Loading [MathJax]/jax/output/SVG/jax.js
Research article Special Issues

Ultimate linear block and convolutional codes

  • Received: 02 December 2024 Revised: 20 March 2025 Accepted: 24 March 2025 Published: 11 April 2025
  • MSC : 15B99, 94B05, 94B10

  • Linear block and convolutional codes are designed using unit schemes and families of these to required length, rate, distance and type are mined. Properties, such as type and distance, of the codes follow from the types of units used and thus required codes are built from specific units. Orthogonal units, units in group rings, Fourier/Vandermonde units and related units are used to construct and analyse linear block and convolutional codes and to construct these to predefined length, rate, distance and type. Series of self-dual, dual containing, quantum error-correcting and linear complementary dual codes are constructed for both linear block and convolutional codes. Low density parity check linear block and linear convolutional codes are constructed from unit schemes.

    Citation: Ted Hurley. Ultimate linear block and convolutional codes[J]. AIMS Mathematics, 2025, 10(4): 8398-8421. doi: 10.3934/math.2025387

    Related Papers:

    [1] Sri Kurniati, Sudirman Syam, Arifin Sanusi . Numerical investigation and improvement of the aerodynamic performance of a modified elliptical-bladed Savonius-style wind turbine. AIMS Energy, 2023, 11(6): 1211-1230. doi: 10.3934/energy.2023055
    [2] Nour Khlaifat, Ali Altaee, John Zhou, Yuhan Huang . A review of the key sensitive parameters on the aerodynamic performance of a horizontal wind turbine using Computational Fluid Dynamics modelling. AIMS Energy, 2020, 8(3): 493-524. doi: 10.3934/energy.2020.3.493
    [3] Stephen K. Musau, Kathrin Stahl, Kevin Volkmer, Nicholas Kaufmann, Thomas H. Carolus . A design and performance prediction method for small horizontal axis wind turbines and its application. AIMS Energy, 2021, 9(5): 1043-1066. doi: 10.3934/energy.2021048
    [4] Majid Deldar, Afshin Izadian, Sohel Anwar . Analysis of a hydrostatic drive wind turbine for improved annual energy production. AIMS Energy, 2018, 6(6): 908-925. doi: 10.3934/energy.2018.6.908
    [5] Ammar E. Ali, Nicholas C. Libardi, Sohel Anwar, Afshin Izadian . Design of a compressed air energy storage system for hydrostatic wind turbines. AIMS Energy, 2018, 6(2): 229-244. doi: 10.3934/energy.2018.2.229
    [6] Hassam Nasarullah Chaudhry, John Kaiser Calautit, Ben Richard Hughes . The Influence of Structural Morphology on the Efficiency of Building Integrated Wind Turbines (BIWT). AIMS Energy, 2014, 2(3): 219-236. doi: 10.3934/energy.2014.3.219
    [7] Nadwan Majeed Ali, Handri Ammari . Design of a hybrid wind-solar street lighting system to power LED lights on highway poles. AIMS Energy, 2022, 10(2): 177-190. doi: 10.3934/energy.2022010
    [8] Azevedo Joaquim, Mendonça Fábio . Small scale wind energy harvesting with maximum power tracking. AIMS Energy, 2015, 2(3): 297-315. doi: 10.3934/energy.2015.3.297
    [9] Saiyad S. Kutty, M. G. M. Khan, M. Rafiuddin Ahmed . Estimation of different wind characteristics parameters and accurate wind resource assessment for Kadavu, Fiji. AIMS Energy, 2019, 7(6): 760-791. doi: 10.3934/energy.2019.6.760
    [10] Ayman B. Attya, T. Hartkopf . Wind Turbines Support Techniques during Frequency Drops — Energy Utilization Comparison. AIMS Energy, 2014, 2(3): 260-275. doi: 10.3934/energy.2014.3.260
  • Linear block and convolutional codes are designed using unit schemes and families of these to required length, rate, distance and type are mined. Properties, such as type and distance, of the codes follow from the types of units used and thus required codes are built from specific units. Orthogonal units, units in group rings, Fourier/Vandermonde units and related units are used to construct and analyse linear block and convolutional codes and to construct these to predefined length, rate, distance and type. Series of self-dual, dual containing, quantum error-correcting and linear complementary dual codes are constructed for both linear block and convolutional codes. Low density parity check linear block and linear convolutional codes are constructed from unit schemes.



