[1]
|
P. Almeida, D. Napp, R. Pinto, A new class of superregular matrices and MDP convolutional codes, Linear Algebra Appl., 439 (2013), 2145–2157. https://doi.org/10.1016/j.laa.2013.06.013 doi: 10.1016/j.laa.2013.06.013
|
[2]
|
P. Almeida, D. Napp, R. Pinto, Superregular matrices and applications to convolutional codes, Linear Algebra Appl., 499 (2016), 1–25. https://doi.org/10.1016/j.laa.2016.02.034 doi: 10.1016/j.laa.2016.02.034
|
[3]
|
R. E. Blahut, Algebraic codes for data transmission, Cambridge: Cambridge University Press, 2003.
|
[4]
|
I. E. Bocharova, F. Hug, R. Johannesson, B. D. Kudryashov, Dual convolutional codes and the MacWilliams identities, Probl. Inf. Transm., 48 (2012), 21–30. https://doi.org/10.1134/S0032946012010036 doi: 10.1134/S0032946012010036
|
[5]
|
A. R. Calderbank, E. M. Rains, P. W. Shor, N. J. A. Sloane, Quantum error correction via codes over GF(4), In: Proceedings of IEEE international symposium on information theory, Germany: IEEE, 1997. https://doi.org/10.1109/ISIT.1997.613213
|
[6]
|
A. R. Calderbank, P. W. Shor, Good quantum error-correcting codes exist, Phys. Rev. A, 54 (1996), 1098–1105. https://doi.org/10.1103/PhysRevA.54.1098 doi: 10.1103/PhysRevA.54.1098
|
[7]
|
C. Carlet, S. Mesnager, C. Tang, Y. Qi, Euclidean and Hermitian LCD MDS codes, Des. Codes Cryptogr., 86 (2018), 2605–2618. https://doi.org/10.1007/s10623-018-0463-8 doi: 10.1007/s10623-018-0463-8
|
[8]
|
C. Carlet, S. Mesnager, C. Tang, Y. Qi, R. Pelikaan, Linear codes over Fq are equivalent to LCD codes for q>3, IEEE Trans. Inform. Theory, 64 (2018), 3010–3017. https://doi.org/10.1109/TIT.2018.2789347 doi: 10.1109/TIT.2018.2789347
|
[9]
|
C. Carlet, S. Mesnager, C. Tang, Y. Qi, New characterization and parametrization of LCD codes, IEEE Trans. Inform. Theory, 65 (2019), 39–49. https://doi.org/10.1109/TIT.2018.2829873 doi: 10.1109/TIT.2018.2829873
|
[10]
|
C. Carlet, Boolean functions for cryptography and error correcting codes, In: Chapter of the monography Boolean models and methods in mathematics, computer science, and engineering, Cambridge: Cambridge University Press, 2010,257–397.
|
[11]
|
G. G. La Guardia, On negacyclic MDS-convolutional codes, Linear Algebra Appl., 448 (2014), 85–96. https://doi.org/10.1016/j.laa.2014.01.033 doi: 10.1016/j.laa.2014.01.033
|
[12]
|
H. Gluesing-Luerssen, G. Schneider, A MacWilliams identity for convolutional codes: The general case, IEEE Trans. Inf. Theory, 55 (2009), 2920–2930. https://doi.org/10.1109/TIT.2009.2021302 doi: 10.1109/TIT.2009.2021302
|
[13]
|
T. Hurley, D. Hurley, B. Hurley, Quantum error-correcting codes: The unit-derived strategy, arXiv: 1805.09053, 2018. https://doi.org/10.48550/arXiv.1805.09053
|
[14]
|
T. Hurley, Linear block and convolutional MDS codes to required rate, distance and type, In: Lecture notes in networks and systems, Cham: Springer, 507 (2022), 129–157. https://doi.org/10.1007/978-3-031-10464-0_10
|
[15]
|
T. Hurley, Convolutional codes from unit schemes, arXiv: 1412.1695, 2018. https://doi.org/10.48550/arXiv.1412.1695
|
[16]
|
T. Hurley, On codes induced from Hadamard matrices, arXiv: 2410.24027, 2024. https://doi.org/10.48550/arXiv.2410.24027
|
[17]
|
T. Hurley, D. Hurley, B. Hurley, Maximum distance separable codes to order, arXiv: 1902.06624, 2019. https://doi.org/10.48550/arXiv.1902.06624
|
[18]
|
T. Hurley, Group rings and rings of matrices, Int. J. Pure Appl. Math., 31 (2006), 319–335.
|
[19]
|
T. Hurley, Solving underdetermined systems with error-correcting codes, Int. J. Inf. Coding Theory, 4 (2017), 201–221. http://dx.doi.org/10.1504/IJICOT.2017.10005825 doi: 10.1504/IJICOT.2017.10005825
|
[20]
