Research article Special Issues

The mediating effect of transport energy consumption on the relationship between nonrenewable energy consumption and CO2 emissions in Africa

  • Received: 17 November 2024 Revised: 12 February 2025 Accepted: 17 February 2025 Published: 26 February 2025
  • Energy is a vital tool in economic growth and development. However, the world continues to experience the effects of climate change due to high greenhouse gas emission levels mainly derived from fossil fuel consumption and human activities. The need for energy and effective transportation increases with economic expansion. Clean energy has the potential to mitigate climate change by reducing reliance on fossil fuels. This study examined the mediating effect of transport energy consumption on the relationship between nonrenewable energy consumption and CO2 emissions in 22 African countries from 2001 to 2020. The findings suggest that a 1% increase in nonrenewable energy increases CO2 emissions by 0.34%. The mediating effect regression shows a direct effect of 0.184, an indirect effect of 0.168, and a total effect of 0.352. The findings reveal that nonrenewable energy increases transport energy consumption by 0.93%. Transport energy is a significant mediator, which is stronger in resource-intensive countries. Clean energy reduces the adverse effects of nonrenewable energy usage. When clean energy increases, there is a reduction in CO2 emissions. Therefore, stakeholders should implement stringent environmental measures, develop efficient transportation and energy systems, and increase investment in clean energy to mitigate greenhouse gas emissions.

    Citation: Margaret Jane Sylva. The mediating effect of transport energy consumption on the relationship between nonrenewable energy consumption and CO2 emissions in Africa[J]. AIMS Environmental Science, 2025, 12(2): 193-222. doi: 10.3934/environsci.2025009

    Related Papers:

  • Energy is a vital tool in economic growth and development. However, the world continues to experience the effects of climate change due to high greenhouse gas emission levels mainly derived from fossil fuel consumption and human activities. The need for energy and effective transportation increases with economic expansion. Clean energy has the potential to mitigate climate change by reducing reliance on fossil fuels. This study examined the mediating effect of transport energy consumption on the relationship between nonrenewable energy consumption and CO2 emissions in 22 African countries from 2001 to 2020. The findings suggest that a 1% increase in nonrenewable energy increases CO2 emissions by 0.34%. The mediating effect regression shows a direct effect of 0.184, an indirect effect of 0.168, and a total effect of 0.352. The findings reveal that nonrenewable energy increases transport energy consumption by 0.93%. Transport energy is a significant mediator, which is stronger in resource-intensive countries. Clean energy reduces the adverse effects of nonrenewable energy usage. When clean energy increases, there is a reduction in CO2 emissions. Therefore, stakeholders should implement stringent environmental measures, develop efficient transportation and energy systems, and increase investment in clean energy to mitigate greenhouse gas emissions.



