
In this study, we presented the conformable Laplace transform iterative method to find the approximate solution of the systems of nonlinear temporal-fractional differential equations in the sense of the conformable derivative. The advantage of the suggested approach was to compute the solution without discretization and restrictive assumptions. Three distinct examples were provided to show the applicability and efficacy of the proposed approach. To examine the exact and approximate solutions, we utilized the 2D and 3D graphics. Furthermore, the outcomes produced in this study were consistent with the exact solutions; hence, this strategy efficiently and effectively determined exact and approximate solutions to nonlinear temporal-fractional differential equations.
Citation: Nisar Gul, Saima Noor, Abdulkafi Mohammed Saeed, Musaad S. Aldhabani, Roman Ullah. Analytical solution of the systems of nonlinear fractional partial differential equations using conformable Laplace transform iterative method[J]. AIMS Mathematics, 2025, 10(2): 1945-1966. doi: 10.3934/math.2025091
[1] | Tareq Eriqat, Rania Saadeh, Ahmad El-Ajou, Ahmad Qazza, Moa'ath N. Oqielat, Ahmad Ghazal . A new analytical algorithm for uncertain fractional differential equations in the fuzzy conformable sense. AIMS Mathematics, 2024, 9(4): 9641-9681. doi: 10.3934/math.2024472 |
[2] | Muammer Ayata, Ozan Özkan . A new application of conformable Laplace decomposition method for fractional Newell-Whitehead-Segel equation. AIMS Mathematics, 2020, 5(6): 7402-7412. doi: 10.3934/math.2020474 |
[3] | M. Mossa Al-Sawalha, Khalil Hadi Hakami, Mohammad Alqudah, Qasem M. Tawhari, Hussain Gissy . Novel Laplace-integrated least square methods for solving the fractional nonlinear damped Burgers' equation. AIMS Mathematics, 2025, 10(3): 7099-7126. doi: 10.3934/math.2025324 |
[4] | Mahmoud Abul-Ez, Mohra Zayed, Ali Youssef . Further study on the conformable fractional Gauss hypergeometric function. AIMS Mathematics, 2021, 6(9): 10130-10163. doi: 10.3934/math.2021588 |
[5] | Laiq Zada, Rashid Nawaz, Sumbal Ahsan, Kottakkaran Sooppy Nisar, Dumitru Baleanu . New iterative approach for the solutions of fractional order inhomogeneous partial differential equations. AIMS Mathematics, 2021, 6(2): 1348-1365. doi: 10.3934/math.2021084 |
[6] | Aslı Alkan, Halil Anaç . A new study on the Newell-Whitehead-Segel equation with Caputo-Fabrizio fractional derivative. AIMS Mathematics, 2024, 9(10): 27979-27997. doi: 10.3934/math.20241358 |
[7] | Xinwei Su, Shuqin Zhang, Lixin Zhang . Periodic boundary value problem involving sequential fractional derivatives in Banach space. AIMS Mathematics, 2020, 5(6): 7510-7530. doi: 10.3934/math.2020481 |
[8] | Emad Salah, Ahmad Qazza, Rania Saadeh, Ahmad El-Ajou . A hybrid analytical technique for solving multi-dimensional time-fractional Navier-Stokes system. AIMS Mathematics, 2023, 8(1): 1713-1736. doi: 10.3934/math.2023088 |
[9] | Naher Mohammed A. Alsafri . Solitonic behaviors in the coupled Drinfeld-Sokolov-Wilson system with fractional dynamics. AIMS Mathematics, 2025, 10(3): 4747-4774. doi: 10.3934/math.2025218 |
[10] | Mohammad Alqudah, Safyan Mukhtar, Albandari W. Alrowaily, Sherif. M. E. Ismaeel, S. A. El-Tantawy, Fazal Ghani . Breather patterns and other soliton dynamics in (2+1)-dimensional conformable Broer-Kaup-Kupershmit system. AIMS Mathematics, 2024, 9(6): 13712-13749. doi: 10.3934/math.2024669 |
In this study, we presented the conformable Laplace transform iterative method to find the approximate solution of the systems of nonlinear temporal-fractional differential equations in the sense of the conformable derivative. The advantage of the suggested approach was to compute the solution without discretization and restrictive assumptions. Three distinct examples were provided to show the applicability and efficacy of the proposed approach. To examine the exact and approximate solutions, we utilized the 2D and 3D graphics. Furthermore, the outcomes produced in this study were consistent with the exact solutions; hence, this strategy efficiently and effectively determined exact and approximate solutions to nonlinear temporal-fractional differential equations.
The theory of fractional calculus has attracted a lot of interest in a variety of scientific and engineering domains because of its wide range of applications and importance in characterizing the intricate dynamic behavior of real-world problems like biological populations, diffusion systems, fluid flow, and traffic [1,2]. Powerful modeling tools emerge through fractional-order equations that researchers utilize to represent complex systems which contain memory and hereditary effects based on multiple studies. Fractional-order models enabled to study polytropic gas unsteady flow dynamics with successful results [3]. The fractional dynamics research field gained foundational insights from Institute Technical Dissertation about framework development for fractional control systems and from Bira et al. [4] who employed Lie group methods to solve time-fractional evolution equations [5]. The algorithm proposed delivers effective numerical solutions along with precision calculations to fractional partial integro-differential problems [6]. Building upon existing breakthroughs in fractional partial differential equations the paper examines chaotic soliton perturbations through advanced analytical methods which produce new solutions and decay mechanisms of nonlinear system behavior [7,8]. The fractional state is superior to the classical order in many ways, making it easier to govern the modeling of nature without sacrificing inherited characteristics or memory effort. Many nonlinear problems, such as those involving electrical circuits, damping laws, electromagnetic waves, signal processing, and rheology, can be effectively simulated using the fractional operator, a potent mathematical tool [9,10]. In various fields of science and engineering [11,12,13,14], fractional differential equations (FDEs) have been extensively used to model different phenomena. Different approaches have been developed in [15,16,17] to solve linear/nonlinear FDEs to demonstrate the superiority and effectiveness of fractional calculus. The use of fractional-order differential equations (FODEs) allows for the solution of many physical problems that cannot be solved using integer-order differential equations (DEs) [18,19]. The principal argument is that fractional-order derivatives permit the rate of change to be adjusted by the requirements of certain circumstances. Riesz, Letnikov, Hadamard, Grunwald, Caputo, Riemann-Louville, and the conformable derivative (CD) [20,21,22] are several forms of fractional derivative definitions that have been established and utilized in a variety of applications and natural circumstances. Compared to previous definitions, the CD is more straightforward to calculate [26]. The basic characteristics of CD are presented in [24,25]. In contrast to the preceding ones, this fractional formulation satisfies all the rules of an ordinary derivative, particularly the quotient, product, and chain rules. It can be easily and quickly modified to solve FODEs exactly and approximately. It simplifies well-known transforms such as the natural and Laplace transforms, which are utilized to explain different FODEs [23,27].
Lately, various strategies have been developed for determining FDEs, such as the Adomian and modified decomposition approach [28], the differential transform method [29,30], and He's variational iterative technique (VIT) [31]. Abdulaziz[32] examined the homotopy perturbation technique (HPT) for the system of FDEs. In [33], the author examined the variational iteration method (VIM) to a system of autonomous differential equations. Recent advances in nonlinear dynamics and fractional calculus have led to the development of innovative methods for analyzing complex physical and mathematical systems. Kai and Yin [34] investigated the linear structures and soliton molecules in the Sharma-Tasso-Olver-Burgers equation, shedding light on soliton dynamics. He and Kai [35] extended this work by exploring wave structures and chaotic behaviors in Kudryashov's equation with third-order dispersion. Meanwhile, Xie et al. [36] analyzed resonance and attraction domains in asymmetric Duffing systems with fractional damping, highlighting the role of nonlinearity in multi-degree-of-freedom systems. Zhu et al. [37] contributed an analytical approach to nonlinear models using a modified Schrödinger's equation and logarithmic transformations, emphasizing the versatility of fractional techniques. In algebraic systems, Shuangjian and Apurba [38] explored cohomology and deformations of generalized Reynolds operators on Leibniz algebras. Lastly, Guo et al. [39] proposed a fixed-time safe tracking control strategy for uncertain high-order nonlinear pure-feedback systems, leveraging unified transformation functions.
In recent years, significant progress has been made in the study of nonlinear fractional differential equations due to their wide-ranging applications in physics, engineering, and other scientific domains. Fractional calculus, with its nonlocal properties and memory effects, provides a robust framework for modeling complex systems more effectively than traditional integer-order models. Several advanced analytical and numerical techniques have been developed to explore the solutions of these equations, unveiling novel soliton phenomena, wave dynamics, and diffusive processes.
For instance, Alderremy et al. [40] utilized the Laplace residual power series method to construct fractional series solutions for nonlinear fractional reaction-diffusion Brusselator models, showcasing the versatility of fractional methods in addressing chemical oscillations. Similarly, Yasmin et al. [41] explored soliton solutions of the perturbed Gerdjikov-Ivanov equation via Bäcklund transformation, demonstrating the intricate interplay of nonlinearity and dispersion.
The fractional view analysis by Al-Sawalha et al. [42] provided insights into the Kersten-Krasil'shchik coupled Korteweg-de Vries-modified Korteweg-de Vries (KdV-mKdV) systems using non-singular kernel derivatives, while Elsayed and Nonlaopon [43] proposed a novel approach for analyzing the fractional-order Navier-Stokes equations. Furthermore, Naeem et al. [44] extended this exploration to fuzzy fractional-order solitary wave solutions for the KdV equation, employing the Caputo-Fabrizio derivative.
Expanding on soliton dynamics, Alqhtani et al. [45] presented analytical solutions to the (3+1)-modified fractional Zakharov-Kuznetsov equation relevant in electrical engineering, whereas the fractional-order local Poisson equation in fractal porous media was analyzed by the same authors [46]. Recent advancements also include studies on fractional generalized Burger-Fisher equations [47], fractional stochastic Kraenkel-Manna-Merle systems in ferromagnetic materials [48], and fractional nonlinear damped Burger's-type equations in fluids and plasmas [49], all employing innovative methods like residual power series transforms and Aboodh transform techniques. In this work, we present the conformable Laplace transform iterative method (CLTIM) to find the approximate solution of the systems of nonlinear temporal-fractional differential equations in the sense of the conformable derivative. The precision of the proposed method has been verified by comparing it with the Homotopy analysis method (HAM) in terms of error for different problems. The results show that our improved method is uncomplicated, precise, and applicable. This paper is summarized as follows: Section 2 discusses some basic definitions and properties. Section 3 presents the methodology of the suggested approach. Sections 4 and 5, respectively, present a few numerical examples and concluding remarks.
The fundamental concepts and characteristics of the fractional calculus theory that will be applied in this work are defined in this section.
Definition 2.1. Assume a function Θ:[0,∞)→R as well the conformable derivative of Θ of order Φ stated in the following manner [50]:
TΦϑΘ(ϑ)=limϵ→0Θ(ϑ+ϵϑ1−Φ)−Θ(ϑ)ϵ, | (2.1) |
for ϑ>0, and Φ∈(0,1]. If Θ is Φ− differentiable in some (0,p),p>0, and limϵ→0+(TΦΘ)(ϑ)− occurs subsequently, it comes out as follows:
(TΦΘ)(0)=limϵ→0+(TΦΘ)(ϑ). | (2.2) |
Theorem 2.1. Let Φ∈(0,1] and f,g be Φ- differentiable at a point ℑ>0. Then,
(i)TΦ(af+bg)=a(TΦf)+b(TΦg),a,b∈R,(ii)TΦ(ℑp)=pℑp−Φ,p∈R,(iii)TΦ(f(ℑ))=0,f(ℑ)=λ,(iv)TΦ(fg)=f(TΦg)+g(TΦf),(iv)TΦ(f/g)=g(TΦf)−f(TΦg)g2. | (2.3) |
Moreover, if f(ℑ) is differentiable, then TΦ(f(ℑ))=ℑ1−Φddℑf(ℑ).
