001 doi: 10.1016/j.fss.2004.08.001
![]() |
[7] |
L. Stefanini, A generalization of Hukuhara difference and division for interval and fuzzy arithmetic, Fuzzy Sets Syst., 161 (2010), 1564–1584. https://doi.org/10.1016/j.fss.2009.06.009 doi: 10.1016/j.fss.2009.06.009
![]() |
[8] |
L. T. Gomes, L. C. Barros, A note on the generalized difference and the generalized differentiability, Fuzzy Sets Syst., 280 (2015), 142–145. https://doi.org/10.1016/j.fss.2015.02.015 doi: 10.1016/j.fss.2015.02.015
![]() |
[9] |
B. Bede, L. Stefanini, Generalized differentiability of fuzzy-valued functions, Fuzzy Sets Syst., 230 (2013), 119–141. https://doi.org/10.1016/j.fss.2012.10.003 doi: 10.1016/j.fss.2012.10.003
![]() |
[10] |
Y. Chalco-Cano, R. Rodríguez-López, M. Jiménez-Gamero, Characterizations of generalized differentiable fuzzy functions, Fuzzy Sets Syst., 295 (2016), 37–56. https://doi.org/10.1016/j.fss.2015.09.005 doi: 10.1016/j.fss.2015.09.005
![]() |
[11] |
S. X. Hai, Z. T. Gong, H. X. Li, Generalized differentiability for n-dimensional fuzzy-number-valued functions and fuzzy optimization, Inf. Sci., 374 (2016), 151–163. https://doi.org/10.1016/j.ins.2016.09.028 doi: 10.1016/j.ins.2016.09.028
![]() |
[12] |
M. Mazandarani, N. Pariz, A. V. Kamyad, Granular differentiability of fuzzy-number-valued functions, IEEE Trans. Fuzzy Syst., 26 (2018), 310–323. https://doi.org/10.1109/TFUZZ.2017.2659731 doi: 10.1109/TFUZZ.2017.2659731
![]() |
[13] |
J. K. Zhang, X. Y. Chen, L. F. Li, X. J. Ma, Optimality conditions for fuzzy optimization problems under granular convexity concept, Fuzzy Sets Syst., 447 (2022), 54–75. https://doi.org/10.1016/j.fss.2022.01.004 doi: 10.1016/j.fss.2022.01.004
![]() |
[14] |
J. Y. Li, M. A. Noor, On properties of convex fuzzy mappings, Fuzzy Sets Syst., 219 (2013), 113–125. https://doi.org/10.1016/j.fss.2012.11.006 doi: 10.1016/j.fss.2012.11.006
![]() |
[15] |
L. F. Li, S. Y. Liu, J. K. Zhang, On fuzzy generalized convex mappings and optimality conditions for fuzzy weakly univex mappings, Fuzzy Sets Syst., 280 (2015), 107–132. https://doi.org/10.1016/j.fss.2015.02.007 doi: 10.1016/j.fss.2015.02.007
![]() |
[16] | S. Nanda, K. Kar, Convex fuzzy mappings, Fuzzy Sets Syst., 48 (1992), 129–132. https://doi.org/10.1016/0165-0114(92)90256-4 |
[17] |
N. Furukawa, Convexity and local Lipschitz continuity of fuzzy-valued mappings, Fuzzy Sets Syst., 93 (1998), 113–119. https://doi.org/10.1016/S0165-0114(96)00192-3 doi: 10.1016/S0165-0114(96)00192-3
![]() |
[18] |
Y. R. Syau, On convex and concave fuzzy mappings, Fuzzy Sets Syst., 103 (1999), 163–168. https://doi.org/10.1016/S0165-0114(97)00210-8 doi: 10.1016/S0165-0114(97)00210-8
![]() |
[19] |
C. Zhang, X. H. Yuan, E. S. Lee, Convex fuzzy mapping and operations of convex fuzzy mappings, Comput. Math. Appl., 51 (2006), 143–152. https://doi.org/10.1016/j.camwa.2004.12.019 doi: 10.1016/j.camwa.2004.12.019
![]() |
[20] |
B. Pang, F. G. Shi, Subcategories of the category of -convex space, Fuzzy Sets Syst., 313 (2017), 61–74. https://doi.org/10.1016/j.fss.2016.02.014 doi: 10.1016/j.fss.2016.02.014
![]() |
[21] |