    加载中


    [1] Filonchyk M, Peterson MP, Yan H, et al. (2024) Greenhouse gas emissions and reduction strategies for the world's largest greenhouse gas emitters. Sci Total Environ 944: 173895. https://doi.org/10.1016/j.scitotenv.2024.173895 doi: 10.1016/j.scitotenv.2024.173895
    [2] Intergovernmental Panel for Climate Change (2023) Climate change 2023: Synthesis report, contribution of working groups I, II and III to the sixth assessment report of the intergovernmental panel on climate change, Geneva, Switzerland. Available from: https://doi:10.59327/IPCC/AR6-9789291691647
    [3] Alves MR, Moutinho V, Macedo P (2015) A new frontier approach to model the eco-efficiency in European countries. J Clean Prod 103: 562–573. https://doi:10.1016/j.jclepro.2015.01.038 doi: 10.1016/j.jclepro.2015.01.038
    [4] Álvarez MAG, Montañés A (2023) CO2 emissions, energy consumption, and economic growth: Determining the stability of the 3E relationship. Econ Model 121: 106195. https://doi.org/10.1016/j.econmod.2023.106195 doi: 10.1016/j.econmod.2023.106195
    [5] Agoundedemba M, Kim CK, Kim HG (2023) Energy status in Africa: Challenges, progress and sustainable pathways. Energies 16: 7708. https://doi:10.3390/en16237708 doi: 10.3390/en16237708
    [6] İnal V, Addi HM, Çakmak EE, et al. (2022) The nexus between renewable energy, CO2 emissions, and economic growth: Empirical evidence from African oil-producing countries. Energy Rep 8: 1634–1643. https://doi.org/10.1016/j.egyr.2021.12.051 doi: 10.1016/j.egyr.2021.12.051
    [7] Ouki M (2023) Prospects for a potential African gas renaissance en route to a "just energy transition", The Oxford Institute for Energy Studies, 185.
    [8] Giwa SO, Taziwa RT (2024) Adoption of advanced coal gasification: A panacea to carbon footprint reduction and hydrogen economy transition in South Africa. Int J Hydrogen Energ 77,301–323. https://doi.org/10.1016/J.IJHYDENE.2024.06.190
    [9] Mirzania P, Gordon JA, Ozkan NB, et al. (2023) Barriers to powering past coal: Implications for a just energy transition in South Africa. Energy Res Soc Sci 101: 103122. https://doi.org/10.1016/j.erss.2023.103122 doi: 10.1016/j.erss.2023.103122
    [10] Muttitt G, Price J, Pye S, et al. (2023) Socio-political feasibility of coal power phase-out and its role in mitigation pathways. Nat Clim Change 13: 140–147. https://doi.org/10.1038/s41558-022-01576-2 doi: 10.1038/s41558-022-01576-2
    [11] IEA (2023) Fossil fuels consumption subsidies 2022, Paris. Available from: https://www.iea.org/reports/fossil-fuels-consumption-subsidies-2022.
    [12] UNFCCC (2021) Conference of the Parties serving as the meeting of the Parties to the Paris Agreement. Third Session Glasgow 31.
    [13] Udeh BA, Kidak R (2019) The excessive use of fossil fuel and its impact to climate change in Africa. Curr J Appl Sci Technol 32: 1–4. https://doi:10.9734/cjast/2019/41680 doi: 10.9734/cjast/2019/41680
    [14] Egana-delSol PA (2021) Energy consumption: Strategies to foster sustainable energy consumption, In: Filho WL, Azul AM, Brandli L, et al. Eds., Affordable and Clean Energy, Cham: Springer, 1–10. https://doi.org/10.1007/978-3-319-95864-4_35
    [15] Noussan M, Hafner M, Tagliapietra S (2020) The evolution of transport across world regions, In: The Future of Transport between Digitalization and Decarbonization: Trends, Strategies and Effects on Energy Consumption, Cham: Springer, 1–28. https://doi.org/10.1007/978-3-030-37966-7_1
    [16] IEA (2025) International Energy Agency. Available from: https://www.iea.org/energy-system/transport.
    [17] Mutezo G, Mulopo J (2021) A review of Africa's transition from fossil fuels to renewable energy using circular economy principles. Renew Sust Energ Rev 137: 110609. https://doi:10.1016/j.rser.2020.110609 doi: 10.1016/j.rser.2020.110609
    [18] Kelly AM, Radler RDNN (2024) Does energy consumption matter for climate change in Africa? New insights from panel data analysis. Innov Green Dev 3: 100132. https://doi:10.1016/j.igd.2024.100132 doi: 10.1016/j.igd.2024.100132
    [19] The Renewable Energy Transition in Africa. Available from: https://www.irena.org/publications/2021/March/The-Renewable-Energy-Transition-in-Africa.
    [20] Climate Resilience and a Just Energy Transition in Africa. African Development Bank, 2022. Available from: https://www.afdb.org/sites/default/files/2022/05/25/aeo22_chapter2_eng.pdf.
    [21] Hanto J, Schroth A, Krawielicki L, et al. (2022) South Africa's energy transition–Unraveling its political economy. Energy Sustain Dev 69: 164–178. https://doi:10.1016/j.esd.2022.06.006 doi: 10.1016/j.esd.2022.06.006
