
Cancer is a disease that arises from the uncontrolled growth of abnormal (tumor) cells in an organ and their subsequent spread into other parts of the body. If tumor cells spread to surrounding tissues or other organs, then the disease is life-threatening due to limited treatment options. This work applies an agent-based model to investigate the effect of intra-tumoral communication on tumor progression, plasticity, and invasion, with results suggesting that cell-cell and cell-extracellular matrix (ECM) interactions affect tumor cell behavior. Additionally, the model suggests that low initial healthy cell densities and ECM protein densities promote tumor progression, cell motility, and invasion. Furthermore, high ECM breakdown probabilities of tumor cells promote tumor invasion. Understanding the intra-tumoral communication under cellular stress can potentially lead to the design of successful treatment strategies for cancer.
Citation: Hasitha N. Weerasinghe, Pamela M. Burrage, Dan V. Nicolau Jr., Kevin Burrage. Agent-based modeling for the tumor microenvironment (TME)[J]. Mathematical Biosciences and Engineering, 2024, 21(11): 7621-7647. doi: 10.3934/mbe.2024335
[1] | Ryuta Muromoto, Kenji Oritani, Tadashi Matsuda . Tyk2-mediated homeostatic control by regulating the PGE2-PKA-IL-10 axis. AIMS Allergy and Immunology, 2021, 5(3): 175-183. doi: 10.3934/Allergy.2021013 |
[2] | Declan P. McKernan . Toll-like receptors and immune cell crosstalk in the intestinal epithelium. AIMS Allergy and Immunology, 2019, 3(1): 13-31. doi: 10.3934/Allergy.2019.1.13 |
[3] | Stephen C Allen . Cytokine signaling in the modulation of post-acute and chronic systemic inflammation: a review of the influence of exercise and certain drugs. AIMS Allergy and Immunology, 2020, 4(4): 100-116. doi: 10.3934/Allergy.2020009 |
[4] | Waleed M. Hussein, Phil M. Choi, Cheng Zhang, Emma Sierecki, Wayne Johnston, Zhongfan Jia, Michael J. Monteiro, Mariusz Skwarczynski, Yann Gambin, Istvan Toth . Investigating the affinity of poly tert-butyl acrylate toward Toll-Like Receptor 2. AIMS Allergy and Immunology, 2018, 2(3): 141-147. doi: 10.3934/Allergy.2018.3.141 |
[5] | Mansur Aliyu, Fatema Zohora, Ali Akbar Saboor-Yaraghi . Spleen in innate and adaptive immunity regulation. AIMS Allergy and Immunology, 2021, 5(1): 1-17. doi: 10.3934/Allergy.2021001 |
[6] | Michael D. Caponegro, Jeremy Tetsuo Miyauchi, Stella E. Tsirka . Contributions of immune cell populations in the maintenance, progression, and therapeutic modalities of glioma. AIMS Allergy and Immunology, 2018, 2(1): 24-44. doi: 10.3934/Allergy.2018.1.24 |
[7] | Ken S. Rosenthal, Jordan B. Baker . The immune system through the ages. AIMS Allergy and Immunology, 2022, 6(3): 170-187. doi: 10.3934/Allergy.2022013 |
[8] | Andrey Mamontov, Alexander Polevshchikov, Yulia Desheva . Mast cells in severe respiratory virus infections: insights for treatment and vaccine administration. AIMS Allergy and Immunology, 2023, 7(1): 1-23. doi: 10.3934/Allergy.2023001 |
[9] | James Peterson . Affinity and avidity models in autoimmune disease. AIMS Allergy and Immunology, 2018, 2(1): 45-81. doi: 10.3934/Allergy.2018.1.45 |
[10] | Katarzyna Nazimek . The complex functions of microRNA-150 in allergy, autoimmunity and immune tolerance. AIMS Allergy and Immunology, 2021, 5(4): 195-221. doi: 10.3934/Allergy.2021016 |
Cancer is a disease that arises from the uncontrolled growth of abnormal (tumor) cells in an organ and their subsequent spread into other parts of the body. If tumor cells spread to surrounding tissues or other organs, then the disease is life-threatening due to limited treatment options. This work applies an agent-based model to investigate the effect of intra-tumoral communication on tumor progression, plasticity, and invasion, with results suggesting that cell-cell and cell-extracellular matrix (ECM) interactions affect tumor cell behavior. Additionally, the model suggests that low initial healthy cell densities and ECM protein densities promote tumor progression, cell motility, and invasion. Furthermore, high ECM breakdown probabilities of tumor cells promote tumor invasion. Understanding the intra-tumoral communication under cellular stress can potentially lead to the design of successful treatment strategies for cancer.
Economic dispatch (ED) [1] in power systems is an important issue for obtaining the steady-state and economic operations of systems that is a typical constrained optimization problem with multiple variables. The optimization goal of the ED problem is to determine the most economic power outputs of generators while satisfying multiple constraints, such as the generation capacity limits, power demand balance, network transmission losses, ramp rate limits and prohibited operating zones. Considering the valve-point effects (VPE) of multivalve steam turbines for the ED problem, the objective cost function is a nonlinear and nonconvex function, which is hard to solve [2]. Especially in large-scale power systems with multiple generators, the ED problem is a complex optimization problem with several local optimal solutions, and thus the global optimal solution is hard to find.