Definition 2.2. Let g:[0,∞)→R be a real-valued function and 0<Φ≤1. Then, the conformable Laplace transform LΦ of g is defined as [51]
LΦg(ϑ)=GΦ(s)=∫∞0g(ϑ)e(−s(ϑΦΦ))dΦϑ=∫∞0g(ϑ)e−s(ϑΦΦ)ϑΦ−1dϑ, | (2.4) |
provided the integral exists.
Theorem 2.2 (See [52,53]). Let g:[0,∞)→R be a function such that LΦg(ϑ)=GΦ(s) exists. Then,
LΦ{g(ϑ)}(s)=GΦ(s)=L{g((Φϑ)1Φ)}(s),0<Φ≤1. | (2.5) |
and L represents the usual Laplace transform.
Theorem 2.3 (See [52,53]). Let g:[0,∞)→R,f:[0,∞)→R, and let α,β,ν∈R and 0<Φ≤1. Then,
(i)LΦ{αf(ϑ)+βg(ϑ)}=αFΦ(s)+βGΦ(s),s>0.(ii)LΦ{e−a(ϑΦΦ)f(ϑ)}(s)=FΦ(s+ν),s>|ν|.(iii) LΦ{If(ϑ)}(s)=FΦ(s)s,s>0.(iv)LΦ{(ϑnΦαn)f(ϑ)}(s)=(−1)n(dndsn)FΦ(s),s>0.(v)LΦ{(f∗g)(ϑ)}=FΦ(s)GΦ(s),s>0, |
where FΦ(s) and GΦ(s) are the conformable Laplace transform of the functions f and g, respectively, f∗g is the convolution product of f and g, and IΦf(ϑ) is the conformable integral.
Theorem 2.4 (See [54]). Let ν,q,ϱ∈R, and 0<Φ≤1. Then,
(i)LΦ{ϱ}(s)=ϱs,s>0.(ii)LΦ{ηq}(s)=ΦqΦΓ(1+qΦ)s1+qΦ,s>0.(iii)LΦ{eνηΦΦ}(s)=1s−ν,s>0.(iv)LΦ{sinνηΦΦ}(s)=νs2+ν2,s>0.(v)LΦ{cosνηΦΦ}(s)=ss2+ν2,s>0.(vi)LΦ{sinhνηΦΦ}(s)=νs2−ν2,s>|ν|.(vii)LΦ{coshνηΦΦ}(s)=ss2−ν2,s>|ν|. |
We consider a general inhomogeneous temporal fractional differential equation with the initial condition [55] to present the basic concept of the proposed method, for the systems of nonlinear temporal-fractional differential equations
TΦϑΘ(ℑ,ϑ)+HΘ(ℑ,ϑ)+SΘ(ℑ,ϑ)=g(ℑ,ϑ),0<Φ≤1,Θ(ℑ,0)=P(ℑ), | (3.1) |
where TΦϑ is the conformable derivative, H(Θ(ℑ,ϑ)) represents the linear operator, S(Θ(ℑ,ϑ)) denotes nonlinear operators, g(ℑ,ϑ) is a source term, and P(ℑ) is a function of ℑ.
Taking both sides of CLT of Eq (3.1),
LΦ[TΦϑΘ(ℑ,ϑ)+H(Θ(ℑ,ϑ))+S(Θ(ℑ,ϑ))]=LΦ[g(ℑ,ϑ)]. | (3.2) |
Now, simplifying Eq (3.2),
LΦ[Θ(ℑ,ϑ)]=1sLΦ[g(ℑ,ϑ)]+1sΘ(ℑ,0)−1sLΦ[HΘ(ℑ,ϑ)]−1sLΦ[SΘ(ℑ,ϑ)]. | (3.3) |
Now, taking the inverse CLT on both sides,
Θ(ℑ,ϑ)=L−1Φ{1sΘ(ℑ,0)+1sLΦ[g(ℑ,ϑ)]}−L−1Φ{1sLΦ[HΘ(ℑ,ϑ)]}−L−1Φ{1sLΦ[SΘ(ℑ,ϑ)]}. | (3.4) |
Assume that
E(Θ(ℑ,ϑ))=L−1Φ{1sΘ(ℑ,0)+1sLΦ[g(ℑ,ϑ)]}, | (3.5) |
F(Θ(ℑ,ϑ))=L−1Φ{1sLΦ[HΘ(ℑ,ϑ)]}, | (3.6) |
G(Θ(ℑ,ϑ))=L−1Φ{1sLΦ[SΘ(ℑ,ϑ)]}. | (3.7) |
By using these results, Eq (3.4) can be written as
Θ(ℑ,ϑ)=E(Θ(ℑ,ϑ))+F(Θ(ℑ,ϑ))+G(Θ(ℑ,ϑ)). | (3.8) |
In Eq (3.8), E(Θ(℘,ϑ)) is a known function, while F and G are given linear and nonlinear operators of Θ(η,ϑ). The solution to Eq (3.8) can be represented in the following expansion form:
Θ(ℑ,ϑ)=∞∑k=0Θk(ℑ,ϑ). | (3.9) |
Assume that
F(∞∑k=1Θk(ℑ,ϑ))=∞∑k=1F(Θk(ℑ,ϑ)). | (3.10) |
The nonlinear operator G can be decomposed as follows [56]:
G(∞∑k=0Θk(ℑ,ϑ))=G(Θ0(ℑ,ϑ))+∞∑k=0[G(k∑m=0Θm(ℑ,ϑ))−G(k−1∑m=0Θm(ℑ,ϑ))]. | (3.11) |
Substituting Eqs (3.9)–(3.11) in Eq (3.8),
∞∑k=0Θk(ℑ,ϑ)=E(Θ(ℑ,ϑ))+∞∑k=0F(Θk(ℑ,ϑ))+G(Θ0(ℑ,ϑ))+∞∑k=0[G(k∑m=0Θm(ℑ,ϑ))−G(k−1∑m=0Θm(ℑ,ϑ))]. | (3.12) |
By utilizing (3.12) to define the recurrence relation,
Θ0(ℑ,ϑ)=E(Θ(ℑ,ϑ)), | (3.13) |
Θ1(ℑ,ϑ)=F(Θ0(ℑ,ϑ))+G(Θ0(ℑ,ϑ)), | (3.14) |
Θi+1(ℑ,ϑ)=F(Θi(ℑ,ϑ))+G(Θ0(ℑ,ϑ)+Θ1(ℑ,ϑ)+⋯+Θi(ℑ,ϑ))−G(Θ0(ℑ,ϑ)+Θ1(ℑ,ϑ)+⋯+Θi−1(ℑ,ϑ)). | (3.15) |
Finally, we get the following results,
(Θ1(ℑ,ϑ)+Θ2(ℑ,ϑ)+⋯+Θi+1(ℑ,ϑ))=F(Θ0(ℑ,ϑ)+Θ1(ℑ,ϑ)+⋯+Θi(ℑ,ϑ))G(Θ0(ℑ,ϑ)+Θ1(ℑ,ϑ)+⋯+Θi(ℑ,ϑ)). | (3.16) |
particularly
∞∑k=0Θk(ℑ,ϑ)=E(∞∑k=0Θk(ℑ,ϑ))+F(∞∑k=0Θk(ℑ,ϑ))+G(∞∑k=0Θk(ℑ,ϑ)). | (3.17) |
Equation (3.1) has the {i-th} approximate solution given by
Θi(ℑ,ϑ)=Θ0(ℑ,ϑ)+Θ1(ℑ,ϑ)+⋯+Θi−1(ℑ,ϑ). | (3.18) |
This section presents some numerical examples of two-dimensional fractional-order partial differential equations (PDEs) to demonstrate the proposed technique's simplicity and efficiency in obtaining approximate series solutions for the suggested technique. The outcomes of the simulations show that the suggested technique is very efficient and entirely consistent with the difficulty of fractional-order PDEs.
Example 4.1. Consider the following system of nonlinear temporal-fractional differential equations [56]:
TΦϑu(ℑ,℘,ϑ)+∂∂ℑv(ℑ,℘,ϑ)∂∂℘w(ℑ,℘,ϑ)−∂∂℘v(ℑ,℘,ϑ)∂∂ℑw(ℑ,℘,ϑ)=−u(ℑ,℘,ϑ),TΦϑv(ℑ,℘,ϑ)+∂∂ℑu(ℑ,℘,ϑ)∂∂℘w(ℑ,℘,ϑ)+∂∂℘u(ℑ,℘,ϑ)∂∂ℑw(ℑ,℘,ϑ)=v(ℑ,℘,ϑ),0<Φ≤1,TΦϑw(ℑ,℘,ϑ)+∂∂ℑu(ℑ,℘,ϑ)∂∂℘v(ℑ,℘,ϑ)+∂∂℘u(ℑ,℘,ϑ)∂∂ℑv(ℑ,℘,ϑ)=w(ℑ,℘,ϑ), | (4.1) |
with the initial conditions
u(ℑ,℘,0)=eℑ+℘,v(ℑ,℘,0)=eℑ−℘,w(ℑ,℘,0)=e−ℑ+℘. | (4.2) |
Taking CLT on both sides of Eq (4.1),
LΦ[TΦϑu(ℑ,℘,ϑ)]=LΦ[−∂∂ℑv(ℑ,℘,ϑ)∂∂℘w(ℑ,℘,ϑ)+∂∂℘v(ℑ,℘,ϑ)∂∂ℑw(ℑ,℘,ϑ)−u(ℑ,℘,ϑ)],LΦ[TΦϑv(ℑ,℘,ϑ)]=LΦ[−∂∂ℑu(ℑ,℘,ϑ)∂∂℘w(ℑ,℘,ϑ)−∂∂℘u(ℑ,℘,ϑ)∂∂ℑw(ℑ,℘,ϑ)+v(ℑ,℘,ϑ)],LΦ[TΦϑw(ℑ,℘,ϑ)]=LΦ[−∂∂ℑu(ℑ,℘,ϑ)∂∂℘v(ℑ,℘,ϑ)−∂∂℘u(ℑ,℘,ϑ)∂∂ℑv(ℑ,℘,ϑ)+w(ℑ,℘,ϑ)]. | (4.3) |
Applying the process described in Section 3, we get the following outcome:
LΦ[u(ℑ,℘,ϑ)]=1s(eℑ+℘)−1sΦLΦ(∂∂ℑv(ℑ,℘,ϑ)∂∂℘w(ℑ,℘,ϑ))+1sΦLΦ(∂∂℘v(ℑ,℘,ϑ)∂∂ℑw(ℑ,℘,ϑ))−1sΦLΦ(u(ℑ,℘,ϑ)),LΦ[v(ℑ,℘,ϑ)]=1s(eℑ−℘)−1sΦLΦ(∂∂ℑu(ℑ,℘,ϑ)∂∂℘w(ℑ,℘,ϑ))−1sΦLΦ(∂∂℘u(ℑ,℘,ϑ)∂∂ℑw(ℑ,℘,ϑ))+1sΦLΦ(v(ℑ,℘,ϑ)),LΦ[w(ℑ,℘,ϑ)]=1s(e−ℑ+℘)−1sΦLΦ(∂∂ℑu(ℑ,℘,ϑ)∂∂℘v(ℑ,℘,ϑ))+1sΦLΦ(∂∂℘u(ℑ,℘,ϑ)∂∂ℑv(ℑ,℘,ϑ))+1sΦLΦ(w(ℑ,℘,ϑ)). | (4.4) |
Now, taking inverse CLT on both sides,
u(ℑ,℘,ϑ)=L−1Φ[1s(eℑ+℘)]−L−1Φ[1sΦLΦ(∂∂ℑv(ℑ,℘,ϑ)∂∂℘w(ℑ,℘,ϑ))]+L−1Φ[1sΦLΦ(∂∂℘v(ℑ,℘,ϑ)∂∂ℑw(ℑ,℘,ϑ))]−L−1Φ[1sΦLΦ(u(ℑ,℘,ϑ))],v(ℑ,℘,ϑ)=L−1Φ[1s(eℑ−℘)]−L−1Φ[1sΦLΦ(∂∂ℑu(ℑ,℘,ϑ)∂∂℘w(ℑ,℘,ϑ))]−L−1Φ[1sΦLΦ(∂∂℘u(ℑ,℘,ϑ)∂∂ℑw(ℑ,℘,ϑ))]+L−1Φ[1sΦLΦ(v(ℑ,℘,ϑ))],w(ℑ,℘,ϑ)=L−1Φ[1s(e−ℑ+℘)]−L−1Φ[1sΦLΦ(∂∂ℑu(ℑ,℘,ϑ)∂∂℘v(ℑ,℘,ϑ))]+L−1Φ[1sΦLΦ(∂∂℘u(ℑ,℘,ϑ)∂∂ℑv(ℑ,℘,ϑ))]+L−1Φ[1sΦLΦ(w(ℑ,℘,ϑ))]. | (4.5) |
Using the procedures described in Section 3, we get the following result:
u,v,w(ℑ,℘,ϑ)=∞∑k=0uk,vk,wk(ℑ,℘,ϑ). | (4.6) |
Using Eq (4.6) in (4.5),
∞∑k=0uk(ℑ,℘,ϑ)=L−1Φ[1s(eℑ+℘)]−L−1Φ[1sΦLΦ{(∂∂ℑ∞∑k=0vk(ℑ,℘,ϑ))(∂∂℘∞∑k=0wk(ℑ,℘,ϑ))}]+L−1Φ[1sΦLΦ{(∂∂℘∞∑k=0vk(ℑ,℘,ϑ))(∂∂ℑ∞∑k=0wk(ℑ,℘,ϑ))}]−L−1Φ[1sΦLΦ(∞∑k=0uk(ℑ,℘,ϑ))],∞∑k=0vk(ℑ,℘,ϑ)=L−1Φ[1s(eℑ+℘)]−L−1Φ[1sΦLΦ{(∂∂ℑ∞∑k=0uk(ℑ,℘,ϑ))(∂∂℘∞∑k=0wk(ℑ,℘,ϑ))}]+L−1Φ[1sΦLΦ{(∂∂℘∞∑k=0uk(ℑ,℘,ϑ))(∂∂ℑ∞∑k=0wk(ℑ,℘,ϑ))}]−L−1Φ[1sΦLΦ(∞∑k=0vk(ℑ,℘,ϑ))],∞∑k=0wk(ℑ,℘,ϑ)=L−1Φ[1s(eℑ+℘)]−L−1Φ[1sΦLΦ{(∂∂ℑ∞∑k=0uk(ℑ,℘,ϑ))∂∂℘(∞∑k=0vk(ℑ,℘,ϑ))}]+L−1Φ[1sΦLΦ{(∂∂℘∞∑k=0uk(ℑ,℘,ϑ))(∂∂ℑ∞∑k=0vk(ℑ,℘,ϑ))}]−L−1Φ[1sΦLΦ(∞∑k=0wk(ℑ,℘,ϑ))]. | (4.7) |
The following are the outcomes of Eq (4.7) when the iteration procedure described in Section 3 is applied:
u0(ℑ,℘,ϑ)=eℑ+℘,v0(ℑ,℘,ϑ)=eℑ−℘,w0(ℑ,℘,ϑ)=e−ℑ+℘,u1(ℑ,℘,ϑ)=−ϑ1Φ1!Φ1eℑ+℘,v1(ℑ,℘,ϑ)=ϑ1Φ1!Φ1eℑ−℘,w1(ℑ,℘,ϑ)=ϑ1Φ1!Φ1e−ℑ+℘,u2(ℑ,℘,ϑ)=ϑ2Φ2!Φ2eℑ+℘,v2(ℑ,℘,ϑ)=ϑ2Φ2!Φ2eℑ−℘,w2(ℑ,℘,ϑ)=ϑ2Φ2!Φ2e−ℑ+℘,u3(ℑ,℘,ϑ)=−ϑ3Φ3!Φ3eℑ+℘,v3(ℑ,℘,ϑ)=ϑ3Φ3!Φ3eℑ−℘,w3(ℑ,℘,ϑ)=ϑ3Φ3!Φ3e−ℑ+℘,⋮ |
Consequently, we get the following approximate solution to Eq (4.1):
u(ℑ,℘,ϑ)=u0(ℑ,℘,ϑ)+u1(ℑ,℘,ϑ)+u2(ℑ,℘,ϑ)+u3(ℑ,℘,ϑ)+⋯,=eℑ+℘(1−ϑ1Φ1!Φ1+ϑ2Φ2!Φ2−ϑ3Φ3!Φ3+⋯),v(ℑ,℘,ϑ)=v0(ℑ,℘,ϑ)+v1(ℑ,℘,ϑ)+v2(ℑ,℘,ϑ)+v3(ℑ,℘,ϑ)+⋯,=eℑ−℘(1+ϑ1Φ1!Φ1+ϑ2Φ2!Φ2+ϑ3Φ3!Φ3+⋯),w(ℑ,℘,ϑ)=w0(ℑ,℘,ϑ)+w1(ℑ,℘,ϑ)+w2(ℑ,℘,ϑ)+w3(ℑ,℘,ϑ)+⋯,=e−ℑ+℘(1+ϑ1Φ1!Φ1+ϑ2Φ2!Φ2+ϑ3Φ3!Φ3+⋯). | (4.8) |
