Review Topical Sections

Renewable energy perspectives: Brazilian case study on green hydrogen production

  • Received: 08 November 2024 Revised: 20 March 2025 Accepted: 07 April 2025 Published: 18 April 2025
  • Hydrogen is recognized as a key component of the future renewable energy landscape. It can be sourced from diverse raw materials, including water, bioethanol, and microalgae. Despite its potential, challenges remain regarding its cost-effectiveness, infrastructure development, and integration into existing energy systems. This study evaluated Brazil's renewable energy production, focusing on resource availability, economic feasibility, technological challenges, and regulatory factors. Data from international energy agencies were analyzed using statistical indicators to compare Brazil's green hydrogen potential with global benchmarks. Findings indicate that Brazil's electrical matrix—comprising hydropower (59%), wind (13.2%), and solar (7%)—offers favorable conditions for large-scale green hydrogen generation. However, high production costs remain a limiting factor due to technological constraints, infrastructure gaps, and policy uncertainties. The results highlight Brazil's strong potential to become a key player in the green hydrogen market, provided that technological advancements, cost reductions, and regulatory frameworks evolve to support large-scale implementation. The study emphasizes the need for targeted investments, government incentives, and energy storage solutions to enhance Brazil's competitiveness in the global energy transition.

    Citation: Gustavo Henrique Romeu da Silva, Andreas Nascimento, Christoph Daniel Baum, Nazem Nascimento, Mauro Hugo Mathias, Mohd Amro. Renewable energy perspectives: Brazilian case study on green hydrogen production[J]. AIMS Energy, 2025, 13(2): 449-470. doi: 10.3934/energy.2025017

    Related Papers:

    [1] Rim BOUKHCHINA, Mohamed HAMDI, Souheil EL ALIMI . Power-to-hydrogen: A review of applications, market development, and policy landscape. AIMS Energy, 2025, 13(3): 696-731. doi: 10.3934/energy.2025025
    [2] Dheeraj Rathore, Anoop Singh, Divakar Dahiya, Poonam Singh Nigam . Sustainability of biohydrogen as fuel: Present scenario and future perspective. AIMS Energy, 2019, 7(1): 1-19. doi: 10.3934/energy.2019.1.1
    [3] Faris Elmanakhly, Andre DaCosta, Brittany Berry, Robert Stasko, Michael Fowler, Xiao-Yu Wu . Hydrogen economy transition plan: A case study on Ontario. AIMS Energy, 2021, 9(4): 775-811. doi: 10.3934/energy.2021036
    [4] Peter Majewski, Fatemeh Salehi, Ke Xing . Green hydrogen. AIMS Energy, 2023, 11(5): 878-895. doi: 10.3934/energy.2023042
    [5] Muhammad Amir Raza, M. M. Aman, Abdul Ghani Abro, Muhammad Shahid, Darakhshan Ara, Tufail Ahmed Waseer, Mohsin Ali Tunio, Nadeem Ahmed Tunio, Shakir Ali Soomro, Touqeer Ahmed Jumani . The role of techno-economic factors for net zero carbon emissions in Pakistan. AIMS Energy, 2023, 11(2): 239-255. doi: 10.3934/energy.2023013
    [6] Duong Doan Ngoc, Kien Duong Trung, Phap Vu Minh, Thao Nguyen Van . Assessing factors influencing green hydrogen conversion at Vietnam's gas turbine power plants using combined SWOT-AHP analysis method. AIMS Energy, 2024, 12(5): 1054-1074. doi: 10.3934/energy.2024050
    [7] Daido Fujita . The prospects of clean hydrogen utilization in power generation industry. AIMS Energy, 2023, 11(5): 991-1011. doi: 10.3934/energy.2023047
    [8] Soufiyan Bahetta, Nabil Dahhou, Rachid Hasnaoui . Comparative effectiveness of environmental regulation instruments: Case of the Moroccan electricity mix. AIMS Energy, 2021, 9(5): 1097-1112. doi: 10.3934/energy.2021050
    [9] Mohamed Hamdi, Hafez A. El Salmawy, Reda Ragab . Optimum configuration of a dispatchable hybrid renewable energy plant using artificial neural networks: Case study of Ras Ghareb, Egypt. AIMS Energy, 2023, 11(1): 171-196. doi: 10.3934/energy.2023010
    [10] Arben Gjukaj, Rexhep Shaqiri, Qamil Kabashi, Vezir Rexhepi . Renewable energy integration and distributed generation in Kosovo: Challenges and solutions for enhanced energy quality. AIMS Energy, 2024, 12(3): 686-705. doi: 10.3934/energy.2024032
  • Hydrogen is recognized as a key component of the future renewable energy landscape. It can be sourced from diverse raw materials, including water, bioethanol, and microalgae. Despite its potential, challenges remain regarding its cost-effectiveness, infrastructure development, and integration into existing energy systems. This study evaluated Brazil's renewable energy production, focusing on resource availability, economic feasibility, technological challenges, and regulatory factors. Data from international energy agencies were analyzed using statistical indicators to compare Brazil's green hydrogen potential with global benchmarks. Findings indicate that Brazil's electrical matrix—comprising hydropower (59%), wind (13.2%), and solar (7%)—offers favorable conditions for large-scale green hydrogen generation. However, high production costs remain a limiting factor due to technological constraints, infrastructure gaps, and policy uncertainties. The results highlight Brazil's strong potential to become a key player in the green hydrogen market, provided that technological advancements, cost reductions, and regulatory frameworks evolve to support large-scale implementation. The study emphasizes the need for targeted investments, government incentives, and energy storage solutions to enhance Brazil's competitiveness in the global energy transition.