    Numerical investigation and improvement of the aerodynamic performance of a modified elliptical-bladed Savonius-style wind turbine. By Sri Kurniati, Sudirman Syam and Arifin Sanusi. AIMS Energy, 2023, Volume 11, Issue 6: 1211–1230. Doi: 10.3934/energy.2023055

    The authors would like to make the following corrections to the published paper [1].

    On page 1213, we updated the contents of "one symbol statement: ρ" in section 2. The updated contents are as follows:

    - ρ is the the density of air,

    On page 1215, we updated the contents of "Eq 16" in section 2. The updated contents are as follows:

    ϕϕt+(V)(ΓV)=R (16)

    On page 1216, we updated the contents of "Table 2" in section 2. The updated contents are as follows:

    Table 2.  The terms in the general transfer equation Eq 16.
    ϕt+(V)(ΓV)=R(16)
    l Γ
    1 U vt 1ρρx+x(vtux)+y(vtvx)+z(vtwx)+gx
    2 V vt 1ρρy+x(vtuy)+y(vtvy)+z(vtwy)+gy
    3 W vt 1ρρz+x(vtuz)+y(vtvz)+z(vtwz)+gz
    4 1 0 0
    5 K vt/ Gε
    6 ε vt/ C1εkGc2εkε

     | Show Table
    DownLoad: CSV

    All authors declare no conflicts of interest in this paper.