T. M. Costa, Y. C. Cano, R. O. Gomez, New preference order relationships and their application to multiobjective interval and fuzzy interval optimization problems, Fuzzy Sets Syst., 477 (2024), 108812. https://doi.org/10.1016/j.fss.2023.108812 doi: 10.1016/j.fss.2023.108812
![]() |
[22] |
T. Antczak, Optimality results for a class of nonconvex fuzzy optimization problems with granular differentiable objective functions, Fuzzy Sets Syst., 498 (2025), 109147. https://doi.org/10.1016/j.fss.2024.109147 doi: 10.1016/j.fss.2024.109147
![]() |
[23] |
U. M. Pirzada, V. D. Pathak, Newton method for solving the multi-variable fuzzy optimization problem, J. Optim. Theory Appl., 156 (2013), 867–881. https://doi.org/10.1007/s10957-012-0141-3 doi: 10.1007/s10957-012-0141-3
![]() |
[24] |
Y. C. Cano, G. N. Silva, A. R. Lizana, On the Newton method for solving fuzzy optimization problems, Fuzzy Sets Syst., 272 (2015), 60–69. https://doi.org/10.1016/j.fss.2015.02.001 doi: 10.1016/j.fss.2015.02.001
![]() |
[25] |
F. F. Shi, G. J. Ye, W. Liu, D. F. Zhao, A class of nonconvex fuzzy optimization problems under granular differentiability concept, Math. Comput. Simul., 211 (2023), 430–444. https://doi.org/10.1016/j.matcom.2023.04.021 doi: 10.1016/j.matcom.2023.04.021
![]() |
[26] |
H. Vu, N. V. Hoa, Uncertain fractional differential equations on a time scale under granular differentiability concept, Comput. Appl. Math., 38 (2019), 110. https://doi.org/10.1007/s40314-019-0873-x doi: 10.1007/s40314-019-0873-x
![]() |
[27] |
M. Najariyan, N. Pariz, H. Vu, Fuzzy linear singular differential equations under granular differentiability concept, Fuzzy Sets Syst., 429 (2022), 169–187. https://doi.org/10.1016/j.fss.2021.01.003 doi: 10.1016/j.fss.2021.01.003
![]() |
[28] |
B. Li, P. Afkhami, R. Khayamim, Z. Elmi, R. Moses, J. Sobanjo, et al., A holistic optimization-based approach for sustainable selection of level crossings for closure with safety, economic, and environmental considerations, Reliab. Eng. Syst. Saf., 249 (2024), 110197. https://doi.org/10.1016/j.ress.2024.110197 doi: 10.1016/j.ress.2024.110197
![]() |
1. | R. M. Colombo, M. Herty, V. Sachers, On Conservation Laws at a Junction, 2008, 40, 0036-1410, 605, 10.1137/070690298 | |
2. | BENJAMIN BOUTIN, CHRISTOPHE CHALONS, PIERRE-ARNAUD RAVIART, EXISTENCE RESULT FOR THE COUPLING PROBLEM OF TWO SCALAR CONSERVATION LAWS WITH RIEMANN INITIAL DATA, 2010, 20, 0218-2025, 1859, 10.1142/S0218202510004817 | |
3. | Alfredo Bermúdez, Xián López, M. Elena Vázquez-Cendón, Reprint of: Finite volume methods for multi-component Euler equations with source terms, 2018, 169, 00457930, 40, 10.1016/j.compfluid.2018.03.057 | |
4. | M. Herty, J. Mohring, V. Sachers, A new model for gas flow in pipe networks, 2010, 33, 01704214, 845, 10.1002/mma.1197 | |
5. | RINALDO M. COLOMBO, PAOLA GOATIN, BENEDETTO PICCOLI, ROAD NETWORKS WITH PHASE TRANSITIONS, 2010, 07, 0219-8916, 85, 10.1142/S0219891610002025 | |
6. | Jochen Kall, Rukhsana Kausar, Stephan Trenn, Modeling water hammers via PDEs and switched DAEs with numerical justification, 2017, 50, 24058963, 5349, 10.1016/j.ifacol.2017.08.927 | |
7. | Michael Herty, Coupling Conditions for Networked Systems of Euler Equations, 2008, 30, 1064-8275, 1596, 10.1137/070688535 | |