In recent years, several optimization algorithms, including conventional algorithms and meta-heuristic algorithms, have been proposed to solve the ED problems. Some conventional algorithms, such as linear programming (LP) [3], self-adaptive dynamic programming (SADP) [4], iterative dynamic programming (IDP) [1] and evolutionary programming (EP) [5], have been applied to solve the ED problems. These methods solve the ED problems using the simplified optimization model in which the valve-point effects, ramp rate limits, prohibited operating zones and transmission losses are not considered. Moreover, the optimal results obtained by these methods may be the local optima and have lower computational accuracy. The drawbacks of conventional algorithms prompt researchers to study meta-heuristic algorithms for solving ED problems.
Recently, many meta-heuristic algorithms have been proposed to solve the various optimization problems, such as flow shop scheduling [6,7,8], steelmaking scheduling [9], job shop scheduling [10,11,12,13], flexible task scheduling [14] and chiller loading optimization [15,16,17]. Due to the better optimization performance, many meta-heuristic algorithms have also been applied to solve the complex ED problems, and these algorithms include the genetic algorithm (GA) [18,19,20,21], particle swarm optimization (PSO) and its variants [22,23,24,25,26], firefly algorithm (FA) [27], oppositional real coded chemical reaction optimization (ORCCRO) [28], differential evolution (DE) [29,30], chaotic bat algorithm (CBA) [31], oppositional invasive weed optimization (OIWO) [32], teaching learning based optimization (TLBO) [33], tournament-based harmony search (THS) [34], grey wolf optimization (GWO) [35,36], hybrid artificial algae algorithm (HAAA) [37], orthogonal learning competitive swarm optimizer (OLCSO) [2], backtracking search algorithm (BSA) [38], social spider algorithm (SSA) [39], civilized swarm optimization (CSO) [40], kinetic gas molecule optimization (KGMO) [41] and hybrid methods [42,43,44,45]. Although the above meta-heuristic algorithms have been shown to be efficient in solving ED problems, the optimal results obtained by these algorithms are not the most economical.
By mimicking the colonization behavior of weeds in nature, the invasive weed optimization (IWO) algorithm was proposed by Mehrabian and Lucas [46] to optimize multidimensional functions. The experimental results demonstrated that IWO can obtain superior optimization results compared to other evolutionary-based algorithms. Due to its robustness, convergence, high accuracy and searching ability, the IWO algorithm has been applied to solve many engineering optimization problems. However, when IWO is used to solve the ED problem in large-scale power systems, the optimization power outputs of generators obtained by IWO consumes more generation costs compared to the reported methods in literature. To further improve the optimization performance of IWO in solving ED problems, especially ED problems in the large-scale power systems, inspired by the effective application of hybrid methods in solving ED problems [37,42,43,44,45], a hybrid invasive weed optimization (HIWO) algorithm that hybridizes IWO with GA is developed in this study. The motivation behind choosing GA integrated with IWO is to get a better dispatch solution using the crossover operation between offspring weed and its parent weed to improve the local search ability of IWO, and executing the mutation operation on offspring weeds to increase the diversity of the population. The main contributions of this study are as follows: (1) the economic dispatch problem with various practical constraints is investigated by minimizing the total power generation cost; (2) the crossover and mutation operations of GA are proposed to improve the optimization performance of IWO; and (3) an effective repair method of handing constraints is investigated to repair the infeasible dispatch solutions.
The rest of this paper is organized as follows. Section 2 gives the mathematical formulation of the ED problem. Section 3 introduces a hybrid invasive weed optimization (HIWO) algorithm. Section 4 presents the application method of HIWO on ED problems. Section 5 shows the experimental results and analysis on six power systems with different scales. The conclusion is finally given in Section 6.
The ED problem in power systems is to find the optimal dispatch solution of the power outputs of generators, while the total power generation cost of the system is minimized and all the constraints are satisfied.
The optimization objective of the ED problem is to minimize the power generation cost (SC) consumed by N number of generators in the power system, as shown in Eq 1.
Min.SC=N∑i=1Ci(Pi) | (1) |
where Pi and Ci are the power output and generation cost of the ith generator, respectively.
For the ED problem neglecting valve-point effects, Ci is calculated by Eq 2. For the ED problem considering valve-point effects, Eq 3 is used to calculate Ci [2,32].
Ci(Pi)=ai⋅Pi2+bi⋅Pi+ci | (2) |
Ci(Pi)=ai⋅Pi2+bi⋅Pi+ci+|ei⋅sin(fi⋅(Pmini−Pi))| | (3) |
where ai, bi and ci are the cost coefficients of the ith generator; ei and fi are valve-point coefficients of the ith generator;
The feasible dispatch solutions of the ED problem should satisfy the following constraints.
The power output of each generator must be in the range specified by the minimum (
Pmini≤Pi≤Pmaxi | (4) |
The power outputs of generators should satisfy the system power demand (PD). For the ED problem neglecting network transmission losses (PL), the power demand balance is expressed as Eq 5 [30]. For the ED problem considering PL, the power demand balance is expressed as Eq 6.
