In the present study, we investigate constant-angle ruled surfaces constructed by the motion of the elements of each of the modified orthogonal frames along a base curve in three-dimensional Euclidean 3-space. These surfaces are studied and classified based on the constant-angle property. In these regards, we obtain the characterizations of the minimal and developable ruled surfaces by using partial differential equations. Also, we give the conditions for these surfaces to be Weingarten surfaces.
Citation: Kemal Eren, Soley Ersoy, Mohammad Nazrul Islam Khan. Novel theorems on constant angle ruled surfaces with Sasai's interpretation[J]. AIMS Mathematics, 2025, 10(4): 8364-8381. doi: 10.3934/math.2025385
In the present study, we investigate constant-angle ruled surfaces constructed by the motion of the elements of each of the modified orthogonal frames along a base curve in three-dimensional Euclidean 3-space. These surfaces are studied and classified based on the constant-angle property. In these regards, we obtain the characterizations of the minimal and developable ruled surfaces by using partial differential equations. Also, we give the conditions for these surfaces to be Weingarten surfaces.
| [1] |
P. Cermelli, A. J. Di Scala, Constant-angle surfaces in liquid crystals, Philos. Mag., 87 (2007), 1871–1888. https://doi.org/10.1080/14786430601110364 doi: 10.1080/14786430601110364
|
| [2] |
M. I. Munteanu, A. I. Nistor, A new approach on constant angle surfaces in $E^3$, Turkish J. Math., 33 (2009), 168–178. https://doi.org/10.3906/mat-0802-32 doi: 10.3906/mat-0802-32
|
| [3] | A. I. Nistor, Certain constant angle surfaces constructed on curves, Int. Electron. J. Geom., 4 (2011), 79–87. |
| [4] | S. Özkaldı, Y. Yaylı, Constant angle surfaces and curves in $E^3$, Int. Electron. J. Geom., 4 (2011), 70–78. |
| [5] | A. T. Ali, A constant angle ruled surfaces, Int. J. Geom., 7 (2018), 69–80. |
| [6] |
C. Y. Li, C. G. Zhu, Construction of the spacelike constant angle surface family in Minkowski 3-space, AIMS Mathematics, 5 (2020), 6341–6354. https://doi.org/10.3934/math.2020408 doi: 10.3934/math.2020408
|
| [7] | S. Ö. Karakuş, Certain constant angle surfaces constructed on curves in Minkowski 3-space, Int. Electron. J. Geom., 11 (2018), 37–47. |
| [8] |
R. Lopez, M. I. Munteanu, Constant angle surfaces in Minkowski space, Bull. Belg. Math. Soc. Simon Stevin, 18 (2011), 271–286. https://doi.org/10.36045/bbms/1307452077 doi: 10.36045/bbms/1307452077
|
| [9] |
A. T. Ali, Non-lightlike constant angle ruled surfaces in Minkowski 3-space, J. Geom. Phys., 157 (2020), 103833. https://doi.org/10.1016/j.geomphys.2020.103833 doi: 10.1016/j.geomphys.2020.103833
|
| [10] | F. Güler, G. Şaffak, E. Kasap, Timelike constant angle surfaces in Minkowski space ${R_1^3}$, Int. J. Contemp. Math. Sci., 6 (2011), 2189–2200. |
| [11] |
G. U. Kaymanlı, C. Ekici, Y. Ünlütürk, Constant angle ruled due to the Bishop frame in Minkowski 3-space, J. Sci. Arts, 22 (2022), 105–114. https://doi.org/10.46939/J.Sci.Arts-22.1-a09 doi: 10.46939/J.Sci.Arts-22.1-a09
|
| [12] |
A. Has, B. Yılmaz, Y. Yaylı, Constant angle ruled surfaces in $\mathbb{E}_1^3$, Fundam. J. Math. Appl., 6 (2023), 78–88. https://doi.org/10.33401/fujma.1218966 doi: 10.33401/fujma.1218966