    [1] P. Almeida, D. Napp, R. Pinto, A new class of superregular matrices and MDP convolutional codes, Linear Algebra Appl., 439 (2013), 2145–2157. https://doi.org/10.1016/j.laa.2013.06.013 doi: 10.1016/j.laa.2013.06.013
    [2] P. Almeida, D. Napp, R. Pinto, Superregular matrices and applications to convolutional codes, Linear Algebra Appl., 499 (2016), 1–25. https://doi.org/10.1016/j.laa.2016.02.034 doi: 10.1016/j.laa.2016.02.034
    [3] R. E. Blahut, Algebraic codes for data transmission, Cambridge: Cambridge University Press, 2003.
    [4] I. E. Bocharova, F. Hug, R. Johannesson, B. D. Kudryashov, Dual convolutional codes and the MacWilliams identities, Probl. Inf. Transm., 48 (2012), 21–30. https://doi.org/10.1134/S0032946012010036 doi: 10.1134/S0032946012010036
    [5] A. R. Calderbank, E. M. Rains, P. W. Shor, N. J. A. Sloane, Quantum error correction via codes over GF(4), In: Proceedings of IEEE international symposium on information theory, Germany: IEEE, 1997. https://doi.org/10.1109/ISIT.1997.613213
    [6] A. R. Calderbank, P. W. Shor, Good quantum error-correcting codes exist, Phys. Rev. A, 54 (1996), 1098–1105. https://doi.org/10.1103/PhysRevA.54.1098 doi: 10.1103/PhysRevA.54.1098
    [7] C. Carlet, S. Mesnager, C. Tang, Y. Qi, Euclidean and Hermitian LCD MDS codes, Des. Codes Cryptogr., 86 (2018), 2605–2618. https://doi.org/10.1007/s10623-018-0463-8 doi: 10.1007/s10623-018-0463-8
    [8] C. Carlet, S. Mesnager, C. Tang, Y. Qi, R. Pelikaan, Linear codes over Fq are equivalent to LCD codes for q>3, IEEE Trans. Inform. Theory, 64 (2018), 3010–3017. https://doi.org/10.1109/TIT.2018.2789347 doi: 10.1109/TIT.2018.2789347
    [9] C. Carlet, S. Mesnager, C. Tang, Y. Qi, New characterization and parametrization of LCD codes, IEEE Trans. Inform. Theory, 65 (2019), 39–49. https://doi.org/10.1109/TIT.2018.2829873 doi: 10.1109/TIT.2018.2829873
    [10] C. Carlet, Boolean functions for cryptography and error correcting codes, In: Chapter of the monography Boolean models and methods in mathematics, computer science, and engineering, Cambridge: Cambridge University Press, 2010,257–397.
    [11] G. G. La Guardia, On negacyclic MDS-convolutional codes, Linear Algebra Appl., 448 (2014), 85–96. https://doi.org/10.1016/j.laa.2014.01.033 doi: 10.1016/j.laa.2014.01.033
    [12] H. Gluesing-Luerssen, G. Schneider, A MacWilliams identity for convolutional codes: The general case, IEEE Trans. Inf. Theory, 55 (2009), 2920–2930. https://doi.org/10.1109/TIT.2009.2021302 doi: 10.1109/TIT.2009.2021302
    [13] T. Hurley, D. Hurley, B. Hurley, Quantum error-correcting codes: The unit-derived strategy, arXiv: 1805.09053, 2018. https://doi.org/10.48550/arXiv.1805.09053
    [14] T. Hurley, Linear block and convolutional MDS codes to required rate, distance and type, In: Lecture notes in networks and systems, Cham: Springer, 507 (2022), 129–157. https://doi.org/10.1007/978-3-031-10464-0_10
    [15] T. Hurley, Convolutional codes from unit schemes, arXiv: 1412.1695, 2018. https://doi.org/10.48550/arXiv.1412.1695
    [16] T. Hurley, On codes induced from Hadamard matrices, arXiv: 2410.24027, 2024. https://doi.org/10.48550/arXiv.2410.24027
    [17] T. Hurley, D. Hurley, B. Hurley, Maximum distance separable codes to order, arXiv: 1902.06624, 2019. https://doi.org/10.48550/arXiv.1902.06624
    [18] T. Hurley, Group rings and rings of matrices, Int. J. Pure Appl. Math., 31 (2006), 319–335.
    [19] T. Hurley, Solving underdetermined systems with error-correcting codes, Int. J. Inf. Coding Theory, 4 (2017), 201–221. http://dx.doi.org/10.1504/IJICOT.2017.10005825 doi: 10.1504/IJICOT.2017.10005825
    [20] T. Hurley, Convolutional codes from units in matrix and group rings, Int. J. Pure Appl. Math., 50 (2009), 431–463.
    [21] P. Hurley, T. Hurley, Module codes in group rings, In: 2007 IEEE International symposium on information theory, France: IEEE, 2007, 1981–1985. https://doi.org/10.1109/ISIT.2007.4557511
