Processing math: 89%
Research article Special Issues

A bi-level optimization model for PET bottle recycling within a circular economy supply chain

  • Received: 19 July 2024 Revised: 17 January 2025 Accepted: 14 February 2025 Published: 27 February 2025
  • The consumption and usage of polyethylene terephthalate (PET) bottles have significantly increased in recent years, necessitating action to mitigate their environmental impact. Recycling programs offer a viable solution to address this impact within the PET industry. Therefore, adopting a circular economy approach is appropriate for incorporating recycling initiatives. Nevertheless, it is crucial not to overlook the financial aspects of the supply chain. This paper proposed a bi-level model to address both the financial and environmental concerns of a circular economy supply chain. At the upper level, a recycling company (the leader) aimd to establish PET bottle collection facilities, set prices for each kilogram of PET received, and manage the transportation of collected PET to the treatment plant. At the lower level of the bi-level problem, persons (the followers) decided whether to recycle or not. They received economic incentives based on the amount deposited at the collection facilities, but this came with associated travel costs. The leader's objective was to maximize the profit of the recycling program, assuming the sale of recycled PET. Meanwhile, followers aimed to recycle if it was economically viable for them. To solve this problem, a matheuristic algorithm was proposed, which hybridized a greedy random adaptive search procedure with an exact routing process. The matheuristic managed solutions at the leader level, while followers' responses were derived by exploiting the problem's structure. A case study derived from Mexico City was solved, and practical managerial insights were provided. Sensitivity analysis revealed crucial aspects that should not be overlooked when implementing such a recycling program.

    Citation: Carlos Corpus, Ali Zahedi, Eva Selene Hernández-Gress, José-Fernando Camacho-Vallejo. A bi-level optimization model for PET bottle recycling within a circular economy supply chain[J]. AIMS Environmental Science, 2025, 12(2): 223-251. doi: 10.3934/environsci.2025010

    Related Papers:

    [1] Lin Shen, Shu Wang, Yongxin Wang . The well-posedness and regularity of a rotating blades equation. Electronic Research Archive, 2020, 28(2): 691-719. doi: 10.3934/era.2020036
    [2] Yazhou Wang, Yuzhu Wang . Regularity criterion of three dimensional magneto-micropolar fluid equations with fractional dissipation. Electronic Research Archive, 2024, 32(7): 4416-4432. doi: 10.3934/era.2024199
    [3] Xiaolei Dong . Well-posedness of the MHD boundary layer equations with small initial data in Sobolev space. Electronic Research Archive, 2024, 32(12): 6618-6640. doi: 10.3934/era.2024309
    [4] Liju Yu, Jingjun Zhang . Global solution to the complex short pulse equation. Electronic Research Archive, 2024, 32(8): 4809-4827. doi: 10.3934/era.2024220
    [5] Xiuli Xu, Lian Yang . Global well-posedness of the 3D nonlinearly damped Boussinesq magneto-micropolar system without heat diffusion. Electronic Research Archive, 2025, 33(4): 2285-2294. doi: 10.3934/era.2025100
    [6] Vo Van Au, Hossein Jafari, Zakia Hammouch, Nguyen Huy Tuan . On a final value problem for a nonlinear fractional pseudo-parabolic equation. Electronic Research Archive, 2021, 29(1): 1709-1734. doi: 10.3934/era.2020088
    [7] Vo Van Au, Jagdev Singh, Anh Tuan Nguyen . Well-posedness results and blow-up for a semi-linear time fractional diffusion equation with variable coefficients. Electronic Research Archive, 2021, 29(6): 3581-3607. doi: 10.3934/era.2021052
    [8] Lianbing She, Nan Liu, Xin Li, Renhai Wang . Three types of weak pullback attractors for lattice pseudo-parabolic equations driven by locally Lipschitz noise. Electronic Research Archive, 2021, 29(5): 3097-3119. doi: 10.3934/era.2021028
    [9] Dan-Andrei Geba . Unconditional well-posedness for the periodic Boussinesq and Kawahara equations. Electronic Research Archive, 2024, 32(2): 1067-1081. doi: 10.3934/era.2024052
    [10] Hong Yang, Yiliang He . The Ill-posedness and Fourier regularization for the backward heat conduction equation with uncertainty. Electronic Research Archive, 2025, 33(4): 1998-2031. doi: 10.3934/era.2025089
  • The consumption and usage of polyethylene terephthalate (PET) bottles have significantly increased in recent years, necessitating action to mitigate their environmental impact. Recycling programs offer a viable solution to address this impact within the PET industry. Therefore, adopting a circular economy approach is appropriate for incorporating recycling initiatives. Nevertheless, it is crucial not to overlook the financial aspects of the supply chain. This paper proposed a bi-level model to address both the financial and environmental concerns of a circular economy supply chain. At the upper level, a recycling company (the leader) aimd to establish PET bottle collection facilities, set prices for each kilogram of PET received, and manage the transportation of collected PET to the treatment plant. At the lower level of the bi-level problem, persons (the followers) decided whether to recycle or not. They received economic incentives based on the amount deposited at the collection facilities, but this came with associated travel costs. The leader's objective was to maximize the profit of the recycling program, assuming the sale of recycled PET. Meanwhile, followers aimed to recycle if it was economically viable for them. To solve this problem, a matheuristic algorithm was proposed, which hybridized a greedy random adaptive search procedure with an exact routing process. The matheuristic managed solutions at the leader level, while followers' responses were derived by exploiting the problem's structure. A case study derived from Mexico City was solved, and practical managerial insights were provided. Sensitivity analysis revealed crucial aspects that should not be overlooked when implementing such a recycling program.



    Rotating blades (thin-walled beam) are important structures widely used in mechanical and aerospace engineering as aviation engine blades, various cooling fans, windmill blades, helicopter rotor blades, airplane propellers etc. The study of the dynamics of rotating blades is important to design purposes, optimization, and control.

    If the shear effect is not considered, the Euler-Bernoulli beam equation is used to model vibration of thin-walled beam. Chen et al.[6] studied the boundary feedback stabilization of a linear Euler-Bernoulli beam equation, they proved that the total energy of the equation decays uniformly and exponentially with t, when the beam is clamped at the left end and subjected to a feedback boundary conditions at the right end. Then Guo et al.[12] proved the well-posedness and stability of the system proposed by Chen et al.[14] considered a nonlinear Euler-Bernoulli beam equation with a feedback force applied at the free end, the existence of the weak and classical solutions were proved. Other relevant studies are referred to Refs. [4,18,19,17,13]. Note that the above literatures studied the longitudinal vibration in one direction.

    A very extensive work devoted to the longitudinal vibration in two directions were done by Librescu and Song[21,32,33] and their co-workers[25,28]. Under assumption of the cross-section to be rigid in its own plane, they modelled the rotating blades by 1-D linear governing equations. The influence of many factors on rotating blades, such as the anisotropy and heterogeneity of constituent materials, functionally graded materials (FGM), temperature, shear effects, primary and secondary warping phenomena (Vlasov effect), centrifugal and Coriolis forces etc have been taken into account in the 1-D linear governing equations.

    Following Librescu's approach, various blades models were derived. Georgiades et al.[11] modelled a rotating blades by means of linear strain-displacement relationships, considering arbitrary pitch (presetting) angle and non-constant rotating speed. Choi et al.[8] studied bending vibration control of the pre-twisted rotating composite blades, who emphasized the important of piezoelectric effect in single cell composite blades. Fazelzadeh et al.[9] considered a thin-walled blades made of FGM which is used in turbomachinery under aerothermodynamics loading. In the paper, quasi-steady aerodynamic pressure loadings was determined by the first-order piston theory, and steady beam surface temperature was obtained from gas dynamics theory. Fazelzadeh et al.[10] studied the governing equations which included the effects of the presetting angle and the rotary inertia. The effects of steady wall temperature and quasi-steady aerodynamic pressure loadings due to flow motion were also taken into account.

    The models in Refs.[21,32,33,25,28,11,8,9,10] are linear. When the engine blades rotate at a low speed, the linear approximation can completely meet the needs of practical application. However, when the blade rotate at a high speed, the simple linear approximation can not accurately describe the dynamic behavior of the system. So the non-linear analysis of rotating blades has attracted considerable attention.

    The nonlinear governing equations of a rotating blades at constant angular velocity was presented by Anderson[1], and the author linearized the equation under the assumption that a small perturbed motion occurred at an initially stressed equilibrium configuration. Chen et al.[7] considered the effects of geometric non-linearity, shear deformation and rotary inertia. Arvin et al.[2] builded a nonlinear governing equation for rotating blades considering centrifugal forces by means of von-Karmans strain-displacement relationships under assumption of the constant rotation speed and zero pitch (presetting) angle. Yao et al.[39] employed the Hamilton's principle to derive the nonlinear governing equations with periodic rotating speed, arbitrary pitch (presetting) angle and linear pre-twist angle. Under the assumption that the location of shear centre is different from the centre of gravity, Avramov et al.[3] obtained results of the investigations on flexural-flexural-torsional nonlinear vibrations of twisted rotating blades described by the model of three nonlinear integro-differential equations. Other nonlinear models can be found in Refs.[34,29,27,37,15,31,36].

    To the best of the author's knowledge, all the above literatures about the longitudinal vibration in two directions skipped the existence proof of solutions to the governing equations, and directly used the finite element method to study the influence of various parameters on blades vibration. To address this situation, we first try to model a governing equations of the blades with arbitrary rotating speed, arbitrary pre-setting angle and pre-twist angle. In the process of building the model, we take into account the free vibration at the right end of the blade and the nonlinear relationship between stress and strain. In the paper we aim to investigate the well-posedness and regularity of the governing equations. The well-posedness of other nonlinear blade vibration models can be found in Refs. [5,38,26,35,16].

    Let us consider a slender, straight blades mounted on a rigid hub of radius R0 rotating with the angular velocity ω(t). The length of the blades is denoted by l, its wall thickness by h, the length and the width of the cross section of the blades are a and b, respectively. The sum of pre-twist angle α(x) and pre-setting angle β is defined by θ(x), as shown in Figure 1 and 2.

    Figure 1.  Rotating blades.
    Figure 2.  The cross-section of rotating blades.

    To derive the model of the rotating blades, the following kinematic and static assumptions are postulated:

    (ⅰ) The blades is perfectly elastic bodies, the blades material is isotropic and is not affected by temperature,

    (ⅱ) The cross section of the blades is rectangular and all its geometrical dimensions remain invariant in its plane,

    (ⅲ) The ratio of wall thickness h to the radius of curvature r at any point of the blade wall is negligibly small while compared to unity,

    (ⅳ) The transverse shear effect of the cross section is neglected,

    (ⅴ) The axial displacement w is much smaller than u or v and the derivatives of w can be neglected in the strain-displacement relations. where u,v,w represent the displacement of the middle line of cross-sections along the y,z,x axis, respectively.

    Inertial Cartesian coordinate systems (X,Y,Z) attached to the center of the hub O, the unit vectors of the inertial coordinate systems (X,Y,Z) is defined as (I,J,K).

    Rotating coordinate systems (x,y,z) located at the blade root, the origin o of the rotating coordinate systems is set at the center of the beam cross section, the unit vectors of the inertial coordinate systems (x,y,z) is defined as (i,j,k).

    Transformation between XYZ and xyz frames can be written in the form

    (X,Y,Z)=(x,y,z)+(R0,0,0). (1)

    Local coordinates systems (xp,yp,zp) also located at the blade root and oriented with respect to plane of rotation (y,z) at angle ω(t). So (x,y,z)=B(xp,yp,zp), where the rotation matrix B is

    (1000cosωsinω0sinωcosω).