    [22] Li B, Haneklaus N (2022) The role of clean energy, fossil fuel consumption and trade openness for carbon neutrality in China. Energy Rep 8: 1090–1098. https://doi.org/10.1016/j.egyr.2022.02.092 doi: 10.1016/j.egyr.2022.02.092
    [23] Nwaiwu F (2021) Digitalisation and sustainable energy transitions in Africa: Assessing the impact of policy and regulatory environments on the energy sector in Nigeria and South Africa. Energy Sustain Soc 11: 48. https://doi:10.1186/s13705-021-00325-1 doi: 10.1186/s13705-021-00325-1
    [24] Wang Q, Li Y, Li R (2025) Integrating artificial intelligence in energy transition: A comprehensive review. Energy Strateg Rev 57: 101600. https://doi.org/10.1016/J.ESR.2024.101600 doi: 10.1016/J.ESR.2024.101600
    [25] Wang Q, Sun T, Li R (2025) Does Artificial Intelligence (AI) enhance green economy efficiency? The role of green finance, trade openness, and R & D investment. Hum Soc Sci Commun 12: 1–22. https://doi.org/10.1057/s41599-024-04319-0 doi: 10.1057/s41599-024-04319-0
    [26] Jing H, Chen Y, Ma M, et al. (2024) Global carbon transition in the passenger transportation sector over 2000–2021. Sustain Prod Consump 51,556–571. https://doi.org/10.1016/J.SPC.2024.10.006
    [27] Kurramovich KK, Abro AA, Vaseer AI, et al. (2022) Roadmap for carbon neutrality: the mediating role of clean energy development-related investments. Environ Sci Pollut R 29: 34055–34074. https://doi.org/10.1007/s11356-021-17985-3 doi: 10.1007/s11356-021-17985-3
    [28] IEA, World Energy Outlooks special report Africa energy outlook 2022. International Energy Agency, 2022. Available from: https://www.iea.org/reports/africa-energy-outlook-2022.
    [29] Driscoll JC, Kraay AC (1998) Consistent covariance matrix estimation with spatially dependent panel data. Rev Econ Stat 80: 549–560. https://doi.org/10.1162/003465398557825 doi: 10.1162/003465398557825
    [30] Shah WUH, Hao G, Yan H, et al. (2024) Role of renewable, non-renewable energy consumption and carbon emission in energy efficiency and productivity change: Evidence from G20 economies. Geosci Front 15: 101631. https://doi:10.1016/j.gsf.2023.101631 doi: 10.1016/j.gsf.2023.101631
    [31] Chen C, Pinar M, Stengos T (2022) Renewable energy and CO2 emissions: New evidence with the panel threshold model. Renew Energ 194: 117–128. https://doi:10.1016/j.renene.2022.05.095 doi: 10.1016/j.renene.2022.05.095
    [32] AlNemer HA, Hkiri B, Tissaoui K (2023) Dynamic impact of renewable and non-renewable energy consumption on CO2 emission and economic growth in Saudi Arabia: Fresh evidence from wavelet coherence analysis. Renew Energ 209: 340–356. https://doi:10.1016/j.renene.2023.03.084 doi: 10.1016/j.renene.2023.03.084
    [33] Wang Q, Li L, Li R (2022) The asymmetric impact of renewable and non-renewable energy on total factor carbon productivity in 114 countries: Do urbanization and income inequality matter? Energy Strateg Rev 44: 100942. https://doi:10.1016/j.esr.2022.100942 doi: 10.1016/j.esr.2022.100942
    [34] Hu K, Raghutla C, Chittedi KR, et al. (2021) The effect of energy resources on economic growth and carbon emissions: A way forward to carbon neutrality in an emerging economy. J Environ Manag 298: 113448. https://doi:10.1016/j.jenvman.2021.113448 doi: 10.1016/j.jenvman.2021.113448
    [35] Destek MA, Sinha A (2020) Renewable, non-renewable energy consumption, economic growth, trade openness and ecological footprint: Evidence from organisation for economic co-operation and development countries. J Clean Prod 242: 118537. https://doi:10.1016/j.jclepro.2019.118537 doi: 10.1016/j.jclepro.2019.118537
    [36] Santos G (2017) Road transport and CO2 emissions: What are the challenges? Transport Policy 59: 71–74. https://doi:10.1016/j.tranpol.2017.06.007 doi: 10.1016/j.tranpol.2017.06.007
    [37] Wang H, Ou X, Zhang X (2017) Mode, technology, energy consumption, and resulting CO2 emissions in China's transport sector up to 2050. Energ Policy 109: 719–733. https://doi:10.1016/j.enpol.2017.07.010 doi: 10.1016/j.enpol.2017.07.010
    [38] Yin X, Chen W, Eom J, et al. (2015) China's transportation energy consumption and CO2 emissions from a global perspective. Energ Policy 82: 233–248. https://doi:10.1016/j.enpol.2015.03.021 doi: 10.1016/j.enpol.2015.03.021
    [39] Ağbulut Ü (2022) Forecasting of transportation-related energy demand and CO2 emissions in Turkey with different machine learning algorithms. Sustain Prod Consump 29: 141–157. https://doi:10.1016/j.spc.2021.10.001 doi: 10.1016/j.spc.2021.10.001