8. | Kristen DeVault, Pierre A. Gremaud, Vera Novak, Mette S. Olufsen, Guillaume Vernières, Peng Zhao, Blood Flow in the Circle of Willis: Modeling and Calibration, 2008, 7, 1540-3459, 888, 10.1137/07070231X | |
9. | CIRO D'APICE, BENEDETTO PICCOLI, VERTEX FLOW MODELS FOR VEHICULAR TRAFFIC ON NETWORKS, 2008, 18, 0218-2025, 1299, 10.1142/S0218202508003042 | |
10. | Stephan Gerster, Michael Herty, Michael Chertkov, Marc Vuffray, Anatoly Zlotnik, 2019, Chapter 8, 978-3-030-27549-5, 59, 10.1007/978-3-030-27550-1_8 | |
11. | Martin Gugat, Michael Herty, Axel Klar, Günther Leugering, Veronika Schleper, 2012, Chapter 7, 978-3-0348-0132-4, 123, 10.1007/978-3-0348-0133-1_7 | |
12. | Mapundi K. Banda, Michael Herty, Jean-Medard T. Ngnotchouye, Toward a Mathematical Analysis for Drift-Flux Multiphase Flow Models in Networks, 2010, 31, 1064-8275, 4633, 10.1137/080722138 | |
13. | Jeroen J. Stolwijk, Volker Mehrmann, Error Analysis and Model Adaptivity for Flows in Gas Networks, 2018, 26, 1844-0835, 231, 10.2478/auom-2018-0027 | |
14. | Mapundi K. Banda, Axel-Stefan Häck, Michael Herty, Numerical Discretization of Coupling Conditions by High-Order Schemes, 2016, 69, 0885-7474, 122, 10.1007/s10915-016-0185-x | |
15. | Evgenii S. Baranovskii, Vyacheslav V. Provotorov, Mikhail A. Artemov, Alexey P. Zhabko, Non-Isothermal Creeping Flows in a Pipeline Network: Existence Results, 2021, 13, 2073-8994, 1300, 10.3390/sym13071300 | |
16. | Rinaldo M. Colombo, Mauro Garavello, On the Cauchy Problem for the p-System at a Junction, 2008, 39, 0036-1410, 1456, 10.1137/060665841 | |
17. | J.B. Collins, P.A. Gremaud, Analysis of a domain decomposition method for linear transport problems on networks, 2016, 109, 01689274, 61, 10.1016/j.apnum.2016.06.004 | |
18. | Alfredo Bermúdez, Xián López, M. Elena Vázquez-Cendón, Treating network junctions in finite volume solution of transient gas flow models, 2017, 344, 00219991, 187, 10.1016/j.jcp.2017.04.066 | |
19. | Martin Gugat, Michael Herty, Siegfried Müller, Coupling conditions for the transition from supersonic to subsonic fluid states, 2017, 12, 1556-181X, 371, 10.3934/nhm.2017016 | |
20. | H. Egger, A Robust Conservative Mixed Finite Element Method for Isentropic Compressible Flow on Pipe Networks, 2018, 40, 1064-8275, A108, 10.1137/16M1094373 | |
21. | Yannick Holle, Kinetic relaxation to entropy based coupling conditions for isentropic flow on networks, 2020, 269, 00220396, 1192, 10.1016/j.jde.2020.01.005 | |
22. | Mohamed Elshobaki, Alessandro Valiani, Valerio Caleffi, Numerical modelling of open channel junctions using the Riemann problem approach, 2019, 57, 0022-1686, 662, 10.1080/00221686.2018.1534283 | |
23. | Mapundi K. Banda, Michael Herty, Towards a space mapping approach to dynamic compressor optimization of gas networks, 2011, 32, 01432087, 253, 10.1002/oca.929 | |
24. | Rinaldo M. Colombo, 2011, Chapter 13, 978-1-4419-9553-7, 267, 10.1007/978-1-4419-9554-4_13 | |
25. | Seok Woo Hong, Chongam Kim, A new finite volume method on junction coupling and boundary treatment for flow network system analyses, 2011, 65, 02712091, 707, 10.1002/fld.2212 | |
26. | Michael Herty, Mohammed Seaïd, Assessment of coupling conditions in water way intersections, 2013, 71, 02712091, 1438, 10.1002/fld.3719 | |
