This paper examined the features of an infection therapy for fractional-order quarry-hunter systems in order to control sickness. It focused especially on how illnesses and several populations combine to affect how well harvesting policies work. We created a new dynamic model full of such ideas by examining systems with fractional-order non-integer systems and introducing fractional-order systems that can remember in order to comprehend that specific system. These thresholds are essential for directing management strategies, according to research on the presence, uniqueness, and stability of solutions to these models. Additionally, we presented particular MATLAB-based numerical methods for fractional-order model. Through a series of numerical application experiments, we validated the method's efficacy and its value in guiding strategy modifications regarding harvesting rates in the face of epidemic infections. This demonstrates the necessity of using a fractional approach in ecosystem research in order to improve the methods used for resource management. This paper primarily focused on the unique insight brought into the quarry-hunter models with infectious diseases by the fractional-order dynamics in ecology. The results are meaningful especially since they can be utilized to come up with effective measures to control diseases and even promote the sustainability of ecological systems.
Citation: Devendra Kumar, Jogendra Singh, Dumitru Baleanu. Dynamical and computational analysis of a fractional predator-prey model with an infectious disease and harvesting policy[J]. AIMS Mathematics, 2024, 9(12): 36082-36101. doi: 10.3934/math.20241712
[1] | Xin-Guang Yang, Lu Li, Xingjie Yan, Ling Ding . The structure and stability of pullback attractors for 3D Brinkman-Forchheimer equation with delay. Electronic Research Archive, 2020, 28(4): 1395-1418. doi: 10.3934/era.2020074 |
[2] | Shu Wang, Mengmeng Si, Rong Yang . Dynamics of stochastic 3D Brinkman-Forchheimer equations on unbounded domains. Electronic Research Archive, 2023, 31(2): 904-927. doi: 10.3934/era.2023045 |
[3] | Xuejiao Chen, Yuanfei Li . Spatial properties and the influence of the Soret coefficient on the solutions of time-dependent double-diffusive Darcy plane flow. Electronic Research Archive, 2023, 31(1): 421-441. doi: 10.3934/era.2023021 |
[4] | Jinheng Liu, Kemei Zhang, Xue-Jun Xie . The existence of solutions of Hadamard fractional differential equations with integral and discrete boundary conditions on infinite interval. Electronic Research Archive, 2024, 32(4): 2286-2309. doi: 10.3934/era.2024104 |
[5] | Liting Yu, Lenan Wang, Jianzhong Pei, Rui Li, Jiupeng Zhang, Shihui Cheng . Structural optimization study based on crushing of semi-rigid base. Electronic Research Archive, 2023, 31(4): 1769-1788. doi: 10.3934/era.2023091 |
[6] | Mingjun Zhou, Jingxue Yin . Continuous subsonic-sonic flows in a two-dimensional semi-infinitely long nozzle. Electronic Research Archive, 2021, 29(3): 2417-2444. doi: 10.3934/era.2020122 |
[7] | Wenya Qi, Padmanabhan Seshaiyer, Junping Wang . A four-field mixed finite element method for Biot's consolidation problems. Electronic Research Archive, 2021, 29(3): 2517-2532. doi: 10.3934/era.2020127 |
[8] | Wei Shi, Xinguang Yang, Xingjie Yan . Determination of the 3D Navier-Stokes equations with damping. Electronic Research Archive, 2022, 30(10): 3872-3886. doi: 10.3934/era.2022197 |
[9] | Pan Zhang, Lan Huang . Stability for a 3D Ladyzhenskaya fluid model with unbounded variable delay. Electronic Research Archive, 2023, 31(12): 7602-7627. doi: 10.3934/era.2023384 |
[10] | Karl Hajjar, Lénaïc Chizat . On the symmetries in the dynamics of wide two-layer neural networks. Electronic Research Archive, 2023, 31(4): 2175-2212. doi: 10.3934/era.2023112 |
This paper examined the features of an infection therapy for fractional-order quarry-hunter systems in order to control sickness. It focused especially on how illnesses and several populations combine to affect how well harvesting policies work. We created a new dynamic model full of such ideas by examining systems with fractional-order non-integer systems and introducing fractional-order systems that can remember in order to comprehend that specific system. These thresholds are essential for directing management strategies, according to research on the presence, uniqueness, and stability of solutions to these models. Additionally, we presented particular MATLAB-based numerical methods for fractional-order model. Through a series of numerical application experiments, we validated the method's efficacy and its value in guiding strategy modifications regarding harvesting rates in the face of epidemic infections. This demonstrates the necessity of using a fractional approach in ecosystem research in order to improve the methods used for resource management. This paper primarily focused on the unique insight brought into the quarry-hunter models with infectious diseases by the fractional-order dynamics in ecology. The results are meaningful especially since they can be utilized to come up with effective measures to control diseases and even promote the sustainability of ecological systems.
The Forchheimer model equation describes the flow in a polar medium, which is widely used in fluid mechanics (see [1,2]). Increasing scholars have studied the spatial properties of the solution to the fluid equation defined on a semi-infinite cylinder, and a large number of results have emerged (see [3,4,5,6,7,8,9]).
In 2002, Payne and Song [3] have studied the following Forchheimer model
b|u|ui+(1+γT)ui=−p,i+giT, in Ω×{t>0}, | (1.1) |
ui,i=0, in Ω×{t>0}, | (1.2) |
∂tT+uiT,i=ΔT, in Ω×{t>0}, | (1.3) |
where i=1,2,3. ui,p,T represent the velocity, pressure, and temperature of the flow, respectively. gi is a known function. Δ is the Laplace operator, γ>0 is a constant, and b is the Forchheimer coefficient. For simplicity, we assume that
gigi≤1. |
In (1.1)–(1.3), Ω is defined as
Ω={(x1,x2,x3)|(x1,x2)∈D, x3≥0}, |
where D is a bounded simply-connected region on (x1,x2)-plane.
In this paper, the comma is used to indicate partial differentiation and the usual summation convection is employed, with repeated Latin subscripts summed from 1 to 3, e.g., ui,jui,j=∑3i,j=1(∂ui∂xj)2. We also use the summation convention summed from 1 to 2, e.g., uα,βuα,β=∑2α,β=1(∂uα∂xβ)2.
The Eqs (1.1)–(1.3) also satisfy the following initial-boundary conditions
ui(x1,x2,x3,t)=0, T(x1,x2,x3,t)=0, on ∂D×{x3>0}×{t>0}, | (1.4) |
ui(x1,x2,0,t)=fi(x1,x2,t), on D×{t>0}, | (1.5) |
T(x1,x2,0,t)=H(x1,x2,t), on D×{t>0}, | (1.6) |
T(x1,x2,x3,0)=0, (x1,x2,x3)∈Ω, | (1.7) |
|u|,|T|=O(1), |u3|,|∇T|,|p|=o(x−13), as x3→∞. | (1.8) |
where fi and H are differentiable functions.
In this paper, we will study the structural stability of Eqs (1.1)–(1.8) on Ω by using the spatial decay results obtained in [3]. Since the concept of structural stability was proposed by Hirsch and Smale [10], the structural stability of various types of partial differential equations defined in a bounded domain has received sufficient attention(see [11,12,13,14,15,16,17,18,19]). Some perturbations are inevitable in the process of model establishment and simplification, so it is necessary to study that whether such small perturbations of the equations themselves will cause great changes in the solutions. This gives rise to the phenomenon of structural stability.
If the bounded domain is replaced by a semi-infinite pipe, the structural stability of the partial differential equations is very interesting and has begun to attract attention. Li and Lin [20] considered the continuous dependence on the Forchheimer coefficient of Forchheimer equations in a semi-infinite pipe. Different from the studies of[11,12,13,14,15,16,17,18,19], we should consider not only the time variable but also the space variable. Therefore, the methods in the literature cannot be directly applied to the semi-infinite region. Compared with [3], we not only reconfirmed the spatial decay result of [3], but also proved the structural stability of the solution to b and γ.
We also introduce the notations:
Ωz={(x1,x2,x3)|(x1,x2)∈D,x3≥z≥0}, |
Dz={(x1,x2,x3)|(x1,x2)∈D,x3=z≥0}, |
where z is a running variable along the x3 axis.
First, to obtain the main result, we shall make frequent use of the following three inequalities.
Lemma 2.1.(see[21]) If ϕ is a Dirichlet integrable function on Ω and ∫Ωϕdx=0, then there exists a Dirichlet integrable function w=(w1,w2,w3) such that
wi,i=ϕ, in Ω, wi=0, on ∂Ω, |
and a positive constant k1 depends only on the geometry of Ω such that
∫Ωwi,jwi,jdx≤k1∫Ω(wi,i)2dx. |
Lemma 2.2.(see [3,4]) If ϕ|∂D=0, then
λ∫Dϕ2dA≤∫Dϕ,αϕ,αdA, |
where λ is the smallest positive eigenvalue of
Δ2ϑ+λϑ=0, in D, ϑ=0, on ∂D. |
Here Δ2 is a two-dimensional Laplace operator.
Now, we give a lemma which has been proved by Horgan and Wheeler [4] and has been used by Payne and Song [6].
Lemma 2.3.(see [3,4]) If ϕ is a Dirichlet integrable function and ϕ|∂D=0,ϕ→∞ (as x3→∞),
∫Ωz|ϕ|4dx≤k2(∫Ωzϕ,jϕ,jdx)2, |
where k2>0.