At Φ=1, the exact solutions are u(ℑ,℘,ϑ)=eℑ+℘−ϑ,v(ℑ,℘,ϑ)=eℑ−℘+ϑ,and w(ℑ,℘,ϑ)=e−ℑ+℘+ϑ, respectively. We examine the results and graphical outcomes of the precise and approximate solutions to the models described in Example 4.1. Using the error function, we investigate the accuracy and capabilities of the proposed technique. It is crucial to identify the error between the exact and approximate solutions. To illustrate the proposed method's efficiency and accuracy, we implemented the absolute error function. The 2D graphs of the comparison study are shown in Figure 1. They represent various values of Φ=0.4,0.6,0.8,1 of the approximate and precise solution, respectively, generated by the recommended approach at ℘=1,ϑ=0.2 in the interval ℑ∈[0,4]. Figure 2 represents the 3D graphs of the exact and the approximate solutions attained by the suggested technique at Φ=1 in the intervals ϑ∈[0,1], ℑ∈[0,2] at ℘=1 for Example 4.1. These graphs demonstrate how well the suggested method's approximative solution works. The close approximation and precise solution demonstrate the accuracy and efficacy of the proposed technique.
Tables 1–3 show the approximate and exact solutions and absolute error at Φ=0.4,0.6,0.8,1 values. The point-wise error of the approximate and exact solutions of Example 4.1 at ϑ=0.2 is shown in Table 4. A comparison with the solution derived using the HAM is also provided. All the mentioned Tables in Example 4.1 show that both types of solutions are highly comparable, supporting the efficacy of the developed approach.
ℑ | Φ=0.4 | Φ=0.6 | Φ=0.8 | Φ=1 | Exact solution | |uexact−uCLTIM| |
0.0 | 0.73417084 | 1.44118118 | 1.92527293 | 2.22554093 | 2.22554092 | 7×10−9 |
0.1 | 0.81138426 | 1.59275152 | 2.12775565 | 2.45960311 | 2.45960311 | 8×10−9 |
0.2 | 0.89671829 | 1.76026266 | 2.35153366 | 2.71828183 | 2.71828182 | 9×10−9 |
0.3 | 0.99102698 | 1.94539111 | 2.59884662 | 3.00416603 | 3.00416602 | 1×10−8 |
0.4 | 1.09525420 | 2.14998967 | 2.87216971 | 3.32011693 | 3.32011692 | 1×10−8 |
0.5 | 1.21044309 | 2.37610606 | 3.17423843 | 3.66929667 | 3.66929666 | 1.1×10−8 |
0.6 | 1.33774650 | 2.62600332 | 3.50807600 | 4.05519997 | 4.05519996 | 1.2×10−8 |
0.7 | 1.47843853 | 2.90218250 | 3.87702357 | 4.48168908 | 4.48168907 | 1.4×10−8 |
0.8 | 1.63392726 | 3.20740770 | 4.28477370 | 4.95303243 | 4.95303242 | 1.5×10−8 |
0.9 | 1.80576890 | 3.54473371 | 4.73540729 | 5.47394740 | 5.47394739 | 1.6×10−8 |
1.0 | 1.99568327 | 3.91753661 | 5.23343442 | 6.04964748 | 6.04964746 | 1.9×10−8 |
ℑ | Φ=0.4 | Φ=0.6 | Φ=0.8 | Φ=1 | Exact solution | |vexact−vCLTIM| |
0.1 | 1.51109629 | 0.76685816 | 0.57403341 | 0.49658530 | 0.49658530 | 9×10−10 |
0.2 | 1.67001967 | 0.84750934 | 0.63440503 | 0.54881163 | 0.54881163 | 1×10−9 |
0.3 | 1.84565718 | 0.93664267 | 0.70112599 | 0.60653065 | 0.60653065 | 1×10−9 |
0.4 | 2.03976664 | 1.03515024 | 0.77486406 | 0.67032004 | 0.67032004 | 1.1×10−9 |
0.5 | 2.25429077 | 1.14401795 | 0.85635722 | 0.74081821 | 0.74081822 | 1.3×10−9 |
0.6 | 2.49137660 | 1.26433536 | 0.94642110 | 0.81873075 | 0.81873075 | 1.5×10−9 |
0.7 | 2.75339696 | 1.39730668 | 1.04595707 | 0.90483741 | 0.90483741 | 1.5×10−9 |
0.8 | 3.04297425 | 1.54426270 | 1.15596134 | 0.99999999 | 1.00000000 | 1.7×10−9 |
0.9 | 3.36300665 | 1.70667423 | 1.27753485 | 1.10517091 | 1.10517091 | 2×10−9 |
1.0 | 3.71669714 | 1.88616672 | 1.41189437 | 1.22140275 | 1.22140275 | 2×10−9 |
ℑ | Φ=0.4 | Φ=0.6 | Φ=0.8 | Φ=1 | Exact solution | |wexact−wCLTIM| |
0.1 | 9.14159986 | 4.63922155 | 3.47269979 | 3.00416601 | 3.00416602 | 6×10−9 |
0.2 | 8.27166161 | 4.19774125 | 3.14222871 | 2.71828182 | 2.71828182 | 5×10−9 |
0.3 | 7.48450894 | 3.79827335 | 2.84320611 | 2.45960310 | 2.45960311 | 5×10−9 |
0.4 | 6.77226374 | 3.43681985 | 2.57263928 | 2.22554092 | 2.22554092 | 4×10−9 |
0.5 | 6.12779764 | 3.10976320 | 2.32782028 | 2.01375270 | 2.01375270 | 3×10−9 |
0.6 | 5.54466059 | 2.81383011 | 2.10629889 | 1.82211879 | 1.82211880 | 2×10−9 |
0.7 | 5.01701638 | 2.54605877 | 1.90585805 | 1.64872126 | 1.64872127 | 3×10−9 |
0.8 | 4.53958414 | 2.30376924 | 1.72449168 | 1.49182469 | 1.49182469 | 3×10−9 |
0.9 | 4.10758559 | 2.08453661 | 1.56038460 | 1.34985880 | 1.34985880 | 3×10−9 |
1.0 | 3.71669714 | 1.88616672 | 1.41189437 | 1.22140275 | 1.22140275 | 2×10−9 |
ℑ | u(ℑ,℘,ϑ) | HAM [57] | v(ℑ,℘,ϑ) | HAM [57] | w(ℑ,℘,ϑ) | HAM [57] |
0.1 | 8×10−9 | 2.59×10−7 | 9×10−10 | 6.40×10−9 | 6×10−9 | 2.48×10−7 |
0.2 | 9×10−9 | 2.86×10−7 | 1×10−9 | 3.71×10−8 | 5×10−9 | 2.03×10−7 |
0.3 | 1×10−8 | 3.17×10−7 | 1×10−9 | 4.11×10−8 | 5×10−9 | 1.84×10−7 |
0.4 | 1×10−8 | 3.50×10−7 | 1.1×10−9 | 4.54×10−8 | 4×10−9 | 1.66×10−7 |
0.5 | 1.1×10−8 | 3.87×10−7 | 1.3×10−9 | 5.02×10−8 | 3×10−9 | 1.50×10−7 |
0.6 | 1.2×10−8 | 4.27×10−7 | 1.5×10−9 | 5.54×10−8 | 2×10−9 | 1.36×10−7 |
0.7 | 1.4×10−8 | 4.73×10−7 | 1.5×10−9 | 6.13×10−8 | 3×10−9 | 1.23×10−7 |
0.8 | 1.5×10−8 | 5.22×10−7 | 1.7×10−9 | 6.77×10−8 | 3×10−9 | 1.11×10−7 |
0.9 | 1.6×10−8 | 5.77×10−7 | 2×10−9 | 7.49×10−8 | 3×10−9 | 1.01×10−7 |
1.0 | 1.9×10−8 | 6.38×10−7 | 2×10−9 | 9.14×10−8 | 2×10−9 | 2.6×10−7 |
Example 4.2. Consider the following system of nonlinear temporal-fractional differential equations [56]:
TΦϑu(ℑ,ϑ)−∂∂ℑv(ℑ,ϑ)+v(ℑ,ϑ)+u(ℑ,ϑ)=0,TΦϑv(ℑ,ϑ)−∂∂ℑu(ℑ,ϑ)+v(ℑ,ϑ)+u(ℑ,ϑ)=0,0<Φ≤1, | (4.9) |
with the initial conditions
u(ℑ,0)=sinh(ℑ),v(ℑ,0)=cosh(ℑ). | (4.10) |
Taking CLT on both sides of Eq (4.9),
LΦ[TΦϑu(ℑ,ϑ)]=LΦ[∂∂ℑv(ℑ,ϑ)−v(ℑ,ϑ)−u(ℑ,ϑ)],LΦ[TΦϑv(ℑ,ϑ)]=LΦ[∂∂ℑu(ℑ,ϑ)−v(ℑ,ϑ)−u(ℑ,ϑ)]. | (4.11) |
Applying the process described in Section 3, we get the following outcome:
LΦ[u(ℑ,ϑ)]=1s(sinh(ℑ))+1sΦLΦ(∂∂ℑv(ℑ,ϑ))−1sΦLΦ(v(ℑ,ϑ))−1sΦLΦ(u(ℑ,ϑ)),LΦ[v(ℑ,ϑ)]=1s(cosh(ℑ))+1sΦLΦ(∂∂ℑu(ℑ,ϑ))−1sΦLΦ(v(ℑ,ϑ))−1sΦLΦ(u(ℑ,ϑ)). | (4.12) |
Now, taking inverse CLT on both sides of Eq (4.12),
u(ℑ,ϑ)=L−1Φ[1s(sinh(ℑ))]+L−1Φ[1sΦLΦ(∂∂ℑv(ℑ,ϑ))]−L−1Φ[1sΦLΦ(v(ℑ,ϑ))]−L−1Φ[1sΦLΦ(u(ℑ,ϑ))],v(ℑ,ϑ)=L−1Φ[1s(cosh(ℑ))]+L−1Φ[1sΦLΦ(∂∂ℑu(ℑ,ϑ))]−L−1Φ[1sΦLΦ(v(ℑ,ϑ))]−L−1Φ[1sΦLΦ(u(ℑ,ϑ))]. | (4.13) |
Using the procedures described in Section 3, we get the following result:
u,v(ℑ,ϑ)=∞∑k=0uk,vk(ℑ,ϑ). | (4.14) |
Using Eq (4.14) in (4.13),
∞∑k=0uk(ℑ,ϑ)=L−1Φ[1s(sinh(ℑ))]+L−1Φ[1sΦLΦ(∂∂ℑ∞∑k=0vk(ℑ,ϑ))]−L−1Φ[1sΦLΦ(∞∑k=0vk(ℑ,ϑ))]−L−1Φ[1sΦLΦ(∞∑k=0uk(ℑ,ϑ))],∞∑k=0vk(ℑ,ϑ)=L−1Φ[1s(cosh(ℑ))]+L−1Φ[1sΦLΦ(∂∂ℑ∞∑k=0uk(ℑ,ϑ))]−L−1Φ[1sΦLΦ(∞∑k=0vk(ℑ,ϑ))]−L−1Φ[1sΦLΦ(∞∑k=0uk(ℑ,ϑ))]. | (4.15) |
The following are the outcomes of Eq (4.15) when the iteration procedure described in Section 3 is applied:
u0(ℑ,ϑ)=sinh(ℑ),v0(ℑ,ϑ)=cosh(ℑ),u1(ℑ,ϑ)=−ϑ1Φ1!Φ1cosh(ℑ),v1(ℑ,ϑ)=−ϑ1Φ1!Φ1sinh(ℑ),u2(ℑ,ϑ)=ϑ2Φ2!Φ2sinh(ℑ),v2(ℑ,ϑ)=ϑ2Φ2!Φ2cosh(ℑ),u3(ℑ,ϑ)=−ϑ3Φ3!Φ3cosh(ℑ),v3(ℑ,ϑ)=−ϑ3Φ3!Φ3sinh(ℑ),⋮ |
Consequently, we get the following approximate solution to Eq (4.9):
u(ℑ,ϑ)=u0(ℑ,ϑ)+u1(ℑ,ϑ)+u2(ℑ,ϑ)+u3(ℑ,ϑ)+⋯,=sinh(ℑ)−ϑ1Φ1!Φ1cosh(ℑ)+ϑ2Φ2!Φ2sinh(ℑ)−ϑ3Φ3!Φ3cosh(ℑ)+⋯,v(ℑ,y,ϑ)=v0(ℑ,ϑ)+v1(ℑ,ϑ)+v2(ℑ,ϑ)+v3(ℑ,ϑ)+⋯,=cosh(ℑ)−ϑ1Φ1!Φ1sinh(ℑ)+ϑ2Φ2!Φ2cosh(ℑ)−ϑ3Φ3!Φ3sinh(ℑ)+⋯. | (4.16) |