    Local, curvilinear coordinate systems (x,n,s) related to blade cross section (Figure 2). Its origin is set conveniently at the point on a mid-line contour. s and n are the circumferential and thickness coordinate variables, the unit vectors of axis n and s are defined as en,et, respectively.

    In order to determine the relationship between the two coordinate systems (x,y,z) and (x,n,s), one defines the position vector r(r(s,x)) from the reference x-axis of the blades to an arbitrary point A located on the middle surface as

    r=xi+y(s)j+z(s)k. (2)

    The position vector r of an arbitrary point A off the mid-surface of the blades can be expressed as

    r=r+nen, (3)

    As a result

    et=drds=dy(s)dsj+dz(s)dsk, (4)
    en=et×i=dz(s)dsjdy(s)dsk. (5)

    Moreover, in order to avoid confusion, the notation (x,y,z) represents the points associated with the middle surface, the notation A=(x,y,z) represents the points off the middle surface, the two notations (x,y,z) and (x,y,z) are presented as follows:

    x=x,  y=rj=y+ndzds,  z=rk=zndyds. (6)

    Based on the assumptions (ⅳ) and (ⅴ), the axial displacement Dx,Dy,Dz (see Figure 3) are expressed as (see Ref. [21])

    Dx=ϕy(x,t)(z(s)ndyds)+ϕz(x,t)(y(s)+ndzds),Dy=u,Dz=v. (7)
    Figure 3.  Position vectors of ponit A in reference frames.

    where ϕy,ϕz denote rotation of the cross-section about y and z axis. For non-shearable blades, The expression of ϕy and ϕz can be written in the form

    ϕy=vx,ϕz=ux. (8)

    where ux,vx denote derivatives with respect to x.

    Based on the assumptions (ⅴ), the displacement-strain relationships is expressed as follows[20]:

    εxx=Dxx+12[(Dyx)2+(Dzx)2]. (9)

    Thanks to (8), we can get

    εxx=ˉεxx+ˉˉεxxn,

    where

    ˉεxx=12(u2x+v2x)(uxxy(s)+vxxz(s)),  ˉˉεxx=uxxdzds+vxxdyds. (10)

    The shear strain εnx can be expressed as

    εnx=12(Unx+wn), (11)

    where Un represents the components of (Dx,Dy,Dz) along the n axis,

    Un=(Dx,Dy,Dz)en=udzdsvdyds. (12)

    Substituting (7) and (12) into (11), we deduce εnx=0. Using the coordinate transformation of strain component, taking into account assumptions (iv), the shear strain εsx can be expressed as

    εsx=12(dydsγxy+dzdsγxz)=0. (13)

    where γxy,γxz are the transverse shear effect of the cross section.

    Since these materials are isotropic, the corresponding thermoelastic constitutive law adapted to the case of structures is expressed as

    (σssσxxσxnσnsσsx)=(Q11Q12000Q21Q2200000Q4400000Q5500000Q66)(εssεxxεxnεnsεsx),

    Herein, the reduced thermoelastic coefficients are defined as:

    Q11=Q22=E1ν2,Q12=Q21=Eν1ν2,Q44=Q55=k2E2(1+ν),Q66=E2(1+ν),

    where E is Young's modulus, ν is Poisson's ratio, k2 is the transverse shear correction factor.

    According to assumption (ⅱ), the cross section is rigid, then we can derive σns=0. Considering the assumption of the hoop stress σss to be negligible, we can get

    (σss,σxx,σxn,σns,σsx)=(0,Eεxx,0,0,0).

    The centrifugal force can be represented as

    Fc=lxρˉAω2(R0+x)dx=ρˉAω2R(x),

    where ρ is the density of the blades, ˉA is the cross section area of the blades, R(x)=R0(lx)+12(l2x2).

    In the paper, we use the first-order piston theory (see Ref.[24]) to evaluate the perturbed gas pressure. The pressure on the principal plane of the blade can be obtained as

    Pyp=Cρ(upt+Utypupx),Pzp=Cρ(vpt+Utzpvpx), (14)

    where

    Utyp=Ucosθ,  Utzp=Usinθ, (15)

    C represents the speed of sound, ρ and U, respectively, denote the density and the velocity of the free stream air, Utyp and Utzp are, respectively, the tangential components of the fluid velocity on the positive yp and zp plane, and up and vp denote the displacement components along the principal axes yp and zp, respectively.

    The transformation relationship between (up,vp) and (u,v) is given by

    up=ucosθ+vsinθ, vp=usinθ+vcosθ. (16)

    Therefore, the external forces per unit axial length in the y direction and the z direction can be obtained as

    py=aPzpsinθbPypcosθ, pz=aPzpcosθbPypsinθ. (17)

    Combining (14), (15), (16), py,pz can be expressed as a linear function of u,v,ut,vt,ux,vx, respectively.

    py=b1ux+b2vx+b3u+b4v+b5ut+b6vt (18)
    pz=e1ux+e2vx+e3u+e4v+e5ut+e6vt (19)

    where

    b1=CρU(asin3θ+bcos3θ)b2=CρUsinθcosθ(asinθ+bcosθ)b3=CρUθxsinθcosθ(asinθbcosθ)b4=CρUθx(asin3θ+bcos3θ)b5=Cρ(asin2θ+bcos2θ)b6=Cρsinθcosθ(ab)e1=CρUsinθcosθ(asinθ+bcosθ)e2=CρUsinθcosθ(acosθ+bsinθ)e3=CρUθxsinθcosθ(asinθ+bcosθ)e4=CρUθxsinθcosθ(asinθ+bcosθ)
    e5=Cρsinθcosθ(ab)e6=Cρ(acos2θ+bsin2θ)

    In order to calculate the kinetic energy, the velocity vector and the acceleration should be given first. Based on the assumption (ⅴ), the position vector R of a point A of the deformed blades is expressed in the form

    R(X,Y,Z,t)=xi+(y+u)j+(z+v)k+R0i.

    Keep in mind that the rotation takes place solely in the XY plan, it results

    it=ωj;  jt=ωi;  kt=0.

    Then the velocity vector and the acceleration of an arbitrary point A are obtained:

    Rt=ω(y+u)i+(ω(R0+x)+ut)j+vtk, (20)
    Rtt=[2ωut+ωt(y+u)+ω2(R0+x)]i         +[uttωt(R0+x)ω2(y+u)]j+vttk, (21)

    where subscript t denotes derivatives with respect to the time.

    In order to derive the blades model and the associated boundary conditions, the extended Hamilton's principle is used. This can be formulated as

    t2t1(δKδU+δW)dt=0,δu=0,δv=0att=t1,t2. (22)

    where K and U, respectively, denote the kinetic energy and the strain energy, W is the virtual work of external forces, δ is the variation operator.

    Thanks to the cross section of the blades is rectangular, we get

    y(s)ds=z(s)ds=0. (23)

    Utilizing (23), the kinetic energy is obtained

    K=12τρR2tdτ=12ρτu2t+v2t+2ω(R0+x)ut        +ω2(u2+2(y+ndzds)u+y+ndzds+(R0+x)2)dτ=12ρˉAl0u2t+v2t+2ω(R0+x)ut        +ω2(u2+2hydsˉAu+hydsˉA+(R0+x)2)dx=12ρˉAl0u2t+v2t+2ω(R0+x)ut+ω2(u2+(R0+x)2)dx,

    where dτ denotes the differential volume element. Then

    t2t1δKdt=ρˉAt2t1l0{[utt+ωt(R0+x)uω2]δu+vttδv}dxdt, (24)

    Due to the rotating motion of the blades, the total strain energy consists of two parts. The strain energy caused by the centrifugal force can be obtained as

    U1=12l0h2h2lxρω2(R0+ς)εxxdςdndsdx (25)

    where ρ is the bulk density of the blades, lxρω2(R0+ς)dς is the centrifugal force per unit cross section. Then,

    δU1=12l0h2h2lxρω2(R0+ς)δεxxdςdndsdx=12l0h2h2lxρω2(R0+ς)δˉεxxdςdndsdx=ρˉAω2l0R(x)(uxδux+vxδvx)dxρω2h2l0lx(R0+ς)(y(s)dsδuxx+z(s)dsδvxx)dςdx, (26)

    where ˉA is the area of the cross section of the blades, R(x)=R0(lx)+12(l2x2).

    Thanks to (23), the variation of the strain energy caused by the centrifugal force can be rewritten as

    δU1=ρˉAω2[R(x)(uxδu+vxδv)]|l0l0(R(x)ux)xδu+(R(x)vx)xδvdx (27)

    The strain energy induced by the deformation of the rotating blades can be expressed as

    U2=12l0h2h2σxxεxxdndsdx. (28)

    Substituting the expressions of the stress and strain resultants into (28) yields

    δU2=El0h2h2εxxδεxxdndsdx=Eh4l0(u2x+v2x)δ(u2x+v2x)dsdxEh2l0(u2x+v2x)δ(uxxy(s)+vxxz(s))dsdxEh2l0(uxxy(s)+vxxz(s))δ(u2x+v2x)dsdx+Ehl0(uxxy(s)+vxxz(s))δ(uxxy(s)+vxxz(s))dsdx+Eh312l0(uxxdzds+vxxdyds)δ(uxxdzds+vxxdyds)dsdx (29)
    δU2=El0h2h2εxxδεxxdndsdx=ρˉA{l0[a52((u2x+v2x)ux)x+(a6uxxa3vxx)xx          a12(u2x+v2x)xx+(a1uxx+a2vxx)ux)x]dx}δu+ρˉA{l0[a52((u2x+v2x)vx)x+(a4vxxa3uxx)xx          a22(u2x+v2x)xx+(a1uxx+a2vxx)vx)x]dx}δv+ρˉA{[(a6uxxa3vxx)a12(u2x+v2x)]δux}|l0+ρˉA{[(a4vxxa3uxx)a22(u2x+v2x)]δvx}|l0+ρˉA{[a52(u2x+v2x)ux(a6uxxa3vxx)x          +a12(u2x+v2x)x+a1uxx+a2vxxux]δu}|l0+ρˉA{[a52(u2x+v2x)vx(a4vxxa3uxx)x          +a22(u2x+v2x)x+a1uxx+a2vxxvx]δv}|l0 (30)

    where

    a1=EhˉAρyds=0;a2=EhˉAρzds=0;a3(x)=EhˉAρh212dydsdzdsyzds;a4(x)=EhˉAρh212(dzds)2+y2ds;a5=Eρa6(x)=EhˉAρh212(dyds)2+z2ds.

    The work of the non-conservative external forces can be obtained as

    W=l0pyu+pzvdx. (31)

    Then

    t2t1δWdt=t2t1l0˜pyδu+˜pzδvdxdt+t2t1{(b1u+e1v)δu+(b2u+e2v)δv}|l0dt. (32)

    where

    ˜py=2b3u+(e3+b4)v (33)
    ˜pz=(e3+b4)u+2e4v (34)

    Inserting variation of potential energy (27) and (30), variation of kinetic energy (24) and variation of external work equation (32) into the extended Hamilton's principle (22), collecting the terms associated with the same variations, invoking the stationarity of the functional within the time interval [t0,t1], and the fact that the variations (δu,δv) are independent and arbitrary, their coefficients in the two integrands must vanish independently [see [21]]. The partial differential equations with respect to variation of problem's independent variables and the associated boundary conditions are obtained as

    utt+(a6uxxa3vxx)xxa52((u2x+v2x)ux)x        ω2(R(x)ux)xω2u¯p1+ωt(R0+x)=0, (35)
    vtt+(a4vxxa3uxx)xxa52((u2x+v2x)vx)xω2(R(x)vx)x¯p2=0, (36)

    where

    ¯p1=˜pyρˉA,  ¯p2=˜pzρˉA. (37)

    The following two types of boundary conditions are generated due to the different design of engine blades.

    u,ux=0,v,vx=0,x=0, (38)
    u,ux=0,v,vx=0,x=l. (39)

    and

    u,ux=0,v,vx=0,x=0, (40)
    a6uxxa3vxx=0,x=l, (41)
    a4vxxa3uxx=0,x=l, (42)
    a52(u2x+v2x)ux(a6uxxa3vxx)xb1ue1v=0,x=l, (43)
    a52(u2x+v2x)vx(a4vxxa3uxx)xb2ue2v=0,x=l. (44)

    The conditions (38)-(39) represent C-C boundary condition. The conditions (40)-(44) represent C-F boundary condition. Now we study the well-posedness and regularity of the solution for C-C and C-F blades.