Lemma 2.4. If ϕ∈C10(Ω), then
∫Ωz|ϕ|6dx≤Λ(∫Ωzϕ,iϕ,idx)3, |
where [22,23] have proved that the optimal value of Λ is determined to be Λ=127(34)4.
Using the maximum principle for the temperature T, we can have the following lemma which has been used in Song [5].
Lemma 2.5. Assume that H∈L∞(Ω), then
supΩ×{t>0}|T|≤TM, |
where TM=supΩ×{t>0}H.
Second, we list some useful results which have been derived by Payne and Song [3].
Payne and Song have established a function
P(z,t)=∫t0∫Ωz(ξ−z)T,iT,idxdη+a1∫t0∫Ωz|u|3dxdη+a2∫t0∫Ωz(1+γT)|u|2dxdη, | (2.1) |
where a1 and a2 are positive constants. From Eqs (3.27) and (3.36) of [3], we know that
P(z,t)≤P(0,t)e−zk3, P(0,t)≤k4(t), | (2.2) |
where k3 is a positive constant and k4(t) is a function related to the boundary values.
Combining Eqs (2.1) and (2.2), we have the following lemma.
Lemma 2.6. Assume that H∈L∞(Ω) and ∫DfdA=0, then
a1∫t0∫Ωz|u|3dxdη+a2∫t0∫Ωz(1+γT)|u|2dxdη≤k4(t)e−zk3. |
In order to derive the main result, we need bounds for ||u||2L2(Ω) and ||u||3L2(Ω).
Lemma 2.7. Assume that fi∈H1(Ω),H,˜H∈L∞(Ω), ∫Df3dA=0 and fα,α−γf3=0 then
b∫Ω|u|3dx+∫Ω|u|2dx≤k5(t), |
where k6(t) is a positive function.
Proof. To deal with boundary terms, we set S=(S1,S2,S3), where
Si=fie−γ1x3, γ1>0. | (2.3) |
Using Eq (1.1), we have
∫Ω[b|u|ui+(1+γT)ui+p,i−giT](ui−Si)dx=0. |
Using the divergence theorem, we have
b∫Ω|u|3dx+∫Ω(1+γT)|u|2dx=b∫Ω|u|uiSidx+∫Ω(1+γT)uiSidx−∫ΩgiTuidx+∫ΩgiTSidx. | (2.4) |
Using the Hölder inequality and Young's inequality, we have
b∫Ω|u|uiSidx≤b(∫Ω|u|3dx)23(∫Ω|S|3dx)13≤23bε1∫Ω|u|3dx+13bε−21∫Ω|S|3dx, | (2.5) |
∫Ω(1+γT)uiSidx≤14∫Ω(1+γT)|u|2dx+(1+γTM)∫Ω|S|2dx, | (2.6) |
−∫ΩgiTuidx≤√TM(∫Ω(1+γT)|u|2dx∫Ωgigidx)12≤14∫Ω(1+γT)|u|2dx+TMγ∫Ωgigidx, | (2.7) |
∫ΩgiTSidx≤TM∫Ω|giSi|dx. | (2.8) |
Inserting Eqs (2.5)–(2.8) into Eq (2.4) and choosing that ε1=34, we obtain
b∫Ω|u|3dx+∫Ω(1+γT)|u|2dx≤23bε−21∫Ω|S|3dx+2(1+γTM)∫Ω|S|2dx+2TMγ∫Ωgigidx+2TM∫Ω|giSi|dx. | (2.9) |
After choosing
k5(t)=23bε−21∫Ω|S|3dx+2(1+γTM)∫Ω|S|2dx+2TMγ∫Ωgigidx+2TM∫Ω|giSi|dx, | (2.10) |
we can complete the proof of Lemma 2.7.
In this section, we derive an important lemma which leads to our main result.
Assume that (u∗i,T∗,p∗) is a solution of Eqs (1.1)–(1.8) when b=b∗. If we let
Di=ui−u∗i, Σ=T−T∗, π=p−p∗, ˜b=b−b∗, |
then (Di,Σ,π) satisfies
[b1|u|ui−b2|u∗|u∗i]+(1+γT)Di+γΣu∗i=−π,i+giΣ, in Ω×{t>0}, | (3.1) |
Di,i=0, in Ω×{t>0}, | (3.2) |
∂tΣ+uiΣ,i+DiT∗,i=ΔΣ, in Ω×{t>0}, | (3.3) |
Di=0,Σ=0, on ∂D×{x3>0}×{t>0}, | (3.4) |
Di=0,Σ=0, on D×{t>0}, | (3.5) |
Σ(x1,x2,x3,0)=0, in Ω | (3.6) |
|u|,|Σ|=O(1),|D3|,|∇Σ|,|π|=o(x−13), as x3→∞. | (3.7) |
We can have the following lemma.
Lemma 3.1. Assume that (Di,Σ,π) is a solution to Eqs (3.1)–(3.6) with ∫Df3dA=0,H∈L∞(Ω) and the boundary data (e.g., H) satisfies Eq (3.21), then
Φ(z,t)≤n∗6[−∂∂zΦ(z,t)]+n7(t)˜b2e−zk3, |
where n∗6 is the maximum of n6(t) and n6(t),n7(t) will be defined in Eq (3.39).
Proof. We define an auxiliary function
Φ1(z,t)=∫t0∫Ωze−ωηπD3dxdη, | (3.8) |
where ω>0.
Using the divergence theorem and Eq (3.1), we have
Φ1(z,t)=−∫t0∫Ωze−ωη(ξ−z)π,iDidxdη=∫t0∫Ωze−ωη(ξ−z)Di[b1|u|ui−b2|u∗|u∗i]dxdη+∫t0∫Ωze−ωη(ξ−z)(1+γT)DiDidxdη+γ∫t0∫Ωze−ωη(ξ−z)DiΣu∗idxdη−∫t0∫Ωze−ωη(ξ−z)DigiΣdxdη. | (3.9) |
Since
Di[b1|u|ui−b2|u∗|u∗i]=˜b2Di[|u|ui+|u∗|u∗i]+b1+b22Di[|u|ui−|u∗|u∗i]=˜b2[|u|ui+|u∗|u∗i]Di+b1+b24[|u|+|u∗|]DiDi+b1+b24[|u|−|u∗|]2[|u|+|u∗|], |
from Eq (3.9) we have
Φ1(z,t)=b1+b24∫t0∫Ωze−ωη(ξ−z)[|u|+|u∗|]DiDidxdη+∫t0∫Ωze−ωη(ξ−z)(1+γT)DiDidxdη+˜b2∫t0∫Ωze−ωη(ξ−z)[|u|ui+|u∗|u∗i]Didxdη+b1+b24∫t0∫Ωze−ωη(ξ−z)[|u|−|u∗|]2[|u|+|u∗|]dxdη+γ∫t0∫Ωze−ωη(ξ−z)DiΣu∗idxdη−∫t0∫Ωze−ωη(ξ−z)DigiΣdxdη. | (3.10) |
Using the Hölder inequality, Young's inequality and Lemma 2.6, we obtain
˜b2∫t0∫Ωze−ωη[|u|ui+|u∗|u∗i]Didxdη≥−˜b2(∫t0∫Ωze−ωη|u|DiDidxdη)12(∫t0∫Ωze−ωη|u|3dxdη)12+−˜b2(∫t0∫Ωze−ωη|u∗|DiDidxdη)12(∫t0∫Ωze−ωη|u|3dxdη)12≥−b1+b216∫t0∫Ωze−ωη[|u|+|u∗|]DiDidxdη−4˜b2b1+b2∫t0∫Ωze−ωη[|u|3+|u∗|3]dxdη≥−b1+b216∫t0∫Ωze−ωη[|u|+|u∗|]DiDidxdη−8˜b2a1(b1+b2)k4(t)e−zk3. | (3.11) |
Using the Hölder inequality, Young's inequality and Lemmas 2.3 and 2.7, we obtain
γ∫t0∫Ωze−ωηDiΣu∗idxdη≥−γ∫t0e−ωη(∫Ωz|u∗|DiDidx)12(∫Ωz|u∗|2dx)14(∫ΩzΣ4dx)14dη≥−γ4√k5(t)k2∫t0e−ωη(∫Ωz|u∗|DiDidx)12(∫ΩzΣ,iΣ,idx)12dη≥−b1+b216∫t0∫Ωze−ωη|u∗|DiDidxdη−4γ2√k5(t)k2b1+b2∫t0∫Ωze−ωηΣ,iΣ,idxdη, | (3.12) |
−∫t0∫Ωze−ωηDigiΣdxdη≥−12∫t0∫Ωze−ωη(1+γT)DiDidxdη−12γ∫t0∫Ωze−ωηΣ2dxdη. | (3.13) |
Calculating the differential of Eq (3.10) and then inserting Eqs (3.11)–(3.13) into Eq (3.10), we have
−∂∂zΦ1(z,t)≥b1+b28∫t0∫Ωze−ωη[|u|+|u∗|]DiDidxdη+12∫t0∫Ωze−ωη(1+γT)DiDidxdη−4γ2√k5(t)k2b1+b2∫t0∫Ωze−ωηΣ,iΣ,idxdη−12γ∫t0∫Ωze−ωηΣ2dxdη−8˜b2a1(b1+b2)k4(t)e−zk3, | (3.14) |
where we have dropped the fourth term of Eq (3.10).