At Φ=1, the exact solutions are u(ℑ,ϑ)=sinh(ℑ−ϑ),v(ℑ,ϑ)=cosh(ℑ−ϑ), respectively. We examine the numerical and graphical outcomes of the precise and approximate solutions to the models described in Example 4.2. Using the error function, we investigate the accuracy and capabilities of the numerical technique. It is crucial to identify the error between the exact and approximate solutions. To illustrate the proposed method's efficiency and accuracy, we implemented the absolute error function. The 2D graphs of the comparison study are shown in Figure 3. They represent various values of Φ=0.4,0.6,0.8,1 of the approximate and precise solution, respectively, generated by the recommended approach at ℘=1,ϑ=0.2 in the interval ℑ∈[0,4]. Figure 4 represents the 3D graphs of the exact and the approximate solutions attained by the suggested technique at Φ=1 in the intervals ϑ∈[0,1], and ℑ∈[0,2] at ℘=1 for Example 4.2. These graphs demonstrate how well the suggested method's approximative solution works. The close approximation and precise solution demonstrate the accuracy and efficacy of the proposed technique. Tables 5 and 6 show the approximate and exact solutions and absolute error at Φ=0.4,0.6,0.8,1 values. The point-wise error of the approximate and exact solutions of Example 4.2 at ϑ=0.2 is shown in Table 7. A comparison with the solution derived using the HAM is also provided. All the mentioned tables in Example 4.2 show that both types of solutions are highly comparable, supporting the efficacy of the developed approach.
ℑ | Φ=0.4 | Φ=0.6 | Φ=0.8 | Φ=1 | Exact solution | |uexact−uCLTIM| |
0.0 | -1.72330539 | -0.67799290 | -0.35181302 | -0.20133600 | -0.20133600 | 2.5×10−9 |
0.1 | -1.53297120 | -0.56037592 | -0.24738888 | -0.10016675 | -0.10016675 | 6.4×10−9 |
0.2 | -1.35797951 | -0.44836738 | −0.14544069 | -0.00000001 | 0.00000000 | 1.543×10−8 |
0.3 | -1.19657893 | -0.34084625 | −0.04494812 | 0.10016672 | 0.10016675 | 2.44×10−8 |
0.4 | -1.04715412 | -0.23673642 | 0.05509458 | 0.20133596 | 0.20133600 | 3.38×10−8 |
0.5 | -0.90820958 | -0.13499593 | 0.15568869 | 0.30452025 | 0.30452029 | 4.34×10−8 |
0.6 | -0.77835470 | -0.03460653 | 0.25784100 | 0.41075227 | 0.41075232 | 5.36×10−8 |
0.7 | -0.65628986 | 0.06543651 | 0.36257386 | 0.52109524 | 0.52109530 | 6.45×10−8 |
0.8 | -0.54079339 | 0.16613448 | 0.47093548 | 0.63665350 | 0.63665358 | 7.55×10−8 |
0.9 | -0.43070936 | 0.26849517 | 0.58401038 | 0.75858361 | 0.75858370 | 8.73×10−8 |
1.0 | -0.32493601 | 0.37354305 | 0.70293026 | 0.88810588 | 0.88810598 | 1.003×10−7 |
ℑ | Φ=0.4 | Φ=0.6 | Φ=0.8 | Φ=1 | Exact solution | |uexact−uCLTIM| |
0.0 | 1.99339175 | 1.20817382 | 1.06008135 | 1.02006675 | 1.02006675 | 0.00000000 |
0.1 | 1.83074912 | 1.14630738 | 1.03014621 | 1.00500416 | 1.00500416 | 1×10−9 |
0.2 | 1.68642924 | 1.09591357 | 1.01052111 | 1.00000000 | 1.00000000 | 1×10−9 |
0.3 | 1.55898771 | 1.05648803 | 1.00100966 | 1.00500416 | 1.00500416 | 1×10−9 |
0.4 | 1.44714905 | 1.02763618 | 1.00151664 | 1.02006675 | 1.02006675 | 0.00000000 |
0.5 | 1.34979395 | 1.00906926 | 1.01204714 | 1.04533851 | 1.04533851 | 0.00000000 |
0.6 | 1.26594803 | 1.00060144 | 1.03270655 | 1.08107237 | 1.08107237 | 1×10−9 |
0.7 | 1.19477216 | 1.00214797 | 1.06370163 | 1.12762596 | 1.12762596 | 3×10−9 |
0.8 | 1.13555396 | 1.01372434 | 1.10534259 | 1.18546522 | 1.18546521 | 3×10−9 |
0.9 | 1.08770077 | 1.03544641 | 1.15804620 | 1.25516900 | 1.25516900 | 2×10−9 |
1.0 | 1.05073365 | 1.06753157 | 1.22233992 | 1.33743494 | 1.33743494 | 3×10−9 |
ℑ | u(ℑ,℘,ϑ) | HAM [57] | v(ℑ,℘,ϑ) | HAM [57] |
0.0 | 2.5×10−9 | 1.21×10−8 | 0.00000000 | 8.89×10−8 |
0.1 | 6.4×10−9 | 2.18×10−8 | 1×10−9 | 8.91×10−8 |
0.2 | 1.54×10−8 | 5.59×10−8 | 1×10−9 | 9.02×10−8 |
0.3 | 2.44×10−8 | 9.07×10−8 | 1×10−9 | 9.22×10−8 |
0.4 | 3.38×10−8 | 1.26×10−8 | 0.00000000 | 9.51×10−8 |
0.5 | 4.34×10−8 | 1.63×10−8 | 0.00000000 | 9.89×10−8 |
0.6 | 5.36×10−8 | 2.01×10−7 | 1×10−9 | 1.03×10−7 |
0.7 | 6.45×10−8 | 2.42×10−7 | 3×10−9 | 1.09×10−7 |
0.8 | 7.55×10−8 | 2.85×10−7 | 3×10−9 | 1.16×10−7 |
0.9 | 8.73×10−8 | 3.31×10−7 | 2×10−9 | 1.24×10−7 |
1.0 | 1.003×10−7 | 3.80×10−7 | 3×10−9 | 1.34×10−7 |
Example 4.3. Consider the following system of nonlinear temporal-fractional differential equations [56]:
TΦϑu(ℑ,℘,ϑ)−∂∂ℑv(ℑ,℘,ϑ)∂∂℘w(ℑ,℘,ϑ)=1,TΦϑv(ℑ,℘,ϑ)−∂∂ℑw(ℑ,℘,ϑ)∂∂℘u(ℑ,℘,ϑ)=5,0<Φ≤1,TΦϑw(ℑ,℘,ϑ)−∂∂ℑu(ℑ,℘,ϑ)∂∂℘v(ℑ,℘,ϑ)=5, | (4.17) |
with the initial conditions
u(ℑ,℘,0)=ℑ+2℘,v(ℑ,℘,0)=ℑ−2℘,w(ℑ,℘,0)=−ℑ+2℘. | (4.18) |
Taking CLT on both sides of Eq (4.23),
LΦ[TΦϑu(ℑ,℘,ϑ)]=LΦ[∂∂ℑv(ℑ,℘,ϑ)∂∂℘w(ℑ,℘,ϑ)+1],LΦ[TΦϑv(ℑ,℘,ϑ)]=LΦ[∂∂ℑw(ℑ,℘,ϑ)∂∂℘u(ℑ,℘,ϑ)+5],LΦ[TΦϑw(ℑ,℘,ϑ)]=LΦ[∂∂ℑu(ℑ,℘,ϑ)∂∂℘v(ℑ,℘,ϑ)+5]. | (4.19) |
Applying the process described in Section 3, we get the following outcome:
LΦ[u(ℑ,℘,ϑ)]=1s(ℑ+2℘)+1sΦLΦ[∂∂ℑv(ℑ,℘,ϑ)∂∂℘w(ℑ,℘,ϑ)+1],LΦ[v(ℑ,℘,ϑ)]=1s(ℑ−2℘)+1sΦLΦ[∂∂ℑw(ℑ,℘,ϑ)∂∂℘u(ℑ,℘,ϑ)+5],LΦ[w(ℑ,℘,ϑ)]=1s(−ℑ+2℘)+1sΦLΦ[∂∂ℑu(ℑ,℘,ϑ)∂∂℘v(ℑ,℘,ϑ)+5]. | (4.20) |
Now, taking inverse CLT on both sides of Eq (4.20),
u(ℑ,℘,ϑ)=L−1Φ[1s(ℑ+2℘)]+L−1Φ[1sΦLΦ(∂∂ℑv(ℑ,℘,ϑ)∂∂℘w(ℑ,℘,ϑ))],v(ℑ,℘,ϑ)=L−1Φ[1s(ℑ−2℘)]+L−1Φ[1sΦLΦ(∂∂ℑw(ℑ,℘,ϑ)∂∂℘u(ℑ,℘,ϑ))],w(ℑ,℘,ϑ)=L−1Φ[1s(−x+2℘)]+L−1Φ[1sΦLΦ(∂∂ℑu(ℑ,℘,ϑ)∂∂℘v(ℑ,℘,ϑ))]. | (4.21) |
Using the procedures described in Section 3, we get the following result:
u,v,w(ℑ,℘,ϑ)=∞∑k=0uk,vk,wk(ℑ,℘,ϑ). | (4.22) |
Using Eq (4.22) in (4.21),
∞∑k=0uk(ℑ,℘,ϑ)=L−1Φ[1s(x+2℘)]+L−1Φ[1sΦLΦ{(∂∂ℑ∞∑k=0vk(ℑ,℘,ϑ))(∂∂℘∞∑k=0wk(ℑ,℘,ϑ))+1}],∞∑k=0vk(ℑ,℘,ϑ)=L−1Φ[1s(x−2℘)]+L−1Φ[1sΦLΦ{(∂∂ℑ∞∑k=0wk(ℑ,℘,ϑ))(∂∂℘∞∑k=0uk(ℑ,℘,ϑ))+5}],∞∑k=0wk(ℑ,℘,ϑ)=L−1Φ[1s(−x+2℘)]+L−1Φ[1sΦLΦ{(∂∂ℑ∞∑k=0uk(ℑ,℘,ϑ))(∂∂℘∞∑k=0vk(ℑ,℘,ϑ))+5}]. | (4.23) |
The following are the outcomes of Eq (4.23) when the iteration procedure described in Section 3 is applied:
u0(ℑ,℘,ϑ)=ℑ+2℘,v0(ℑ,℘,ϑ)=ℑ−2℘,w0(ℑ,℘,ϑ)=−ℑ+2℘,u1(ℑ,℘,ϑ)=3ϑ1Φ1!Φ1,v1(ℑ,℘,ϑ)=3ϑ1Φ1!Φ1,w1(ℑ,℘,ϑ)=3ϑ1Φ1!Φ1,u2(ℑ,℘,ϑ)=ϑ1Φ1!Φ1,v2(ℑ,℘,ϑ)=5ϑ1Φ1!Φ1,w2(ℑ,℘,ϑ)=5ϑ1Φ1!Φ1,⋮ |
Consequently, we get the following approximate solution to Eq (4.17):
u(ℑ,℘,ϑ)=u0(ℑ,℘,ϑ)+u1(ℑ,℘,ϑ)+u2(ℑ,℘,ϑ)+⋯,=ℑ+2℘+3ϑ1Φ1!Φ1+ϑ1Φ1!Φ1+⋯,v(ℑ,℘,ϑ)=v0(ℑ,℘,ϑ)+v1(ℑ,℘,ϑ)+v2(ℑ,℘,ϑ)+⋯,=ℑ−2℘+3ϑ1Φ1!Φ1+5ϑ1Φ1!Φ1+⋯,w(ℑ,℘,ϑ)=w0(ℑ,℘,ϑ)+w1(ℑ,℘,ϑ)+w2(ℑ,℘,ϑ)+⋯,=−ℑ+2℘+3ϑ1Φ1!Φ1+5ϑ1Φ1!Φ1+⋯. | (4.24) |
This study has effectively extended the conformable Laplace transform iterative method to compute approximate solution of the systems of nonlinear temporal-fractional differential equations related to the conformable derivative. In addition, the method's theoretical predictions and error analysis have been examined. Three distinct examples are provided to show the applicability and efficacy of the proposed approach. The CLTIM method's validity and reliability are shown by comparing the approximate solutions to the exact solutions. To examine the exact and approximate solutions, we utilized the 2D and 3D graphs, as well as different tables to introduce precise solutions that demonstrated consistency across a range of fractional-order values. Consequently, this approach is straightforward and efficient for addressing temporal-fractional differential equations, which has the potential to be applied in a variety of scientific circumstances. As a result, we may use this method to solve more fractional-order linear and nonlinear differential equations.