N∑i=1Pi=PD | (5) |
N∑i=1Pi=PD+PL | (6) |
PL can be calculated using the power flow analysis method [47] or the B-coefficients method [48]. This study adopts the following B-coefficients method to calculate PL.
L=N∑i=1N∑j=1PiBijPj+N∑i=1B0iPi+B00 | (7) |
where Bij, B0i and B00 represent the loss coefficients.
In the actual operation of the power system, to avoid the excessive stress on the boiler and combustion equipment, the change rate of the power output of each generating unit should be within the ramp rate limit, as shown in Eq 8.
{Pi−P0i≤URiP0i−Pi≤DRi | (8) |
where
When taking into account both the generation capacity limits and ramp rate limits, the value range of Pi can be rewritten as Eq 9.
max{Pmini,P0i−DRi}≤Pi≤min{Pmaxi,P0i+URi} | (9) |
Considering the operation limitations of machine components, the power outputs of some generators cannot lie in the prohibited zones, as shown in Eq 10.
Pi∈{Pmini≤Pi≤Pli,1Pui,k−1≤Pi≤Pli,kPui,npi≤Pi≤Pmaxik=2,3,⋯,npi | (10) |
where
IWO is a novel evolutionary computation algorithm based on weed swarm intelligence. By simulating the propagation and growth behaviors of weeds in nature, IWO searches for the optimal solution of the problem in the solution space. The calculation steps of IWO include initialization, reproduction, spatial dispersal and selection. The initial population with Nwo weed individuals is randomly generated in the feasible solution space, in which each weed consisting of variables represents a feasible solution. Then, each weed Wj in the population reproduces seeds, and the seeds grow into offspring weeds through spatial dispersal. The amount (Nsj) of seeds reproduced by Wj is calculated by using Eq 11.
Nsj=Fitj−FitminFitmax−Fitmin⋅(Nsmax−Nsmin)+Nsmin | (11) |
where Fitj is the fitness value of Wj; Fitmin and Fitmax are the minimum and maximum fitness values in the weed population, respectively; Nsmin and Nsmax are the minimum and maximum of the number of seeds, respectively.
The parent weeds with higher fitness values can reproduce more seeds, and they have more offspring weeds in the population. This reproduction strategy means that IWO can converge rapidly and reliably to the approximate optimal solution. Offspring weeds are randomly distributed around their parent weed according to a normal distribution with a standard deviation (σit). The calculation formula of σit is shown in Eq 12. Along with the increase of the iteration times, σit is gradually reduced from an initial value (σiv) to a final value (σfv), which makes the search range of IWO be gradually reduced. This strategy makes IWO have the whole space search capability in early iterations and high local convergence in later iterations. After all the seeds grow into weeds, the Nwmax weeds with higher fitness values are selected from all the weeds as the parent weeds of the next iteration. Through Itermax times iterations, the weed with the highest fitness value is the optimal solution of the problem.
σit=(Itermax−Iter)mItermaxm⋅(σiv−σfv)+σfv | (12) |
where m is the nonlinear modulation index, and Iter and Itermax are the current number and maximum of iterations, respectively.
In the proposed HIWO algorithm, IWO is used to explore the solution space around parent weeds. After the seeds reproduced by parent weeds have grown into offspring weeds, the crossover and mutation operations of GA are performed on offspring weeds for improving the quality and diversity of solutions, which can improve the convergence speed and avoid the premature convergence of the algorithm.
The execution flow of HIWO is represented by the pseudo code shown in Figure 1.
Each offspring weed (OW(j, q)) (q = 1, 2, …, Nsj ) crosses with its parent weed (Wj) to generate a new weed (
(a) If
(b) If
After the new offspring weed (
For each offspring weed (OW(j, q)) (q = 1, 2, …, Nsj ), randomly select X mutation points from N variables
σm=(Pmaxi−Pmini)⋅rand(0,1) | (13) |
where rand (0, 1) is a random number between 0 and 1.
In the proposed HIWO algorithm, the first task is the encoding to represent each solution considering all of the constraints. Each weed (Wj) is represented as a row vector consisting of power outputs of generators, as shown in Eq 14. The weed population is initialized by randomly generating the power outputs of generators by using Eq 15. Then, infeasible weeds are repaired into feasible solutions by using the repair method in Section 4.2. Weeds in the initial population are used as the parent weeds to reproduce seeds, which grows into offspring weeds through spatial dispersal. The weeds with higher fitness value can reproduce more seeds. The fitness function used in this study is shown in Eq 16. Each offspring weed will perform the crossover and mutation procedures, like in the canonical GA, and thus can increase the diversity of the population. Then, the repair procedure is applied on the infeasible offspring weeds to make them satisfy with all of the constraints. If the total quantity of parent weeds and offspring weeds is larger than the specified population size, select the weeds with higher fitness values as the parent weeds of the next iteration. Otherwise, all the weeds are used as parent weeds. After multiple times iterations, the best weed with the highest fitness value is selected as the optimal dispatch solution of the ED problem.
Wj=(P1,P2,⋯,PN) | (14) |
Pi=(Pmaxi−Pmini)⋅rand(0,1)+Pminii=1,2,⋯,N | (15) |
Fitj=1SCj | (16) |
where SCj and Fitj represent the power generation cost and fitness value of the jth weed, respectively.