27. | Gunhild A. Reigstad, Existence and Uniqueness of Solutions to the Generalized Riemann Problem for Isentropic Flow, 2015, 75, 0036-1399, 679, 10.1137/140962759 | |
28. | R. Borsche, A. Klar, Flooding in urban drainage systems: coupling hyperbolic conservation laws for sewer systems and surface flow, 2014, 76, 02712091, 789, 10.1002/fld.3957 | |
29. | Pascal Mindt, Jens Lang, Pia Domschke, Entropy-Preserving Coupling of Hierarchical Gas Models, 2019, 51, 0036-1410, 4754, 10.1137/19M1240034 | |
30. | Alexandre Morin, Gunhild A. Reigstad, Pipe Networks: Coupling Constants in a Junction for the Isentropic Euler Equations, 2015, 64, 18766102, 140, 10.1016/j.egypro.2015.01.017 | |
31. | Mapundi Kondwani Banda, 2015, Chapter 9, 978-3-319-11321-0, 439, 10.1007/978-3-319-11322-7_9 | |
32. | Yogiraj Mantri, Sebastian Noelle, Well-balanced discontinuous Galerkin scheme for 2 × 2 hyperbolic balance law, 2021, 429, 00219991, 110011, 10.1016/j.jcp.2020.110011 | |
33. | Mauro Garavello, Benedetto Piccoli, Conservation laws on complex networks, 2009, 26, 0294-1449, 1925, 10.1016/j.anihpc.2009.04.001 | |
34. | Mauro Garavello, 2011, Chapter 15, 978-1-4419-9553-7, 293, 10.1007/978-1-4419-9554-4_15 | |
35. | Andrea Corli, Ingenuin Gasser, Mária Lukáčová-Medvid’ová, Arne Roggensack, Ulf Teschke, A multiscale approach to liquid flows in pipes I: The single pipe, 2012, 219, 00963003, 856, 10.1016/j.amc.2012.06.054 | |
36. | Raul Borsche, Jochen Kall, ADER schemes and high order coupling on networks of hyperbolic conservation laws, 2014, 273, 00219991, 658, 10.1016/j.jcp.2014.05.042 | |
37. | Mapundi K. Banda, Michael Herty, Multiscale modeling for gas flow in pipe networks, 2008, 31, 01704214, 915, 10.1002/mma.948 | |
38. | Gunhild A. Reigstad, Tore Flåtten, Nils Erland Haugen, Tor Ytrehus, Coupling constants and the generalized Riemann problem for isothermal junction flow, 2015, 12, 0219-8916, 37, 10.1142/S0219891615500022 | |
39. | Alfredo Bermúdez, Xián López, M. Elena Vázquez-Cendón, Finite volume methods for multi-component Euler equations with source terms, 2017, 156, 00457930, 113, 10.1016/j.compfluid.2017.07.004 | |
40. | Raul Borsche, Numerical schemes for networks of hyperbolic conservation laws, 2016, 108, 01689274, 157, 10.1016/j.apnum.2016.01.006 | |
41. | Alexandre Bayen, Maria Laura Delle Monache, Mauro Garavello, Paola Goatin, Benedetto Piccoli, 2022, Chapter 3, 978-3-030-93014-1, 39, 10.1007/978-3-030-93015-8_3 | |
42. | Christian Contarino, Eleuterio F. Toro, Gino I. Montecinos, Raul Borsche, Jochen Kall, Junction-Generalized Riemann Problem for stiff hyperbolic balance laws in networks: An implicit solver and ADER schemes, 2016, 315, 00219991, 409, 10.1016/j.jcp.2016.03.049 | |
43. | Michael Herty, Nouh Izem, Mohammed Seaid, Fast and accurate simulations of shallow water equations in large networks, 2019, 78, 08981221, 2107, 10.1016/j.camwa.2019.03.049 | |
44. | F. Daude, P. Galon, A Finite-Volume approach for compressible single- and two-phase flows in flexible pipelines with fluid-structure interaction, 2018, 362, 00219991, 375, 10.1016/j.jcp.2018.01.055 | |
45. | Benedetto Piccoli, Andrea Tosin, 2013, Chapter 576-3, 978-3-642-27737-5, 1, 10.1007/978-3-642-27737-5_576-3 | |