Similarly, we have
Φ2(z,t)=−∫t0∫Ωze−ωηΣΣ,3dxdη+12∫t0∫Ωze−ωηu3Σ2dxdη+∫t0∫Ωze−ωηD3T∗Σdxdη≐Φ21(z,t)+Φ22(z,t)+Φ23(z,t). | (3.15) |
Using the divergence theorem and Eq (3.2), we have
Φ2(z,t)=12e−ωt∫Ωz(ξ−z)Σ2dx+∫t0∫Ωze−ωη(ξ−z)[12ωΣ2+Σ,iΣ,i]dxdη−∫t0∫Ωze−ωη(ξ−z)DiΣ,iT∗dxdη. | (3.16) |
Using the Hölder inequality and Lemma 2.5, we have
−∫t0∫Ωze−ωηDiΣ,iT∗dxdη≥−12∫t0∫Ωze−ωηΣ,iΣ,idxdη−12T2M∫t0∫Ωze−ωηDiDidxdη. | (3.17) |
Calculating the differential of Eq (3.16) and then inserting Eq (3.17) into Eq (3.16), we have
−∂∂zΦ2(z,t)=12e−ωt∫ΩzΣ2dx+∫t0∫Ωze−ωη[12ωΣ2+12Σ,iΣ,i]dxdη−12γT2M∫t0∫Ωze−ωη(1+γT)DiDidxdη. | (3.18) |
Now, we define
−∂∂zΦ(z,t)=2γT2M[−∂∂zΦ1(z,t)]+[−∂∂zΦ2(z,t)]. | (3.19) |
Combining Eqs (3.14) and (3.18), we have
−∂∂zΦ(z,t)≥b1+b24γT2M∫t0∫Ωze−ωη[|u|+|u∗|]DiDidxdη+12γT2M∫t0∫Ωze−ωη(1+γT)DiDidxdη+12e−ωt∫ΩzΣ2dx+∫t0∫Ωze−ωη[12ωΣ2+12Σ,iΣ,i]dxdη−8γ√k5(t)k2b1+b2∫t0∫Ωze−ωηΣ,iΣ,idxdη−1γ2T2M∫t0∫Ωze−ωηΣ2dxdη−16˜b2a1γ(b1+b2)T2Mk4(t)e−zk3. | (3.20) |
Choosing ω>4γ2T2M and the boundary data (e.g., H) satisfies
8γ√k5(t)k2b1+b2<14, | (3.21) |
from Eq (3.20) we obtain
−∂∂zΦ(z,t)≥b1+b24γT2M∫t0∫Ωze−ωη[|u|+|u∗|]DiDidxdη+12γT2M∫t0∫Ωze−ωη(1+γT)DiDidxdη+12e−ωt∫ΩzΣ2dx+∫t0∫Ωze−ωη[14ωΣ2+14Σ,iΣ,i]dxdη−16˜b2a1γ(b1+b2)T2Mk4(t)e−zk3. | (3.22) |
Integrating Eq (3.22) from z to ∞, we obtain
Φ(z,t)≥b1+b24γT2M∫t0∫Ωze−ωη(ξ−z)[|u|+|u∗|]DiDidxdη+12γT2M∫t0∫Ωze−ωη(ξ−z)(1+γT)DiDidxdη+12e−ωt∫Ωz(ξ−z)Σ2dx+∫t0∫Ωze−ωη(ξ−z)[14ωΣ2+14Σ,iΣ,i]dxdη−16˜b2a1γ(b1+b2)k3T2Mk4(t)e−zk3. | (3.23) |
We note that
∫DzD3dA=∫DD3dA+∫z0∫Dξ∂D3∂x3dAdξ=−∫z0∫DξDα,αdAdξ=0. |
According to Lemma 2.1, there exists a vector function w=(w1,w2,w3) such that
wi,i=D3, in Ω;wi=0, on ∂Ω. |
Therefore, using Eq (3.1) we obtain
2γT2MΦ1(z,t)=2γT2M∫t0∫Ωze−ωηπwi,idxdη=−2γT2M∫t0∫Ωze−ωηπ,iwidxdη=2γT2M∫t0∫Ωze−ωη{[b1|u|ui−b2|u∗|u∗i]+(1+γT)Di+γΣu∗i−giΣ}widxdη. | (3.24) |
Since
[b1|u|ui−b2|u∗|u∗i]wi=˜b2[|u|ui+|u∗|u∗i]wi+b1+b22[|u|+|u∗|]Diwi+b1+b22[|u|−|u∗|](ui+u∗i)wi=˜b2[|u|ui+|u∗|u∗i]wi+b1+b22[|u|+|u∗|]Diwi+b1+b22(uj−u∗j)(uj+u∗j)|u|+|u∗|(ui+u∗i)wi≤˜b2[|u|ui+|u∗|u∗i]wi+b1+b22[|u|+|u∗|]Diwi+b1+b22[|u|+|u∗|]|D||w|, |
we have
∫t0∫Ωze−ωη[b1|u|ui−b2|u∗|u∗i]widxdη≤˜b2∫t0∫Ωze−ωη[|u|ui+|u∗|u∗i]widxdη+b1+b22∫t0∫Ωze−ωη[|u|+|u∗|]Diwidxdη+b1+b22∫t0∫Ωze−ωη[|u|+|u∗|]|D||w|dxdη. | (3.25) |
Using the Hölder inequality, Lemmas 2.2, 2.3, 2.1, 2.7 and 2.6, and Young's inequality, we obtain
˜b2∫t0∫Ωze−ωη[|u|ui+|u∗|u∗i]widxdη≤˜b2∫t0e−ωη[∫Ωz[|u|3+|u∗|3]dx]23[∫Ωz(wiwi)32dx]13dη≤˜b2∫t0e−ωη[∫Ωz[|u|3+|u∗|3]dx]23[∫Ωzwiwidx]16⋅[∫Ωz(wiwi)2dx]16dη≤˜b6√k226√λ∫t0e−ωη[∫Ωz[|u|3+|u∗|3]dx]23[∫Ωzwi,αwi,αdx]16⋅[∫Ωzwi,jwi,jdx]13dη≤˜b6√k226√λ∫t0e−ωη[∫Ωz[|u|3+|u∗|3]dx]23[∫Ωzwi,jwi,jdx]12dη≤˜b6√k2√k126√λ∫t0e−ωη[∫Ω[|u|3+|u∗|3]dx]16⋅[∫Ωz[|u|3+|u∗|3]dx]12[∫ΩzD23dx]12dη≤˜b23√2k5(t)k2k143√bλ∫t0∫Ωze−ωη[|u|3+|u∗|3]dxdη+12∫t0∫Ωze−ωηD23dxdη≤˜b23√2k5(t)k2k1k4(t)2a3√bλe−zk3+12∫t0∫Ωze−ωη(1+γT)D23dxdη. | (3.26) |
Using the Hölder inequality, Lemmas 2.3, 2.1 and 2.7, and Young's inequality, we obtain
b1+b22∫t0∫Ωze−ωη[|u|+|u∗|]Diwidxdη≤b1+b22∫t0e−ωη[∫Ωz|u|DiDidx]12[∫Ωz|u|2dx]14[∫Ωz(wiwi)2dx]14dη+b1+b22∫t0e−ωη[∫Ωz|u∗|DiDidx]12[∫Ωz|u∗|2dx]14[∫Ωz(wiwi)2dx]14dη≤b1+b224√k2k5(t)∫t0e−ωη[∫Ωz|u|DiDidx]12[∫Ωzwi,jwi,jdx]12dη+b1+b224√k2k5(t)∫t0e−ωη[∫Ωz|u∗|DiDidx]12[∫Ωzwi,jwi,jdx]12dη≤b1+b244√k1k2k5(t)∫t0∫Ωze−ωη[|u|+|u∗|]DiDidxdη+b1+b224√k1k2k5(t)∫t0∫Ωze−ωη(1+γT)D23dxdη. | (3.27) |
Using the Hölder inequality, Lemmas 2.4, 2.1 and 2.7, and Young's inequality, we obtain
b1+b22∫t0∫Ωze−ωη[|u|+|u∗|]|D||w|dxdη≤b1+b22∫t0e−ωη[∫Ωz|DiDidx]12[∫Ωz|u|3dx]13[∫Ωz(wiwi)3dx]16dη+b1+b22∫t0e−ωη[∫Ωz|DiDidx]12[∫Ωz|u∗|3dx]13[∫Ωz(wiwi)3dx]16dη≤(b1+b2)3√k5(t)b6√Λ∫t0e−ωη[∫ΩzDiDidx]12[∫Ωzwi,jwi,jdx]12dη≤b1+b223√k1k5(t)b6√Λ∫t0∫Ωze−ωη(1+γT)DiDidxdη. | (3.28) |
Inserting Eqs (3.26)–(3.28) into Eq (3.25), we have
\begin{align} \int_{0}^{t}\int_{\Omega_z}e^{-\omega\eta}&\Big[b_1|\mathit{\boldsymbol{u}}|u_i-b_2|\mathit{\boldsymbol{u}}^*|u_i^*\Big]w_{i}dx d\eta \leq \frac{\widetilde{b}^2\sqrt[3]{2k_5(t)k_2}k_1k_4(t)}{2a\sqrt[3]{b\lambda}}e^{-\frac{z}{k_3}} \\ &+\frac{b_1+b_2}{4}\sqrt[4]{k_2k_5(t)}\varepsilon_3\int_{0}^{t}\int_{\Omega_z}e^{-\omega\eta}\Big[|\mathit{\boldsymbol{u}}| +|\mathit{\boldsymbol{u}}^*|\Big]\mathcal{D}_i\mathcal{D}_i dx d\eta \\ &+\Big[\frac{b_1+b_2}{2}\sqrt[3]{\frac{k_1k_5(t)}{b}}\sqrt[6]{\Lambda}+\frac{b_1+b_2}{2}\sqrt[4]{k_2k_5(t)}+\frac{1}{2}\Big] \\ &\cdot\int_{0}^{t}\int_{\Omega_z}e^{-\omega\eta} (1+\gamma T)\mathcal{D}_i\mathcal{D}_i dxd\eta. \end{align} | (3.29) |
Using the Hölder inequality, Young's inequality and Lemmas 2.5, 2.2, 2.1, 2.7 and 2.3, we have
\begin{align}& \int_0^t\int_{\Omega_z}e^{-\omega\eta}(1+\gamma T)\mathcal{D}_iw_idx d\eta \\&\leq(1+\gamma T_M)\Big[\int_0^t\int_{\Omega_z}e^{-\omega\eta}(1+\gamma T)\mathcal{D}_i\mathcal{D}_idx d\eta \int_0^t\int_{\Omega_z}e^{-\omega\eta}w_iw_idx d\eta\Big]^\frac{1}{2} \\ &\leq\frac{(1+\gamma T_M)}{\sqrt{\lambda}}\Big[\int_0^t\int_{\Omega_z}e^{-\omega\eta}(1+\gamma T)\mathcal{D}_i\mathcal{D}_idx d\eta \int_0^t\int_{\Omega_z}e^{-\omega\eta}w_{i,\alpha}w_{i,\alpha}dx d\eta\Big]^\frac{1}{2} \end{align} |