An effective repair method of handing constraints is proposed in this study to repair infeasible weeds into feasible solutions. The detail repair steps are stated in the following.
Step 1: Modify the
Pi={max{Pmini,P0i−DRi}if Pi<max{Pmini,P0i−DRi}min{Pmaxi,P0i+URi}if Pi>min{Pmaxi,P0i+URi} | (17) |
Step 2: Calculate the constraint violation (V) of the power demand balance. For the ED problem considering transmission losses, V is calculated by using Eq 18. For the ED problem neglecting transmission losses, V is calculated by using Eq 19. If
V=|N∑i=1Pi−PD−N∑i=1N∑j=1PiBijPj−N∑i=1B0iPi−B00| | (18) |
V=|N∑i=1Pi−PD| | (19) |
Step 3: Determine the modification sequence of N generators. For each generator i (i = 1, 2, …, N), calculate the modification value
P′i=PD−∑r∈RPr | (20) |
Bii(P′i)2+(2∑r∈RPrBir+B0i−1)P′i+(PD+∑r∈R∑t∈RPrBrtPt+∑r∈RB0rPr−∑r∈RPr+B00)=0 | (21) |
P′i=−(2∑r∈RPrBir+B0i−1)−√(2∑r∈RPrBir+B0i−1)2−4Bii(PD+∑r∈R∑t∈RPrBrtPt+∑r∈RB0rPr−∑r∈RPr+B00)2Bii | (22) |
For each generator i (i = 1, 2, …, N), assume that the ith generator is selected as the revised generator, and Pi is replaced by
CXi=Ci(P′i)−Ci(Pi) | (23) |
PCVi=CXi−min(CX)max(CX)−min(CX)+PVi−min(PV)max(PV)−min(PV) | (24) |
Step 4: Modify the power output of each generator in turn according to the modification sequence stored in S until the power demand balance constraint is satisfied. When the ith (
Step 5: Output the modified weed (Wj).
To validate the optimization ability of HIWO on ED problems with various practical constraints, six classical ED problems in the small, medium, large and very large-scale power systems were selected as the studied test cases. For each test case, the optimal dispatch results obtained by HIWO in 50 independent runs, including the minimum cost (SCmin), average cost (SCavg), maximum cost (SCmax) and standard deviation of the costs (SCstd), are compared to those of algorithms reported in the literature. The best optimization performance among these algorithms is shown in boldface. The parameters of HIWO on six test systems are set as follows: the initial population size Nwo = 30, maximum population size Nwmax = 50, minimum number of seeds Nsmin = 1, maximum number of seeds Nsmax = 5, nonlinear modulation index m = 5, initial standard deviation
The 15-generator power system [2,24] considering transmission losses, ramp rate limits and prohibited operating zones is selected as the small-scale test system. The power load demand of the system is 2630 MW. In this test system study, the optimal power outputs of generators obtained by HIWO are shown in Table 1.The optimal dispatch results of HIWO are compared to those of OLCSO [2], WCA [49], ICS [50], FA [27], RTO [51], EMA [52] and IWO, as shown in Tables 2. Compared to other algorithms in terms of minimum, average, maximum and standard deviation of costs in 50 runs, the dispatch solution obtained by HIWO consumes the least cost.
Generators | Pi | Generators | Pi | Generators | Pi | Generators | Pi | Generators | Pi |
1 | 455.0000 | 4 | 130.0000 | 7 | 430.0000 | 10 | 159.7871 | 13 | 25.0000 |
2 | 380.0000 | 5 | 170.0000 | 8 | 71.2594 | 11 | 80.0000 | 14 | 15.0000 |
3 | 130.0000 | 6 | 460.0000 | 9 | 58.4944 | 12 | 80.0000 | 15 | 15.0000 |
Algorithms | SCmin ($) | SCavg ($) | SCmax ($) | SCstd |
EMA [52] | 32704.4503 | 32704.4504 | 32704.4506 | NA |
FA [27] | 32704.5000 | 32856.1000 | 33175.0000 | 147.17022 |
ICS [50] | 32706.7358 | 32714.4669 | 32752.5183 | NA |
WCA [49] | 32704.4492 | 32704.5096 | 32704.5196 | 4.513e-05 |
RTO [51] | 32701.8145 | 32704.5300 | 32715.1800 | 5.07 |
OLCSO [2] | 32692.3961 | 32692.3981 | 32692.4033 | 0.0022 |
IWO | 32691.8615 | 32691.9392 | 32692.1421 | 0.0927 |
HIWO | 32691.5614 | 32691.8615 | 32691.8616 | 0.0001 |
The 40-generator power system [32] considering valve-point effects and transmission losses is selected as the medium-scale test system. The power load demand of the system is 10500 MW. The optimal power outputs obtained by HIWO are shown in Table 3. The optimal dispatch results of HIWO are compared to those of ORCCRO [28], BBO [28], DE/BBO [28], SDE [29], OIWO [32], HAAA [37] and IWO, as shown in Tables 4. Compared to other algorithms in the literature, the proposed HIWO algorithm can obtain the cheapest dispatch solution in terms of minimum, average and maximum of costs in 50 runs.