    [40] Chandran VGR, Tang CF (2013) The impacts of transport energy consumption, foreign direct investment and income on CO2 emissions in ASEAN-5 economies. Renew Sust Energ Rev 24: 445–453. https://doi:10.1016/j.rser.2013.03.054 doi: 10.1016/j.rser.2013.03.054
    [41] Mraihi R, Abdallah KB, Abid M (2013) Road transport-related energy consumption: Analysis of driving factors in Tunisia. Energ Policy 62: 247–253. https://doi.org/10.1016/j.enpol.2013.07.007 doi: 10.1016/j.enpol.2013.07.007
    [42] Peng Z, Wu Q (2020) Evaluation of the relationship between energy consumption, economic growth, and CO2 emissions in China' transport sector: The FMOLS and VECM approaches. Environ Dev Sustain 22: 6537–6561. https://doi.org/10.1007/s10668-019-00498-y doi: 10.1007/s10668-019-00498-y
    [43] Satrovic E, Cetindas A, Akben I (2024) Do natural resource dependence, economic growth and transport energy consumption accelerate ecological footprint in the most innovative countries? The moderating role of technological innovation. Gondwana Res 127: 116–130. https://doi.org/10.1016/j.gr.2023.04.008 doi: 10.1016/j.gr.2023.04.008
    [44] Wu Y, Zhu Q, Zhong L, et al. (2019) Energy consumption in the transportation sectors in China and the United States: A longitudinal comparative study. Struct Change Econ D 51: 349–360. https://doi.org/10.1016/j.strueco.2018.12.003 doi: 10.1016/j.strueco.2018.12.003
    [45] Yadav P, Davies PJ, Sarkodie SA (2021) Fuel choice and tradition: Why fuel stacking and the energy ladder are out of step? Sol Energy 214: 491–501. https://doi.org/10.1016/j.solener.2020.11.077 doi: 10.1016/j.solener.2020.11.077
    [46] Li S, Wang B, Zhou H (2024) Decarbonizing passenger transportation in developing countries: Lessons and perspectives1. Reg Sci Urban Econ 107: 103977. https://doi.org/10.1016/J.REGSCIURBECO.2024.103977 doi: 10.1016/J.REGSCIURBECO.2024.103977
    [47] ITF, ITF Transport Outlook. International Transport Forum, 2021. Available from: https://www.oecd.org/en/publications/itf-transport-outlook-2021_16826a30-en.html.
    [48] SLOCAT, Tracking Trends in a Time of Change: The Need for Radical Action Towards Sustainable Transport Decarbonisation. Transport and Climate Change Global Status Report, 2Eds., 2021. Available from: https://www.tcc-gsr.com.
    [49] Saidi S (2021) Freight transport and energy consumption: What impact on carbon dioxide emissions and environmental quality in MENA countries? Econ Chang Restruct 54: 1119–1145. https://doi.org/10.1007/s10644-020-09296-3 doi: 10.1007/s10644-020-09296-3
    [50] Lopez NS, Chiu ASF, Biona JBM (2018) Decomposing drivers of transportation energy consumption and carbon dioxide emissions for the Philippines: The case of developing countries. Front Energy 12: 389–399. https://doi.org/10.1007/s11708-018-0578-7 doi: 10.1007/s11708-018-0578-7
    [51] IEA (2024) Access and Affordability. Available from: https://www.iea.org/topics/access-and-affordability.
    [52] Chen L, Ma R (2024) Clean energy synergy with electric vehicles: Insights into carbon footprint. Energy Strateg Rev 53: 101394. https://doi.org/10.1016/j.esr.2024.101394 doi: 10.1016/j.esr.2024.101394
    [53] Cai Y, Sam CY, Chang T (2018) Nexus between clean energy consumption, economic growth and CO2 emissions. J Clean Prod 182: 1001–1011. https://doi:10.1016/j.jclepro.2018.02.035 doi: 10.1016/j.jclepro.2018.02.035
    [54] Gielen D, Boshell F, Saygin D, et al. (2019) The role of renewable energy in the global energy transformation. Energy Strateg Rev 24: 38–50. https://doi:10.1016/j.esr.2019.01.006 doi: 10.1016/j.esr.2019.01.006
    [55] Li B, Haneklaus N (2022) Reducing CO2 emissions in G7 countries: The role of clean energy consumption, trade openness and urbanization. Energy Rep 8: 704–713. https://doi:10.1016/j.egyr.2022.01.238 doi: 10.1016/j.egyr.2022.01.238
    [56] Nkolo JC, Motel PC, Roux LL (2019) Stacking up the ladder: A panel data analysis of Tanzanian household energy choices. World Dev 115: 222–235. https://doi:10.1016/j.worlddev.2018.11.016 doi: 10.1016/j.worlddev.2018.11.016
    [57] Monserrate MAZ (2024) Clean energy production index and CO2 emissions in OECD countries. Sci Total Environ 907: 167852. https://doi.org/10.1016/j.scitotenv.2023.167852 doi: 10.1016/j.scitotenv.2023.167852
    [58] Xue C, Shahbaz M, Ahmed Z, et al. (2022) Clean energy consumption, economic growth, and environmental sustainability: What is the role of economic policy uncertainty? Renew Energ 184: 899–907. https://doi.org/10.1016/j.renene.2021.12.006 doi: 10.1016/j.renene.2021.12.006