N.G.; and S.N.; Conceptualization, A.M.S.; Visualization, S.N.; Funding, M.S.A.; Data curation, R.U.; Resources, N.G.; and S.N.; Writing-review & editing; A.M.S.; Formal analysis, M.S.A.; Project administration, R.U.; Data curation, M.S.A.; validation; Investigation, N.G.; Validation. All authors have read and agreed to the published version of the manuscript.
The authors declare they have not used Artificial Intelligence (AI) tools in the creation of this article.
This work was supported by the Deanship of Scientific Research, Vice Presidency for Graduate Studies and Scientific Research, King Faisal University, Saudi Arabia (GrantKFU250257).
This work was supported by the Deanship of Scientific Research, Vice Presidency for Graduate Studies and Scientific Research, King Faisal University, Saudi Arabia (GrantKFU250257).
The authors declare no conflicts of interest in this paper.
[1] | M. A. Herzallah, Notes on some fractional calculus operators and their properties, J. Fract. Calc. Appl., 5 (2014), 1–10. |
[2] |
M. Caputo, Linear models of dissipation whose Q is almost frequency independent-II, Geophys. J. Int., 5 (1967), 529–539. https://doi.org/10.1111/j.1365-246X.1967.tb02303.x doi: 10.1111/j.1365-246X.1967.tb02303.x
![]() |
[3] |
M. M. Al-Sawalha, R. P. Agarwal, R. Shah, O. Y. Ababneh, W. Weera, A reliable way to deal with fractional-order equations that describe the unsteady flow of a polytropic gas, Mathematics, 10 (2022), 2293. https://doi.org/10.3390/math10132293 doi: 10.3390/math10132293
![]() |
[4] | D. Baleanu, J. A. T. Machado, A. C. Luo, Fractional dynamics and control, Springer, 2012. https://doi.org/10.1007/978-1-4614-0457-6 |
[5] |
B. Bira, T. Raja Sekhar, D. Zeidan, Exact solutions for some time-fractional evolution equations using Lie group theory, Math. Methods Appl. Sci., 41 (2018), 6717–6725. https://doi.org/10.1002/mma.5186 doi: 10.1002/mma.5186
![]() |
[6] |
M. Al-Smadi, O. A. Arqub, Computational algorithm for solving fredholm time-fractional partial integrodifferential equations of dirichlet functions type with error estimates, Appl. Math. Comput., 342 (2019), 280–294. https://doi.org/10.1016/j.amc.2018.09.020 doi: 10.1016/j.amc.2018.09.020
![]() |
[7] |
D. Baleanu, A. K. Golmankhaneh, A. K. Golmankhaneh, M. C. Baleanu, Fractional electromagnetic equations using fractional forms, Int. J. Theor. Phys., 48 (2009), 3114–3123. https://doi.org/10.1007/s10773-009-0109-8 doi: 10.1007/s10773-009-0109-8
![]() |
[8] |
M. Al-Smadi, Simplified iterative reproducing kernel method for handling time-fractional BVPs with error estimation, Ain Shams Eng. J., 9 (2018), 2517–2525. https://doi.org/10.1016/j.asej.2017.04.006 doi: 10.1016/j.asej.2017.04.006
![]() |
[9] |
Z. Altawallbeh, M. Al-Smadi, I. Komashynska, A. Ateiwi, Numerical solutions of fractional systems of two-point BVPs by using the iterative reproducing kernel algorithm, Ukr. Math. J., 70 (2018), 687–701. https://doi.org/10.1007/s11253-018-1526-8 doi: 10.1007/s11253-018-1526-8
![]() |
[10] |
S. Hasan, A. El-Ajou, S. Hadid, M. Al-Smadi, S. Momani, Atangana-Baleanu fractional framework of reproducing kernel technique in solving fractional population dynamics system, Chaos Soliton. Fract., 133 (2020), 109624. https://doi.org/10.1016/j.chaos.2020.109624 doi: 10.1016/j.chaos.2020.109624
![]() |
[11] |
F. Riewe, Mechanics with fractional derivatives, Phys. Rev. E, 55 (1997), 3581. https://doi.org/10.1103/PhysRevE.55.3581 doi: 10.1103/PhysRevE.55.3581
![]() |
[12] |
N. Laskin, Fractional quantum mechanics, Phys. Rev. E, 62 (2000), 3135. https://doi.org/10.1103/PhysRevE.62.3135 doi: 10.1103/PhysRevE.62.3135
![]() |
[13] |
S. Noor, A. W. Alrowaily, M. Alqudah, R. Shah, S. A. El-Tantawy, Innovative solutions to the fractional diffusion equation using the Elzaki transform, Math. Comput. Appl., 29 (2024), 75. https://doi.org/10.3390/mca29050075 doi: 10.3390/mca29050075
![]() |
[14] |
J. Muhammad, N. Gul, R. Ali, Enhanced decision-making with advanced algebraic techniques in complex Fermatean fuzzy sets under confidence levels, Int. J. Knowl. Innov. Stud., 2 (2024), 107–118. https://doi.org/10.56578/ijkis020205 doi: 10.56578/ijkis020205
![]() |
[15] |
M. Khalid, I. A. Mallah, S. Alha, A. Akgul, Exploring the Elzaki transform: unveiling solutions to reaction-diffusion equations with generalized composite fractional derivatives, Contemp. Math., 5 (2024), 1426–1438. https://doi.org/10.37256/cm.5220244621 doi: 10.37256/cm.5220244621
![]() |
[16] |
H. Yasmin, A. A. Alderremy, R. Shah, A. Hamid Ganie, S. Aly, Iterative solution of the fractional Wu-Zhang equation under Caputo derivative operator, Front. Phys., 12 (2024), 1333990. https://doi.org/10.3389/fphy.2024.1333990 doi: 10.3389/fphy.2024.1333990
![]() |
[17] |
Y. Mahatekar, P. S. Scindia, P. Kumar, A new numerical method to solve fractional differential equations in terms of Caputo-Fabrizio derivatives, Phys. Scr., 98 (2023), 024001. https://doi.org/10.1088/1402-4896/acaf1a doi: 10.1088/1402-4896/acaf1a
![]() |
[18] |
A. Khan, J. F. Gómez-Aguilar, T. S. Khan, H. Khan, Stability analysis and numerical solutions of fractional order HIV/AIDS model, Chaos Soliton. Fract., 122 (2019), 119–128. https://doi.org/10.1016/j.chaos.2019.03.022 doi: 10.1016/j.chaos.2019.03.022
![]() |
[19] |
A. El-Ajou, O. A. Arqub, Z. A. Zhour, S. Momani, New results on fractional power series: theories and applications, Entropy, 15 (2013), 5305–5323. https://doi.org/10.3390/e15125305 doi: 10.3390/e15125305
![]() |
[20] |
A. Kilicman, Z. A. A. Al Zhour, Kronecker operational matrices for fractional calculus and some applications, Appl. Math. Comput., 187 (2007), 250–265. https://doi.org/10.1016/j.amc.2006.08.122 doi: 10.1016/j.amc.2006.08.122
![]() |
[21] |
A. Khan, T. Abdeljawad, J. F. Gómez-Aguilar, H. Khan, Dynamical study of fractional order mutualism parasitism food web module, Chaos Soliton. Fract., 134 (2020), 109685. https://doi.org/10.1016/j.chaos.2020.109685 doi: 10.1016/j.chaos.2020.109685
![]() |
[22] |
M. I. Liaqat, A. Akgül, A novel approach for solving linear and nonlinear time-fractional Schrödinger equations, Chaos Soliton. Fract., 162 (2022), 112487. https://doi.org/10.1016/j.chaos.2022.112487 doi: 10.1016/j.chaos.2022.112487
![]() |
[23] |
R. Khalil, M. Al Horani, A. Yousef, M. Sababheh, A new definition of fractional derivative, J. Comput. Appl. Math., 264 (2014), 65–70. https://doi.org/10.1016/j.cam.2014.01.002 doi: 10.1016/j.cam.2014.01.002
![]() |
[24] |
E. Balcı, İ. Öztürk, S. Kartal, Dynamical behaviour of fractional order tumor model with Caputo and conformable fractional derivative, Chaos Soliton. Fract., 123 (2019), 43–51. https://doi.org/10.1016/j.chaos.2019.03.032 doi: 10.1016/j.chaos.2019.03.032
![]() |
[25] |
W. Xie, C. Liu, W. Z. Wu, W. Li, C. Liu, Continuous grey model with conformable fractional derivative, Chaos Soliton. Fract., 139 (2020), 110285. https://doi.org/10.1016/j.chaos.2020.110285 doi: 10.1016/j.chaos.2020.110285
![]() |
[26] |