Generators | Pi | Generators | Pi | Generators | Pi | Generators | Pi | Generators | Pi |
1 | 113.9993 | 9 | 289.4281 | 17 | 489.2798 | 25 | 523.2794 | 33 | 190.0000 |
2 | 113.9993 | 10 | 279.5996 | 18 | 489.2793 | 26 | 523.2794 | 34 | 200.0000 |
3 | 120.0000 | 11 | 243.5995 | 19 | 511.2795 | 27 | 10.0000 | 35 | 199.9999 |
4 | 179.7330 | 12 | 94.0000 | 20 | 511.2793 | 28 | 10.0000 | 36 | 164.7999 |
5 | 87.7999 | 13 | 484.0391 | 21 | 523.2794 | 29 | 10.0000 | 37 | 109.9998 |
6 | 139.9998 | 14 | 484.0390 | 22 | 523.2794 | 30 | 87.7999 | 38 | 110.0000 |
7 | 300.0000 | 15 | 484.0393 | 23 | 523.2794 | 31 | 190.0000 | 39 | 109.9999 |
8 | 299.9997 | 16 | 484.0391 | 24 | 523.2794 | 32 | 190.0000 | 40 | 549.9999 |
Algorithms | SCmin ($) | SCavg ($) | SCmax ($) | SCstd |
ORCCRO [28] | 136855.19 | 136855.19 | 136855.19 | NA |
BBO [28] | 137026.82 | 137116.58 | 137587.82 | NA |
DE/BBO [28] | 136950.77 | 136966.77 | 137150.77 | NA |
SDE [29] | 138157.46 | NA | NA | NA |
OIWO [32] | 136452.68 | 136452.68 | 136452.68 | NA |
HAAA [37] | 136433.5 | 136436.6 | NA | 3.341896 |
IWO | 136543.8580 | 137009.5641 | 137679.1073 | 292.9686 |
HIWO | 136430.9504 | 136435.2127 | 136441.1059 | 4.3238 |
To verify the dispatch performance of HIWO on large-scale power systems with multiple local optimal solutions, two cases studies are performed to compare the optimization results of HIWO and other algorithms. The detail information of these two cases is shown as follows.
Case Ⅰ: The 80-generator power system [37] considering valve-point effects. The power load demand is 21000 MW.
Case Ⅱ: The 110-generator power system [20,32] neglecting valve-point effects and transmission losses. The power load demand is 15000 MW.
In the case Ⅰ study, the optimal dispatch solution obtained by HIWO is shown in Table 5. The comparison results of generation costs generated by HIWO, THS [34], CSO [40], HAAA [37], GWO [35] and IWO are summarized in Table 6. It can be found from Table 6 that HIWO can obtain the cheapest dispatch solution compared to other algorithms.
Generators | Pi | Generators | Pi | Generators | Pi | Generators | Pi | Generators | Pi |
1 | 110.8335 | 17 | 489.3362 | 33 | 189.9994 | 49 | 284.6071 | 65 | 523.2794 |
2 | 111.5439 | 18 | 489.2794 | 34 | 165.1983 | 50 | 130.0000 | 66 | 523.2835 |
3 | 97.3834 | 19 | 511.2731 | 35 | 199.9997 | 51 | 94.0040 | 67 | 10.0000 |
4 | 179.7603 | 20 | 511.2666 | 36 | 199.9998 | 52 | 94.0000 | 68 | 10.0000 |
5 | 87.9806 | 21 | 523.2525 | 37 | 109.9999 | 53 | 214.7298 | 69 | 10.0000 |
6 | 139.9997 | 22 | 523.2805 | 38 | 110.0000 | 54 | 394.2675 | 70 | 87.8052 |
7 | 259.5584 | 23 | 523.2794 | 39 | 109.9987 | 55 | 394.2967 | 71 | 190.0000 |
8 | 284.7677 | 24 | 523.2794 | 40 | 511.2603 | 56 | 304.4839 | 72 | 189.9997 |
9 | 284.6331 | 25 | 523.2794 | 41 | 110.9296 | 57 | 489.3082 | 73 | 189.9991 |
10 | 130.0000 | 26 | 523.2958 | 42 | 110.8195 | 58 | 489.2773 | 74 | 164.7786 |
11 | 169.0220 | 27 | 10.0000 | 43 | 97.3706 | 59 | 511.2121 | 75 | 199.9994 |
12 | 94.0000 | 28 | 10.0000 | 44 | 179.7187 | 60 | 511.2992 | 76 | 200.0000 |
13 | 214.7422 | 29 | 10.0000 | 45 | 87.8560 | 61 | 523.2830 | 77 | 109.9990 |
14 | 394.1929 | 30 | 89.6856 | 46 | 139.9995 | 62 | 523.3201 | 78 | 110.0000 |
15 | 394.2794 | 31 | 189.9993 | 47 | 259.6320 | 63 | 523.2794 | 79 | 109.9996 |
16 | 394.3050 | 32 | 189.9992 | 48 | 284.6702 | 64 | 523.2794 | 80 | 511.2482 |
Algorithms | SCmin ($) | SCavg ($) | SCmax ($) | SCstd |
THS [34] | 243192.6899 | 243457.36 | NA | 120.9889 |
CSO [40] | 243195.3781 | 243546.6283 | 244038.7352 | NA |
HAAA [37] | 242815.9 | 242883 | 242944.5 | 29.2849 |
GWO [35] | 242825.4799 | 242829.8192 | 242837.1303 | 0.093 |
IWO | 246386.4038 | 248088.2077 | 249888.0623 | 844.0919 |
HIWO | 242815.2096 | 242836.1110 | 242872.4662 | 10.3458 |
In the case Ⅱ study, the optimal dispatch solution obtained by HIWO is shown in Table 7. The generation cost generated by HIWO are compared to those of ORCCRO [28], BBO [28], DE/BBO [28], OIWO [32], OLCSO [2] and IWO, which are summarized in Table 8. Compared to other algorithms in terms of minimum, average, maximum and standard deviation of costs in 50 runs, the optimal dispatch solution obtained by HIWO generates the least generation cost.