|
T. Hurley, Convolutional codes from units in matrix and group rings, Int. J. Pure Appl. Math., 50 (2009), 431–463.
|
[21]
|
P. Hurley, T. Hurley, Module codes in group rings, In: 2007 IEEE International symposium on information theory, France: IEEE, 2007, 1981–1985. https://doi.org/10.1109/ISIT.2007.4557511
|
[22]
|
P. Hurley, T. Hurley, Codes from zero-divisors and units in group rings, Int. J. Inform. Coding Theory, 1 (2009), 57–87. https://doi.org/10.1504/IJICOT.2009.024047 doi: 10.1504/IJICOT.2009.024047
|
[23]
|
P. Hurley, T. Hurley, Block codes from matrix and group rings, In: Selected topics in information and coding theory, World Scientific, 2010,159–194. https://doi.org/10.1142/9789812837172_0004
|
[24]
|
P. Hurley, T. Hurley, LDPC and convolutional codes from matrix and group rings, In: Selected topics in information and coding theory, World Scientific, 2010,195–237. https://doi.org/10.1142/9789812837172_0006
|
[25]
|
T. Hurley, D. Hurley, Coding theory: The unit-derived methodology, Int. J. Inf. Coding Theory, 5 (2018), 55–80. http://dx.doi.org/10.1504/IJICOT.2018.10013082 doi: 10.1504/IJICOT.2018.10013082
|
[26]
|
T. Hurley, P. McEvoy, J. Wenus, Algebraic constructions of LDPC codes with no short cycles, Int. J. Inf. Coding Theory, 1 (2010), 285–297. https://doi.org/10.1504/IJICoT.2010.032544 doi: 10.1504/IJICoT.2010.032544
|
[27]
|
R. Johannesson, K. Sh. Zigangirov, Fundamentals of convolutional coding, Wiley-IEEE Press, 2015.
|
[28]
|
D. J. C. MacKay, Information theory, inference, and learning algorithms, Cambridge: Cambridge University Press, 2003.
|
[29]
|
F. J. MacWilliams, N. J. A. Sloane, The theory of error-correcting codes, Elsevier, 1977.
|
[30]
|
J. L. Massey, Linear codes with complementary duals, Discrete Math., 106-107 (1992), 337–342. https://doi.org/10.1016/0012-365X(92)90563-U
|
[31]
|
J. L. Massey, Reversible codes, Inf. Control, 7 (1964), 369–380. https://doi.org/10.1016/S0019-9958(64)90438-3
|
[32]
|
I. McLoughlin, T. Hurley, A group ring construction of the extended binary Golay code, IEEE Trans. Inform. Theory, 54 (2008), 4381–4383. https://doi.org/10.1109/TIT.2008.928260 doi: 10.1109/TIT.2008.928260
|
[33]
|
R. McEliece, The theory of information and coding, 2 Eds., Cambridge: Cambridge University Press, 2009. https://doi.org/10.1017/CBO9780511606267
|
[34]
|
S. Mesnager, C. Tang, Y. Qi, Complementary dual algebraic geometry codes, IEEE Trans. Inf. Theory, 64 (2018), 2390–2397. https://doi.org/10.1109/TIT.2017.2766075 doi: 10.1109/TIT.2017.2766075
|
[35]
|
C. P. Milies, S. K. Sehgal, An introduction to group rings, In: Algebra and applications, Dordrecht: Springer, 1 (2002).
|
[36]
|
R. Pellikaan, On decoding by error location and dependent sets of error positions, Discrete Math., 106-107 (1992), 369–381. https://doi.org/10.1016/0012-365X(92)90567-Y doi: 10.1016/0012-365X(92)90567-Y
|
[37]
|
J. M. M. Porras, J. A. D. Pérez, J. I. I. Curto, J. S. Sotelo, Convolutional Goppa codes, IEEE Trans. Inform. Theory, 52 (2006), 340–344. https://doi.org/10.1109/TIT.2005.860447
|
[38]
|
J. Rosenthal, R. Smarandache, Maximum distance separable convolutional codes, Appl. Algebra Engrg. Comm. Comput., 10 (1999), 15–32. https://doi.org/10.1007/s002000050120 doi: 10.1007/s002000050120
|
[39]
|
J. Rosenthal, Connections between linear systems and convolutional codes, In: The IMA volumes in mathematics and its applications, New York: Springer, 123 (1999). https://doi.org/10.1007/978-1-4613-0165-3_2
|
[40]
|
A. M. Steane, Simple quantum error correcting codes, Phys. Rev. A, 54 (1996), 4741–4751.
|
[41]
|
R. Smarandache, H. Gluesing-Luerssen, J. Rosenthal, Constructions for MDS-convolutional codes, IEEE Trans. Inform. Theory, 47 (2001), 2045–2049. https://doi.org/10.1109/18.930938 doi: 10.1109/18.930938
|
[42]
|
The GAP group, GAP – groups, algorithms, and programming, Version 4.12.2, 2022. Available from: https://www.gap-system.org
|