C. Ma, M. Jun, Y. Cao, T. Liu, J. Wang, Multistability analysis of a conformable fractional-order chaotic system, Phys. Scr., 95 (2020), 075204. https://doi.org/10.1088/1402-4896/ab8d54 doi: 10.1088/1402-4896/ab8d54
![]() |
[27] |
H. Tajadodi, A. Khan, J. F. Gómez-Aguilar, H. Khan, Optimal control problems with Atangana-Baleanu fractional derivative, Optim. Contr. Appl. Met., 42 (2021), 96–109. https://doi.org/10.1002/oca.2664 doi: 10.1002/oca.2664
![]() |
[28] |
J. S. Duan, T. Chaolu, R. Rach, Solutions of the initial value problem for nonlinear fractional ordinary differential equations by the Rach-Adomian-Meyers modified decomposition method, Appl. Math. Comput., 218 (2012), 8370–8392. https://doi.org/10.1016/j.amc.2012.01.063 doi: 10.1016/j.amc.2012.01.063
![]() |
[29] |
A. Di Matteo, A. Pirrotta, Generalized differential transform method for nonlinear boundary value problem of fractional order, Commun. Nonlinear Sci. Numer. Simul., 29 (2015), 88–101. https://doi.org/10.1016/j.cnsns.2015.04.017 doi: 10.1016/j.cnsns.2015.04.017
![]() |
[30] |
A. Al-rabtah, V. S. Ertürk, S. Momani, Solutions of a fractional oscillator by using differential transform method, Comput. Math. Appl., 59 (2010), 1356–1362. https://doi.org/10.1016/j.camwa.2009.06.036 doi: 10.1016/j.camwa.2009.06.036
![]() |
[31] |
S. Momani, S. Abuasad, Application of He's variational iteration method to Helmholtz equation, Chaos Soliton. Fract., 27 (2006), 1119–1123. https://doi.org/10.1016/j.chaos.2005.04.113 doi: 10.1016/j.chaos.2005.04.113
![]() |
[32] |
O. Abdulaziz, I. Hashim, S. Momani, Solving systems of fractional differential equations by homotopy-perturbation method, Phys. Lett. A, 372 (2008), 451–459. https://doi.org/10.1016/j.physleta.2007.07.059 doi: 10.1016/j.physleta.2007.07.059
![]() |
[33] |
J. H. He, Variational iteration method for autonomous ordinary differential systems, Appl. Math. Comput., 114 (2000), 115–123. https://doi.org/10.1016/S0096-3003(99)00104-6 doi: 10.1016/S0096-3003(99)00104-6
![]() |
[34] |
Y. Kai, Z. Yin, Linear structure and soliton molecules of Sharma-Tasso-Olver-Burgers equation, Phys. Lett. A, 452 (2022), 128430. https://doi.org/10.1016/j.physleta.2022.128430 doi: 10.1016/j.physleta.2022.128430
![]() |
[35] |
Y. He, Y. Kai, Wave structures, modulation instability analysis and chaotic behaviors to Kudryashov's equation with third-order dispersion, Nonlinear Dyn., 12 (2024), 10355–10371. https://doi.org/10.1007/s11071-024-09635-3 doi: 10.1007/s11071-024-09635-3
![]() |
[36] |
J. Xie, Z. Xie, H. Xu, Z. Li, W. Shi, J. Ren, et al., Resonance and attraction domain analysis of asymmetric duffing systems with fractional damping in two degrees of freedom, Chaos Soliton. Fract., 187 (2024), 115440. https://doi.org/10.1016/j.chaos.2024.115440 doi: 10.1016/j.chaos.2024.115440
![]() |
[37] |
C. Zhu, S. A. Idris, M. E. M. Abdalla, S. Rezapour, S. Shateyi, B. Gunay, Analytical study of nonlinear models using a modified Schrodinger's equation and logarithmic transformation, Results Phys., 55 (2023), 107183. https://doi.org/10.1016/j.rinp.2023.107183 doi: 10.1016/j.rinp.2023.107183
![]() |
[38] |
S. Guo, A. Das, Cohomology and deformations of generalized reynolds operators on leibniz algebras, Rocky Mountain J. Math., 54 (2024), 161–178. https://doi.org/10.1216/rmj.2024.54.161 doi: 10.1216/rmj.2024.54.161
![]() |
[39] |
C. Guo, J. Hu, J. Hao, S. Čelikovsky, X. Hu, Fixed-time safe tracking control of uncertain high-order nonlinear pure-feedback systems via unified transformation functions, Kybernetika, 59 (2023), 342–364. https://doi.org/10.14736/kyb-2023-3-0342 doi: 10.14736/kyb-2023-3-0342
![]() |
[40] |
A. A. Alderremy, R. Shah, N. Iqbal, S. Aly, K. Nonlaopon, Fractional series solution construction for nonlinear fractional reaction-diffusion Brusselator model utilizing Laplace residual power series, Symmetry, 14 (2022), 1944. https://doi.org/10.3390/sym14091944 doi: 10.3390/sym14091944
![]() |
[41] |
H. Yasmin, A. S. Alshehry, A. H. Ganie, A. M. Mahnashi, R. Shah, Perturbed Gerdjikov-Ivanov equation, soliton solutions via Backlund transformation, Optik, 298 (2024), 171576. https://doi.org/10.1016/j.ijleo.2023.171576 doi: 10.1016/j.ijleo.2023.171576
![]() |
[42] |
M. M. Al-Sawalha, A. Khan, O. Y. Ababneh, T. Botmart, Fractional view analysis of Kersten-Krasil'shchik coupled KdV-mKdV systems with non-singular kernel derivatives, AIMS Math., 10 (2022), 18334–18359. https://doi.org/10.3934/math.20221010 doi: 10.3934/math.20221010
![]() |
[43] |
E. M. Elsayed, R. Shah, K. Nonlaopon, The analysis of the fractional-order Navier-Stokes equations by a novel approach, J. Funct. Spaces, 2022 (2022), 8979447. https://doi.org/10.1155/2022/8979447 doi: 10.1155/2022/8979447
![]() |
[44] |
M. Naeem, H. Rezazadeh, A. A. Khammash, R. Shah, S. Zaland, Analysis of the fuzzy fractional-order solitary wave solutions for the KdV equation in the sense of Caputo-Fabrizio derivative, J. Math., 2022 (2022), 3688916. https://doi.org/10.1155/2022/3688916 doi: 10.1155/2022/3688916
![]() |
[45] |
M. Alqhtani, K. M. Saad, R. Shah, W. M. Hamanah, Discovering novel soliton solutions for (3+1)-modified fractional Zakharov-Kuznetsov equation in electrical engineering through an analytical approach, Opt. Quant. Electron., 55 (2023), 1149. https://doi.org/10.1007/s11082-023-05407-2 doi: 10.1007/s11082-023-05407-2
![]() |
[46] |
M. Alqhtani, K. M. Saad, R. Shah, W. Weera, W. M. Hamanah, Analysis of the fractional-order local Poisson equation in fractal porous media, Symmetry, 14 (2022), 1323. https://doi.org/10.3390/sym14071323 doi: 10.3390/sym14071323
![]() |
[47] |
S. A. El-Tantawy, R. T. Matoog, A. W. Alrowaily, S. M. Ismaeel, On the shock wave approximation to fractional generalized Burger-Fisher equations using the residual power series transform method, Phys. Fluids, 36 (2024), 023105. https://doi.org/10.1063/5.0187127 doi: 10.1063/5.0187127
![]() |
[48] |
H. Yasmin, A. S. Alshehry, A. H. Ganie, A. Shafee, R. Shah, Noise effect on soliton phenomena in fractional stochastic Kraenkel-Manna-Merle system arising in ferromagnetic materials, Sci. Rep., 14 (2024), 1810. https://doi.org/10.1038/s41598-024-52211-3 doi: 10.1038/s41598-024-52211-3
![]() |
[49] |
S. Noor, W. Albalawi, R. Shah, M. M. Al-Sawalha, S. M. E. Ismaeel, S. A. El-Tantawy, On the approximations to fractional nonlinear damped Burger's-type equations that arise in fluids and plasmas using Aboodh residual power series and Aboodh transform iteration methods, Front. Phys., 12 (2024), 1374481. https://doi.org/10.3389/fphy.2024.1374481 doi: 10.3389/fphy.2024.1374481
![]() |
[50] |
M. I. Liaqat, E. Okyere, The fractional series solutions for the conformable time-fractional Swift-Hohenberg equation through the conformable Shehu Daftardar-Jafari approach with comparative analysis, J. Math., 2022 (2022), 3295076. https://doi.org/10.1155/2022/3295076 doi: 10.1155/2022/3295076
![]() |
[51] |