Generators | Pi | Generators | Pi | Generators | Pi | Generators | Pi | Generators | Pi |
1 | 2.4000 | 23 | 68.9000 | 45 | 659.9999 | 67 | 70.0000 | 89 | 82.4977 |
2 | 2.4000 | 24 | 350.0000 | 46 | 616.2499 | 68 | 70.0000 | 90 | 89.2333 |
3 | 2.4000 | 25 | 400.0000 | 47 | 5.4000 | 69 | 70.0000 | 91 | 57.5687 |
4 | 2.4000 | 26 | 400.0000 | 48 | 5.4000 | 70 | 359.9999 | 92 | 99.9986 |
5 | 2.4000 | 27 | 499.9992 | 49 | 8.4000 | 71 | 399.9999 | 93 | 439.9998 |
6 | 4.0000 | 28 | 500.0000 | 50 | 8.4000 | 72 | 399.9998 | 94 | 499.9999 |
7 | 4.0000 | 29 | 199.9997 | 51 | 8.4000 | 73 | 105.2864 | 95 | 600.0000 |
8 | 4.0000 | 30 | 99.9998 | 52 | 12.0000 | 74 | 191.4091 | 96 | 471.5717 |
9 | 4.0000 | 31 | 10.0000 | 53 | 12.0000 | 75 | 89.9996 | 97 | 3.6000 |
10 | 64.5432 | 32 | 19.9993 | 54 | 12.0000 | 76 | 49.9999 | 98 | 3.6000 |
11 | 62.2465 | 33 | 79.9950 | 55 | 12.0000 | 77 | 160.0000 | 99 | 4.4000 |
12 | 36.2739 | 34 | 249.9998 | 56 | 25.2000 | 78 | 295.4962 | 100 | 4.4000 |
13 | 56.6406 | 35 | 359.9999 | 57 | 25.2000 | 79 | 175.0102 | 101 | 10.0000 |
14 | 25.0000 | 36 | 399.9997 | 58 | 35.0000 | 80 | 98.2829 | 102 | 10.0000 |
15 | 25.0000 | 37 | 39.9998 | 59 | 35.0000 | 81 | 10.0000 | 103 | 20.0000 |
16 | 25.0000 | 38 | 69.9996 | 60 | 45.0000 | 82 | 12.0000 | 104 | 20.0000 |
17 | 154.9999 | 39 | 99.9998 | 61 | 45.0000 | 83 | 20.0000 | 105 | 40.0000 |
18 | 154.9993 | 40 | 119.9984 | 62 | 45.0000 | 84 | 199.9999 | 106 | 40.0000 |
19 | 155.0000 | 41 | 157.4299 | 63 | 184.9996 | 85 | 324.9972 | 107 | 50.0000 |
20 | 155.0000 | 42 | 219.9999 | 64 | 184.9996 | 86 | 440.0000 | 108 | 30.0000 |
21 | 68.9000 | 43 | 439.9999 | 65 | 184.9984 | 87 | 14.0886 | 109 | 40.0000 |
22 | 68.9000 | 44 | 559.9998 | 66 | 184.9997 | 88 | 24.0910 | 110 | 20.0000 |
Algorithms | SCmin ($) | SCavg ($) | SCmax ($) | SCstd |
ORCCRO [28] | 198016.29 | 198016.32 | 198016.89 | NA |
BBO [28] | 198241.166 | 198413.45 | 199102.59 | NA |
DE/BBO [28] | 198231.06 | 198326.66 | 198828.57 | NA |
OIWO [32] | 197989.14 | 197989.41 | 197989.93 | NA |
OLCSO [2] | 197988.8576 | 197989.5832 | 197990.4551 | 0.3699 |
IWO | 198252.3594 | 198621.3233 | 198902.7697 | 138.4714 |
HIWO | 197988.1927 | 197988.1969 | 197988.2045 | 0.0025 |
To investigate the dispatch performance of HIWO on very large-scale power systems, the following two cases studies are performed for comparing the optimization results of HIWO and other algorithms.
Case Ⅰ: The 140-generator Korea power system [23,32] neglecting transmission losses. The 12 generators consider the valve point effects. The power load demand is 49342 MW.