\begin{align} &\leq\frac{(1+\gamma T_M)\sqrt{k_1}}{\sqrt{\lambda}}\Big[\int_0^t\int_{\Omega_z}e^{-\omega\eta}(1+\gamma T)\mathcal{D}_i\mathcal{D}_idx d\eta \int_0^t\int_{\Omega_z}e^{-\omega\eta}\mathcal{D}_{3}^2dx d\eta\Big]^\frac{1}{2} \\ &\leq\frac{(1+\gamma T_M)\sqrt{k_1}}{\sqrt{\lambda}}\int_0^t\int_{\Omega_z}e^{-\omega\eta}(1+\gamma T)\mathcal{D}_i\mathcal{D}_idx d\eta, \end{align} | (3.30) |
\begin{align} & \gamma\int_0^t\int_{\Omega_z}e^{-\omega\eta}w_i\Sigma u_i^*dx d\eta \\&\leq\gamma\int_0^t e^{-\omega\eta} \Big(\int_{\Omega_z}(u_3^*)^2dx\Big)^\frac{1}{2}\Big(\int_{\Omega_z}\Sigma^4dx\Big)^\frac{1}{4}\Big(\int_{\Omega_z}(w_iw_i)^2dx\Big)^\frac{1}{4} d\eta \\ &\leq\gamma\sqrt{k_5(t)k_2}\int_0^te^{-\omega\eta} \Big(\int_{\Omega_z}\Sigma_{,i}\Sigma_{,i}dx\Big)^\frac{1}{2}\Big(\int_{\Omega_z}w_{i,j}w_{i,j}dx\Big)^\frac{1}{2} d\eta \\ &\leq\gamma\sqrt{k_5(t)k_2k_1}\int_0^te^{-\omega\eta} \Big(\int_{\Omega_z}\Sigma_{,i}\Sigma_{,i}dx\Big)^\frac{1}{2}\Big(\int_{\Omega_z}\mathcal{D}_{3}^2dx\Big)^\frac{1}{2} d\eta \\ &\leq \frac{\sqrt{\gamma k_5(t)k_2k_1}}{T_M}\Big[\frac{1}{4}\int_0^t\int_{\Omega_z}e^{-\omega\eta}e^{-\omega\eta}\Sigma_{,i}\Sigma_{,i}dxd\eta \\ &+\frac{1}{\gamma}T_M^2 \int_0^t\int_{\Omega_z}e^{-\omega\eta}(1+\gamma T)\mathcal{D}_{3}^2dxd\eta\Big], \end{align} | (3.31) |
\begin{align} \int_0^t\int_{\Omega_z}e^{-\omega\eta}w_i\Sigma g_idx d\eta &\leq \sqrt{\frac{k_1\gamma}{T_M\omega}}\Big[\frac{1}{\gamma}T_M^2 \int_0^t\int_{\Omega_z}e^{-\omega\eta}(1+\gamma T)\mathcal{D}_{3}^2dxd\eta \\ &+ \frac{1}{4}\omega\int_0^t\int_{\Omega_z}e^{-\omega\eta}\Sigma^2dx d\eta\Big] . \end{align} | (3.32) |
Inserting Eqs (3.29)–(3.32) into Eq (3.24), we obtain
\begin{align} \frac{2}{\gamma}T_M^2\Phi_{1}(z, t)&\leq n_1(t)\widetilde{b}^2e^{-\frac{z}{k_3}} +n_2(t)\cdot\frac{(b_1+b_2)T_M^2}{4\gamma}\int_{0}^{t}\int_{\Omega_z}e^{-\omega\eta}\Big[|\mathit{\boldsymbol{u}}| +|\mathit{\boldsymbol{u}}^*|\Big]\mathcal{D}_i\mathcal{D}_i dx d\eta \\ &+n_3(t)\cdot\frac{T_M^2}{2\gamma}\int_{0}^{t}\int_{\Omega_z}e^{-\omega\eta} (1+\gamma T)\mathcal{D}_i\mathcal{D}_i dxd\eta \\ &+n_4(t)\cdot\frac{1}{4}\int_0^t\int_{\Omega_z}e^{-\omega\eta}e^{-\omega\eta}\Sigma_{,i}\Sigma_{,i}dxd\eta +n_5(t)\cdot \frac{1}{4}\omega\int_0^t\int_{\Omega_z}e^{-\omega\eta}\Sigma^2dx d\eta. \end{align} | (3.33) |
where
\begin{align} n_1(t)& = \frac{2}{\gamma}T_M^2\frac{\sqrt[3]{2k_5(t)k_2}k_1k_4(t)}{2a\sqrt[3]{b\lambda}}, n_2(t) = 2\sqrt[4]{k_2k_5(t)}, \\ n_3(t)& = 2\Big[\frac{b_1+b_2}{2}\sqrt[3]{\frac{k_1k_5(t)}{b}}\sqrt[6]{\Lambda}+\frac{b_1+b_2}{2}\sqrt[4]{k_2k_5(t)}+\frac{1}{2}\Big] \\ &+2\frac{(1+\gamma T_M)\sqrt{k_1}}{\sqrt{\lambda}}+\frac{2\sqrt{\gamma k_5(t)k_2k_1}T_M}{\gamma}+\frac{1}{\gamma}T_M^2\sqrt{\frac{k_1\gamma}{T_M\omega}}, \\ n_4(t)& = \frac{2\sqrt{\gamma k_5(t)k_2k_1}T_M}{\gamma}, n_5(t) = \frac{1}{\gamma}T_M^2\sqrt{\frac{k_1\gamma}{T_M\omega}}. \end{align} |
Now, we begin to derive a bound of \Phi_2(z, t) which has been defined in Eq (3.15). Using the Hölder inequality, Young's inequality, Lemmas 2.7 and 2.3, we have
\begin{align} \Phi_{21}(z, t)&\leq\frac{1}{\sqrt{\omega}}\Big[\frac{1}{4}\int_0^t\int_{\Omega_z}e^{-\omega\eta}\Sigma_{,3}^2dx d\eta +\frac{1}{4}\omega\int_0^t\int_{\Omega_z}e^{-\omega\eta}\Sigma^2dx d\eta\Big], \end{align} | (3.34) |
\begin{align} \Phi_{22}(z, t)&\leq\frac{1}{2}\int_0^t e^{-\omega\eta} \Big(\int_{\Omega_z}u_3^2dx\Big)^\frac{1}{2}\Big(\int_{\Omega_z}\Sigma^4dx\Big)^\frac{1}{2} d\eta \\ &\leq\sqrt{2k_5(t)k_2}\cdot\frac{1}{4}\int_0^t \int_{\Omega_z}e^{-\omega\eta}\Sigma_{,i}\Sigma_{,i}dx d\eta, \end{align} | (3.35) |
\begin{align} \Phi_{23}(z, t)&\leq\sqrt{\frac{2\gamma}{\omega}}\Big[\frac{1}{2\gamma}T_M^2\int_0^t\int_{\Omega_z} e^{-\omega\eta}(1+\gamma T)\mathcal{D}_3^2dxd\eta+ \frac{1}{4}\omega\int_0^t\int_{\Omega_z}e^{-\omega\eta}\Sigma^2dx d\eta\Big]. \end{align} | (3.36) |
Inserting Eqs (3.34)–(3.36) into Eq (3.15), we obtain
\begin{align} \Phi_2(z, t)&\leq\Big[\frac{1}{\sqrt{\omega}}+\sqrt{2k_5(t)k_2} \Big]\cdot\frac{1}{4}\int_0^t \int_{\Omega_z}e^{-\omega\eta}\Sigma_{,i}\Sigma_{,i}dx d\eta \\ &+\Big[\frac{1}{\sqrt{\omega}}+\sqrt{\frac{2\gamma}{\omega}}\Big]\cdot\frac{1}{4}\omega\int_0^t\int_{\Omega_z}e^{-\omega\eta}\Sigma^2dx d\eta \\ &+\sqrt{\frac{2\gamma}{\omega}}\cdot\frac{1}{2\gamma}T_M^2\int_0^t\int_{\Omega_z} e^{-\omega\eta}(1+\gamma T)\mathcal{D}_3^2dxd\eta. \end{align} | (3.37) |
Combining Eqs (3.19), (3.22), (3.33) and (3.37), we obtain
\begin{align} \Phi(z, t)&\leq n_6(t)\Big[-\frac{\partial}{\partial z}\Phi(z, t)\Big]+n_7(t)\widetilde{b}^2e^{-\frac{z}{k_3}}, \end{align} | (3.38) |
where
\begin{align} n_6(t)& = \max\Big\{n_2(t), n_3(t)+\sqrt{\frac{2\gamma}{\omega}}, n_5(t)+\frac{1}{\sqrt{\omega}}+\sqrt{\frac{2\gamma}{\omega}}, n_4(t)+\frac{1}{\sqrt{\omega}}+\sqrt{2k_5(t)k_2}\Big\}, \\ n_7(t)& = \frac{16}{a_1\gamma(b_1+b_2)}T_M^2k_4(t)n_6(t)+n_1(t). \end{align} | (3.39) |
In this section, we will analysis Lemma 3.1 to derive the following theorem.