    We write Q=Ω×(0,T), where Ω=(0,l) and T>0,

    H20={ψH2(Ω)|ψ(x)=0,ψx(x)=0,xΩ},H2f={ψH2(Ω)|ψ(0)=0,ψx(0)=0,x=0}.

    We list Gagliardo-Nirenberg inequality for bounded domains (see [23]) to be used in the subsequent sections

    Lemma 3.1. Let ΩRn be a bounded domain with smooth boundary. Let 1p,q,r be real numbers and jm be non-negative integers. If a real number α satisfies

    1pjn=α(1rmn)+(1α)1q,jmα1

    Then

    DjfLp(Ω)C1DmfαLr(Ω)f1αLq(Ω)+C2fLs(Ω)

    where s>0, and the constants C1 and C2 depend upon Ω and the indices p,q,r,m,j,s only.

    Now, we give the Aubin-Lions Lemma (see [22]).

    Lemma 3.2. Suppose B0,B,B1 are Banach Space, if

    (i) {ui}i=1 is bounded in Lp0(0,T;B0);

    (ii) {ui,t}i=1 is bounded in Lp1(0,T;B1);

    (iii) B0↪↪BB1,

    then {ui}i=1 admits a strongly converging subsequence in Lp0(0,T;B), provided p0<,p1>1.

    Without loss of generality, we assume a5=1. For the sake of brevity, the initial boundary-value problems of C-C blades are rewritten as:

    {utt+(a6uxx)xx(a3vxx)xx12((u2x+v2x)ux)x    ω2(Rux)xp1=0inQ,vtt(a3uxx)xx+(a4vxx)xx12((u2x+v2x)vx)x    ω2(Rvx)xp2=0inQ,u,ux=0,v,vx=0onΩ×[0,T],u=u0(x),ut=u1(x),v=v0(x),vt=v1(x)onΩ×{t=0}. (45)

    where

    p1=¯p1+ω2uωt(R0+x),  p2=¯p2. (46)

    Definition 4.1. We say function (u,v), u,vL(0,T;H20(Ω)), with

    ut,vtL(0,T;L2(Ω)),utt,vttL(0,T;H2(Ω)),

    is a weak solution of the initial boundary value problem (45) provided

    (ⅰ)

    (utt,φ)+(a6uxx,φxx)(a3vxx,φxx)+12((u2x+v2x)ux,φx)+ω2(Rux,φx)(p1,φ)=0. (47)
    (vtt,φ)(a3uxx,φxx)+(a4vxx,φxx)+12((u2x+v2x)vx,φx)+ω2(Rvx,φx)(p2,φ)=0. (48)

    for each φH20(Ω), and a.e. time 0tT, and

    (ⅱ)

    u(0)=u0,ut(0)=u1;v(0)=v0,vt(0)=v1. (49)

    Remark 1. From the definition, we know u,vC([0,T];L2(Ω)) and ut,vtC([0,T];H2(Ω)).

    Remark 2. By the product Minkowshi inequality, we can obtain:

    a4a6a23>0,xΩ. (50)

    Theorem 4.2. (Existence for weak solution of (45)) Assume

    ωC1(0,T),a3,a4,a6L(Ω),u0,v0H20(Ω),u1,v1L2(Ω). (51)

    there exists a weak solution of (45).

    We now briefly outline the proof of Theorem 4.2 in the following:

    Step 1. employing Galerkin's method to construct solutions of certain finite-dimensional approximations to (45) (correspond to Lemma 6.1 in chapter 6);

    Step 2. using the energy method to find the uniform estimates of the finite-dimensional approximations solutions (correspond to Lemma 6.2 in chapter 6);

    Step 3. using compactness method to obtain the weak solutions of (45).

    Now we give the smoothness of weak solutions of (45).

    Theorem 4.3. (Improved regularity) Assume

    {a3,a4,a6L(Ω),ωC1(0,T),ωttL(0,T),u0H20(Ω)H4(Ω),v0H20(Ω)H4(Ω),u1H20(Ω),v1H20(Ω), (52)

    the weak solution of (45) satisfies

    ut,vtL(0,T;H20(Ω)),utt,vttL(0,T;L2(Ω)). (53)

    Theorem 4.4. (Interior regularity) Under the condition (52), for any φ(x)C0(Ω),φ(x)>0,xΩ, then the weak solution of (45) satisfies

    φuxxx,φvxxxL(0,T;L2(Ω)).

    Remark 3. Multiplying the first and second equation of (45) by a4(x)utt,a3(x)vtt respectively, integrating with over Ω, and summing the two equations, we can obtain that the weak solution of (45) satisfies

    uxxxx,vxxxxL(0,T;L2(Ω)).

    where Ω is a bounded open interval and ¯ΩΩ.

    If the pre-twist angle α(x) is neglected, we can get θ(x),a3(x),a4(x),a6(x) are all constant. Then we give the following theorem.

    Theorem 4.5. (Improved regularity when α(x)=0) Under the condition (52), assume α(x)=0, then the weak solution of (45) satisfies

    u,vL(0,T;H4(Ω)H20(Ω)).

    Now, we study the uniqueness and stability of (45), denote operator π satisfying

    π:{a3,a4,a6,ω,θ,u0,v0,u1,v1}{u,v},

    and

    W(Q)={ψ|ψL(0,T;H20(Ω)),ψtL(0,T;L2(Ω))}

    with the norm

    ||ψ||W(Q)=||ψ||L(0,T;H20(Ω))+||ψt||L(0,T;L2(Ω)).

    Then W(Q) is Banach space.

    Theorem 4.6. Undering the condition (52),

    π:{(L(Ω))3×W1,1(0,T)C1(0,T)×L1(Ω)×(H20(Ω))2×(L2(Ω))2}(W(Q))2

    is continuous.

    The initial boundary-value problems of C-F blades are rewritten as :

    {utt+(a6uxx)xx(a3vxx)xx12((u2x+v2x)ux)x    ω2(Rux)xp1=0inQ,vtt(a3uxx)xx+(a4vxx)xx12((u2x+v2x)vx)x    ω2(Rvx)xp2=0inQ,u,ux=0,v,vx=0,x=0,a6uxxa3vxx=0,x=l,a4vxxa3uxx=0,x=l,12(u2x+v2x)ux(a6uxxa3vxx)xb1ue1v=0,x=l,12(u2x+v2x)vx(a4vxxa3uxx)xb2ue2v=0,x=l,u=u0(x),ut=u1(x),v=v0(x),vt=v1(x)onΩ×{t=0}. (54)

    Definition 5.1. We say function (u,v), u,vL(0,T;H2f(Ω)), with

    ut,vtL(0,T;L2(Ω)),utt,vttL(0,T;H2(Ω)),

    is a weak solution of the initial boundary value problem (54) provided

    (ⅰ)

    (utt,φ)+(a6uxx,φxx)(a3vxx,φxx)+12((u2x+v2x)ux,φx)+ω2(Rux,φx)(p1,φ)(b1u(l)+e1v(l))φ(l)=0. (55)
    (vtt,φ)(a3uxx,φxx)+(a4vxx,φxx)+12((u2x+v2x)vx,φx)+ω2(Rvx,φx)(p2,φ)(b2u(l)+e2v(l))φ(l)=0. (56)

    for each φH2f(Ω), and a.e. time 0tT, and

    (ⅱ)

    u(0)=u0,ut(0)=u1;v(0)=v0,vt(0)=v1.

    Similar as above, we derive the following conclusion of the initial boundary value problem (54).

    Theorem 5.2. (Existence for the weak solutions of (54)) Assume

    ωC1(0,T),a3,a4,a6L(Ω),u0,v0H2f(Ω),u1,v1L2(Ω), (57)

    there exists a weak solution of (54).

    Theorem 5.3. (Regularity weak solution of (54)) Assume

    {a3,a4,a6L(Ω),ωC1(0,T),ωttL(0,T),u0,v0H2f(Ω)H4(Ω),u1,v1H2f(Ω). (58)

    Then there exists T<T such that, the weak solution of (54) satisfies

    ut,vtL(0,T;H2f(Ω)),utt,vttL(0,T;L2(Ω)). (59)

    Remark 4. If pre-twist angle α(x) is neglected, according to the first and second equations of (54), we can obtain that the weak solution of (54) satisfies

    u,vL(0,T;H4(Ω)H2f(Ω)). (60)

    where utt,vttL(0,T;L2(Ω)) and Gagliardo-Nirenberg inequality are used.

    We construct weak solution of the initial boundary-value problem (45) by first solving a finite dimensional approximation. We thus employ Galerkin's method by selecting smooth functions φk=φk(x)(k=1,) such that

    {φk}k=1is an orthogonal basis ofH20(Ω), (61)

    and

    {φk}k=1is an orthonormal basis ofL2(Ω). (62)

    Fix a positive integer m, and write

    um=mk=1dk0m(t)φk, vm=mk=1dk1m(t)φk, (63)

    where we intend to select the coefficients dk0m(t),dk1m(t)(0tT,k=1,,m) to satisfy

    dk0m(0)=(u0,φk),dk1m(0)=(v0,φk),k=1,,m, (64)
    dk0m,t(0)=(u1,φk),dk1m,t(0)=(v1,φk),k=1,,m, (65)

    and

    (um,tt,φk)+(a6um,xx,φk,xx)(a3vm,xx,φk,xx)+12((u2m,x+v2m,x)um,x,φk,x)+ω2(Rum,x,φk,x)(p1m,φk)=0, (66)
    (vm,tt,φk)(a3um,xx,φk,xx)+(a4vm,xx,φk,xx)+12((u2m,x+v2m,x)vm,x,φk,x)+ω2(Rvm,x,φk,x)(p2m,φk)=0. (67)

    where

    p1m=1ρˉA(2b3um+(e3+b4)vm)+ω2umωt(R0+x),p2m=1ρˉA((e3+b4)um+2e4vm).

    In order to proof Theorem 4.2, we need the following Lemma.

    Lemma 6.1. Under the condition (51), for each integer m=1,2,, there exists a unique function um,vm of the form (63) satisfying (64)-(67) for 0ttm.

    Proof. Assuming um,vm to be given by (63), by using (62), equation (66) and (67) become the nonlinear system of ODE

    dk0m,tt+mj=1dj0m(a6φj,xx,φk,xx)mj=1dj1m(a3φj,xx,φk,xx)+12mj=1dj0m(((mi=1di0mφi,x)2+(mi=1di1mφi,x)2)φj,x,φk,x)+ω2mj=1dj0m(Rφj,x,φk,x)1ρˉA(2b3dk0m+(e3+e4)dk1m)=ω2dk0mωt((R0+x),φk), (68)
    dk1m,tt+mj=1dj1m(a4φj,xx,φk,xx)mj=1dj0m(a3φj,xx,φk,xx)+12mj=1dj1m(((mi=1di0mφi,x)2+(mi=1di1mφi,x)2)φj,x,φk,x)+ω2mj=1dj1m(Rφj,x,φk,x)1ρˉA((e3+e4)dk0m+2e4dk1m)=0. (69)

    subject to the initial conditions (64), (65). According to standard theory for ODE, there exists unique C2 funcion d0m(t)=(d10m,d20m,,dm0m),d1m(t)=(d11m,d21m,,dm1m), satisfying (64), (65), and solving (68), (69) for 0ttm, where tm:=t(m) is a function of m.