    [1] Da Silva GHR, Nascimento A, Baum CD, et al. (2024) Renewable energy potentials and roadmap in Brazil, Austria, and Germany. Energies 17: 1482. https://doi.org/10.3390/en17061482 doi: 10.3390/en17061482
    [2] Silva GHR (2024) Análise da Cadeia Produtiva do Hidrogênio Verde: Potencial de Produção Sustentável Utilizando Biorefinarias. São Paulo State University (UNESP), School of Engineering and Sciences: Guaratinguetá, Brazil, 1–80. Available from: https://hdl.handle.net/11449/253324.
    [3] Majewski P, Salehi F, Xing K (2023) Green Hydrogen. AIMS Energy 11: 878–895. https://doi.org/10.3934/energy.2023042 doi: 10.3934/energy.2023042
    [4] Fivga A, Speranza LG, Branco CM, et al. (2019) A review on the current state of the art for the production of advanced liquid biofuels. AIMS Energy 7: 46–76. https://doi.org/10.3934/energy.2019.1.46 doi: 10.3934/energy.2019.1.46
    [5] Lima G, Nascimento A, Oliveira MP, et al. (2024) Energy efficiency analysis: A household digital transformation. AIMS Energy 12: 774–808. https://doi.org/10.3934/energy.2024037 doi: 10.3934/energy.2024037
    [6] Dias FLG, Nascimento MAR, Rodrigues LO (2015) Aerodynamic Assessment of Periodicity and Symmetry Conditions in a Flameless Burner. J Mech Eng Autom 5: 80–87. https://doi.org/10.5923/j.jmea.20150502.03 doi: 10.5923/j.jmea.20150502.03
    [7] International Energy Agency (2024) World Energy Outlook. Int Energy Agency, IEA Publications. Available from: https://www.iea.org/reports/world-energy-outlook-2024.
    [8] Empresa de Pesquisa Energética (2024) Balanço Energético Nacional. EPE. Available from: https://www.epe.gov.br/pt/publicacoes-dados-abertos/publicacoes/balanco-energetico-nacional-2024.
    [9] International Renewable Energy Agency (2022) Renewable Capacity Statistics. Int Renew Energ Agency, Abu Dhabi. Available from: https://www.irena.org/publications/2022/Apr/Renewable-Capacity-Statistics-2022.
    [10] International Renewable Energy Agency (2024) Renewable Capacity Statistics. Int Renew Energ Agency, Abu Dhabi. Available from: https://www.irena.org/Publications/2024/Mar/Renewable-capacity-statistics-2024.
    [11] Secretaria do Estado do Meio Ambiente (2019) Plano Estadual de Recursos Hídricos do Amazonas PERH/AM. SEMA, Manaus. Available from: https://www.sema.am.gov.br/plano-estadual-de-recurso-hidricos-perh/.
    [12] Alfredsen K, Amundsen P, Hahn L, et al. (2022) A synoptic history of the development, production and environmental oversight of hydropower in Brazil, Canada, and Norway. Hydrobiologia 849: 269–280. https://doi.org/10.1007/s10750-021-04709-4 doi: 10.1007/s10750-021-04709-4
    [13] Dias VDS, Pereira M, Medero GM, et al. (2018) An overview of hydropower reservoirs in Brazil: Current situation, future perspectives and impacts of climate change. Water 10: 1–18. https://doi.org/10.3390/w10050592 doi: 10.3390/w10050592
    [14] Lucena JAY, Lucena KAA (2019) Wind energy in Brazil: An overview and perspectives under the triple bottom line. Clean Energy 3: 69–84. https://doi.org/10.1093/ce/zkz001 doi: 10.1093/ce/zkz001
    [15] Vinhoza A, Schaeffer R (2021) Brazil's offshore wind energy potential assessment based on a spatial multi-criteria decision analysis. Renewable Sustainable Energy Rev 146: 111185. https://doi.org/10.1016/j.rser.2021.111185 doi: 10.1016/j.rser.2021.111185
    [16] Lee J, Zhao F (2022) Global Wind Report 2022. Global Wind Energy Council, Brussels. Available from: https://gwec.net/global-wind-report-2022/.