|
| [13] |
T. Sasai, The fundamental theorem of analytic space curves and apparent singularities of Fuchsian differential equations, Tohoku Math. J., 36 (1984), 17–24. https://doi.org/10.2748/TMJ/1178228899 doi: 10.2748/TMJ/1178228899
|
| [14] | B. Bükcü, M. K. Karacan, On the modified orthogonal frame with curvature and torsion in 3-space, Math. Sci. Appl. E-Notes, 4 (2016), 184–188. |
| [15] |
M. S. Lone, H. ES, M. K. Karacan, B. Bükcü, On some curves with modified orthogonal frame in Euclidean 3-space, Iran J. Sci. Technol. Trans. Sci., 43 (2019), 1905–1916. https://doi.org/10.1007/s40995-018-0661-2 doi: 10.1007/s40995-018-0661-2
|
| [16] |
K. Eren, H. H., Kösal, Evolution of space curves and the special ruled surfaces with modified orthogonal frame, AIMS Mathematics, 5 (2020), 2027–2039. https://doi.org/10.3934/math.2020134 doi: 10.3934/math.2020134
|
| [17] |
M. Akyiğit, K. Eren, H. H. Kösal, Tubular surfaces with modified orthogonal frame in Euclidean 3-space, Honam Math. Soc., 43 (2021), 453–463. https://doi.org/10.5831/HMJ.2021.43.3.453 doi: 10.5831/HMJ.2021.43.3.453
|
| [18] | K. Eren, New representation of Hasimoto surfaces with the modified orthogonal frame, Konuralp J. Math., 10 (2022), 69–72. |
| [19] | K. Eren, A study of the evolution of space curves with modified orthogonal frame in Euclidean 3-space, Appl. Math. E-Notes, 22 (2022), 281–286. |
| [20] |
A. Elsharkawy, M. Turan, H. G. Bozok, Involute-evolute curves with modified orthogonal frame in Galilean space $ G_ {3}$, Ukrainian Math. J., 76 (2024), 1444–1454. https://doi.org/10.3842/umzh.v76i10.7822 doi: 10.3842/umzh.v76i10.7822
|
| [21] | H. K. Elsayied, A. A. Altaha, A. Elsharkawy, On some special curves according to the modified orthogonal frame in Minkowski 3-space $E_1^3$, Kasmera, 49 (2021), 2–15. |
| [22] |
A. Elsharkawy, H. K. Elsayied, A. Refaat, Quasi ruled surfaces in Euclidean 3-space, Eur. J. Pure Appl. Math., 18 (2025), 5710. https://doi.org/10.29020/nybg.ejpam.v18i1.5710 doi: 10.29020/nybg.ejpam.v18i1.5710
|
| [23] |
N. Yüksel, B. Saltık, On inextensible ruled surfaces generated via a curve derived from a curve with constant torsion, AIMS Mathematics, 8 (2023), 11312–11324. https://doi.org/10.3934/math.2023573 doi: 10.3934/math.2023573
|
| [24] |
B. S. Baek, E. Damar, N. Oğraş, N. Yüksel, Ruled surfaces of adjoint curve with the modified orthogonal frame, J. New Theory, 49 (2024), 69–82. https://doi.org/10.53570/jnt.1583283 doi: 10.53570/jnt.1583283
|
| [25] |
K. Eren, S. Ersoy, On characterization of Smarandache curves constructed by modified orthogonal frame, Math. Sci. Appl. E-Notes, 12 (2024), 101–112. https://doi.org/10.36753/mathenot.1409228 doi: 10.36753/mathenot.1409228
|
| [26] | H. K. Elsayied, A. Altaha, A. Elsharkawy, Bertrand curves with the modified orthogonal frame Minkowski 3-space $E^3_1$, Rev. Edu., 392 (2022), 43–55. |
| [27] |
B. van-Brunt, K. Grant, Potential applications of Weingarten surfaces in CAGD, Part I: Weingarten surfaces and surface shape investigation, Comput. Aided Geom. Des., 13 (1996), 569–582. https://doi.org/10.1016/0167-8396(95)00046-1 doi: 10.1016/0167-8396(95)00046-1
|