    We propose now to send m to infinity and to show a subsequence of the solutions um,vm of the approximate problem (64)-(67) converges to a weak solution of (45). For this we will need the following uniform estimates.

    Lemma 6.2. Undering the condition (51), there exists positive constant C(Ω,T), such that

    ||um,t||2L2(Ω)+||vm,t||2L2(Ω)+||um||2H20(Ω)+||vm||2H20(Ω)C(||u1||2L2(Ω)+||v1||2L2(Ω)+||u0||2H20(Ω)+||v0||2H20(Ω))+C (70)

    for m=1,2,.

    Proof. Multiplying equality (66) by dk0m,t, summing k=1,2,, we deduce

    (um,tt,um,t)+(a6um,xx,um,txx)(a3vm,xx,um,txx)+12((u2m,x+v2m,x)um,x,um,tx)+ω2(Rum,x,um,tx)(p1m,um,t)=0 (71)

    for a.e. 0ttm.

    Multiplying equality (67) by dk1m,t, summing k=1,2,, we deduce

    (vm,tt,vm,t)(a3um,xx,vm,txx)+(a4vm,xx,vm,txx)+12((u2m,x+v2m,x)vm,x,vm,tx)+ω2(Rvm,x,vm,tx)(p2m,vm,t)=0 (72)

    for a.e. 0ttm.

    To simplify the equation (71) and (72), we can get

    12ddtum,t2L2(Ω)+12ddta6um,xx2L2(Ω)(a3vm,xx,um,txx)+12((u2m,x+v2m,x)um,x,um,tx)+ω22ddtRum,x2L2(Ω)(p1m,um,t)=0. (73)
    12ddtvm,t2L2(Ω)+12ddta4vm,xx2L2(Ω)(a3um,xx,vm,txx)+12((u2m,x+v2m,x)vm,x,vm,tx)+ω22ddtRvm,x2L2(Ω)(p2m,vm,t)=0. (74)

    Summing the equations (73) and (74), we discover

    12ddt{||um,t||2L2(Ω)+||vm,t||2L2(Ω)+||a6um,xx||2L2(Ω)+||a4vm,xx||2L2(Ω)+ω22(||Rum,x||2L2(Ω)+||Rvm,x||2L2(Ω))}ddt||a3um,xxvm,xx||L1(Ω)+18ddt||u2m,x+v2m,x||2L2(Ω)=ωωt(||Rum,x||2L2(Ω)+||Rvm,x||2L2(Ω))+(p1m,um,t)+(p2m,vm,t). (75)

    Since ωC1(0,T), the equality (75) implies

    12ddt{||um,t||2L2(Ω)+||vm,t||2L2(Ω)+||a6um,xx||2L2(Ω)+||a4vm,xx||2L2(Ω)+ω22(||Rum,x||2L2(Ω)+||Rvm,x||2L2(Ω))}ddt||a3um,xxvm,xx||L1(Ω)+18ddt||u2m,x+v2m,x||2L2(Ω)C(||um,t||2L2(Ω)+||vm,t||2L2(Ω)+||um||2H10(Ω)+||vm||2H10(Ω))+C. (76)

    where we used Young inequality.

    Integrating (76) with respect to t, we discover

    ||um,t||2L2(Ω)+||vm,t||2L2(Ω)+||a6um,xx||2L2(Ω)+||a4vm,xx||2L2(Ω)2||a3um,xxvm,xx||L1(Ω)+ω22(||Rum,x||2L2(Ω)+||Rvm,x||2L2(Ω))+14||u2m,x+v2m,x||2L2(Ω)C(Ω,T){||u1m||2L2(Ω)+||v1m||2L2(Ω)+||u0m||2H2(Ω)+||v0m||2H2(Ω)}+Ct0||um,t||2L2(Ω)+||vm,t||2L2(Ω)dt+||um||2H10(Ω)+||vm||2H10(Ω)+C. (77)

    Thanks to (50), there exists a constant C, such that

    ||a6um,xx||2L2(Ω)+||a4vm,xx||2L2(Ω)2||a3um,xxvm,xx||L(Ω)C(||um||2H20(Ω)+||vm||2H20(Ω)). (78)

    Substituting (78) into the inequality (77), By using Poincaré inequality, we find

    ||um,t||2L2(Ω)+||vm,t||2L2(Ω)+||um||2H20(Ω)+||vm||2H20(Ω) C(||u1m||2L2(Ω)+||v1m||2L2(Ω)+||u0m||2H20(Ω)+||v0m||2H20(Ω))+Ct0||um,t||2L2(Ω)+||vm,t||2L2(Ω)dt+||um||2H20(Ω)+||vm||2H20(Ω)+C. (79)

    Then, by using Gronwall inequality, we obtain

    ||um,t||2L2(Ω)+||vm,t||2L2(Ω)+||um||2H20(Ω)+||vm||2H20(Ω)C(||um,t(0)||2L2(Ω)+||vm,t(0)||2L2(Ω)+||um(0)||2H20(Ω)+||vm(0)||2H20(Ω))+CC(||u1||2L2(Ω)+||v1||2L2(Ω)+||u0||2H20(Ω)+||v0||2H20(Ω))+C

    for m=1,2,.

    Remark 5. From the Energy estimates, we can obtain: tmT, as m.

    Thanks to Lemma 6.1 and Lemma 6.2, we can obtain the existence for the weak solutions of the initial boundary value problem (45).

    Proof. (ⅰ) According to the energy estimates (70), we see that

    {um}m=1,{vm}m=1isboundedinL(0,T;H20(Ω)); (80)
    {um,t}m=1,{vm,t}m=1isboundedinL(0,T;L2(Ω)); (81)
    {um,tt}m=1,{vm,tt}m=1isboundedinL(0,T;H2(Ω)). (82)

    As a consequence there exists subsequence {uμ,vμ}m=1 and u,vL(0,T;H20(Ω)), with ut,vtL(0,T;L2(Ω)), utt,vttL(0,T;H2(Ω)), such that

    {uμu,vμvweaklyin  L(0,T;H20(Ω))uμ,tut,vμ,tvtweaklyin  L(0,T;L2(Ω))uμ,ttutt,vμ,ttvttweaklyin  L(0,T;H2(Ω)). (83)

    (ⅱ) By Gagliardo-Nirenberg inequality, we can see

    ||uμ,x||L(Q)C||uμ,xx||L(0,T;L2(Ω))C. (84)

    Otherwise,

    ||u2μ,x+v2μ,x||L(0,T;L2(Ω))||uμ,x||2L(0,T;L4(Ω))+||vμ,x||2L(0,T;L4(Ω))C||uμ||2L(0,T;H20(Ω))+c||vμ||2L(0,T;H20(Ω))C. (85)

    Combining (84) and (85), we discover

    ||(u2μ,x+v2μ,x)uμ,x||L(0,T;L2(Ω))C||u2μ,x+v2μ,x||L(0,T;L2(Ω))C. (86)

    Moreover, there exists a function χL(0,T;L2(Ω)) satisfy

    (u2μ,x+v2μ,x)uμ,xχ  weakly * in  L(0,T;L2(Ω)). (87)

    By Lemma 3.2, we can find

    uμu,vμv  strongly in  L2(0,T;H10(Ω)). (88)

    And so

    uμ,xux,vμ,xvx  strongly in  L2(Q), (89)

    Thus

    (u2μ,x+v2μ,x)uμ,x(u2x+v2x)ux. (90)

    Combining (87) and (90), we can obtain

    (u2μ,x+v2μ,x)uμ,x(u2x+v2x)ux  weakly in  L2(Q), (91)

    where we used the Lemma 1.3 of Chapter 1 in [22]. Furthermore, we have χ=(u2x+v2x)ux.

    Meanwhile,

    ((u2μ,x+v2μ,x)uμ,x,φk,x)((u2x+v2x)ux,φk,x)  weakly * in  L(0,T). (92)

    In the same way,

    ((u2μ,x+v2μ,x)vμ,x,φk,x)((u2x+v2x)vx,φk,x)  weakly * in  L(0,T). (93)

    Next fix an integer k, we select μk, from (66) we can get

    (uμ,tt,φk)+(a6uμ,xx,φk,xx)(a3vμ,xx,φk,xx)+12((u2μ,x+v2μ,x)uμ,x,φk,x)ω2(Ruμ,x,φk,x)(p1μ,φk)=0. (94)

    Thanks to (83), we can get

    {(uμ,tt,φk)(utt,φk)weaklyinL(0,T),(a6uμ,xx,φk,xx)(a6uxx,φk,xx)weaklyinL(0,T),(a3vμ,xx,φk,xx)(a3vxx,φk,xx)weaklyinL(0,T),(p1μ,φk)(p1,φk)weaklyinL(0,T). (95)

    From (92) and (95), we can discover

    +v2x)ux,φk,x)+ω2(Rux,φk,x)(p1,φk)=0 (96)

    for all fixed k.

    Note

    {φk}k=1  isanorthogonalbasisofH20(Ω),

    then,

    (utt,φ)+(a6uxx,φxx)(a3vxx,φxx)+12((u2x+v2x)ux,φx)+ω2(Rux,φx)(p1,φ)=0 (97)

    for arbitrary φH20(Ω).

    In the same way,

    (vtt,φ)+(a4vxx,φxx)(a3uxx,φxx)+12((u2x+v2x)vx,φx)+ω2(Rvx,φx)(p2,φ)=0 (98)

    for arbitrary φH20(Ω).

    Synthesizes the above analysis, there exists u,v satisfying (47), (48), and

    u,vL(0,T;H20(Ω)),ut,vtL(0,T;L2(Ω)),utt,vttL(0,T;H2(Ω)).

    (ⅲ) Now let's prove the initial conditions.

    Since, uμ,vμ,uμ,t,vμ,t are bounded in L2(Q), by Lemma 1.2 of Chapter 1 in [22], we can discover

    uμ(x,0)u(x,0) weakly inL2(Ω). (99)

    Otherwise,

    um(x,0)u0(x) in H20(Ω). (100)

    Combining identities (99) and (100), we can get

    u(x,0)=u0(x).

    Next, according to (83), we can obtain

    (uμ,t,φk)(ut,φk) weakly * in L(0,T),
    (uμ,tt,φk)(utt,φk) weakly * in L(0,T).

    Then, we can discover

    (uμ,t(x,0),φk)(ut,φk)|t=0=(ut(x,0),φk). (101)

    Otherwise,

    (um,t(x,0),φk)(u1(x),φk), (102)

    Comparing identities (101) and (102), we can get

    (ut(x,0),φk)=(u1(x),φk), for arbitrary k.

    So

    ut(x,0)=u1(x).

    In the same way, we can obtain

    v(x,0)=v0(x),vt(x,0)=v1(x).