    [22] P. Hurley, T. Hurley, Codes from zero-divisors and units in group rings, Int. J. Inform. Coding Theory, 1 (2009), 57–87. https://doi.org/10.1504/IJICOT.2009.024047 doi: 10.1504/IJICOT.2009.024047
    [23] P. Hurley, T. Hurley, Block codes from matrix and group rings, In: Selected topics in information and coding theory, World Scientific, 2010,159–194. https://doi.org/10.1142/9789812837172_0004
    [24] P. Hurley, T. Hurley, LDPC and convolutional codes from matrix and group rings, In: Selected topics in information and coding theory, World Scientific, 2010,195–237. https://doi.org/10.1142/9789812837172_0006
    [25] T. Hurley, D. Hurley, Coding theory: The unit-derived methodology, Int. J. Inf. Coding Theory, 5 (2018), 55–80. http://dx.doi.org/10.1504/IJICOT.2018.10013082 doi: 10.1504/IJICOT.2018.10013082
    [26] T. Hurley, P. McEvoy, J. Wenus, Algebraic constructions of LDPC codes with no short cycles, Int. J. Inf. Coding Theory, 1 (2010), 285–297. https://doi.org/10.1504/IJICoT.2010.032544 doi: 10.1504/IJICoT.2010.032544
    [27] R. Johannesson, K. Sh. Zigangirov, Fundamentals of convolutional coding, Wiley-IEEE Press, 2015.
    [28] D. J. C. MacKay, Information theory, inference, and learning algorithms, Cambridge: Cambridge University Press, 2003.
    [29] F. J. MacWilliams, N. J. A. Sloane, The theory of error-correcting codes, Elsevier, 1977.
    [30] J. L. Massey, Linear codes with complementary duals, Discrete Math., 106-107 (1992), 337–342. https://doi.org/10.1016/0012-365X(92)90563-U
    [31] J. L. Massey, Reversible codes, Inf. Control, 7 (1964), 369–380. https://doi.org/10.1016/S0019-9958(64)90438-3
    [32] I. McLoughlin, T. Hurley, A group ring construction of the extended binary Golay code, IEEE Trans. Inform. Theory, 54 (2008), 4381–4383. https://doi.org/10.1109/TIT.2008.928260 doi: 10.1109/TIT.2008.928260
    [33] R. McEliece, The theory of information and coding, 2 Eds., Cambridge: Cambridge University Press, 2009. https://doi.org/10.1017/CBO9780511606267
    [34] S. Mesnager, C. Tang, Y. Qi, Complementary dual algebraic geometry codes, IEEE Trans. Inf. Theory, 64 (2018), 2390–2397. https://doi.org/10.1109/TIT.2017.2766075 doi: 10.1109/TIT.2017.2766075
    [35] C. P. Milies, S. K. Sehgal, An introduction to group rings, In: Algebra and applications, Dordrecht: Springer, 1 (2002).
    [36] R. Pellikaan, On decoding by error location and dependent sets of error positions, Discrete Math., 106-107 (1992), 369–381. https://doi.org/10.1016/0012-365X(92)90567-Y doi: 10.1016/0012-365X(92)90567-Y
    [37] J. M. M. Porras, J. A. D. Pérez, J. I. I. Curto, J. S. Sotelo, Convolutional Goppa codes, IEEE Trans. Inform. Theory, 52 (2006), 340–344. https://doi.org/10.1109/TIT.2005.860447
    [38] J. Rosenthal, R. Smarandache, Maximum distance separable convolutional codes, Appl. Algebra Engrg. Comm. Comput., 10 (1999), 15–32. https://doi.org/10.1007/s002000050120 doi: 10.1007/s002000050120
    [39] J. Rosenthal, Connections between linear systems and convolutional codes, In: The IMA volumes in mathematics and its applications, New York: Springer, 123 (1999). https://doi.org/10.1007/978-1-4613-0165-3_2
    [40] A. M. Steane, Simple quantum error correcting codes, Phys. Rev. A, 54 (1996), 4741–4751.
    [41] R. Smarandache, H. Gluesing-Luerssen, J. Rosenthal, Constructions for MDS-convolutional codes, IEEE Trans. Inform. Theory, 47 (2001), 2045–2049. https://doi.org/10.1109/18.930938 doi: 10.1109/18.930938
    [42] The GAP group, GAP – groups, algorithms, and programming, Version 4.12.2, 2022. Available from: https://www.gap-system.org
  • Reader Comments
  • © 2025 the Author(s), licensee AIMS Press. This is an open access article distributed under the terms of the Creative Commons Attribution License (http://creativecommons.org/licenses/by/4.0)
通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索

Metrics

Article views(490) PDF downloads(47) Cited by(0)

Article outline

Other Articles By Authors

/

DownLoad:  Full-Size Img  PowerPoint
Return
Return

Catalog