    [59] Yang F, Wang C (2023) Clean energy, emission trading policy, and CO2 emissions: Evidence from China. Energy Environ 34: 1657–1673. https://doi.org/10.1177/0958305X221094581 doi: 10.1177/0958305X221094581
    [60] Wang Q, Li Y, Li R (2024) Ecological footprints, carbon emissions, and energy transitions: the impact of artificial intelligence (AI). Hum Soc Sci Commun 11: 1–18. https://doi.org/10.1057/s41599-024-03520-5 doi: 10.1057/s41599-024-03520-5
    [61] Ahmed K, Apergis N, Bhattacharya M, et al. (2021) Electricity consumption in Australia: The role of clean energy in reducing CO2 emissions. Appl Econ 53: 5535–5548. https://doi.org/10.1080/00036846.2021.1925080 doi: 10.1080/00036846.2021.1925080
    [62] Tangato KF (2024) The impact of clean technology adoption on carbon emissions: A global perspective. Clean Technol Envir 1–18. https://doi.org/10.1007/s10098-024-03066-9
    [63] Bo X, You Q, Sang M, et al. (2023) The impacts of clean energy policies on air pollutants and CO2 emission reduction in Shaanxi, China. Atmos Pollut Res 14: 101937. https://doi.org/10.1016/j.apr.2023.101937 doi: 10.1016/j.apr.2023.101937
    [64] Ummalla M, Goyari P (2021) The impact of clean energy consumption on economic growth and CO2 emissions in BRICS countries: Does the environmental Kuznets curve exist? J Public Aff 21: e2126. https://doi.org/10.1002/pa.2126 doi: 10.1002/pa.2126
    [65] IEA, Clean Energy Investment for Development in Africa. International Energy Agency, 2024. Available from: https://www.iea.org/reports/clean-energy-investment-for-development-in-africa.
    [66] World Bank, DataBank. World Bank, 2024. Available from: https://databank.worldbank.org/home.aspx.
    [67] IEA, Data and Statistics. International Energy Agency, 2024. Available from: https://www.iea.org/data-and-statistics/.
    [68] Li R, Wang Q, Li L (2023) Does renewable energy reduce per capita carbon emissions and per capita ecological footprint? New evidence from 130 countries. Energy Strateg Rev 49: 101121. https://doi:10.1016/j.esr.2023.101121 doi: 10.1016/j.esr.2023.101121
    [69] Bekun FV, Gyamfi BA, Onifade ST, et al. (2021) Beyond the environmental Kuznets Curve in E7 economies: Accounting for the combined impacts of institutional quality and renewables. J Clean Prod 314: 127924. https://doi.org/10.1016/j.jclepro.2021.127924 doi: 10.1016/j.jclepro.2021.127924
    [70] Sarkodie SA, Adams S (2018) Renewable energy, nuclear energy, and environmental pollution: Accounting for political institutional quality in South Africa. Sci Total Environ 643: 1590–1601. https://doi.org/10.1016/j.scitotenv.2018.06.320 doi: 10.1016/j.scitotenv.2018.06.320
    [71] Selcuk M, Gormus S, Guven M (2021) Do agriculture activities matter for environmental Kuznets curve in the next eleven countries? Environ Sci Pollut R 28: 55623–55633. https://doi.org/10.1007/s11356-021-14825-2 doi: 10.1007/s11356-021-14825-2
    [72] Espoir DK, Sunge R (2021) CO2 emissions and economic development in Africa: Evidence from a dynamic spatial panel model. J Environ Manage 300: 113617. https://doi.org/10.1016/j.jenvman.2021.113617 doi: 10.1016/j.jenvman.2021.113617
    [73] Mentel G, Tarczyński W, Dylewski M, et al. (2022) Does renewable energy sector affect industrialization-CO2 emissions Nexus in Europe and Central Asia? Energies 15: 5877. https://doi.org/10.3390/en15165877 doi: 10.3390/en15165877
    [74] Amoah A, Kwablah E, Korle K, et al. (2020) Renewable energy consumption in Africa: The role of economic well-being and economic freedom. Energy Sustain Soc 10: 32. https://doi.org/10.1186/s13705-020-00264-3 doi: 10.1186/s13705-020-00264-3
    [75] Magazzino C, Cerulli G, Shahzad U, et al. (2023) The nexus between agricultural land use, urbanization, and greenhouse gas emissions: Novel implications from different stages of income levels. Atmos Pollut Res 14: 101846. https://doi.org/10.1016/j.apr.2023.101846 doi: 10.1016/j.apr.2023.101846
    [76] Raihan A, Begum RA, Nizam M, et al. (2022) Dynamic impacts of energy use, agricultural land expansion, and deforestation on CO2 emissions in Malaysia. Environ Ecol Stat 29: 477–507. https://doi.org/10.1007/s10651-022-00532-9 doi: 10.1007/s10651-022-00532-9
    [77] Haug AA, Ucal N (2019) The role of trade and FDI for CO2 emissions in Turkey: Nonlinear relationships. Energy Econ 81: 297–307. https://doi.org/10.1016/j.eneco.2019.04.006 doi: 10.1016/j.eneco.2019.04.006
    [78] Rehman E, Rehman S (2022) Modeling the nexus between carbon emissions, urbanization, population growth, energy consumption, and economic development in Asia: Evidence from grey relational analysis. Energy Rep 8: 5430–5442. https://doi.org/10.1016/j.egyr.2022.03.179 doi: 10.1016/j.egyr.2022.03.179