Theorem 4.1. Let (u_i, T, p) and (u_i^*, T^*, p^*) be solutions of the Eqs (1.1)–(1.8) in \Omega , corresponding to b_1 and b_2 , respectively. If \int_Df_3dA = 0 , Equation (3.21) holds and f_{\alpha, \alpha}-\gamma_1f_3 = 0, H\in L^\infty(\Omega\times\{t > 0\}) , then
(u_i, T)\rightarrow (u_i^*, T^*),\ as\ b_1\rightarrow b_2. |
Specifically, either the inequality
\begin{align} \frac{b_1+b_2}{4\gamma}T_M^2&\int_{0}^{t}\int_{\Omega_z}e^{-\omega\eta}(\xi-z)\Big[|\mathit{\boldsymbol{u}}|+|\mathit{\boldsymbol{u}}^*|\Big]\mathcal{D}_i\mathcal{D}_idx d\eta \\ &+ \frac{1}{2\gamma}T_M^2\int_{0}^{t}\int_{\Omega_z}e^{-\omega\eta}(\xi-z)(1+\gamma T)\mathcal{D}_i\mathcal{D}_idx d\eta \\ &+\frac{1}{2}e^{-\omega t}\int_{\Omega_z}(\xi-z)\Sigma^2dx+\int_{0}^{t}\int_{\Omega_z}e^{-\omega\eta}(\xi-z)\Big[ \frac{1}{4}\omega\Sigma^2+\frac{1}{4}\Sigma_{,i}\Sigma_{,i}\Big]dxd\eta \\ &\leq \frac{16\widetilde{b}^2}{a_1\gamma(b_1+b_2)}k_3T_M^2k_4(t)e^{-\frac{z}{k_3}}+ \widetilde{b}^2n_7(t)e^{-\frac{1}{n_6^*}z} +\widetilde{b}^2\frac{n_7(t)}{n_6^*}ze^{-\frac{1}{n_6^*}z} \end{align} |
holds, or the inequality
\begin{align} \frac{b_1+b_2}{4\gamma}T_M^2&\int_{0}^{t}\int_{\Omega_z}e^{-\omega\eta}(\xi-z)\Big[|\mathit{\boldsymbol{u}}|+|\mathit{\boldsymbol{u}}^*|\Big]\mathcal{D}_i\mathcal{D}_idx d\eta \\ &+ \frac{1}{2\gamma}T_M^2\int_{0}^{t}\int_{\Omega_z}e^{-\omega\eta}(\xi-z)(1+\gamma T)\mathcal{D}_i\mathcal{D}_idx d\eta \\ &+\frac{1}{2}e^{-\omega t}\int_{\Omega_z}(\xi-z)\Sigma^2dx+\int_{0}^{t}\int_{\Omega_z}e^{-\omega\eta}(\xi-z)\Big[ \frac{1}{4}\omega\Sigma^2+\frac{1}{4}\Sigma_{,i}\Sigma_{,i}\Big]dxd\eta \\ &\leq \frac{16\widetilde{b}^2}{a_1\gamma(b_1+b_2)}k_3T_M^2k_4(t)e^{-\frac{z}{k_3}}+ \\ &\widetilde{b}^2n_7(t)e^{-\frac{1}{n_6^*}z} +\widetilde{b}^2\frac{n_7(t)}{n_6^*(\frac{1}{n_6^*}-\frac{1}{k_3})}b_3(t)[e^{-\frac{1}{k_3}z}-e^{-\frac{1}{n_6^*}z}] \end{align} |
holds.
Proof. Using Lemma 3.1, we have
\begin{align} \frac{\partial }{\partial z}\Big\{\Phi(z, t)e^{\frac{1}{n_6^*}z}\Big\}\leq \widetilde{b}^2\frac{n_7(t)}{n_6^*}e^{(\frac{1}{n_6^*}-\frac{1}{k_3})z},\ z\geq 0. \end{align} | (4.1) |
Now, we consider (4.1) for two cases.
Ⅰ. If n_6^* = k_3 , we integrate Eq (4.1) from 0 to z to obtain
\begin{align} \Phi(z, t)&\leq \Phi(0, t)e^{-\frac{1}{n_6^*}z} +\widetilde{b}^2\frac{n_7(t)}{n_6^*}ze^{-\frac{1}{n_6^*}z}. \end{align} | (4.2) |
Ⅱ. If n_6^*\neq k_3 , we integrate Eq (4.1) from 0 to z to obtain
\begin{align} \Phi(z, t)&\leq \Phi(0, t)e^{-\frac{1}{n_6^*}z} +\widetilde{b}^2\frac{n_7(t)}{n_6^*(\frac{1}{n_6^*}-\frac{1}{k_3})}b_3(t)[e^{-\frac{1}{k_3}z}-e^{-\frac{1}{n_6^*}z}]. \end{align} | (4.3) |
From Eqs (4.2) and (4.3), to obtain the main result, we can conclude that we have to derive a bound for \Phi(0, t) . We choose z = 0 in Lemma 3.1 to obtain
\begin{align} \Phi(0, t)\leq n_6^*\Big[-\frac{\partial \Phi}{\partial z}(0, t)\Big]+\widetilde{b}^2n_7(t). \end{align} | (4.4) |
Clearly, if we want to derive a bound for \Phi(0, t) , we only need derive a bound for -\frac{\partial \Phi}{\partial z}(0, t) . To do this, choosing z = 0 in Eq (3.19) and combining Eqs (3.8) and (3.15), we have
\begin{align} -\frac{\partial \Phi}{\partial z}(0, t)& = \frac{2}{\gamma}T_M^2\int_{0}^{t}\int_{D}e^{-\omega\eta}\pi\mathcal{D}_3dAd\eta -\int_{0}^{t}\int_{D}e^{-\omega\eta}\Sigma\Sigma_{,3}dAd\eta \\ &+\frac{1}{2}\int_{0}^{t}\int_{D}e^{-\omega\eta}u_3\Sigma^2dAd\eta +\int_0^t\int_{D}e^{-\omega\eta}\mathcal{D}_{3}T^*\Sigma dAd\eta. \end{align} | (4.5) |
In light of the boundary conditions (3.4)–(3.6), from Eq (4.5) we can know that
\begin{align} -\frac{\partial \Phi}{\partial z}(0, t) = 0. \end{align} | (4.6) |
Inserting Eq (4.6) into Eq (4.4), we obtain
\begin{align} \Phi(0, t)\leq \widetilde{b}^2n_7(t). \end{align} | (4.7) |
Therefore, from Eqs (4.2), (4.3) and (4.7) we have
\begin{align} \Phi(z, t)&\leq \widetilde{b}^2n_7(t)e^{-\frac{1}{n_6^*}z} +\widetilde{b}^2\frac{n_7(t)}{n_6^*}ze^{-\frac{1}{n_6^*}z},\ \text{if}\ n_6^* = k_3, \end{align} | (4.8) |
\begin{align} \Phi(z, t)&\leq \widetilde{b}^2n_7(t)e^{-\frac{1}{n_6^*}z} +\widetilde{b}^2\frac{n_7(t)}{n_6^*(\frac{1}{n_6^*}-\frac{1}{k_3})}b_3(t)[e^{-\frac{1}{k_3}z}-e^{-\frac{1}{n_6^*}z}],\ \text{if }\ n_6^*\neq k_3. \end{align} | (4.9) |
Combining Eqs (3.24), (4.8) and (4.9) we can complete the proof of Theorem 4.1.
Remark 4.1 Theorem 1 shows that the small perturbation of Forchheimer coefficient will not cause great changes to the solution of Eqs (1.1)–(1.8). Meanwhile, Theorem 1 also shows that the solutions of Eqs (2.12)–(2.21) decay exponentially as the space variable z\rightarrow \infty .
This section shows how to use the prior estimates in Section 2 and the method in Section 3 to derive the continuous dependence of the solution on \gamma . Assume that (u_i^*, T^*, p^*) is a solution of Eqs (1.1)–(1.8) with \gamma = \gamma^* .