    Proof. Differentiating the first equation of (45) with respect to t, multiplying by utt and integrating with respect to x, we discover

    (uttt,utt)+((a6utxx)xx,utt)((a3vtxx)xx,utt)12(((u2x+v2x)utx)x,utt)((u2xutx)x,utt)((uxvxvtx)x,utt)2ωωt((Rux)x,utt)ω2((Rutx)x,utt)(p1,t,utt)=0. (103)

    Differentiating the second equation of (45) with respect to t, multiplying by vtt and integrating with respect to x, we discover

    (vttt,vtt)+((a4vtxx)xx,vtt)((a3utxx)xx,vtt)12(((u2x+v2x)vtx)x,vtt)((v2xvtx)x,vtt)((uxvxutx)x,vtt)2ωωt((Rvx)x,vtt)ω2((Rvtx)x,vtt)(p2,t,vtt)=0. (104)

    Summing the equation (103) and (104), we discover after integrating by parts:

    12ddt(||utt||2L2(Ω)+||vtt||2L2(Ω))+12ddt(||a6utxx||2L2(Ω)+||a4vtxx||2L2(Ω))ddt||a3utxxvtxx||L1(Ω)+ω22ddt||R(x)utx||2L2(Ω)+ω22ddt||R(x)vtx||2L2(Ω)=12((u2x+v2x)utxx,utt)+(u2xutxx,utt)+(uxvxvtxx,utt)+12((u2x+v2x)vtxx,vtt)+(v2xvtxx,vtt)+(uxvxutxx,vtt)+3(uxuxxutx,utt)+(vxvxxutx,utt)+(uxxvxvtx,utt)+(uxvxxvtx,utt)+(uxuxxvtx,vtt)+3(vxvxxvtx,vtt)+(uxxvxutx,vtt)+(uxvxxutx,vtt)+2ωωt((Rxux,utt)+(Ruxx,utt)+(Rxvx,vtt)+(Rvxx,vtt))+(p1,t,utt)+(p2,t,vtt). (105)

    Obviously, by Young inequality and Hölder inequality, we have

    12ddt(||utt||2L2(Ω)+||vtt||2L2(Ω))+12ddt(||a6utxx||2L2(Ω)+||a4vtxx||2L2(Ω))ddt||a3utxxvtxx||L(Ω)+ddt[ω22(||Rutx||2L2(Ω)+||Rvtx||2L2(Ω))]C(||ut||2H20(Ω)+||vt||2H20(Ω)+||utt||2L2(Ω)+||vtt||2L2(Ω)+||u||2H20(Ω)+||v||2H20(Ω)+1). (106)

    Next integrate (106) with respect to t,

    ||utt||2L2(Ω)+||vtt||2L2(Ω)+||a6utxx||2L2(Ω)+||a4vtxx||2L2(Ω)2||a3utxxvtxx||L(Ω)+ω2(||Rutx||2L2(Ω)+||Rvtx||2L2(Ω))Ct0||ut||2H20(Ω)+||vt||2H20(Ω)+||utt||2L2(Ω)+||vtt||2L2(Ω)+||u||2H20(Ω)+||v||2H20(Ω)dt+||utt(x,0)||2L2(Ω)+||utx(x,0)||2L2(Ω)+||utxx(x,0)||2L2(Ω)+||vtt(x,0)||2L2(Ω)+||vtx(x,0)||2L2(Ω)+||vtxx(x,0)||2L2(Ω)+C. (107)

    Since u1,v1H20(Ω), we have

    ||utxx(x,0)||L2(Ω),||vtxx(x,0)||L2(Ω),||utx(x,0)||L2(Ω),||vtx(x,0)||L2(Ω), (108)

    are bounded. On the other hand, multiplying the first equation and second equation of (45) by utt,vtt, respectively, and integrating with respect to x, we discover

    ||utt(x,0)||L2(Ω)C(||u0||H4(Ω)+||v0||H4(Ω))+CC,
    ||vtt(x,0)||L2(Ω)C(||u0||H4(Ω)+||v0||H4(Ω))+CC.

    where the condition (52), Young inequality and Poincaré inequality are used.

    As before, we have

    ||utt||2L2(Ω)+||vtt||2L2(Ω)+||ut||2H20(Ω)+||vt||2H20(Ω)Ct0(||utt||2L2(Ω)+||vtt||2L2(Ω)+||ut||2H20(Ω)+||vt||2H20(Ω))dt+C. (109)

    Applying the Gronwall inequality to (109) gives

    ut,vt   is bounded in   L(0,T;H20(Ω)),utt,vtt   is bounded in   L(0,T;L2(Ω)). (110)

    Moreover, the weak solutions of (45) satisfies

    utL(0,T;H20(Ω)),
    vtL(0,T;H20(Ω)),
    uttL(0,T;L2(Ω)),
    vttL(0,T;L2(Ω)).

    Proof. Multiplying the first equation and the second equation of (45) by φ2utxx, φ2vtxx, respectively, summing the two equations, and integrating with respect to x, we discover

    (utt,φ2utxx)+(vtt,φ2vtxx)+((a6uxx)xx,φ2utxx)+((a4vxx)xx,φ2vtxx)((a3vxx)xx,φ2utxx)((a3uxx)xx,φ2vtxx)12(((u2x+v2x)ux)x,φ2utxx)12(((u2x+v2x)vx)x,φ2vtxx)ω2((Rux)x,φ2utxx)ω2((Rvx)x,φ2vtxx)(p1,φ2utxx)(p2,φ2vtxx)=0. (111)

    Thanks to integration by parts and the properties of φ, we obtain the following equality

    I1+I2+I3+I4+I5=0. (112)

    where Ii,i=1,,5, are given as follows respectively

    I1=(utt,φ2utxx)+(vtt,φ2vtxx)I2=((a6uxx)xx,φ2utxx)+((a4vxx)xx,φ2vtxx)I3=((a3vxx)xx,φ2utxx)((a3uxx)xx,φ2vtxx)I4=12(((u2x+v2x)ux)x,φ2utxx)12(((u2x+v2x)vx)x,φ2vtxx)I5=(p1,φ2utxx)(p2,φ2vtxx).

    To conclude, we need to estimate each of Ii,i=1,,5. By using integration by parts and conclusion (53), we find

    I1=12ddt(||φutx||2L2(Ω)+||φvtx||2L2(Ω))+2(φφxutt,utx)+2(φφxvtt,vtx)12ddt(||φutx||2L2(Ω)+||φvtx||2L2(Ω))C (113)

    For I2, we get

    I2=12ddt(||a6φuxxx||2L2(Ω)+||a4φvxxx||2L2(Ω))+(a6,xuxx,φ2utxxx)+(a4,xvxx,φ2vtxxx)+2(a6uxxx,φφxutxx)+2(a4vxxx,φφxvtxx)+2(a6,xuxx,φφxutxx)+2(a4,xvxx,φφxvtxx)12ddt(||a6φuxxx||2L2(Ω)+||a4φvxxx||2L2(Ω))(a6,xuxxx,φ2utxx)(a4,xvxxx,φ2vtxx)+2(a6uxxx,φφxutxx)+2(a4vxxx,φφxvtxx)C12ddt(||a6φuxxx||2L2(Ω)+||a4φvxxx||2L2(Ω))C||φuxxx||2L2(Ω)C||φvxxx||2L2(Ω)C (114)

    where Lemma 3.1 and (52) are used. Similarly from (114), we deduce

    I3=(a3vxxx,φ2utxxx)(a3uxxx,φ2vtxxx)(a3,xvxx,φ2utxxx)(a3,xuxx,φ2vtxxx)2(a3vxxx,φφxutxx)2(a3uxxx,φφxvtxx)2(a3,xvxx,φφxutxx)2(a3,xuxx,φφxvtxx)=ddt||a3φ2uxxxvxxx||L1(Ω)(a3,xvxx,φ2utxxx)(a3,xuxx,φ2vtxxx)2(a3vxxx,φφxutxx)2(a3uxxx,φφxvtxx)2(a3,xvxx,φφxutxx)2(a3,xuxx,φφxvtxx)=ddt||a3φ2uxxxvxxx||L1(Ω)+(a3,xxvxx,φ2utxx)+(a3,xxuxx,φ2vtxx)+(a3,xvxxx,φφxutxx)+(a3,xuxxx,φφxvtxx)+2(a3,xvxx,φφxutxx)+2(a3,xuxx,φφxvtxx)2(a3vxxx,φφxutxx)2(a3uxxx,φφxvtxx)2(a3,xvxx,φφxutxx)2(a3,xuxx,φφxvtxx)ddt||a3φ2uxxxvxxx||L1(Ω)C||φuxxx||2L2(Ω)C||φvxxx||2L2(Ω)C (115)

    By using Lemma 3.1 and (52), we find

    I4=C||utxx||2L2(Ω)C||vtxx||2L2(Ω)C||uxx||2L2(Ω)c||vxx||2L2(Ω)C (116)
    I5=C(||ut||2H20(Ω)+||vt|2H20(Ω)+||u||2H20(Ω)+||v||2H20(Ω))CC (117)

    Putting (113)-(117) into (112), this yields

    12ddt(||φutx||2L2(Ω)+||φvtx||2L2(Ω)+||a6φuxxx||2L2(Ω)+||a4φvxxx||2L2(Ω)        2||a3φ2uxxxvxxx||L1(Ω))C(||φuxxx||2L2(Ω)+||φvxxx||2L2(Ω))+C (118)

    Integrating with respect to t(0,t), taking into account the condition (50), we discover

    ||φutx||2L2(Ω)+||φvtx||2L2(Ω)+||φuxxx||2L2(Ω)+||φvxxx||2L2(Ω)
    Ct0||φuxxx||2L2(Ω)+||φvxxx||2L2(Ω)dt+C(||u1||2H1(Ω)+||v1||2H1(Ω)+||u0||2H3(Ω)+||v0||2H3(Ω))+C (119)

    Thanks to the Gronwall inequality, we deduce

    ||φuxxx||2L2(Ω)+||φvxxx||2L2(Ω)C (120)

    Proof. Utilizing to the first and second equations of (45), we can deduce

    ((a6a4a23)uxxxx,uxxxx)=(a4utta3vtt+ω2(R(a4ux+a3vx))x,uxxxx)+12(((u2x+v2x)(a4ux+a3vx))x,uxxxx)+((a4p1+a3p2),uxxxx). (121)

    Thanks to (50) and Hölder inequality, we see that

    ||uxxxx||L2(Ω)C(||utt+vtt+ut+vt||L2(Ω)+||u+v||H20(Ω))C. (122)

    Furthermore,

    ||uxxx||L2(Ω)C||uxxxx||47L2(Ω)||u||37L2(Ω)+C||u||L2(Ω)C, (123)

    where Gagliardo-Nirenberg inequality for bounded domains is used. Similarly, we deduce

    ||vxxx||L2(Ω)C,||vxxxx||L2(Ω)C. (124)

    Combining with the conclusions in Theorem (4.2) and Theorem (4.3), we can find that

    u,vL(0,T;H4(Ω)H20(Ω)).

    Proof. Denote

    {˜u,˜v}=π({˜a3,˜a4,˜a6,˜ω,˜θ,˜u0,˜v0,˜u1,˜v1}),
    η=u˜u,  ζ=v˜v.