    [79] Baron RM, Kenny DA (1986) The Moderator-Mediator variable distinction in social psychological research. Conceptual, strategic, and statistical considerations. J Pers Soc Psychol 51: 1173. https://doi:10.1037/0022-3514.51.6.1173
    [80] Breusch TS, Pagan AR (1980) The lagrange multiplier test and its applications to model specification in econometrics. Rev Econ Stud 47: 239–253. https://doi.org/10.2307/2297111 doi: 10.2307/2297111
    [81] Hausman JA (1978) Specification tests in econometrics. Econometrica 46: 1251–1271. https://doi.org/10.2307/1913827 doi: 10.2307/1913827
    [82] Chovancová J, Petruška I, Rovňák M, et al. (2024) Investigating the drivers of CO2 emissions in the EU: Advanced estimation with common correlated effects and common factors models. Energy Rep 11: 937–950. https://doi.org/10.1016/j.egyr.2023.12.057 doi: 10.1016/j.egyr.2023.12.057
    [83] Baltagi BH, (2010) Fixed effects and random effects, In: Durlauf SN, Blume LE Eds., Microeconometrics, London: Palgrave Macmillan, 59–64. https://doi.org/10.1057/978-1-349-95121-5_2713-1
    [84] Bell A, Jones K (2015) Explaining fixed effects: Random effects modeling of time-series cross-sectional and panel data. Polit Sci Res Meth 3: 133–153. https://doi.org/10.1017/psrm.2014.7 doi: 10.1017/psrm.2014.7
    [85] Borenstein M, Hedges LV, Higgins JPT, et al. (2010) A basic introduction to fixed-effect and random-effects models for meta-analysis. Res Synth Methods 1: 97–111. https://doi.org/10.1002/jrsm.12 doi: 10.1002/jrsm.12
    [86] Apergis N, Kuziboev B, Abdullaev I, et al. (2023) Investigating the association among CO2 emissions, renewable and non-renewable energy consumption in Uzbekistan: an ARDL approach. Environ Sci Pollut R 30: 39666–39679. https://doi.org/10.1007/s11356-022-25023-z doi: 10.1007/s11356-022-25023-z
    [87] Bekun FV, Alola AA, Sarkodie SA (2019) Toward a sustainable environment: Nexus between CO2 emissions, resource rent, renewable and nonrenewable energy in 16-EU countries. Sci Total Environ 657: 1023–1029. https://doi:10.1016/j.scitotenv.2018.12.104 doi: 10.1016/j.scitotenv.2018.12.104
    [88] Mahalik MK, Mallick H, Padhan H (2021) Do educational levels influence the environmental quality? The role of renewable and non-renewable energy demand in selected BRICS countries with a new policy perspective. Renew Energy 164: 419–432. https://doi:10.1016/j.renene.2020.09.090 doi: 10.1016/j.renene.2020.09.090
    [89] Wang J, Azam W (2024) Natural resource scarcity, fossil fuel energy consumption, and total greenhouse gas emissions in top emitting countries. Geosci Front 15: 101757. https://doi:10.1016/j.gsf.2023.101757 doi: 10.1016/j.gsf.2023.101757
    [90] UNEP, Emissions Gap Report 2024. United Nations Environment Programme.
    [91] Aslam B, Hu J, Shahab S, et al. (2021) The nexus of industrialization, GDP per capita and CO2 emission in China. Environ Technol Inno 23: 101674. https://doi:10.1016/j.eti.2021.101674 doi: 10.1016/j.eti.2021.101674
    [92] Nasreen S, Mbarek MB, Atiq-ur-Rehman M (2020) Long-run causal relationship between economic growth, transport energy consumption and environmental quality in Asian countries: Evidence from heterogeneous panel methods. Energy 192: 116628. https://doi:10.1016/j.energy.2019.116628 doi: 10.1016/j.energy.2019.116628
    [93] Neves SA, Marques AC, Fuinhas JA (2017) Is energy consumption in the transport sector hampering both economic growth and the reduction of CO2 emissions? A disaggregated energy consumption analysis. Transport Policy 59: 64–70. https://doi:10.1016/j.tranpol.2017.07.004 doi: 10.1016/j.tranpol.2017.07.004
    [94] Alola AA, Bekun FV, Sarkodie SA (2019) Dynamic impact of trade policy, economic growth, fertility rate, renewable and non-renewable energy consumption on ecological footprint in Europe. Sci Total Environ 685: 702–709. https://doi:10.1016/j.scitotenv.2019.05.139 doi: 10.1016/j.scitotenv.2019.05.139
    [95] Ulucak R, Khan SUD (2020) Determinants of the ecological footprint: Role of renewable energy, natural resources, and urbanization. Sustain Cities Soc 54: 101996. https://doi:10.1016/j.scs.2019.101996 doi: 10.1016/j.scs.2019.101996
    [96] Sharma R, Sinha A, Kautish P (2021) Does renewable energy consumption reduce ecological footprint? Evidence from eight developing countries of Asia. J Clean Prod 285: 124867. https://doi:10.1016/j.jclepro.2020.124867 doi: 10.1016/j.jclepro.2020.124867
    [97] Filonchyk M, Peterson MP, Zhang L, et al. (2024) Greenhouse gases emissions and global climate change: Examining the influence of CO2, CH4, and N2O. Sci Total Environ 935: 173359. https://doi.org/10.1016/j.scitotenv.2024.173359 doi: 10.1016/j.scitotenv.2024.173359