If we also let
\mathcal{D}_i = u_i-u_i^*,\ \Sigma = T-T^*,\ \pi = p-p^*,\ \widetilde{\gamma} = \gamma-\gamma^*, |
then (\mathcal{D}_i, \Sigma, \pi) satisfies
\begin{align} b[|\mathit{\boldsymbol{u}}|u_i-|\mathit{\boldsymbol{u}}^*|u_i^*]+\widetilde{\gamma}Tu_i+\gamma_2\Sigma u_i+(1+\gamma T^*)\mathcal{D}_i+\gamma\Sigma u_i^* = -\pi_{,i}+g_i\Sigma,\ &in\ \Omega\times\{t > 0\}, \end{align} | (5.1) |
\begin{align} \mathcal{D}_{i,i} = 0,\ &in\ \Omega\times\{t > 0\}, \end{align} | (5.2) |
\begin{align} \partial_{t}\Sigma+u_i\Sigma_{,i}+\mathcal{D}_i T^*_{,i} = \Delta\Sigma, \ &in\ \Omega\times\{t > 0\}, \end{align} | (5.3) |
\begin{align} \mathcal{D}_i = 0, \Sigma = 0,\ on\ \partial D\times\{x_3 > 0\}&\times\{t > 0\}, \end{align} | (5.4) |
\begin{align} \mathcal{D}_i = 0, \Sigma = 0,\ & on\ D\times\{t > 0\}, \end{align} | (5.5) |
\begin{align} \Sigma(x_1, x_2, x_3, 0) = 0, \ &in \ \Omega \end{align} | (5.6) |
\begin{align} |\mathit{\boldsymbol{u}}|, |\Sigma| = O(1), |\mathcal{D}_i|, |\nabla\Sigma|, |\pi| = o(x_3^{-1}),&\ as\ x_3\rightarrow \infty. \end{align} | (5.7) |
We also define \Phi_1(z, t) as that in Eq (3.8). Similar to Eq (3.10), we have
\begin{align} \Phi_1(z, t) & = \frac{b}{2}\int_{0}^{t}\int_{\Omega_z}e^{-\omega\eta}(\xi-z)\Big[|\mathit{\boldsymbol{u}}|+|\mathit{\boldsymbol{u}}^*|\Big]\mathcal{D}_i\mathcal{D}_idx d\eta \\ &+\int_{0}^{t}\int_{\Omega_z}e^{-\omega\eta}(\xi-z)(1+\gamma_2 T^*)\mathcal{D}_i\mathcal{D}_idx d\eta \\ &+\frac{b}{2}\int_{0}^{t}\int_{\Omega_z}e^{-\omega\eta}(\xi-z)\Big[|\mathit{\boldsymbol{u}}|-|\mathit{\boldsymbol{u}}^*|\Big]^2\Big[|\mathit{\boldsymbol{u}}|+|\mathit{\boldsymbol{u}}^*|\Big]dx d\eta \\ &+\gamma_2\int_{0}^{t}\int_{\Omega_z}e^{-\omega\eta}(\xi-z)\mathcal{D}_i\Sigma u_i^*dx d\eta -\int_{0}^{t}\int_{\Omega_z}e^{-\omega\eta}(\xi-z)\mathcal{D}_ig_i\Sigma dx d\eta \\ &+\widetilde{\gamma}\int_{0}^{t}\int_{\Omega_z}e^{-\omega\eta}(\xi-z)Tu_i\mathcal{D}_i dx d\eta. \end{align} | (5.8) |
Using the Hölder inequality, Young's inequality and Lemmas 2.5 and 2.6, we obtain
\begin{align} & \widetilde{\gamma}\int_{0}^{t}\int_{\Omega_z}e^{-\omega\eta}Tu_i\mathcal{D}_i dx d\eta\\ & \geq-\frac{1}{2}T_M^2\widetilde{\gamma}^2\int_0^t\int_{\Omega_z}e^{-\omega\eta}u_{i}u_{i}dxd\eta -\frac{1}{2}\int_0^t\int_{\Omega_z}e^{-\omega\eta}(1+\gamma_2 T^*)\mathcal{D}_i\mathcal{D}_idxd\eta \\ &\geq-\frac{k_4(t)}{2a_2}T_M^2\widetilde{\gamma}^2e^{-\frac{z}{k_3}} -\frac{1}{2}\int_0^t\int_{\Omega_z}e^{-\omega\eta}(1+\gamma_2 T^*)\mathcal{D}_i\mathcal{D}_idxd\eta, \end{align} | (5.9) |
Combining Eqs (3.12), (3.13), (5.8) and (5.9), we obtain
\begin{align}& -\frac{\partial}{\partial z}\Phi_1(z, t)\\ &\geq\frac{b}{2}\int_{0}^{t}\int_{\Omega_z}e^{-\omega\eta}\Big[|\mathit{\boldsymbol{u}}|+|\mathit{\boldsymbol{u}}^*|\Big]\mathcal{D}_i\mathcal{D}_idx d\eta +\frac{1}{2}\int_{0}^{t}\int_{\Omega_z}e^{-\omega\eta}(1+\gamma_2 T^*)\mathcal{D}_i\mathcal{D}_idx d\eta \\ &-\frac{4\gamma_2^2\sqrt{k_5(t)k_2}}{b}\int_{0}^{t}\int_{\Omega_z}e^{-\omega\eta}\Sigma_{,i}\Sigma_{,i}dx d\eta -\frac{1}{2\gamma}\int_{0}^{t}\int_{\Omega_z}e^{-\omega\eta}\Sigma^2dx d\eta \\ &-\frac{k_4(t)}{2a_2}T_M^2\widetilde{\gamma}^2e^{-\frac{z}{k_3}}. \end{align} | (5.10) |
Inserting Eqs (3.18) and (5.10) into Eq (3.19), choosing \omega > \frac{4T_M^2}{\gamma^2} and the boundary data satisfies
\begin{align} \frac{8(\gamma^*)^2\sqrt{k_5(t)k_2}}{b}\leq\frac{1}{4}, \end{align} | (5.11) |
we have
\begin{align} & -\frac{\partial}{\partial z}\Phi(z, t)\\ &\geq\frac{b}{\gamma^*}T_M^2\int_{0}^{t}\int_{\Omega_z}e^{-\omega\eta}\Big[|\mathit{\boldsymbol{u}}|+|\mathit{\boldsymbol{u}}^*|\Big]\mathcal{D}_i\mathcal{D}_idx d\eta +\frac{1}{(\gamma^*)^2}T_M^2\int_{0}^{t}\int_{\Omega_z}e^{-\omega\eta}(1+\gamma_2 T^*)\mathcal{D}_i\mathcal{D}_idx d\eta \\ &+\frac{1}{2}e^{-\omega t}\int_{\Omega_z}\Sigma^2dx+\int_{0}^{t}\int_{\Omega_z}e^{-\omega\eta}\Big[ \frac{1}{4}\omega\Sigma^2+\frac{1}{4}\Sigma_{,i}\Sigma_{,i}\Big]dxd\eta \\ &-\frac{k_4(t)}{2a_2\gamma^*}T_M^4\widetilde{\gamma}^2e^{-\frac{z}{k_3}}. \end{align} | (5.12) |
Integrating Eq (5.12) from z to \infty , we obtain
\begin{align} \Phi(z, t)&\geq\frac{b}{\gamma^*}T_M^2\\ &\int_{0}^{t}\int_{\Omega_z}e^{-\omega\eta}(\xi-z)\Big[|\mathit{\boldsymbol{u}}|+|\mathit{\boldsymbol{u}}^*|\Big]\mathcal{D}_i\mathcal{D}_idx d\eta +\frac{1}{(\gamma^*)^2}T_M^2\int_{0}^{t}\int_{\Omega_z}e^{-\omega\eta}(1+\gamma_2 T^*)\mathcal{D}_i\mathcal{D}_idx d\eta \\ &+\frac{1}{2}e^{-\omega t}\int_{\Omega_z}(\xi-z)\Sigma^2dx+\int_{0}^{t}\int_{\Omega_z}e^{-\omega\eta}(\xi-z)\Big[ \frac{1}{4}\omega\Sigma^2+\frac{1}{4}\Sigma_{,i}\Sigma_{,i}\Big]dxd\eta \\ &-\frac{k_4(t)}{2a_2\gamma^*}k_3T_M^4\widetilde{\gamma}^2e^{-\frac{z}{k_3}}. \end{align} | (5.13) |
Similar to the calculation in Eqs (3.33) and (3.37), we can get
\begin{align} \Phi(z, t)&\leq n_6'(t)\Big[-\frac{\partial}{\partial z}\Phi(z, t)\Big]+n_7'(t)\widetilde{b}^2e^{-\frac{z}{k_3}}, \end{align} | (5.14) |
for n_6'(t), n_7'(t) > 0 .
After similar analysis as in the previous section, we can get the following theorem from Eq (5.14).