J. Younis, B. Ahmed, M. AlJazzazi, R. Al Hejaj, H. Aydi, Existence and uniqueness study of the conformable Laplace transform, J. Math., 2022 (2022), 4554065. https://doi.org/10.1155/2022/4554065 doi: 10.1155/2022/4554065
![]() |
[52] |
T. Abdeljawad, On conformable fractional calculus, J. Comput. Appl. Math., 279 (2015), 57–66. https://doi.org/10.1016/j.cam.2014.10.016 doi: 10.1016/j.cam.2014.10.016
![]() |
[53] | Z. Al-Zhour, F. Alrawajeh, N. Al-Mutairi, R. Alkhasawneh, New results on the conformable fractional Sumudu transform: theories and applications, Int. J. Anal. Appl., 17 (2019), 1019–1033. |
[54] | B. Ahmed, Generalization of fractional Laplace transform for higher order and its application, J. Innov. Appl. Math. Comput. Sci., 1 (2021), 79–92. |
[55] |
A. Khan, M. I. Liaqat, M. A. Alqudah, T. Abdeljawad, Analysis of the conformable temporal-fractional swift-hohenberg equation using a novel computational technique, Fractals, 31 (2023), 2340050. https://doi.org/10.1142/S0218348X23400509 doi: 10.1142/S0218348X23400509
![]() |
[56] |
M. Sultana, M. Waqar, A. H. Ali, A. A. Lupas, F. Ghanim, Z. A. Abduljabbar, Numerical investigation of systems of fractional partial differential equations by new transform iterative technique, AIMS Math., 10 (2024), 26649–26670. https://doi.org/10.3934/math.20241296 doi: 10.3934/math.20241296
![]() |
[57] |
H. Jafari, S. Seifi, Solving a system of nonlinear fractional partial differential equations using homotopy analysis method, Commun. Nonlinear Sci. Numer. Simul., 14 (2009), 1962–1969. https://doi.org/10.1016/j.cnsns.2008.06.019 doi: 10.1016/j.cnsns.2008.06.019
![]() |
ℑ | Φ=0.4 | Φ=0.6 | Φ=0.8 | Φ=1 | Exact solution | |uexact−uCLTIM| |
0.0 | 0.73417084 | 1.44118118 | 1.92527293 | 2.22554093 | 2.22554092 | 7×10−9 |
0.1 | 0.81138426 | 1.59275152 | 2.12775565 | 2.45960311 | 2.45960311 | 8×10−9 |
0.2 | 0.89671829 | 1.76026266 | 2.35153366 | 2.71828183 | 2.71828182 | 9×10−9 |
0.3 | 0.99102698 | 1.94539111 | 2.59884662 | 3.00416603 | 3.00416602 | 1×10−8 |
0.4 | 1.09525420 | 2.14998967 | 2.87216971 | 3.32011693 | 3.32011692 | 1×10−8 |
0.5 | 1.21044309 | 2.37610606 | 3.17423843 | 3.66929667 | 3.66929666 | 1.1×10−8 |
0.6 | 1.33774650 | 2.62600332 | 3.50807600 | 4.05519997 | 4.05519996 | 1.2×10−8 |
0.7 | 1.47843853 | 2.90218250 | 3.87702357 | 4.48168908 | 4.48168907 | 1.4×10−8 |
0.8 | 1.63392726 | 3.20740770 | 4.28477370 | 4.95303243 | 4.95303242 | 1.5×10−8 |
0.9 | 1.80576890 | 3.54473371 | 4.73540729 | 5.47394740 | 5.47394739 | 1.6×10−8 |
1.0 | 1.99568327 | 3.91753661 | 5.23343442 | 6.04964748 | 6.04964746 | 1.9×10−8 |
ℑ | Φ=0.4 | Φ=0.6 | Φ=0.8 | Φ=1 | Exact solution | |vexact−vCLTIM| |
0.1 | 1.51109629 | 0.76685816 | 0.57403341 | 0.49658530 | 0.49658530 | 9×10−10 |
0.2 | 1.67001967 | 0.84750934 | 0.63440503 | 0.54881163 | 0.54881163 | 1×10−9 |
0.3 | 1.84565718 | 0.93664267 | 0.70112599 | 0.60653065 | 0.60653065 | 1×10−9 |
0.4 | 2.03976664 | 1.03515024 | 0.77486406 | 0.67032004 | 0.67032004 | 1.1×10−9 |
0.5 | 2.25429077 | 1.14401795 | 0.85635722 | 0.74081821 | 0.74081822 | 1.3×10−9 |
0.6 | 2.49137660 | 1.26433536 | 0.94642110 | 0.81873075 | 0.81873075 | 1.5×10−9 |
0.7 | 2.75339696 | 1.39730668 | 1.04595707 | 0.90483741 | 0.90483741 | 1.5×10−9 |
0.8 | 3.04297425 | 1.54426270 | 1.15596134 | 0.99999999 | 1.00000000 | 1.7×10−9 |
0.9 | 3.36300665 | 1.70667423 | 1.27753485 | 1.10517091 | 1.10517091 | 2×10−9 |
1.0 | 3.71669714 | 1.88616672 | 1.41189437 | 1.22140275 | 1.22140275 | 2×10−9 |
ℑ | Φ=0.4 | Φ=0.6 | Φ=0.8 | Φ=1 | Exact solution | |wexact−wCLTIM| |
0.1 | 9.14159986 | 4.63922155 | 3.47269979 | 3.00416601 | 3.00416602 | 6×10−9 |
0.2 | 8.27166161 | 4.19774125 | 3.14222871 | 2.71828182 | 2.71828182 | 5×10−9 |
0.3 | 7.48450894 | 3.79827335 | 2.84320611 | 2.45960310 | 2.45960311 | 5×10−9 |
0.4 | 6.77226374 | 3.43681985 | 2.57263928 | 2.22554092 | 2.22554092 | 4×10−9 |
0.5 | 6.12779764 | 3.10976320 | 2.32782028 | 2.01375270 | 2.01375270 | 3×10−9 |
0.6 | 5.54466059 | 2.81383011 | 2.10629889 | 1.82211879 | 1.82211880 | 2×10−9 |
0.7 | 5.01701638 | 2.54605877 | 1.90585805 | 1.64872126 | 1.64872127 | 3×10−9 |
0.8 | 4.53958414 | 2.30376924 | 1.72449168 | 1.49182469 | 1.49182469 | 3×10−9 |
0.9 | 4.10758559 | 2.08453661 | 1.56038460 | 1.34985880 | 1.34985880 | 3×10−9 |
1.0 | 3.71669714 | 1.88616672 | 1.41189437 | 1.22140275 | 1.22140275 | 2×10−9 |
ℑ | u(ℑ,℘,ϑ) | HAM [57] | v(ℑ,℘,ϑ) | HAM [57] | w(ℑ,℘,ϑ) | HAM [57] |
0.1 | 8×10−9 | 2.59×10−7 | 9×10−10 | 6.40×10−9 | 6×10−9 | 2.48×10−7 |
0.2 | 9×10−9 | 2.86×10−7 | 1×10−9 | 3.71×10−8 | 5×10−9 | 2.03×10−7 |
0.3 | 1×10−8 | 3.17×10−7 | 1×10−9 | 4.11×10−8 | 5×10−9 | 1.84×10−7 |
0.4 | 1×10−8 | 3.50×10−7 | 1.1×10−9 | 4.54×10−8 | 4×10−9 | 1.66×10−7 |
0.5 | 1.1×10−8 | 3.87×10−7 | 1.3×10−9 | 5.02×10−8 | 3×10−9 | 1.50×10−7 |
0.6 | 1.2×10−8 | 4.27×10−7 | 1.5×10−9 | 5.54×10−8 | 2×10−9 | 1.36×10−7 |
0.7 | 1.4×10−8 | 4.73×10−7 | 1.5×10−9 | 6.13×10−8 | 3×10−9 | 1.23×10−7 |
0.8 | 1.5×10−8 | 5.22×10−7 | 1.7×10−9 | 6.77×10−8 | 3×10−9 | 1.11×10−7 |
0.9 | 1.6×10−8 | 5.77×10−7 | 2×10−9 | 7.49×10−8 | 3×10−9 | 1.01×10−7 |
1.0 | 1.9×10−8 | 6.38×10−7 | 2×10−9 | 9.14×10−8 | 2×10−9 | 2.6×10−7 |
ℑ | Φ=0.4 | Φ=0.6 | Φ=0.8 | Φ=1 | Exact solution | |uexact−uCLTIM| |
0.0 | -1.72330539 | -0.67799290 | -0.35181302 | -0.20133600 | -0.20133600 | 2.5×10−9 |
0.1 | -1.53297120 | -0.56037592 | -0.24738888 | -0.10016675 | -0.10016675 | 6.4×10−9 |
0.2 | -1.35797951 | -0.44836738 | −0.14544069 | -0.00000001 | 0.00000000 | 1.543×10−8 |
0.3 | -1.19657893 | -0.34084625 | −0.04494812 | 0.10016672 | 0.10016675 | 2.44×10−8 |
0.4 | -1.04715412 | -0.23673642 | 0.05509458 | 0.20133596 | 0.20133600 | 3.38×10−8 |
0.5 | -0.90820958 | -0.13499593 | 0.15568869 | 0.30452025 | 0.30452029 | 4.34×10−8 |
0.6 | -0.77835470 | -0.03460653 | 0.25784100 | 0.41075227 | 0.41075232 | 5.36×10−8 |
0.7 | -0.65628986 | 0.06543651 | 0.36257386 | 0.52109524 | 0.52109530 | 6.45×10−8 |
0.8 | -0.54079339 | 0.16613448 | 0.47093548 | 0.63665350 | 0.63665358 | 7.55×10−8 |
0.9 | -0.43070936 | 0.26849517 | 0.58401038 | 0.75858361 | 0.75858370 | 8.73×10−8 |
1.0 | -0.32493601 | 0.37354305 | 0.70293026 | 0.88810588 | 0.88810598 | 1.003×10−7 |
ℑ | Φ=0.4 | Φ=0.6 | Φ=0.8 | Φ=1 | Exact solution | |uexact−uCLTIM| |
0.0 | 1.99339175 | 1.20817382 | 1.06008135 | 1.02006675 | 1.02006675 | 0.00000000 |
0.1 | 1.83074912 | 1.14630738 | 1.03014621 | 1.00500416 | 1.00500416 | 1×10−9 |
0.2 | 1.68642924 | 1.09591357 | 1.01052111 | 1.00000000 | 1.00000000 | 1×10−9 |
0.3 | 1.55898771 | 1.05648803 | 1.00100966 | 1.00500416 | 1.00500416 | 1×10−9 |
0.4 | 1.44714905 | 1.02763618 | 1.00151664 | 1.02006675 | 1.02006675 | 0.00000000 |
0.5 | 1.34979395 | 1.00906926 | 1.01204714 | 1.04533851 | 1.04533851 | 0.00000000 |
0.6 | 1.26594803 | 1.00060144 | 1.03270655 | 1.08107237 | 1.08107237 | 1×10−9 |
0.7 | 1.19477216 | 1.00214797 | 1.06370163 | 1.12762596 | 1.12762596 | 3×10−9 |
0.8 | 1.13555396 | 1.01372434 | 1.10534259 | 1.18546522 | 1.18546521 | 3×10−9 |