    Then η,ζ satisfy

    12ddt(||ηt||2L2(Ω)+||ζt||2L2(Ω)+||a6ηxx||2L2(Ω)      +||a4ζxx||2L2(Ω)2||a3ηxxζxx||L(Ω))=12(((u2x+v2x)ux(˜u2x+˜v2x)˜ux)x,ηt)+12(((u2x+v2x)vx(˜u2x+˜v2x)˜vx)x,ζt)+ω2(((R(x)ηx)x,ηt)+((R(x)ζx)x,ζt))+ω2(η,ηt)+(¯p1,ηt)+(¯p2,ζt)
    ((a6˜a6)˜uxx,ηtxx)((a4˜a4)˜vxx,ζtxx)+((a3˜a3)˜vxx,ηtxx)+((a3˜a3)˜uxx,ζtxx)(ω2˜ω2)(R˜ux,ηtx)(ω2˜ω2)(R˜vx,ζtx)+(ω2˜ω2)(˜u,ηt)+(ωt˜ωt)(R0+x,ηt). (125)

    In equation (125), the nonlinear term satisfies

    ((u2x+v2x)ux(˜u2x+˜v2x)˜ux)x=((u2x+v2x)ηx)x+((u2x+v2x˜u2x˜v2x)˜ux)x=((u2x+v2x)ηx)x+(((ux+˜ux)ηx+(vx+˜vx)ζx)˜ux)x=2(uxuxx+vxvxx)ηx+(u2x+v2x)ηxx+((ux+˜ux)ηxx+(vx+˜vx)ζxx)˜ux+((uxx+˜uxx)ηx+(vxx+˜vxx)ζx)˜ux+((ux+˜ux)ηx+(vx+˜vx)ζx)˜uxx. (126)

    By Hölder inequality and Sobolev inequality, we can obtain

    (((u2x+v2x)ux(˜u2x+˜v2x)˜ux)x,ηt)C||uxx+vxx||L2(Ω)||ηx||L(Ω)||ηt||L2(Ω)+C||ηxx||L2(Ω)||ηt||L2(Ω)+||ηxx+(||uxx+˜uxx||L2(Ω)||ηx||L(Ω)+||vxx+˜vxx||L2(Ω)||ζx||L(Ω))||ηt||L2(Ω)+(|ηx||L(Ω)+||ζx||L(Ω))||˜uxx||L2(Ω)||ηt||L2(Ω)+ζxx||L2(Ω)||ηt||L2(Ω)C||η||H20(Ω)||ηt||L2(Ω)+C||η||H20(Ω)||ηt||L2(Ω)+C||η||H20(Ω)||ηt||L2(Ω)+C||ζ||H20(Ω)||ηt||L2(Ω)C(||ηt||2L2(Ω)+||η||2H20(Ω)+||ζ||2H20(Ω)). (127)

    In the same way, we have

    (((u2x+v2x)vx(˜u2x+˜v2x)˜vx)x,ζt)C(||ζt||2L2(Ω)+||η||2H20(Ω)+||ζ||2H20(Ω)). (128)

    On the other hand, we easily have

    (¯p1,ηt)+(¯p2,ζt)C(||θ˜θ||L1(Ω)+||ηt||2L2(Ω)+||ζt||2L2(Ω)+||η||2H10(Ω)+||ζ||2H10(Ω)). (129)

    Substituting (127)-(129) into (125), we deduce

    ||ηt||2L2(Ω)+||ζt||2L2(Ω)+||η||2H20(Ω)+||ζ||2H20(Ω)Ct0||ηt||2L2(Ω)+||ζt||2L2(Ω)+||η||2H20(Ω)+||ζ||2H20(Ω)dt+||u1˜u1||2L2(Ω)+||v1˜v1||2L2(Ω)+||u0˜u0||2H20(Ω)+||v0˜v0||2H20(Ω)+C(5i=3||ai˜ai||L(Ω)+||θ˜θ||L1(Ω)+||ω˜ω||W1,1(0,T)). (130)

    where we used the inequalities

    \begin{eqnarray*} ||\tilde u||_{L^{\infty}(Q)}\leq C, \; ||\tilde u_x||_{L^{\infty}(Q)}\leq C, ||\tilde v||_{L^{\infty}(Q)}\leq C, \; ||\tilde v_x||_{L^{\infty}(Q)}\leq C, \\ ||\tilde u_{xx}||_{L^{\infty}(0, T, L^2(\Omega))}\leq C, ||\tilde v_{xx}||_{L^{\infty}(0, T, L^2(\Omega))}\leq C, \\ ||\eta_{tx}||_{L^{\infty}(Q)}\leq C, ||\zeta_{tx}||_{L^{\infty}(Q)}\leq C, \end{eqnarray*}

    which are deduced from Theorem 4.2 and Theorem 4.3.

    Proof. Assume

    \begin{equation} \{\tilde\varphi_k\}_{k = 1}^{\infty} \text{is an orthogonal basis of} H_f^2(\Omega), \end{equation} (131)

    and

    \begin{equation} \{\tilde\varphi_k\}_{k = 1}^{\infty} \text{is an orthonormal basis of} L^2(\Omega) . \end{equation} (132)

    Fix a positive integer m , and write

    \begin{eqnarray} u_m = \sum\limits_{k = 1}^{m}\tilde d_{0m}^{k}(t)\tilde\varphi_k, \ v_m = \sum\limits_{k = 1}^{m}\tilde d_{1m}^{k}(t)\tilde\varphi_k, \end{eqnarray} (133)

    where we intend to select the coefficients \tilde d_{0m}^k(t), \tilde d_{1m}^k(t)(0\leq t\leq T, k = 1, \cdots, m) to satisfy

    \begin{equation} \tilde d_{0m}^k(0) = (u_0, \tilde\varphi_k), \tilde d_{1m}^k(0) = (v_0, \tilde\varphi_k), k = 1, \cdots, m, \end{equation} (134)
    \begin{equation} \tilde d_{0m, t}^k(0) = (u_1, \tilde\varphi_k), \tilde d_{1m, t}^k(0) = (v_1, \tilde\varphi_k), k = 1, \cdots, m, \end{equation} (135)

    and

    \begin{equation} \begin{split} &(u_{m, tt}, \tilde\varphi_k)+(a_6u_{m, xx}, \tilde\varphi_{k, xx})-(a_3v_{m, xx}, \tilde\varphi_{k, xx})+ \frac{1}{2}((u_{m, x}^2 +v_{m, x}^2)u_{m, x}, \tilde\varphi_{k, x})\\ &\; \; \; \; +\omega ^2(Ru_{m, x}, \tilde\varphi_{k, x})-(p_{1m}, \tilde\varphi_k)-\big(b_1u_m(l)+e_1v_m(l)\big)\tilde\varphi(l) = 0, \end{split} \end{equation} (136)
    \begin{equation} \begin{split} &(v_{m, tt}, \tilde\varphi_k)-(a_3 u_{m, xx}, \tilde\varphi_{k, xx})+(a_4 v_{m, xx}, \tilde\varphi_{k, xx} ) + \frac{1}{2}((u_{m, x}^2 +v_{m, x}^2)v_{m, x}, \tilde\varphi_{k, x})\\ &\; \; \; \; +\omega^2(R v_{m, x}, \tilde\varphi_{k, x} )-(p_{2m}, \tilde\varphi_k)-\big(b_2u_m(l)+e_2v_m(l)\big)\tilde\varphi(l) = 0. \end{split} \end{equation} (137)

    As in earlier treatments of C-C boundary condition, we can conclude the following two conclude without difficulty.

    (ⅰ) For each integer m = 1, 2, \cdots, there exists a unique Galerkin approximations function u_m, v_m of the from (133) satisfying (134)-(137) for 0\leq t \leq T .

    (ⅱ) u(x, 0) = u_0(x), v(x, 0) = v_0(x), u_t(x, 0) = u_1(x), v_t(x, 0) = v_1(x).

    Then, we proof the following estimate

    \begin{equation} \begin{array}{c} {\left\|u_{m, t}\right\|_{L^{2}(\Omega)}^{2}+\left\|v_{m, t}\right\|_{L^{2}(\Omega)}^{2}+\left\|u_{m}\right\|_{H_{f}^{2}(\Omega)}^{2} +\left\|v_{m}\right\|_{H_{f}^{2}(\Omega)}^{2}} \\ {\leq C\left(\left\|u_{1}\right\|_{L^{2}(\Omega)}^{2}+\left\|v_{1 }\right\|_{L^{2}(\Omega)}^{2}+\left\|u_{0}\right\|_{H_{f}^{2}(\Omega)}^{2}+\left\|v_{0 }\right\|_{H_{f}^{2}(\Omega)}^{2}\right)+C}\end{array} \end{equation} (138)

    Similarly from (75), we can deduce

    \begin{equation} \begin{split} \frac{1}{2}\frac{\mathrm d}{\mathrm dt}\{&|| u_{m, t} ||_{L^2(\Omega)}^2 +|| v_{m, t} ||_{L^2(\Omega)}^2 +|| \sqrt{a_6}u_{m, xx} ||_{L^2(\Omega)}^2 +|| \sqrt{a_4}v_{m, xx} ||_{L^2(\Omega)}^2 \\ &+\frac{\omega ^2}{2}(||\sqrt{R}u_{m, x}||_{L^2(\Omega)}^2 +||\sqrt{R}v_{m, x}||_{L^2(\Omega)}^2 )\}-\frac{\mathrm d}{\mathrm dt}|| a_3 u_{m, xx} v_{m, xx} ||_{L^1(\Omega)} \\ &+\frac{1}{8}\frac{\mathrm d}{\mathrm dt}||u_{m, x}^2 +v_{m, x}^2||_{L^2(\Omega)}^2-\frac{1}{2}\frac{\mathrm d}{\mathrm dt}\{b_1u_m^2(l)+e_2v_m^2(l)+2e_1u_m(l)v_m(l)\}\\ = \omega\omega_t(&||\sqrt{R}u_{m, x}||_{L^2(\Omega)}^2 +||\sqrt{R}v_{m, x}||_{L^2(\Omega)}^2 )+(p_{1m}, u_{m, t})+(p_{2m}, v_{m, t}), \end{split} \end{equation} (139)

    where b_2 = e_1 is used.

    Then we integrate (139) with respect to t , to discover

    \begin{eqnarray} \begin{aligned} &|| u_{m, t} ||_{L^2(\Omega)}^2 +|| v_{m, t} ||_{L^2(\Omega)}^2 +|| u_{m} ||^2_{H_f^2(\Omega)}+|| v_{m} ||^2_{H_f^2(\Omega)}\\ &-b_1u_m^2(l)-e_2v_m^2(l)-2e_1u_m(l)v_m(l)\\ \leq &C(|| u_{m, t}(0) ||_{L^2(\Omega)}^2 +|| v_{m, t}(0) ||_{L^2(\Omega)}^2 +||u_{m}(t) ||^2_{H_f^2(\Omega)}+|| v_{m}(t) ||^2_{H_f^2(\Omega)})\\ &-b_1u_{0m}^2(l)-e_2v_{0m}^2(l)-2e_1u_{0m}(l)v_{0m}(l)\\ &+C\int_0^t ||u_{m, t} ||_{L^2(\Omega)}^2 +||v_{m, t} ||_{L^2(\Omega)}^2 \mathrm dt+||u_m ||^2_{H_f^2(\Omega)}+||v_m ||^2_{H_f^2(\Omega)}+C. \end{aligned} \end{eqnarray} (140)

    By simple calculation, we deduce

    \begin{eqnarray} -b_1u_m^2(l)-e_2v_m^2(l)-2e_1u_m(l)v_m(l)\geq 0. \end{eqnarray} (141)

    where b_1e_2\geq e_1^2 is used.

    On the other hand, according to u_{0m}(x), v_{0m}(x) \in H_f^2(\Omega) , by Sobolev inequality, we obtain

    \begin{eqnarray*} u_{0m}(x), v_{0m}(x) \in C(\overline\Omega). \end{eqnarray*}

    Thus,

    \begin{eqnarray} u_{0m}(l), v_{0m}(l) \leq C. \end{eqnarray} (142)

    Substituting (141) and (142) into (140), applying Gronwall inequality, we can deduce (138).

