In this manuscript, the measure of noncompactness, the fixed-point theorem, as well as fractional calculus, are used to carry out the analysis of the solvability of a product of $ n $-quadratic Erdélyi-Kober ($ \mathbf{\mathcal{EK}} $) fractional-type integral equations in Orlicz spaces $ L_\varphi $. Several qualitative properties of the solution for the studied problem are established, such as the existence, monotonicity, uniqueness, and continuous dependence on the data. We conclude with some examples that illustrate our hypothesis.
Citation: Abdulaziz M. Alotaibi, Mohamed M. A. Metwali, Hala H. Taha, Ravi P Agarwal. Existence, uniqueness, continuous dependence on the data for the product of $ n $-fractional integral equations in Orlicz spaces[J]. AIMS Mathematics, 2025, 10(4): 8382-8397. doi: 10.3934/math.2025386
In this manuscript, the measure of noncompactness, the fixed-point theorem, as well as fractional calculus, are used to carry out the analysis of the solvability of a product of $ n $-quadratic Erdélyi-Kober ($ \mathbf{\mathcal{EK}} $) fractional-type integral equations in Orlicz spaces $ L_\varphi $. Several qualitative properties of the solution for the studied problem are established, such as the existence, monotonicity, uniqueness, and continuous dependence on the data. We conclude with some examples that illustrate our hypothesis.
| [1] | A. A. Kilbas, H. M. Srivastava, J. J. Trujillo, Theory and applications of fractional differential equations, Elsevier, 2006. |
| [2] | K. S. Miller, B. Ross, An introduction to the fractional calculus and fractional differential equations, John Wiley, 1993. |
| [3] | V. Lakshmikantham, S. Leela, J. Vasundara Devi, Theory of fractional dynamic systems, Cambridge Scientific Publishers, 2009. |
| [4] | S. G. Samko, Fractional integrals and derivatives, 1993. |
| [5] |
H. M. Srivastava, R. K. Saxena, Operators of fractional integration and their applications, Appl. Math. Comput., 118 (2001), 1–52. https://doi.org/10.1016/S0096-3003(99)00208-8 doi: 10.1016/S0096-3003(99)00208-8
|
| [6] |
R. O'Neil, Fractional integration in Orlicz spaces, Trans. Amer. Math. Soc., 115 (1965), 300–328. https://doi.org/10.1090/S0002-9947-1965-0194881-0 doi: 10.1090/S0002-9947-1965-0194881-0
|
| [7] |
M. Metwali, S. A. M. Alsallami, On Erdélyi-Kober fractional operator and quadratic integral equations in Orlicz spaces, Mathematics, 11 (2023), 3901. https://doi.org/10.3390/math11183901 doi: 10.3390/math11183901
|
| [8] |
A. Alsaadi, M. Cichoń, M. Metwali, Integrable solutions for Gripenberg-type equations with m-product of fractional operators and applications to initial value problems, Mathematics, 10 (2022), 1172. https://doi.org/10.3390/math10071172 doi: 10.3390/math10071172
|
| [9] |
M. Metwali, On perturbed quadratic integral equations and initial value problem with nonlocal conditions in Orlicz spaces, Demonstr. Math., 53 (2020), 86–94. https://doi.org/10.1515/dema-2020-0052 doi: 10.1515/dema-2020-0052
|
| [10] |
A. Benkirane, A. Elmahi, An existence theorem for a strongly nonlinear elliptic problem in Orlicz spaces, Nonlinear Anal. Theor., 36 (1999), 11–24. https://doi.org/10.1016/S0362-546X(97)00612-3 doi: 10.1016/S0362-546X(97)00612-3
|
| [11] |
K. A-Mahiout, C. O. Alves, Existence and multiplicity of solutions for a class of quasilinear problems in Orlicz-Sobolev spaces, Complex Var. Elliptic, 62 (2017), 767–785. https://doi.org/10.1080/17476933.2016.1243669 doi: 10.1080/17476933.2016.1243669
|
| [12] | M. A. Krasnosel'skii, Y. Rutitskii Convex functions and Orlicz spaces, Nordhoff, Gröningen, 1961. |
| [13] |
W. A. Majewski, L. E. Labuschagne, On applications of Orlicz spaces to statistical physics, Ann. Henri Poincaré, 15 (2014), 1197–1221. https://doi.org/10.1007/s00023-013-0267-3 doi: 10.1007/s00023-013-0267-3
|
| [14] |
J. D. Weeks, S. A. Rice, J. J. Kozak, Analytic approach to the theory of phase transitions, J. Chem. Phys., 52 (1970), 2416–2426. https://doi.org/10.1063/1.1673324 doi: 10.1063/1.1673324
|
| [15] | C. T. Kelly, Approximation of solutions of some quadratic integral equations in transport theory, J. Integral Equ., 4 (1982), 221–237. |