Case Ⅱ: The 160-generator power system [32] considering valve-point effects. The power load demand is 43200 MW.
In the case Ⅰ study, the optimal dispatch solution obtained by HIWO is shown in Table 9. The optimal results of HIWO are compared to those of SDE [29], OIWO [32], HAAA [37], GWO [35], KGMO [41] and IWO, as shown in Table 10. The corrected optimal result of OIWO is shown in italics. Compared to other algorithms in terms of minimum, average, maximum and standard deviation of costs in 50 runs, HIWO can obtain the cheapest dispatch solution.
Generators | Pi | Generators | Pi | Generators | Pi | Generators | Pi | Generators | Pi |
1 | 115.2442 | 29 | 500.9998 | 57 | 103.0000 | 85 | 115.0000 | 113 | 94.0000 |
2 | 189.0000 | 30 | 500.9994 | 58 | 198.0000 | 86 | 207.0000 | 114 | 94.0000 |
3 | 190.0000 | 31 | 505.9993 | 59 | 311.9941 | 87 | 207.0000 | 115 | 244.0000 |
4 | 190.0000 | 32 | 505.9997 | 60 | 281.1604 | 88 | 175.0000 | 116 | 244.0000 |
5 | 168.5393 | 33 | 506.0000 | 61 | 163.0000 | 89 | 175.0000 | 117 | 244.0000 |
6 | 189.9932 | 34 | 505.9998 | 62 | 95.0000 | 90 | 175.0000 | 118 | 95.0000 |
7 | 489.9992 | 35 | 499.9996 | 63 | 160.0000 | 91 | 175.0000 | 119 | 95.0000 |
8 | 489.9996 | 36 | 500.0000 | 64 | 160.0000 | 92 | 579.9998 | 120 | 116.0000 |
9 | 495.9997 | 37 | 240.9993 | 65 | 489.9465 | 93 | 645.0000 | 121 | 175.0000 |
10 | 495.9994 | 38 | 240.9999 | 66 | 196.0000 | 94 | 983.9998 | 122 | 2.0000 |
11 | 495.9997 | 39 | 773.9996 | 67 | 489.9717 | 95 | 977.9993 | 123 | 4.0000 |
12 | 496.0000 | 40 | 769.0000 | 68 | 489.9908 | 96 | 681.9997 | 124 | 15.0000 |
13 | 506.0000 | 41 | 3.0000 | 69 | 130.0000 | 97 | 719.9998 | 125 | 9.0000 |
14 | 509.0000 | 42 | 3.0000 | 70 | 234.7202 | 98 | 717.9993 | 126 | 12.0000 |
15 | 506.0000 | 43 | 249.2474 | 71 | 137.0000 | 99 | 719.9997 | 127 | 10.0000 |
16 | 504.9997 | 44 | 246.0287 | 72 | 325.4950 | 100 | 963.9998 | 128 | 112.0000 |
17 | 505.9997 | 45 | 249.9973 | 73 | 195.0000 | 101 | 958.0000 | 129 | 4.0000 |
18 | 505.9997 | 46 | 249.9863 | 74 | 175.0000 | 102 | 1006.9992 | 130 | 5.0000 |
19 | 504.9994 | 47 | 241.0622 | 75 | 175.0000 | 103 | 1006.0000 | 131 | 5.0000 |
20 | 505.0000 | 48 | 249.9950 | 76 | 175.0000 | 104 | 1012.9999 | 132 | 50.0000 |
21 | 504.9998 | 49 | 249.9916 | 77 | 175.0000 | 105 | 1019.9996 | 133 | 5.0000 |
22 | 505.0000 | 50 | 249.9995 | 78 | 330.0000 | 106 | 953.9999 | 134 | 42.0000 |
23 | 504.9998 | 51 | 165.0000 | 79 | 531.0000 | 107 | 951.9998 | 135 | 42.0000 |
24 | 504.9996 | 52 | 165.0000 | 80 | 530.9995 | 108 | 1005.9996 | 136 | 41.0000 |
25 | 536.9997 | 53 | 165.0000 | 81 | 398.6524 | 109 | 1013.0000 | 137 | 17.0000 |
26 | 536.9995 | 54 | 165.0000 | 82 | 56.0000 | 110 | 1020.9998 | 138 | 7.0000 |
27 | 548.9998 | 55 | 180.0000 | 83 | 115.0000 | 111 | 1014.9996 | 139 | 7.0000 |
28 | 548.9993 | 56 | 180.0000 | 84 | 115.0000 | 112 | 94.0000 | 140 | 26.0000 |
Algorithms | SCmin ($) | SCavg ($) | SCmax ($) | SCstd |
SDE [29] | 1560236.85 | NA | NA | NA |
OIWO [32] | 1559712.2604 | NA | NA | NA |
HAAA [37] | 1559710.00 | 1559712.87 | 1559731.00 | 4.1371 |
GWO [35] | 1559953.18 | 1560132.93 | 1560228.40 | 1.024 |
KGMO [41] | 1583944.60 | 1583952.14 | 1583963.52 | NA |
IWO | 1564050.0027 | 1567185.2227 | 1571056.6280 | 1678.8488 |
HIWO | 1559709.5266 | 1559709.6956 | 1559709.8959 | 0.0856 |
In the case Ⅱ study, the optimal dispatch solution obtained by HIWO is shown in Table 11. The optimal results of HIWO are compared to those of ORCCRO [28], BBO [28], DE/BBO [28], CBA [31], OIWO [32] and IWO, as shown in Table 12. Compared to other algorithms, HIWO can also obtain the cheapest dispatch solution in terms of minimum, average, maximum and standard deviation of costs.