    Now we pass to limits in our Galerkin approximations, applying estimate (138), we can discover (92), (93), (95). In order to complete the proof of the theorem, we just have to proof

    \begin{eqnarray} u_{\mu}(l)\rightarrow u(l), v_{\mu}(l)\rightarrow v(l), \; \text{ strongly in }\; L^{\infty}(0, T). \end{eqnarray} (143)

    where u_{\mu}, v_{\mu} are the convergent subsequence of u_m, v_m , respectively.

    To verify this, recalling (138), we observe that

    \begin{eqnarray} u_{\mu} \rightarrow u, v_{\mu} \rightarrow v \ \ \text{strongly in}\ \ C(0, T;H_f^1(\Omega)) \end{eqnarray} (144)

    where the Corollary 4 of Chapter 8 in [30] is used.

    Furthermore, thanks to the conditions u_m(0) = u(0) = 0 , we obtain

    \begin{eqnarray} \begin{aligned} &||u_{\mu}(l)-u(l)||_{L^{\infty}(0, T)} = ||(u_{\mu}(l)-u(l))-(u_{\mu}(0)-u(0))||_{L^{\infty}(0, T)}\\ = &\big|\big|\int_0^l \big(u_{\mu}(x)-u(x)\big)_x dx \big|\big|_{L^{\infty}(0, T)} \leq \sqrt l||\big(u_{\mu}(x)-u(x)\big)_x||_{L^{\infty}(0, T;L^2(\Omega))}\\ \leq& \sqrt l||u_{\mu}(x)-u(x)\big||_{L^{\infty}(0, T;H_f^1(\Omega))} \end{aligned} \end{eqnarray} (145)

    Thanks to (144), we can deduce

    u_{\mu}(l)\rightarrow u(l) \; \text{ strongly in }\; L^{\infty}(0, T),

    Similarly, we have

    v_{\mu}(l)\rightarrow v(l) \; \text{ strongly in }\; L^{\infty}(0, T).

    Proof. Similarly as (105), we can get

    \begin{equation} \begin{split} \frac{1}{2}\frac{\mathrm d}{\mathrm dt}E+\frac{1}{2}P_1+P_2 = P_3. \end{split} \end{equation} (146)

    where

    \begin{eqnarray*} \begin{aligned} E = &||u_{tt}||_{L^2(\Omega)}^2+||v_{tt}||_{L^2(\Omega)}^2 +||\sqrt{a_6}u_{txx}||_{L^2(\Omega)}^2+||\sqrt{a_4}v_{txx}||_{L^2(\Omega)}^2\\ &-2||a_3u_{txx}v_{txx}||_{L(\Omega)}+\omega^2||\sqrt{R(x)} u_{tx}||_{L^2(\Omega)}^2 +\omega^2||\sqrt{R(x)} v_{tx}||_{L^2(\Omega)}^2 \end{aligned} \end{eqnarray*}
    \begin{eqnarray*} \begin{aligned}P_1 = &\Big(\big((u^2_{x} + v^2_{x}) u_x\big)_t, u_{ttx}\Big)+\Big(\big((u^2_{x} + v^2_{x}) v_x\big)_t, v_{ttx}\Big)\\ P_2 = &-\big(b_1u(l)+e_1v(l)\big)_tu_{tt}(l)-\big(b_2u(l)+e_2v(l)\big)_tv_{tt}(l)\\ P_3 = &2\omega\omega_t\Big( \big((Ru_{x})_x, u_{tt}\big) + \big((Rv_{x})_x, v_{tt})\big)+||\sqrt{R} u_{tx}||_{L^2(\Omega)}^2+||\sqrt{R} v_{tx}||_{L^2(\Omega)}^2 \Big)\\ &+ (p_{1, t}, u_{tt}) +(p_{2, t}, v_{tt}) \end{aligned} \end{eqnarray*}

    By calculation, we can deduce

    \begin{eqnarray} &&P_1 = \frac{1}{2}\frac{\mathrm d}{\mathrm dt}\Big\{ ||\sqrt{u_x^2+v_x^2}u_{tx}||^2_{L^2(\Omega)}+||\sqrt{u_x^2+v_x^2}v_{tx}||^2_{L^2(\Omega)} +2||u_x u_{tx}||^2_{L^2(\Omega)} \\ &&\ \ \ \ \ \ \ \ \ \ \ \ \ \ +2||v_x v_{tx}||^2_{L^2(\Omega)}+4||u_x v_x u_{tx}v_{tx}||_{L^1(\Omega)}\Big\} \\ &&\ \ \ \ \ \ \ \ \ \ \ \ \ \ -3\int_0^l u_x u^3_{tx}+v_x v^3_{tx}+u_x u_{tx}v^2_{tx}+v_x v_{tx}u^2_{tx} \mathrm dx \end{eqnarray} (147)
    \begin{eqnarray} &&P_2 = -\frac{1}{2}\frac{\mathrm d}{\mathrm dt}\big\{b_1u_t^2(l)+e_2v_t^2(l)+2e_1u_t(l)v_t(l)\big\} \end{eqnarray} (148)
    \begin{eqnarray} &&P_3\leq ||u_{tt}||^2_{L^2(\Omega)}+||v_{tt}||^2_{L^2(\Omega)}+||u||^2_{H_f^2(\Omega)}+||v||^2_{H_f^2(\Omega)} \\ &&\ \ \ \ \ \ \ +||u_{tx}||^2_{L^2(\Omega)}+||v_{tx}||^2_{L^2(\Omega)} \end{eqnarray} (149)

    Substituting (147), (148) and (149) into (146), we get

    \begin{equation} \begin{split} &\frac{1}{2}\frac{\mathrm d}{\mathrm dt}\Big\{E+ ||\sqrt{u_x^2+v_x^2}u_{tx}||^2_{L^2(\Omega)}+||\sqrt{u_x^2+v_x^2}v_{tx}||^2_{L^2(\Omega)} +2||u_x u_{tx}||^2_{L^2(\Omega)}\\ &\ \ \ \ \ \ \ \ +2||v_x v_{tx}||^2_{L^2(\Omega)}+4||u_x v_x u_{tx}v_{tx}||_{L^1(\Omega)}\\ &\ \ \ \ \ \ \ \ -\big(b_1u_t^2(l)+e_2v_t^2(l)+2e_1u_t(l)v_t(l)\big)\Big\}\\ \leq&||u_{tt}||^2_{L^2(\Omega)}+||v_{tt}||^2_{L^2(\Omega)}+||u||^2_{H_f^2(\Omega)}+||v||^2_{H_f^2(\Omega)} +||u_{tx}||^2_{L^2(\Omega)}+||v_{tx}||^2_{L^2(\Omega)}\\ &\ \ \ \ \ \ \ \ +3\int_0^l u_x u^3_{tx}+v_x v^3_{tx}+u_x u_{tx}v^2_{tx}+v_x v_{tx}u^2_{tx} \mathrm dx \end{split} \end{equation} (150)

    Then integrate (150) with respect to t , to discover

    \begin{eqnarray*} \begin{aligned} E\leq&\int_0^t||u_{tt}||^2_{L^2(\Omega)}+||v_{tt}||^2_{L^2(\Omega)}+||u||^2_{H_f^2(\Omega)}+||v||^2_{H_f^2(\Omega)} \\ &\ \ \ \ +||u_{tx}||^2_{L^2(\Omega)}+||v_{tx}||^2_{L^2(\Omega)}\mathrm dt\\ &\ \ \ \ +3\int_0^t\int_0^l u_x u^3_{tx}+v_x v^3_{tx}+u_x u_{tx}v^2_{tx}+v_x v_{tx}u^2_{tx} \mathrm dx\mathrm dt\\ &\ \ \ \ +||u_{tt}(x, 0)||_{L^2(\Omega)}^2 +||u_1||_{H_f^2(\Omega)}^2 +||v_{tt}(x, 0)||_{L^2(\Omega)}^2 +||v_1||_{H_f^2(\Omega)}^2. \end{aligned} \end{eqnarray*}

    where

    -b_1u_t^2(l)-e_2v_t^2(l)-2e_1u_t(l)v_t(l)\geq 0

    and

    ||u_x u_{tx}||^2_{L^2(\Omega)}+||v_x v_{tx}||^2_{L^2(\Omega)} +2||u_x v_x u_{tx}v_{tx}||_{L^1(\Omega)}\geq 0.

    are used.

    Similarly as (108), we discover

    \begin{eqnarray} ||u_{tt}(x, 0)||_{L^2(\Omega)}, ||v_{tt}(x, 0)||_{L^2(\Omega)}\leq c. \end{eqnarray} (151)

    According to (151), we get

    \begin{eqnarray*} \begin{aligned} E\leq&c\int_0^t||u_{tt}||^2_{L^2(\Omega)}+||v_{tt}||^2_{L^2(\Omega)} +||u_{txx}||^2_{L^2(\Omega)}+||v_{txx}||^2_{L^2(\Omega)}\mathrm dt \\ &\; \; \; \; +3\int_0^t\int_0^l u_x u^3_{tx}+v_x v^3_{tx}+u_x u_{tx}v^2_{tx}+v_x v_{tx}u^2_{tx} \mathrm dx\mathrm dt+c. \end{aligned} \end{eqnarray*}

    By Hölder inequality and Sobolev inequality, we have

    \begin{eqnarray} \begin{aligned} E\leq& c\int_0^t\Big\{||u_{tt}||^2_{L^2(\Omega)} +||u_{txx}||^2_{L^2(\Omega)}+||u_{txx}||^3_{L^2(\Omega)}+||u_{txx}||^4_{L^2(\Omega)}\\ &\; \; \; \; \; \; \; \; ||v_{tt}||^2_{L^2(\Omega)} +||v_{txx}||^2_{L^2(\Omega)}+||v_{txx}||^3_{L^2(\Omega)}+||v_{txx}||^4_{L^2(\Omega)}\Big\}\mathrm dt+c. \end{aligned} \end{eqnarray} (152)

    Then, we obtain Theorem 5.3 by Gronwall inequality.