Theorem 5.1. Let (u_i, T, p) and (u_i^*, T^*, p^*) be solutions of the Eqs (1.1)–(1.8) in \Omega , corresponding to b_1 and b_2 , respectively. If \int_Df_3dA = 0 , Equation (5.11) holds and f_{\alpha, \alpha}-\gamma_1f_3 = 0, H\in L^\infty(\Omega\times\{t > 0\}) , then
(u_i, T)\rightarrow (u_i^*, T^*),\ as\ b_1\rightarrow b_2. |
Specifically, either the inequality
\begin{align} \frac{b}{\gamma^*}T_M^2&\int_{0}^{t}\int_{\Omega_z}e^{-\omega\eta}(\xi-z)\Big[|\mathit{\boldsymbol{u}}|+|\mathit{\boldsymbol{u}}^*|\Big]\mathcal{D}_i\mathcal{D}_idx d\eta \\ &+ \frac{1}{(\gamma^*)^2}T_M^2\int_{0}^{t}\int_{\Omega_z}e^{-\omega\eta}(\xi-z)(1+\gamma^* T^*)\mathcal{D}_i\mathcal{D}_idx d\eta \\ &+\frac{1}{2}e^{-\omega t}\int_{\Omega_z}(\xi-z)\Sigma^2dx+\int_{0}^{t}\int_{\Omega_z}e^{-\omega\eta}(\xi-z)\Big[ \frac{1}{4}\omega\Sigma^2+\frac{1}{4}\Sigma_{,i}\Sigma_{,i}\Big]dxd\eta \\ &\leq \frac{k_4(t)}{2a_2\gamma^*}k_3T_M^4\widetilde{\gamma}^2e^{-\frac{z}{k_3}}+ \widetilde{\gamma}^2n_7'(t)e^{-\frac{1}{n_6^*}z} +\widetilde{\gamma}^2\frac{n_7'(t)}{n_6^*}ze^{-\frac{1}{n_6^*}z} \end{align} |
holds, or the inequality
\begin{align} \frac{b}{\gamma^*}T_M^2&\int_{0}^{t}\int_{\Omega_z}e^{-\omega\eta}(\xi-z)\Big[|\mathit{\boldsymbol{u}}|+|\mathit{\boldsymbol{u}}^*|\Big]\mathcal{D}_i\mathcal{D}_idx d\eta \\ &+ \frac{1}{(\gamma^*)^2}T_M^2\int_{0}^{t}\int_{\Omega_z}e^{-\omega\eta}(\xi-z)(1+\gamma^* T^*)\mathcal{D}_i\mathcal{D}_idx d\eta \\ &+\frac{1}{2}e^{-\omega t}\int_{\Omega_z}(\xi-z)\Sigma^2dx+\int_{0}^{t}\int_{\Omega_z}e^{-\omega\eta}(\xi-z)\Big[ \frac{1}{4}\omega\Sigma^2+\frac{1}{4}\Sigma_{,i}\Sigma_{,i}\Big]dxd\eta \\ &\leq \frac{k_4(t)}{2a_2\gamma^*}k_3T_M^4\widetilde{\gamma}^2e^{-\frac{z}{k_3}}+ \widetilde{\gamma}^2n_7'(t)e^{-\frac{1}{n_6^*}z} +\widetilde{\gamma}^2\frac{n_7'(t)}{n_6^*(\frac{1}{n_6^*}-\frac{1}{k_3})}b_3(t)[e^{-\frac{1}{k_3}z}-e^{-\frac{1}{n_6^*}z}] \end{align} |
holds.
In this paper, using a priori estimates of the solutions, we show how to control the nonlinear term, and obtain the structural stability of the solution of the Forchheimer equation in a semi-infinite cylinder. Meanwhile, the spatial decay results of the solution are also obtained. The methods in this paper can bring some inspiration for the structural stability of other nonlinear partial differential equations.
The authors express their heartfelt thanks to the editors and referees who have provided some important suggestions. This work is supported by the Tutor System Rroject of Guangzhou Huashang College (2021HSDS13) and the Key projects of universities in Guangdong Province (NATURAL SCIENCE) (2019KZDXM042).
The authors declare there is no conflict of interest. Conceptualization, and validation, Z. Li.; formal analysis, Z W. Zhang; investigation, Y. Li. All authors have read and agreed to the published version of the manuscript.
[1] | A. J. Lotka, Elements of physical biology, Williams and Wilkins, 1925. |
[2] |
V. Volterra, Variations and fluctuations of the number of individuals in animal species living together, ICES J. Marine Sci., 3 (1928), 3–51. https://doi.org/10.1093/icesjms/3.1.3 doi: 10.1093/icesjms/3.1.3
![]() |
[3] | J. D. Murray, Mathematical biology, Berlin, Heidelberg: Springer, 1989. https://doi.org/10.1007/978-3-662-08539-4 |
[4] |
W. O. Kermack, A. G. McKendrick, A contribution to the mathematical theory of epidemics, Proc. R. Soc. Lond. A, 115 (1927), 700–721. https://doi.org/10.1098/rspa.1927.0118 doi: 10.1098/rspa.1927.0118
![]() |
[5] |
H. W. Hethcote, W. D. Wang, L. T. Han, Z. E. Ma, A predator-prey model with infected prey, Theor. Popul. Biol., 66 (2004), 259–268. https://doi.org/10.1016/j.tpb.2004.06.010 doi: 10.1016/j.tpb.2004.06.010
![]() |
[6] | A. Johri, N. Trivedi, A. Sisodiya, B. Singh, S. Jain, Study of a prey-predator model with diseased prey, Int. J. Contemp. Math. Sci., 7 (2012), 489–498. |
[7] |
M. S. S. Rahman, S. Chakravarty, A predator-prey model with disease in prey, Nonlinear Anal. Model. Control, 18 (2013), 191–209. https://doi.org/10.15388/NA.18.2.14022 doi: 10.15388/NA.18.2.14022
![]() |
[8] |
S. K. Nandi, P. K. Mondal, S. Jana, P. Haldar, T. K. Kar, Prey-predator model with two-stage infection in prey: concerning pest control, J. Nonlinear Dyn., 2015 (2015), 948728. https://doi.org/10.1155/2015/948728 doi: 10.1155/2015/948728
![]() |
[9] |
W. Mbava, J. Y. T. Mugisha, J. W. Gonsalves, Prey, predator and super-predator model with disease in the super-predator, Appl. Math. Comput., 297 (2017), 92–114. https://doi.org/10.1016/j.amc.2016.10.034 doi: 10.1016/j.amc.2016.10.034
![]() |
[10] |
W. B. Yang, Analysis on existence of bifurcation solutions for a predator-prey model with herd behavior, Appl. Math. Model., 53 (2018), 433–446. https://doi.org/10.1016/j.apm.2017.09.020 doi: 10.1016/j.apm.2017.09.020
![]() |
[11] |
J. Chattopadhyay, O. Arino, A predator-prey model with disease in the prey, Nonlinear Anal., 36 (1999), 747–766. https://doi.org/10.1016/S0362-546X(98)00126-6 doi: 10.1016/S0362-546X(98)00126-6
![]() |
[12] |
K. P. Das, J. Chattopadhyay, A mathematical study of a predator-prey model with disease circulating in both populations, Int. J. Biomath., 8 (2015), 1550015. https://doi.org/10.1142/S1793524515500151 doi: 10.1142/S1793524515500151
![]() |
[13] | K. P. Dash, S. Gnanavel, R. Bhardwaj, R. Kumar, Allee effect in a harvested predator-prey model with disease in both populations, Nonlinear Stud., 29 (2022), 965. |
[14] |
K. Q. Al-Jubouri, R. M. Hussien, N. M. G. Al-Saidi, The effect of harvesting policy on an eco-epidemiological model, AIP Conf. Proc., 2183 (2019), 070007. https://doi.org/10.1063/1.5136169 doi: 10.1063/1.5136169
![]() |
[15] | J. P. Tripathi, K. P. Das, S. Bugalia, H. Choudhary, D. Kumar, J. Singh, Role of harvesting and Allee in a predator-prey model with disease in both populations, Nonlinear Stud., 28 (2021), 939. |
[16] |
M. M. Khader, J. E. Macías-Díaz, K. M. Saad, W. M. Hamanah, Vieta-Lucas polynomials for the Brusselator system with the Rabotnov fractional-exponential kernel fractional derivative, Symmetry, 15 (2023), 1–10. https://doi.org/10.3390/sym15091619 doi: 10.3390/sym15091619
![]() |
[17] |
S. Al-Nassir, Dynamic analysis of a harvested fractional-order biological system with its discretization, Chaos Solitons Fract., 152 (2021), 111308. https://doi.org/10.1016/j.chaos.2021.111308 doi: 10.1016/j.chaos.2021.111308
![]() |
[18] |
M. Moustafa, M. H. Mohd, A. I. Ismail, F. A. Abdullah, Dynamical analysis of a fractional-order eco-epidemiological model with disease in prey population, Adv. Differ. Equ., 2020 (2020), 1–24. https://doi.org/10.1186/s13662-020-2522-5 doi: 10.1186/s13662-020-2522-5
![]() |
[19] |
R. Kaviya, P. Muthukumar, Correction to: Dynamical analysis and optimal harvesting of conformable fractional prey-predator system with predator immigration, Eur. Phys. J. Plus, 136 (2021), 606. https://doi.org/10.1140/epjp/s13360-021-01598-3 doi: 10.1140/epjp/s13360-021-01598-3
![]() |
[20] |
Y. K. Xie, Z. Wang, B. Meng, X. Huang, Dynamical analysis for a fractional-order prey-predator model with Holling Ⅲ type functional response and discontinuous harvest, Appl. Math. Lett., 106 (2020), 106342. https://doi.org/10.1016/j.aml.2020.106342 doi: 10.1016/j.aml.2020.106342
![]() |
[21] |
S. Djilali, B. Ghanbari, The influence of an infectious disease on a prey-predator model equipped with a fractional-order derivative, Adv. Differ. Equ., 2021 (2021), 1–16. https://doi.org/10.1186/s13662-020-03177-9 doi: 10.1186/s13662-020-03177-9
![]() |
[22] |
P. Ramesh, M. Sambath, M. H. Mohd, K. Balachandran, Stability analysis of the fractional-order prey-predator model with infection, Int. J. Model. Simul., 41 (2021), 434–450. https://doi.org/10.1080/02286203.2020.1783131 doi: 10.1080/02286203.2020.1783131