| [16] |
S. Hu, M. Khavanin, W. Zhuang, Integral equations arising in the kinetic theory of gases, Appl. Anal., 34 (1989), 261–266. https://doi.org/10.1080/00036818908839899 doi: 10.1080/00036818908839899
|
| [17] | S. Chandrasekhar, Radiative transfer, Courier Corporation, 1960. |
| [18] | E. Brestovanská, M. Medved, Fixed point theorems of the Banach and Krasnosel'skii type for mappings on m-tuple Cartesian product of Banach algebras and systems of generalized Gripenberg's equations, Acta Univ. Palack. Olomuc. Fac. Rerum Natur. Math., 51 (2012), 27–39. |
| [19] | I. M. Olaru, Generalization of an integral equation related to some epidemic models, Carpathian J. Math., 26 (2010), 92–96. |
| [20] |
G. Gripenberg, On some epidemic models, Quart. Appl. Math., 39 (1981), 317–327. https://doi.org/10.1090/qam/636238 doi: 10.1090/qam/636238
|
| [21] |
M. Metwali, On some properties of Riemann-Liouville fractional operator in Orlicz spaces and applications to quadratic integral equations, Filomat, 36 (2022), 6009–6020. https://doi.org/10.2298/FIL2217009M doi: 10.2298/FIL2217009M
|
| [22] |
M. Metwali, Solvability of quadratic Hadamard-type fractional integral equations in Orlicz spaces, Rocky Mountain J. Math., 53 (2023), 531–540. https://doi.org/10.1216/rmj.2023.53.531 doi: 10.1216/rmj.2023.53.531
|
| [23] |
M. Metwali, On fixed point theorems and applications to product of n-integral operators in ideal spaces, Fixed Point Theor., 23 (2022), 557–572. https://doi.org/10.24193/fpt-ro.2022.2.09 doi: 10.24193/fpt-ro.2022.2.09
|
| [24] |
M. Metwali, K. Cichoń, Solvability of the product of n-integral equations in Orlicz spaces, Rend. Circ. Mat. Palermo II. Ser., 73 (2024), 171–187. https://doi.org/10.1007/s12215-023-00916-1 doi: 10.1007/s12215-023-00916-1
|
| [25] |
S. F. Aldosary, M. Metwali, Solvability of product of n-quadratic Hadamard-type fractional integral equations in Orlicz spaces, AIMS Math., 9 (2024), 11039–11050. https://doi.org/10.3934/math.2024541 doi: 10.3934/math.2024541
|
| [26] |
M. Cichoń, M. Metwali, On solutions of quadratic integral equations in Orlicz spaces, Mediterr. J. Math., 12 (2015), 901–920. https://doi.org/10.1007/s00009-014-0450-x doi: 10.1007/s00009-014-0450-x
|
| [27] | M. Cichoń, M. Metwali, Existence of monotonic $L_\phi$-solutions for quadratic Volterra functional integral equations, Electron. J. Qual. Theo., 13 (2015), 1–16. |
| [28] |
M. Cichoń, H. A. H. Salem, On the solutions of Caputo-Hadamard Pettis-type fractional differential equations, RACSAM, 113 (2019), 3031–3053. https://doi.org/10.1007/s13398-019-00671-y doi: 10.1007/s13398-019-00671-y
|
| [29] | L. Maligranda, Orlicz spaces and interpolation, 1989. |
| [30] | M. Väth, Volterra and integral equations of vector functions, CRC Press, 2000. |
| [31] | J. Banaś, K. Goebel, Measure of noncompactness in Banach space, Lecture Note in Pure and Applications Mathematics, 1980. |
| [32] |
N. Erzakova, Compactness in measure and measure of noncompactness, Sib. Math. J., 38 (1997), 926–928. https://doi.org/10.1007/BF02673034 doi: 10.1007/BF02673034
|
| [33] |
G. Pagnini, Erélyi-Kober fractional diffusion, Fract. Calc. Appl. Anal., 15 (2012), 117–127. https://doi.org/10.2478/s13540-012-0008-1 doi: 10.2478/s13540-012-0008-1
|
| [34] |
N. M. Chuong, N. T. Hong, H. D. Hung, Multilinear Hardy-Cesáro operator and commutator on the product of Morrey-Herz spaces, Anal. Math., 43 (2017), 547–565. https://doi.org/10.1007/s10476-017-0502-0 doi: 10.1007/s10476-017-0502-0
|
| [35] | I. N. Sneddon, Mixed boundary value problems in potential theory, 1966. |
| [36] |
J. Xin, C. Zhu, J. Wang, F. Chen, Nondecreasing solutions of fractional quadratic integral equations involving Erdélyi-Kober singular kernels, Topol. Method. Nonlinear Anal., 44 (2016), 73–88. https://doi.org/10.12775/TMNA.2014.036 doi: 10.12775/TMNA.2014.036
|
| [37] |
R. P. Agarwal, M. Metwali, D. O'Regan, On existence and uniqueness of $L_1$-solutions for quadratic integral equations via a Krasnoselskii-type fixed point theorem, Rocky Mountain J. Math., 48 (2018), 1743–1762. https://doi.org/10.1216/RMJ-2018-48-6-1743 doi: 10.1216/RMJ-2018-48-6-1743
|