46. | Gunhild Allard Reigstad, Tore Flåtten, 2015, Chapter 66, 978-3-319-10704-2, 667, 10.1007/978-3-319-10705-9_66 | |
47. | F. Daude, R.A. Berry, P. Galon, A Finite-Volume method for compressible non-equilibrium two-phase flows in networks of elastic pipelines using the Baer–Nunziato model, 2019, 354, 00457825, 820, 10.1016/j.cma.2019.06.010 | |
48. | Benedetto Piccoli, Andrea Tosin, 2012, Chapter 112, 978-1-4614-1805-4, 1748, 10.1007/978-1-4614-1806-1_112 | |
49. | Mouhamadou Samsidy Goudiaby, Gunilla Kreiss, Existence result for the coupling of shallow water and Borda–Carnot equations with Riemann data, 2020, 17, 0219-8916, 185, 10.1142/S021989162050006X | |
50. | Michael Herty, Mohammed Seaïd, Simulation of transient gas flow at pipe-to-pipe intersections, 2008, 56, 02712091, 485, 10.1002/fld.1531 | |
51. | RINALDO M. COLOMBO, CRISTINA MAURI, EULER SYSTEM FOR COMPRESSIBLE FLUIDS AT A JUNCTION, 2008, 05, 0219-8916, 547, 10.1142/S0219891608001593 | |
52. | Mapundi K. Banda, Michael Herty, Jean Medard T. Ngnotchouye, On linearized coupling conditions for a class of isentropic multiphase drift-flux models at pipe-to-pipe intersections, 2015, 276, 03770427, 81, 10.1016/j.cam.2014.08.021 | |
53. | Christophe Chalons, Pierre-Arnaud Raviart, Nicolas Seguin, The interface coupling of the gas dynamics equations, 2008, 66, 0033-569X, 659, 10.1090/S0033-569X-08-01087-X | |
54. | Sara Grundel, Michael Herty, Hyperbolic discretization of simplified Euler equation via Riemann invariants, 2022, 106, 0307904X, 60, 10.1016/j.apm.2022.01.006 | |
55. | Zlatinka Dimitrova, Flows of Substances in Networks and Network Channels: Selected Results and Applications, 2022, 24, 1099-4300, 1485, 10.3390/e24101485 | |
56. | Edwige Godlewski, Pierre-Arnaud Raviart, 2021, Chapter 7, 978-1-0716-1342-9, 627, 10.1007/978-1-0716-1344-3_7 | |
57. | Jens Brouwer, Ingenuin Gasser, Michael Herty, Gas Pipeline Models Revisited: Model Hierarchies, Nonisothermal Models, and Simulations of Networks, 2011, 9, 1540-3459, 601, 10.1137/100813580 | |
58. | Raul Borsche, Jochen Kall, High order numerical methods for networks of hyperbolic conservation laws coupled with ODEs and lumped parameter models, 2016, 327, 00219991, 678, 10.1016/j.jcp.2016.10.003 | |
59. | MOUHAMADOU SAMSIDY GOUDIABY, GUNILLA KREISS, A RIEMANN PROBLEM AT A JUNCTION OF OPEN CANALS, 2013, 10, 0219-8916, 431, 10.1142/S021989161350015X | |
60. | Martin Gugat, Michael Herty, 2022, 23, 9780323850599, 59, 10.1016/bs.hna.2021.12.002 | |
61. | Benedetto Piccoli, Andrea Tosin, 2009, Chapter 576, 978-0-387-75888-6, 9727, 10.1007/978-0-387-30440-3_576 | |
62. | Gunhild A. Reigstad, Numerical network models and entropy principles for isothermal junction flow, 2014, 9, 1556-181X, 65, 10.3934/nhm.2014.9.65 | |
63. | Andrea Corli, Massimiliano D. Rosini, Ulrich Razafison, 2024, Mathematical Modeling of Chattering and the Optimal Design of a Valve*, 979-8-3503-1633-9, 76, 10.1109/CDC56724.2024.10886245 | |
64. | Michael T. Redle, Michael Herty, An asymptotic-preserving scheme for isentropic flow in pipe networks, 2025, 20, 1556-1801, 254, 10.3934/nhm.2025013 | |
65. | Andrea Corli, Ulrich Razafison, Massimiliano D. Rosini, Coherence of Coupling Conditions for the Isothermal Euler System, 2025, 0170-4214, 10.1002/mma.10847 |