    [98] Oladunni OJ, Mpofu K, Olanrewaju OA (2022) Greenhouse gas emissions and its driving forces in the transport sector of South Africa. Energy Rep 8: 2052–2061. https://doi.org/10.1016/j.egyr.2022.01.123 doi: 10.1016/j.egyr.2022.01.123
    [99] Wooldridge JM (2002) Econometric analysis of cross section and panel data, 1 Eds., The MIT Press, 108: 245–254.
    [100] Baum CF (2001) Residual diagnostics for cross-section time series regression models. Stata J 1: 101–104. https://doi.org/10.1177/1536867x0100100108 doi: 10.1177/1536867x0100100108
    [101] Pesaran MH (2004) General diagnostic tests for cross section dependence in panels. Empir Econ 13–50. https://doi.org/10.2139/ssrn.572504
    [102] Wang H, Zhang R (2022) Effects of environmental regulation on CO2 emissions: An empirical analysis of 282 cities in China. Sustainain Prod Consump 29: 259–272. https://doi.org/10.1016/j.spc.2021.10.016 doi: 10.1016/j.spc.2021.10.016
    [103] Shi Q, Liang Q, Huo T, et al. (2023) Evaluation of CO2 and SO2 synergistic emission reduction: The case of China. J Clean Prod 433: 139784. https://doi.org/10.1016/j.jclepro.2023.139784 doi: 10.1016/j.jclepro.2023.139784
    [104] Wang Q, Zhang F, Li R, et al. (2024) Does artificial intelligence promote energy transition and curb carbon emissions? The role of trade openness. J Clean Prod 447: 141298. https://doi.org/10.1016/j.jclepro.2024.141298 doi: 10.1016/j.jclepro.2024.141298
    [105] Rai P, Gupta P, Saini N, et al. (2023) Assessing the impact of renewable energy and non-renewable energy use on carbon emissions: Evidence from select developing and developed countries. Environ Dev Sustain 27: 3059–3080. https://doi.org/10.1007/s10668-023-04001-6 doi: 10.1007/s10668-023-04001-6
    [106] Caldera Y, Ranthilake T, Gunawardana H, et al. (2024) Understanding the interplay of GDP, renewable, and non-renewable energy on carbon emissions: Global wavelet coherence and Granger causality analysis. PLoS One 19: e0308780. https://doi.org/10.1371/journal.pone.0308780 doi: 10.1371/journal.pone.0308780
    [107] Merforth M, Wagner A, Winter C, et al. (2023) Fossil fuel dependency of urban transport systems: How can transport authorities and operators navigate through multiple risks and threats at times of global crisis? https://transformative-mobility.org/wp-content/uploads/2023/12/fossil-fuel-dependency-of-urban-transport-systems.pdf.
    [108] Neves SA, Marques AC, Fuinhas JA (2017) Is energy consumption in the transport sector hampering both economic growth and the reduction of CO2 emissions? A disaggregated energy consumption analysis. Transport Policy 59: 64–70. https://doi.org/10.1016/j.tranpol.2017.07.004 doi: 10.1016/j.tranpol.2017.07.004
    [109] Aba MM, Amado NB, Rodrigues AL, et al. (2023) Energy transition pathways for the Nigerian Road Transport: Implication for energy carrier, Powertrain technology, and CO2 emission. Sustain Prod Consump 38: 55–68. https://doi.org/10.1016/j.spc.2023.03.019 doi: 10.1016/j.spc.2023.03.019
    [110] Cinderby S, Haq G, Opiyo R, et al. (2024) Inclusive climate resilient transport challenges in Africa. Cities 146: 104740. https://doi.org/10.1016/j.cities.2023.104740 doi: 10.1016/j.cities.2023.104740
    [111] Akpolat AG, Bakırtaş T (2024) The nonlinear impact of renewable energy, fossil energy and CO2 emissions on human development index for the eight developing countries. Energy 312: 133466. https://doi.org/10.1016/j.energy.2024.133466 doi: 10.1016/j.energy.2024.133466
    [112] Ahmad M, Ahmed Z, Alvarado R, et al. (2024) Financial development, resource richness, eco-innovation, and sustainable development: Does geopolitical risk matter? J Environ Manage 351: 119824. https://doi.org/10.1016/j.jenvman.2023.119824 doi: 10.1016/j.jenvman.2023.119824
    [113] ESI Africa, What Africa can learn from Kenya about geothermal energy, 2024. Available from: https://www.esi-africa.com/news/what-africa-can-learn-from-kenya-about-geothermal-energy/.
    [114] Naeem MA, Appiah M, Taden J, et al. (2023) Transitioning to clean energy: Assessing the impact of renewable energy, bio-capacity and access to clean fuel on carbon emissions in OECD economies. Energy Econ 127: 107091. https://doi.org/10.1016/j.eneco.2023.107091 doi: 10.1016/j.eneco.2023.107091
    [115] Zhou Y, Haseeb M, Batool M, et al. (2024) Achieving carbon-neutrality goals in Asian emerging economies: Role of investment in clean energy, eco-regulations, and green finance. Gondwana Res. https://doi.org/10.1016/J.GR.2024.06.017