![]() |
[23] |
J. Alidousti, E. Ghafari, Dynamic behavior of a fractional order prey-predator model with group defense, Chaos Solitons Fract., 134 (2020), 109688. https://doi.org/10.1016/j.chaos.2020.109688 doi: 10.1016/j.chaos.2020.109688
![]() |
[24] | K. S. Miller, B. Ross, An introduction to the fractional calculus and fractional differential equations, New York: Wiley, 1993. |
[25] | K. B. Oldham, J. Spanier, The fractional calculus: theory and applications of differentiation and integration to arbitrary order, Elsevier, 1974. |
[26] |
I. Podlubny, A. Chechkin, T. Skovranek, Y. Q. Chen, B. M. V. Jara, Matrix approach to discrete fractional calculus Ⅱ: partial fractional differential equations, J. Comput. Phys., 228 (2009), 3137–3153. https://doi.org/10.1016/j.jcp.2009.01.014 doi: 10.1016/j.jcp.2009.01.014
![]() |
[27] |
A. M. Wazwaz, A new algorithm for calculating adomian polynomials for nonlinear operators, Appl. Math. Comput., 111 (2000), 33–51. https://doi.org/10.1016/S0096-3003(99)00063-6 doi: 10.1016/S0096-3003(99)00063-6
![]() |
[28] |
S. Abbasbandy, A numerical solution of Blasius equation by Adomian's decomposition method and comparison with homotopy perturbation method, Chaos Solitons Fract., 31 (2007), 257–260. https://doi.org/10.1016/j.chaos.2005.10.071 doi: 10.1016/j.chaos.2005.10.071
![]() |
[29] | S. J. Liao, The proposed homotopy analysis technique for the solution of nonlinear problems, Ph.D. Thesis, Shanghai Jiao Tong University, 1992. |
[30] |
S. Momani, Z. Odibat, V. S. Erturk, Generalized differential transform method for solving a space- and time-fractional diffusion-wave equation, Phys. Lett. A, 370 (2007), 379–387. https://doi.org/10.1016/j.physleta.2007.05.083 doi: 10.1016/j.physleta.2007.05.083
![]() |
[31] |
J. H. He, Homotopy perturbation technique, Comput. Methods Appl. Mech. Eng., 178 (1999), 257–262. https://doi.org/10.1016/S0045-7825(99)00018-3 doi: 10.1016/S0045-7825(99)00018-3
![]() |
[32] |
A. Yildirim, Application of the homotopy perturbation method for the Fokker-Planck equation, Int. J. Numer. Methods Biomed. Eng., 26 (2010), 1144–1154. https://doi.org/10.1002/cnm.1200 doi: 10.1002/cnm.1200
![]() |
[33] |
J. H. He, Variational iteration method–a kind of non-linear analytical technique: some examples, Int. J. Non-Linear Mech., 34 (1999), 699–708. https://doi.org/10.1016/S0020-7462(98)00048-1 doi: 10.1016/S0020-7462(98)00048-1
![]() |
[34] |
Y. Khan, An effective modification of the Laplace decomposition method for nonlinear equations, Int. J. Nonlinear Sci. Numer. Simul., 10 (2009), 1373–1376. https://doi.org/10.1515/IJNSNS.2009.10.11-12.1373 doi: 10.1515/IJNSNS.2009.10.11-12.1373
![]() |
[35] |
Y. Khan, Q. B. Wu, Homotopy perturbation transform method for nonlinear equations using He's polynomials, Comput. Math. Appl., 61 (2011), 1963–1967. https://doi.org/10.1016/j.camwa.2010.08.022 doi: 10.1016/j.camwa.2010.08.022
![]() |
[36] |
D. Zhao, J. Singh, D. Kumar, S. Rathore, X. J. Yang, An efficient computational technique for local fractional heat conduction equations in fractal media, J. Nonlinear Sci. Appl., 10 (2017), 1478–1486. http://dx.doi.org/10.22436/jnsa.010.04.17 doi: 10.22436/jnsa.010.04.17
![]() |
[37] |
D. Kumar, J. Singh, D. Baleanu, A hybrid computational approach for Klein-Gordon equations on Cantor sets, Nonlinear Dyn., 87 (2017), 511–517. https://doi.org/10.1007/s11071-016-3057-x doi: 10.1007/s11071-016-3057-x
![]() |
[38] |
R. Garrappa, Numerical solution of fractional differential equations: a survey and a software tutorial, Mathematics, 6 (2018), 1–23. https://doi.org/10.3390/math6020016 doi: 10.3390/math6020016
![]() |
[39] |
K. Singh, R. Saxena, S. Kumar, Caputo-based fractional derivative in fractional Fourier transform domain, IEEE J. Emerging Sel. Top. Circuits Syst., 3 (2013), 330–337. https://doi.org/10.1109/JETCAS.2013.2272837 doi: 10.1109/JETCAS.2013.2272837
![]() |
[40] |
D. Baleanu, O. P. Agrawal, Fractional Hamilton formalism within Caputo's derivative, Czechoslovak J. Phys., 56 (2006), 1087–1092. https://doi.org/10.1007/s10582-006-0406-x doi: 10.1007/s10582-006-0406-x
![]() |
[41] |
K. Shah, Z. A. Khan, A. Ali, R. Amin, H. Khan, A. Khan, Haar wavelet collocation approach for the solution of fractional order COVID-19 model using Caputo derivative, Alex. Eng. J., 59 (2020), 3221–3231. https://doi.org/10.1016/j.aej.2020.08.028 doi: 10.1016/j.aej.2020.08.028
![]() |
[42] |
M. N. Oqielat, A. El-Ajou, Z. Al-Zhour, R. Alkhasawneh, H. Alrabaiah, Series solutions for nonlinear time-fractional Schrödinger equations: comparisons between conformable and Caputo derivatives, Alex. Eng. J., 59 (2020), 2101–2114. https://doi.org/10.1016/j.aej.2020.01.023 doi: 10.1016/j.aej.2020.01.023
![]() |
[43] | D. Mozyrska, D. F. M. Torres, Minimal modified energy control for fractional linear control systems with the Caputo derivative, Carpathian J. Math., 26 (2010), 210–221. |
[44] | I. Petráš, Fractional-order nonlinear systems: modeling, analysis and simulation, Berlin, Heidelberg: Springer, 2011. https://doi.org/10.1007/978-3-642-18101-6 |
[45] |
K. Baisad, S. Moonchai, Analysis of stability and Hopf bifurcation in a fractional Gauss-type predator-prey model with Allee effect and Holling type-Ⅲ functional response, Adv. Differ. Equ., 2018 (2018), 1–20. https://doi.org/10.1186/s13662-018-1535-9 doi: 10.1186/s13662-018-1535-9
![]() |
[46] |
R. Soni, U. Chouhan, A dynamic effect of infectious disease on prey predator system and harvesting policy, Biosci. Biotech. Res. Commun., 11 (2018), 231–237. http://dx.doi.org/10.21786/bbrc/11.2/6 doi: 10.21786/bbrc/11.2/6
![]() |
[47] |
C. Vargas-De-Leon, Volterra-type Lyapunov functions for fractional-order epidemic systems, Commun. Nonlinear Sci. Numer. Simul., 24 (2015), 75–85. https://doi.org/10.1016/j.cnsns.2014.12.013 doi: 10.1016/j.cnsns.2014.12.013
![]() |
[48] |
M. Bandyopadhyay, J. Chattopadhyay, Ratio-dependent predator-prey model: effect of environmental fluctuation and stability, Nonlinearity, 18 (2005), 913. https://doi.org/10.1088/0951-7715/18/2/022 doi: 10.1088/0951-7715/18/2/022
![]() |
[49] |
A. Korobeinikov, Global properties of infectious disease models with nonlinear incidence, Bull. Math. Biol., 69 (2007), 1871–1886. https://doi.org/10.1007/s11538-007-9196-y doi: 10.1007/s11538-007-9196-y
![]() |
[50] |
R. Naresh, A. Tripathi, D. Sharma, Modelling and analysis of the spread of AIDS epidemic with immigration of HIV infectives, Math. Comput. Model., 49 (2009), 880–892. https://doi.org/10.1016/j.mcm.2008.09.013 doi: 10.1016/j.mcm.2008.09.013
![]() |
[51] |
E. Venturino, Epidemics in predator-prey models: disease in the predators, Math. Med. Biol., 19 (2002), 185–205. https://doi.org/10.1093/imammb/19.3.185 doi: 10.1093/imammb/19.3.185
![]() |
[52] |
R. L. Magin, Fractional calculus models of complex dynamics in biological tissues, Comput. Math. Appl., 59 (2010), 1586–1593. https://doi.org/10.1016/j.camwa.2009.08.039 doi: 10.1016/j.camwa.2009.08.039
![]() |
[53] |
A. M. Bate, F. M. Hilker, Complex dynamics in an eco-epidemiological model, Bull. Math. Biol., 75 (2013), 2059–2078. https://doi.org/10.1007/s11538-013-9880-z doi: 10.1007/s11538-013-9880-z
![]() |
1. | Yuanfei Li, A study on continuous dependence of layered composite materials in binary mixtures on basic data, 2024, 32, 2688-1594, 5577, 10.3934/era.2024258 | |
2. | Yanping Wang, Yuanfei Li, Structural Stability of Pseudo-Parabolic Equations for Basic Data, 2024, 29, 2297-8747, 105, 10.3390/mca29060105 | |
3. | Naiqiao Qing, Jincheng Shi, Yan Liu, Yunfeng Wen, Spatial decay estimates for a coupled system of wave-plate type, 2025, 33, 2688-1594, 1144, 10.3934/era.2025051 |