    [1] Welle F (2011) Twenty years of pet bottle to bottle recycling—an overview. Resour Conserv Recycl 55: 865–875. https://doi.org/10.1016/j.resconrec.2011.04.009 doi: 10.1016/j.resconrec.2011.04.009
    [2] Kutralam-Muniasamy G, Shruti V C, Pérez-Guevara F (2023) Citizen involvement in reducing end-of-life product waste in mexico city. Sustain Prod Consump 41: 167–178. https://doi.org/10.1016/j.spc.2023.08.010 doi: 10.1016/j.spc.2023.08.010
    [3] Vlad I M, Toma E (2022) Overview on the key figures with impact on the circular economy through the life cycle of plastics. Mater Plast 59. https://doi.org/10.37358/MP.22.2.5594
    [4] Hotspot H C (2021) Waste management in the latam region: business opportunities for the netherlands in waste/circular economy sector in eight countries of latin america. The Netherlands Enterprise Agency (RVO), The Hague.
    [5] Gutierrez Galicia F, Coria Paez A L, Tejeida Padilla R (2019) A study and factor identification of municipal solid waste management in mexico city. Sustainability 11: 6305. https://doi.org/10.3390/su11226305 doi: 10.3390/su11226305
    [6] Olay-Romero E, Turcott-Cervantes D E, del Consuelo Hernández-Berriel M, et al. (2020) Technical indicators to improve municipal solid waste management in developing countries: A case in mexico. Waste Manage 107: 201–210. https://doi.org/10.1016/j.wasman.2020.03.039 doi: 10.1016/j.wasman.2020.03.039
    [7] Esposito M, Tse T, Soufani K (2017) Is the circular economy a new fast-expanding market? Thunderbird Int Bus Rev 59: 9–14. https://doi.org/10.1002/tie.21764
    [8] Abad-Segura E, Fuente A B, González-Zamar M D, et al. (2020) Effects of circular economy policies on the environment and sustainable growth: Worldwide research. Sustainability 12: 5792. https://doi.org/10.3390/su12145792 doi: 10.3390/su12145792
    [9] Gallego-Schmid A, Chen H M, Sharmina M, et al. (2020) Links between circular economy and climate change mitigation in the built environment. J Clean Prod 260: 121115. https://doi.org/10.1016/j.jclepro.2020.121115 doi: 10.1016/j.jclepro.2020.121115
    [10] Georgescu I, Kinnunen J, Androniceanu A M (2022) Empirical evidence on circular economy and economic development in europe: a panel approach. J Bus Econ Manag 23: 199–217. https://doi.org/10.3846/jbem.2022.16050 doi: 10.3846/jbem.2022.16050
    [11] Bing X, de Keizer M, Bloemhof-Ruwaard J M, et al.(2014) Vehicle routing for the eco-efficient collection of household plastic waste. Waste manage 34: 719–729. https://doi.org/10.1016/j.wasman.2014.01.018 doi: 10.1016/j.wasman.2014.01.018
    [12] Marampoutis I, Vinot M, Trilling L (2022) Multi-objective vehicle routing problem with flexible scheduling for the collection of refillable glass bottles: A case study. EURO J Decis Process 10: 100011. https://doi.org/10.1016/j.ejdp.2021.100011 doi: 10.1016/j.ejdp.2021.100011
    [13] McDonough W, Braungart M (2010) Cradle to cradle: Remaking the way we make things. North point press.
    [14] Shen L, Worrell E, Patel M K (2010) Open-loop recycling: A lca case study of pet bottle-to-fibre recycling. Resour Conserv Recycl 55: 34–52. https://doi.org/10.1016/j.resconrec.2010.06.014 doi: 10.1016/j.resconrec.2010.06.014
    [15] Stallkamp C, Hennig M, Volk R, et al. (2024) Pyrolysis of mixed engineering plastics: Economic challenges for automotive plastic waste. Waste Manage 176: 105–116. https://doi.org/10.1016/j.wasman.2024.01.035 doi: 10.1016/j.wasman.2024.01.035
    [16] van Langen S K, Passaro R (2021) The dutch green deals policy and its applicability to circular economy policies. Sustainability 13: 11683. https://doi.org/10.3390/su132111683 doi: 10.3390/su132111683
    [17] Cámara-Creixell J, Scheel-Mayenberger C (2019) Petstar pet bottle-to-bottle recycling system, a zero-waste circular economy business model. Towards Zero Waste Circular Economy Boost Waste Resour 191–213.
    [18] Pinter E, Welle F, Mayrhofer E, et al. (2021) Circularity study on pet bottle-to-bottle recycling. Sustainability 13: 7370. https://doi.org/10.3390/su13137370 doi: 10.3390/su13137370
    [19] Lonca G, Lesage P, Majeau-Bettez G, et al. (2020) Assessing scaling effects of circular economy strategies: A case study on plastic bottle closed-loop recycling in the usa pet market. Resour Conserv Recycl 162: 105013. https://doi.org/10.1016/j.resconrec.2020.105013 doi: 10.1016/j.resconrec.2020.105013
    [20] Benyathiar P, Kumar P, Carpenter G, et al. (2022) Polyethylene terephthalate (pet) bottle-to-bottle recycling for the beverage industry: a review. Polymers 14: 2366. https://doi.org/10.3390/polym14122366 doi: 10.3390/polym14122366
    [21] Zapata Bravo Á, Vieira Escobar V, Zapata-Domínguez Á, et al. (2021) The circular economy of pet bottles in colombia. Cuadernos de Administración (Universidad del Valle) 37. https://doi.org/10.25100/cdea.v37i70.10912
    [22] Gall M, Schweighuber A, Buchberger W, et al. (2020) Plastic bottle cap recycling—characterization of recyclate composition and opportunities for design for circularity. Sustainability 12: 10378. https://doi.org/10.3390/su122410378 doi: 10.3390/su122410378
    [23] Gracida-Alvarez U R, Xu H, Benavides P T, et al. (2023) Circular economy sustainability analysis framework for plastics: application for poly (ethylene terephthalate)(pet). ACS Sustainable Chemistry & Engineering 11: 514–524. https://doi.org/10.1021/acssuschemeng.2c04626 doi: 10.1021/acssuschemeng.2c04626
    [24] Wang Y, Gu Y, Wu Y, et al. (2020) Performance simulation and policy optimization of waste polyethylene terephthalate bottle recycling system in china. Resour Conserv Recycl 162: 105014. https://doi.org/10.1016/j.resconrec.2020.105014 doi: 10.1016/j.resconrec.2020.105014
    [25] Ayeleru O O, Dlova S, Akinribide O J, et al. (2020) Challenges of plastic waste generation and management in sub-saharan africa: A review. Waste Manage 110: 24–42. https://doi.org/10.1016/j.wasman.2020.04.017 doi: 10.1016/j.wasman.2020.04.017
    [26] Amirudin A, Inoue C, Grause G (2023) Assessment of factors influencing indonesian residents’ intention to use a deposit–refund scheme for pet bottle waste. Circular Economy 2: 100061. https://doi.org/10.1016/j.cec.2023.100061 doi: 10.1016/j.cec.2023.100061
    [27] Oliveira Neto G C, de Araujo S A, Gomes R A, et al. (2023) Simulation of electronic waste reverse chains for the sao paulo circular economy: An artificial intelligence-based approach for economic and environmental optimizations. Sensors 23: 9046. https://doi.org/10.3390/s23229046 doi: 10.3390/s23229046
    [28] Rahmanifar G, Mohammadi M, Sherafat A, et al. (2023) Heuristic approaches to address vehicle routing problem in the iot-based waste management system. Expert Syst Appl 220: 119708. https://doi.org/10.1016/j.eswa.2023.119708 doi: 10.1016/j.eswa.2023.119708
    [29] Rekabi S, Sazvar Z, Tavakkoli-Moghaddam R (2022) A green vehicle routing problem in the solid waste network design with vehicle and technology compatibility. Comput Sci Eng 2: 299–309.
    [30] Ng T S A, Mah A X Y, Zhao K (2024) Towards a circular economy with waste-to-resource system optimization. Nav Res Logist 71: 553–574. https://doi.org/10.1002/nav.22163 doi: 10.1002/nav.22163
    [31] Cao C, Liu J, Liu Y, et al. (2023) Digital twin-driven robust bi-level optimisation model for covid-19 medical waste location-transport under circular economy. Comput Ind Eng 186: 109107. https://doi.org/10.1016/j.cie.2023.109107 doi: 10.1016/j.cie.2023.109107
    [32] Kokossis A, Melampianakis E (2022) A game-theoretical approach for the analysis of waste treatment and circular economy networks. In Comput Aided Chem Eng 51: 1657–1662. https://doi.org/10.1016/B978-0-323-95879-0.50277-0
    [33] Huang Y, Xu J (2022) Bi-level multi-objective programming approach for bioenergy production optimization towards co-digestion of kitchen waste and rice straw. Fuel 316: 123117. https://doi.org/10.1016/j.fuel.2021.123117 doi: 10.1016/j.fuel.2021.123117
    [34] Safder U, Tariq S, Yoo C K (2022) Multilevel optimization framework to support self-sustainability of industrial processes for energy/material recovery using circular integration concept. Appl Energy 324: 119685. https://doi.org/10.1016/j.apenergy.2022.119685 doi: 10.1016/j.apenergy.2022.119685
    [35] Alimohammadi M, Behnamian J (2024) Supporting circular economy through using digital transformation in sustainable pharmaceutical reverse logistics: Multi-objective bi-level modeling. Process Integr Optim Sustain 1–26. https://doi.org/10.1007/s41660-024-00460-0
    [36] Calvete H I, Gal C (2007) Linear bilevel multi-follower programming with independent followers. J Glob Optim 39: 409–417. https://doi.org/10.1007/s10898-007-9144-2 doi: 10.1007/s10898-007-9144-2
    [37] Dempe S, Zemkoho A (2020) Bilevel optimization. In Springer optimization and its applications 161. Springer. https://doi.org/10.1007/978-3-030-52119-6
    [38] Boschetti M A, Maniezzo V (2022) Matheuristics: using mathematics for heuristic design. 4OR 20: 173–208. https://doi.org/10.1007/s10288-022-00510-8 doi: 10.1007/s10288-022-00510-8
    [39] Camacho-Vallejo J F, Corpus C, Villegas J G (2023) Metaheuristics for bilevel optimization: A comprehensive review. Comput Oper Res 106410. https://doi.org/10.1016/j.cor.2023.106410
    [40] Resende M G C, Ribeiro C C (2016) Optimization by GRASP. Springer. https://doi.org/10.1007/978-1-4939-6530-4
    [41] Zaleta J (2024) ¿cuánto dinero puedes ganar reciclando? esto es lo que vale el kilo de pet en méxico? https://heraldodemexico.com.mx/estilo-de-vida/2024/2/5/cuanto-dinero-puedes-ganar-reciclando-esto-es-lo-que-vale-el-kilo-de-pet-en-mexico-575356.html, 2024. Accessed: 2024-07-15.
    [42] Álvarez D (2024) Costo de materiales reciclables a la baja. https://www.diariodequeretaro.com.mx/finanzas/costo-de-materiales-reciclables-a-la-baja-10186587.html#:~:text=El%20precio%20com%C3%BAn%20para%20el,y%20de%20segunda%20en%20100., 2024. Accessed: 2024-07-15.
    [43] ULINE. Contenedor plegable para carga a granel - 32 x 30 x 34", capacidad de 1,500 lb. https://es.uline.mx/Product/Detail/H-4051/Bulk-Containers/Collapsible-Bulk-Container-32-x-30-x-34-1500-Capacity?pricode=WB7091&gadtype=pla&id=H-4051&gad_source=1&gclid=Cj0KCQjw7ZO0BhDYARIsAFttkCinP4LOAdO0G_KuTh4Xn_gXz5KsloY0fRvemZJlN0svbQeK8OorZQIaAoAZEALw_wcB, 2024. Accessed: 2024-07-15.
    [44] Educa verde. https://educa-verde.ecoce.mx, 2024. Accessed: 2024-07-15.
  • This article has been cited by:

    1. Vo Van Au, Jagdev Singh, Anh Tuan Nguyen, Well-posedness results and blow-up for a semi-linear time fractional diffusion equation with variable coefficients, 2021, 29, 2688-1594, 3581, 10.3934/era.2021052
    2. Vo Van Au, Hossein Jafari, Zakia Hammouch, Nguyen Huy Tuan, On a final value problem for a nonlinear fractional pseudo-parabolic equation, 2021, 29, 2688-1594, 1709, 10.3934/era.2020088
    3. Guillaume Castera, Juliette Chabassier, Linearly implicit time integration scheme of Lagrangian systems via quadratization of a nonlinear kinetic energy. Application to a rotating flexible piano hammer shank, 2024, 58, 2822-7840, 1881, 10.1051/m2an/2024049
  • Reader Comments
  • © 2025 the Author(s), licensee AIMS Press. This is an open access article distributed under the terms of the Creative Commons Attribution License (http://creativecommons.org/licenses/by/4.0)
通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索

Metrics

Article views(775) PDF downloads(196) Cited by(0)

Figures and Tables

Figures(9)

/

DownLoad:  Full-Size Img  PowerPoint
Return
Return

Catalog