    [17] Empresa de Pesquisa Energética (2021) Geração Eólica e Fotovoltaica, Dados de entrada para modelos elétricos e energéticos: metodologias e premissas. Planejamento Da Geração, Rio de Janeiro. Available from: https://www.epe.gov.br/sites-pt/publicacoes-dados-abertos/publicacoes/PublicacoesArquivos/publicacao-558/NT-EPE-DEE-011-2021_EOL%20e%20UFV%20-%20Entrada%20para%20modelos.pdf.
    [18] Azevedo SSP, Pereira Junior AO, Silva NF, et al. (2020) Assessment of offshore wind power potential along the Brazilian Coast. Energies 13: 2557. https://doi.org/10.3390/en13102557 doi: 10.3390/en13102557
    [19] Denes D, Kindl S (2019) Challenges and opportunities for the growth of solar photovoltaic energy in Brazil. Energy Policy 125: 396–404. https://doi.org/10.1016/j.enpol.2018.10.063 doi: 10.1016/j.enpol.2018.10.063
    [20] Rigo PD, Cezar J, Siluk M, et al. (2019) Is the success of small-scale photovoltaic solar energy generation achievable in Brazil? J Cleaner Prod 240: 118243. https://doi.org/10.1016/j.jclepro.2019.118243 doi: 10.1016/j.jclepro.2019.118243
    [21] Pereira EB, Martins FR, Gonçalves AR, et al. (2017) Atlas Brasileiro de Energia Solar 2017. 2nd ed.; INPE: São José dos Campos, Brazil, 59. https://doi.org/10.34024/978851700089
    [22] McPherson M, Johnson N, Strubegger M (2018) The role of electricity storage and hydrogen technologies in enabling global low-carbon energy transitions. Appl Energy 216: 649–661. https://doi.org/10.1016/j.apenergy.2018.02.110 doi: 10.1016/j.apenergy.2018.02.110
    [23] Zsiborács H, Baranyai NH, Vincze A, et al. (2019) Intermittent renewable energy sources: The role of energy storage in the European power system of 2040. Electronics 8: 729. https://doi.org/10.3390/electronics8070729 doi: 10.3390/electronics8070729
    [24] Hassan Q, Algburi S, Sameen AZ, et al. (2023) A review of hybrid renewable energy systems: Solar and wind-powered solutions: Challenges, opportunities, and policy implications. Results Eng 20: 2590–1230. https://doi.org/10.1016/j.rineng.2023.101621 doi: 10.1016/j.rineng.2023.101621
    [25] Gesellschaft für Internationale Zusammenarbeit (2021) Mapeamento do Setor de Hidrogênio Brasileiro. GIZ, Brasília. Available from: https://www.energypartnership.com.br/fileadmin/user_upload/brazil/media_elements/Mapeamento_H2_-_Diagramado_-_V2h.pdf.
    [26] International Energy Agency (2019) The Future of Hydrogen. Int Energy Agency, IEA Publications. Available from: https://www.iea.org/reports/the-futureof-hydrogen.
    [27] International Energy Agency (2024) Global Hydrogen Review 2024. Int Energy Agency, IEA Publications. Available from: https://www.iea.org/reports/global-hydrogen-review-2024.
    [28] Oliveira RC (2022) Panorama do hidrogênio no Brasil. Inst de Pesquisa Econômica Aplicada, IPEA. Available from: https://repositorio.ipea.gov.br/bitstream/11058/11291/1/td_2787_web.pdf.
    [29] Agência Nacional de Petróleo, Gás e Biocombustíveis (2021) Autorizações Para Refino de Petróleo. ANP. Available from: https://www.gov.br/anp/pt-br/assuntos/producao-de-derivados-de-petroleo-e-processamento-de-gas-natural/producao-de-derivados-de-petroleo-e-processamento-de-gas-natural/autorizacoes-para-refino-de-petroleo.
    [30] Moraes TS, Silva HNC, Zotes LP, et al. (2019) A techno-economic evaluation of the hydrogen production for energy generation using an ethanol fuel processor. Int J Hydrogen Energy 44: 21205–21219. https://doi.org/10.1016/j.ijhydene.2019.06.182 doi: 10.1016/j.ijhydene.2019.06.182
    [31] Romeu da Silva GH, Nascimento A, Nascimento D, et al. (2025) Analysis of the sugarcane biomass use to produce green hydrogen: Brazilian case study. Appl Sci 15: 1675. https://doi.org/10.3390/app15031675 doi: 10.3390/app15031675