0.9 | 1.08770077 | 1.03544641 | 1.15804620 | 1.25516900 | 1.25516900 | 2×10−9 |
1.0 | 1.05073365 | 1.06753157 | 1.22233992 | 1.33743494 | 1.33743494 | 3×10−9 |
ℑ | u(ℑ,℘,ϑ) | HAM [57] | v(ℑ,℘,ϑ) | HAM [57] |
0.0 | 2.5×10−9 | 1.21×10−8 | 0.00000000 | 8.89×10−8 |
0.1 | 6.4×10−9 | 2.18×10−8 | 1×10−9 | 8.91×10−8 |
0.2 | 1.54×10−8 | 5.59×10−8 | 1×10−9 | 9.02×10−8 |
0.3 | 2.44×10−8 | 9.07×10−8 | 1×10−9 | 9.22×10−8 |
0.4 | 3.38×10−8 | 1.26×10−8 | 0.00000000 | 9.51×10−8 |
0.5 | 4.34×10−8 | 1.63×10−8 | 0.00000000 | 9.89×10−8 |
0.6 | 5.36×10−8 | 2.01×10−7 | 1×10−9 | 1.03×10−7 |
0.7 | 6.45×10−8 | 2.42×10−7 | 3×10−9 | 1.09×10−7 |
0.8 | 7.55×10−8 | 2.85×10−7 | 3×10−9 | 1.16×10−7 |
0.9 | 8.73×10−8 | 3.31×10−7 | 2×10−9 | 1.24×10−7 |
1.0 | 1.003×10−7 | 3.80×10−7 | 3×10−9 | 1.34×10−7 |
ℑ | Φ=0.4 | Φ=0.6 | Φ=0.8 | Φ=1 | Exact solution | |uexact−uCLTIM| |
0.0 | 0.73417084 | 1.44118118 | 1.92527293 | 2.22554093 | 2.22554092 | 7×10−9 |
0.1 | 0.81138426 | 1.59275152 | 2.12775565 | 2.45960311 | 2.45960311 | 8×10−9 |
0.2 | 0.89671829 | 1.76026266 | 2.35153366 | 2.71828183 | 2.71828182 | 9×10−9 |
0.3 | 0.99102698 | 1.94539111 | 2.59884662 | 3.00416603 | 3.00416602 | 1×10−8 |
0.4 | 1.09525420 | 2.14998967 | 2.87216971 | 3.32011693 | 3.32011692 | 1×10−8 |
0.5 | 1.21044309 | 2.37610606 | 3.17423843 | 3.66929667 | 3.66929666 | 1.1×10−8 |
0.6 | 1.33774650 | 2.62600332 | 3.50807600 | 4.05519997 | 4.05519996 | 1.2×10−8 |
0.7 | 1.47843853 | 2.90218250 | 3.87702357 | 4.48168908 | 4.48168907 | 1.4×10−8 |
0.8 | 1.63392726 | 3.20740770 | 4.28477370 | 4.95303243 | 4.95303242 | 1.5×10−8 |
0.9 | 1.80576890 | 3.54473371 | 4.73540729 | 5.47394740 | 5.47394739 | 1.6×10−8 |
1.0 | 1.99568327 | 3.91753661 | 5.23343442 | 6.04964748 | 6.04964746 | 1.9×10−8 |
ℑ | Φ=0.4 | Φ=0.6 | Φ=0.8 | Φ=1 | Exact solution | |vexact−vCLTIM| |
0.1 | 1.51109629 | 0.76685816 | 0.57403341 | 0.49658530 | 0.49658530 | 9×10−10 |
0.2 | 1.67001967 | 0.84750934 | 0.63440503 | 0.54881163 | 0.54881163 | 1×10−9 |
0.3 | 1.84565718 | 0.93664267 | 0.70112599 | 0.60653065 | 0.60653065 | 1×10−9 |
0.4 | 2.03976664 | 1.03515024 | 0.77486406 | 0.67032004 | 0.67032004 | 1.1×10−9 |
0.5 | 2.25429077 | 1.14401795 | 0.85635722 | 0.74081821 | 0.74081822 | 1.3×10−9 |
0.6 | 2.49137660 | 1.26433536 | 0.94642110 | 0.81873075 | 0.81873075 | 1.5×10−9 |
0.7 | 2.75339696 | 1.39730668 | 1.04595707 | 0.90483741 | 0.90483741 | 1.5×10−9 |
0.8 | 3.04297425 | 1.54426270 | 1.15596134 | 0.99999999 | 1.00000000 | 1.7×10−9 |
0.9 | 3.36300665 | 1.70667423 | 1.27753485 | 1.10517091 | 1.10517091 | 2×10−9 |
1.0 | 3.71669714 | 1.88616672 | 1.41189437 | 1.22140275 | 1.22140275 | 2×10−9 |
ℑ | Φ=0.4 | Φ=0.6 | Φ=0.8 | Φ=1 | Exact solution | |wexact−wCLTIM| |
0.1 | 9.14159986 | 4.63922155 | 3.47269979 | 3.00416601 | 3.00416602 | 6×10−9 |
0.2 | 8.27166161 | 4.19774125 | 3.14222871 | 2.71828182 | 2.71828182 | 5×10−9 |
0.3 | 7.48450894 | 3.79827335 | 2.84320611 | 2.45960310 | 2.45960311 | 5×10−9 |
0.4 | 6.77226374 | 3.43681985 | 2.57263928 | 2.22554092 | 2.22554092 | 4×10−9 |
0.5 | 6.12779764 | 3.10976320 | 2.32782028 | 2.01375270 | 2.01375270 | 3×10−9 |
0.6 | 5.54466059 | 2.81383011 | 2.10629889 | 1.82211879 | 1.82211880 | 2×10−9 |
0.7 | 5.01701638 | 2.54605877 | 1.90585805 | 1.64872126 | 1.64872127 | 3×10−9 |
0.8 | 4.53958414 | 2.30376924 | 1.72449168 | 1.49182469 | 1.49182469 | 3×10−9 |
0.9 | 4.10758559 | 2.08453661 | 1.56038460 | 1.34985880 | 1.34985880 | 3×10−9 |
1.0 | 3.71669714 | 1.88616672 | 1.41189437 | 1.22140275 | 1.22140275 | 2×10−9 |
ℑ | u(ℑ,℘,ϑ) | HAM [57] | v(ℑ,℘,ϑ) | HAM [57] | w(ℑ,℘,ϑ) | HAM [57] |
0.1 | 8×10−9 | 2.59×10−7 | 9×10−10 | 6.40×10−9 | 6×10−9 | 2.48×10−7 |
0.2 | 9×10−9 | 2.86×10−7 | 1×10−9 | 3.71×10−8 | 5×10−9 | 2.03×10−7 |
0.3 | 1×10−8 | 3.17×10−7 | 1×10−9 | 4.11×10−8 | 5×10−9 | 1.84×10−7 |
0.4 | 1×10−8 | 3.50×10−7 | 1.1×10−9 | 4.54×10−8 | 4×10−9 | 1.66×10−7 |
0.5 | 1.1×10−8 | 3.87×10−7 | 1.3×10−9 | 5.02×10−8 | 3×10−9 | 1.50×10−7 |
0.6 | 1.2×10−8 | 4.27×10−7 | 1.5×10−9 | 5.54×10−8 | 2×10−9 | 1.36×10−7 |
0.7 | 1.4×10−8 | 4.73×10−7 | 1.5×10−9 | 6.13×10−8 | 3×10−9 | 1.23×10−7 |
0.8 | 1.5×10−8 | 5.22×10−7 | 1.7×10−9 | 6.77×10−8 | 3×10−9 | 1.11×10−7 |
0.9 | 1.6×10−8 | 5.77×10−7 | 2×10−9 | 7.49×10−8 | 3×10−9 | 1.01×10−7 |
1.0 | 1.9×10−8 | 6.38×10−7 | 2×10−9 | 9.14×10−8 | 2×10−9 | 2.6×10−7 |
ℑ | Φ=0.4 | Φ=0.6 | Φ=0.8 | Φ=1 | Exact solution | |uexact−uCLTIM| |
0.0 | -1.72330539 | -0.67799290 | -0.35181302 | -0.20133600 | -0.20133600 | 2.5×10−9 |
0.1 | -1.53297120 | -0.56037592 | -0.24738888 | -0.10016675 | -0.10016675 | 6.4×10−9 |
0.2 | -1.35797951 | -0.44836738 | −0.14544069 | -0.00000001 | 0.00000000 | 1.543×10−8 |
0.3 | -1.19657893 | -0.34084625 | −0.04494812 | 0.10016672 | 0.10016675 | 2.44×10−8 |
0.4 | -1.04715412 | -0.23673642 | 0.05509458 | 0.20133596 | 0.20133600 | 3.38×10−8 |
0.5 | -0.90820958 | -0.13499593 | 0.15568869 | 0.30452025 | 0.30452029 | 4.34×10−8 |
0.6 | -0.77835470 | -0.03460653 | 0.25784100 | 0.41075227 | 0.41075232 | 5.36×10−8 |
0.7 | -0.65628986 | 0.06543651 | 0.36257386 | 0.52109524 | 0.52109530 | 6.45×10−8 |
0.8 | -0.54079339 | 0.16613448 | 0.47093548 | 0.63665350 | 0.63665358 | 7.55×10−8 |
0.9 | -0.43070936 | 0.26849517 | 0.58401038 | 0.75858361 | 0.75858370 | 8.73×10−8 |
1.0 | -0.32493601 | 0.37354305 | 0.70293026 | 0.88810588 | 0.88810598 | 1.003×10−7 |
ℑ | Φ=0.4 | Φ=0.6 | Φ=0.8 | Φ=1 | Exact solution | |uexact−uCLTIM| |
0.0 | 1.99339175 | 1.20817382 | 1.06008135 | 1.02006675 | 1.02006675 | 0.00000000 |
0.1 | 1.83074912 | 1.14630738 | 1.03014621 | 1.00500416 | 1.00500416 | 1×10−9 |
0.2 | 1.68642924 | 1.09591357 | 1.01052111 | 1.00000000 | 1.00000000 | 1×10−9 |
0.3 | 1.55898771 | 1.05648803 | 1.00100966 | 1.00500416 | 1.00500416 | 1×10−9 |
0.4 | 1.44714905 | 1.02763618 | 1.00151664 | 1.02006675 | 1.02006675 | 0.00000000 |
0.5 | 1.34979395 | 1.00906926 | 1.01204714 | 1.04533851 | 1.04533851 | 0.00000000 |
0.6 | 1.26594803 | 1.00060144 | 1.03270655 | 1.08107237 | 1.08107237 | 1×10−9 |
0.7 | 1.19477216 | 1.00214797 | 1.06370163 | 1.12762596 | 1.12762596 | 3×10−9 |
0.8 | 1.13555396 | 1.01372434 | 1.10534259 | 1.18546522 | 1.18546521 | 3×10−9 |
0.9 | 1.08770077 | 1.03544641 | 1.15804620 | 1.25516900 | 1.25516900 | 2×10−9 |
1.0 | 1.05073365 | 1.06753157 | 1.22233992 | 1.33743494 | 1.33743494 | 3×10−9 |
ℑ | u(ℑ,℘,ϑ) | HAM [57] | v(ℑ,℘,ϑ) | HAM [57] |
0.0 | 2.5×10−9 | 1.21×10−8 | 0.00000000 | 8.89×10−8 |
0.1 | 6.4×10−9 | 2.18×10−8 | 1×10−9 | 8.91×10−8 |
0.2 | 1.54×10−8 | 5.59×10−8 | 1×10−9 | 9.02×10−8 |
0.3 | 2.44×10−8 | 9.07×10−8 | 1×10−9 | 9.22×10−8 |
0.4 | 3.38×10−8 | 1.26×10−8 | 0.00000000 | 9.51×10−8 |
0.5 | 4.34×10−8 | 1.63×10−8 | 0.00000000 | 9.89×10−8 |
0.6 | 5.36×10−8 | 2.01×10−7 | 1×10−9 | 1.03×10−7 |
0.7 | 6.45×10−8 | 2.42×10−7 | 3×10−9 | 1.09×10−7 |
0.8 | 7.55×10−8 | 2.85×10−7 | 3×10−9 | 1.16×10−7 |
0.9 | 8.73×10−8 | 3.31×10−7 | 2×10−9 | 1.24×10−7 |
1.0 | 1.003×10−7 | 3.80×10−7 | 3×10−9 | 1.34×10−7 |