    [116] Department of Mineral Resources and Energy, Government Gazette Staatskoerant Republic of South Africa, 2024. Available from: www.gpwonline.co.za.
    [117] IRENA, Renewable Energy Market Analysis: Africa and its regions. International Renewable Energy Agency, 2022.
    [118] AfDB, NOORo: the largest concentrated solar power complex in Africa increases the share of renewable energy in electricity generation in Morocco. African Development Bank, 2019.
    [119] Nteranya JN, (2024). Natural resources use in the Democratic Republic of Congo. In: Brears R. Eds., The Palgrave Encyclopedia of Sustainable Resources and Ecosystem Resilience, Cham: Palgrave Macmillan, 1–22. https://doi.org/10.1007/978-3-030-67776-3_66-1
    [120] Filho WL, Gatto A, Sharifi A, et al. (2024) Energy poverty in African countries: An assessment of trends and policies. Energy Res Soc Sci 117: 103664. https://doi.org/10.1016/J.ERSS.2024.103664 doi: 10.1016/J.ERSS.2024.103664
    [121] Jayachandran M, Gatla RK, Rao KP, et al. (2022) Challenges in achieving sustainable development goal 7: Affordable and clean energy in light of nascent technologies. Sustain Energy Techn 53: 102692. https://doi.org/10.1016/j.seta.2022.102692 doi: 10.1016/j.seta.2022.102692
    [122] Mohsin M, Jamaani F (2023) Unfolding impact of natural resources, economic growth, and energy nexus on the sustainable environment: Guidelines for green finance goals in 10 Asian countries. Resour Policy 86: 104238. https://doi.org/10.1016/j.resourpol.2023.104238 doi: 10.1016/j.resourpol.2023.104238
    [123] Huang Z Ren X (2024) Impact of natural resources, resilient economic growth, and energy consumption on CO2 emissions. Resour Policy 90: 104714. https://doi.org/10.1016/j.resourpol.2024.104714 doi: 10.1016/j.resourpol.2024.104714
    [124] Chorev S, (2023) The Suez Canal: Forthcoming strategic and geopolitical challenges, In: Lutmar C, Rubinovitz Z Eds., The Suez Canal: Past Lessons and Future Challenges, Cham: Palgrave Macmillan. https://doi.org/10.1007/978-3-031-15670-0_1
    [125] Walters J, Pisa N (2023) Review of South Africa's public transport system. Res Transp Econ 100: 101322. https://doi.org/10.1016/j.retrec.2023.101322 doi: 10.1016/j.retrec.2023.101322
    [126] Munanga Y, Mafuku SH, (2021) Climate-resilient infrastructure for water and energy in greater Harare, In: Chirisa I, Chigudu A Eds., Resilience and Sustainability in Urban Africa, Singapore: Springer. https://doi.org/10.1007/978-981-16-3288-4_5
    [127] Aderibigbe OO, Fadare SO, Gumbo T (2024) Transport situation in the global south: Insights from Nigeria, South Africa and India, Emerging Technologies for Smart Cities, Cham: Springer. https://doi.org/10.1007/978-3-031-66943-9_3
    [128] Kwanya LM (2022) Impact of the standard gauge railway on the Kenyan economy. Int J Latest Technol Eng Manag Appl Sci 11: 1–7.
    [129] Bouraima MB, Alimo PK, Agyeman S, et al. (2023) Africa's railway renaissance and sustainability: Current knowledge, challenges, and prospects. J Transp Geogr 106: 103487. https://doi.org/10.1016/j.jtrangeo.2022.103487 doi: 10.1016/j.jtrangeo.2022.103487
    [130] U.S Energy Information Administration, Hydropower made up 66% of Brazil's electricity generation in 2020. U.S Energy Information Administration, 2021. Available from: https://www.eia.gov/todayinenergy/detail.php?id=49436.
    [131] Quiñones G, Felbol C, Valenzuela C, et al. (2020) Analyzing the potential for solar thermal energy utilization in the Chilean copper mining industry. Sol Energy 197: 292–310. https://doi.org/10.1016/j.solener.2020.01.009 doi: 10.1016/j.solener.2020.01.009
    [132] Tan KM, Yong JY, Ramachandaramurthy VK, et al. (2023) Factors influencing global transportation electrification: Comparative analysis of electric and internal combustion engine vehicles. Renew Sustain Energ Rev 184: 113582. https://doi.org/10.1016/j.rser.2023.113582 doi: 10.1016/j.rser.2023.113582
    [133] GWEC, Global Offshore Wind Report. Global Wind Energy Council, 2024. Available from: https://gwec.net/global-offshore-wind-report-2024/.
  • Environ-12-02-009_ESM.pdf
  • Reader Comments
  • © 2025 the Author(s), licensee AIMS Press. This is an open access article distributed under the terms of the Creative Commons Attribution License (http://creativecommons.org/licenses/by/4.0)
通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索

Metrics

Article views(2285) PDF downloads(248) Cited by(0)

Article outline

Figures and Tables

Figures(2)  /  Tables(9)

Other Articles By Authors

/

DownLoad:  Full-Size Img  PowerPoint
Return
Return

Catalog