    [32] Silva GHR, Nascimento A, Nascimento N (2022) Hydrogen related perspectives in Brazil. In Proc World Conf Mech Eng, 1sd WCME, Berlin, Germany 102: 16–25. https://www.doi.org/10.33422/WCME.2022.12.102.
    [33] Shi X, Qian Y, Yang S (2020) Fluctuation analysis of a complementary wind—Solar energy system and integration for large scale hydrogen production. ACS Sustainable Chem Eng 8: 7097–7110. https://doi.org/10.1021/acssuschemeng.0c01054 doi: 10.1021/acssuschemeng.0c01054
    [34] Yadav D, Banerjee R (2018) Economic assessment of hydrogen production from solar driven high-temperature steam electrolysis process Steam generator. J Cleaner Prod 183: 1131–1155. https://doi.org/10.1016/j.jclepro.2018.01.074 doi: 10.1016/j.jclepro.2018.01.074
    [35] Nadaleti WC, Santos GB, Lourenço VA (2020) The potential and economic viability of hydrogen production from the use of hydroelectric and wind farms surplus energy in Brazil: A national and pioneering analysis. Int J Hydrogen Energy 45: 1373–1384. https://doi.org/10.1016/j.ijhydene.2019.08.199 doi: 10.1016/j.ijhydene.2019.08.199
    [36] Silva GHR, Nascimento N (2023) Comparative study of various methods of hydrogen production based on costs and environmental impact. Sodebras 18: 120–124. https://doi.org/10.29367/issn.1809-3957.18.2023.211.120 doi: 10.29367/issn.1809-3957.18.2023.211.120
    [37] International Renewable Energy Agency (2019) Hydrogen: A renewable energy perspective. In Proc 2nd Hydrogen Energy Ministerial Meeting, Tokyo, Japan, 25 September 2019. Available from: https://www.irena.org/-/media/Files/IRENA/Agency/Publication/2019/Sep/IRENA_Hydrogen_2019.pdf.
    [38] Macedo SF, Peyerl D (2022) Prospects and economic feasibility analysis of wind and solar photovoltaic hybrid systems for hydrogen production and storage: A case study of the Brazilian electric power sector. Int J Hydrogen Energy 47: 10460–10473. https://doi.org/10.1016/j.ijhydene.2022.01.133 doi: 10.1016/j.ijhydene.2022.01.133
    [39] Muhammed G, Tekbiyik-Ersoy N (2020) Development of renewable energy in China, USA, and Brazil: A comparative study on renewable energy policies. Sustainability 12: 9136. https://doi.org/10.3390/su12219136 doi: 10.3390/su12219136
    [40] International Energy Agency (2024) Hydrogen Production and Infrastructure Projects Database. IEA, 2024. Available from: https://www.iea.org/data-and-statistics/data-product/hydrogen-production-and-infrastructure-projects-database.
    [41] Siqueira AMQ, Bermann C (2020) Fundamentos do planejamento energético centralizado e do descentralizado. Rev Bras Energ 26: 33–44. https://doi.org/10.47168/rbe.v26i1.561 doi: 10.47168/rbe.v26i1.561
    [42] Lazaro LLB, Soares RS, Bermann C, et al. (2022) Energy transition in Brazil: Is there a role for multilevel governance in a centralized energy regime? Energy Res Soc Sci 85: 102404. https://doi.org/10.1016/j.erss.2021.102404 doi: 10.1016/j.erss.2021.102404
    [43] Silva GDP, Magrini A, Tolmasquim MT, et al. (2019) Environmental licensing and energy policy regulating utility-scale solar photovoltaic installations in Brazil: Status and future perspectives. Impact Assess Proj A 37: 503–515. https://doi.org/10.1080/14615517.2019.1595933 doi: 10.1080/14615517.2019.1595933
  • Reader Comments
  • © 2025 the Author(s), licensee AIMS Press. This is an open access article distributed under the terms of the Creative Commons Attribution License (http://creativecommons.org/licenses/by/4.0)
通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索

Metrics

Article views(875) PDF downloads(154) Cited by(0)

Article outline

Figures and Tables

Figures(8)  /  Tables(1)

/

DownLoad:  Full-Size Img  PowerPoint
Return
Return

Catalog