Generators | Pi | Generators | Pi | Generators | Pi | Generators | Pi | Generators | Pi |
1 | 218.6095 | 33 | 280.6560 | 65 | 279.6118 | 97 | 287.7203 | 129 | 431.0758 |
2 | 209.2361 | 34 | 238.9676 | 66 | 238.5645 | 98 | 238.6988 | 130 | 275.8790 |
3 | 279.6486 | 35 | 279.9554 | 67 | 287.7296 | 99 | 426.2750 | 131 | 219.6189 |
4 | 240.3113 | 36 | 240.9831 | 68 | 241.2519 | 100 | 272.6741 | 132 | 210.4739 |
5 | 280.0206 | 37 | 290.1069 | 69 | 427.7708 | 101 | 217.5647 | 133 | 281.6640 |
6 | 238.4301 | 38 | 240.0425 | 70 | 272.9907 | 102 | 211.9593 | 134 | 238.9676 |
7 | 288.2326 | 39 | 426.3102 | 71 | 218.5918 | 103 | 280.6578 | 135 | 276.5752 |
8 | 239.5051 | 40 | 275.6392 | 72 | 212.7020 | 104 | 239.2363 | 136 | 239.3707 |
9 | 425.6549 | 41 | 219.6195 | 73 | 281.6629 | 105 | 276.3263 | 137 | 287.7806 |
10 | 275.6903 | 42 | 210.9690 | 74 | 238.9676 | 106 | 240.7144 | 138 | 238.5645 |
11 | 217.5646 | 43 | 282.6711 | 75 | 279.3688 | 107 | 290.0715 | 139 | 430.7874 |
12 | 212.4544 | 44 | 240.3113 | 76 | 237.6239 | 108 | 238.8332 | 140 | 275.8606 |
13 | 280.6558 | 45 | 279.7868 | 77 | 289.9995 | 109 | 425.7918 | 141 | 218.6539 |
14 | 238.6988 | 46 | 237.4895 | 78 | 239.9082 | 110 | 275.2705 | 142 | 210.7215 |
15 | 279.9370 | 47 | 287.7274 | 79 | 425.2406 | 111 | 217.5671 | 143 | 281.6640 |
16 | 240.7144 | 48 | 240.0425 | 80 | 276.0112 | 112 | 212.2069 | 144 | 239.3707 |
17 | 287.6968 | 49 | 427.4497 | 81 | 218.5923 | 113 | 281.6664 | 145 | 276.3578 |
18 | 239.7738 | 50 | 275.6817 | 82 | 212.2069 | 114 | 239.6394 | 146 | 239.6394 |
19 | 427.4049 | 51 | 219.6197 | 83 | 282.7049 | 115 | 276.0940 | 147 | 287.7565 |
20 | 275.6990 | 52 | 213.4447 | 84 | 237.7582 | 116 | 240.3113 | 148 | 239.3707 |
21 | 217.5665 | 53 | 282.6717 | 85 | 279.7940 | 117 | 290.0972 | 149 | 426.3023 |
22 | 212.2069 | 54 | 237.8926 | 86 | 239.3707 | 118 | 239.5051 | 150 | 275.6371 |
23 | 283.6805 | 55 | 276.2856 | 87 | 290.0916 | 119 | 429.4367 | 151 | 217.5647 |
24 | 239.7738 | 56 | 239.5051 | 88 | 239.2363 | 120 | 275.6690 | 152 | 212.2069 |
25 | 279.9011 | 57 | 287.6883 | 89 | 427.0504 | 121 | 217.5656 | 153 | 279.6493 |
26 | 240.9831 | 58 | 238.5645 | 90 | 275.7937 | 122 | 210.2264 | 154 | 238.4301 |
27 | 290.0737 | 59 | 429.9489 | 91 | 217.5643 | 123 | 280.6617 | 155 | 279.9078 |
28 | 240.8488 | 60 | 275.5096 | 92 | 212.9496 | 124 | 239.7738 | 156 | 240.4457 |
29 | 427.1007 | 61 | 218.5915 | 93 | 282.6732 | 125 | 275.9409 | 157 | 287.7385 |
30 | 276.2995 | 62 | 212.9496 | 94 | 240.4457 | 126 | 240.1769 | 158 | 238.5645 |
31 | 219.6189 | 63 | 282.6705 | 95 | 279.4854 | 127 | 287.6965 | 159 | 426.9110 |
32 | 211.7117 | 64 | 239.9082 | 96 | 240.1769 | 128 | 238.4301 | 160 | 272.7775 |
Algorithms | SCmin ($) | SCavg ($) | SCmax ($) | SCstd |
ORCCRO [28] | 10004.20 | 10004.21 | 10004.45 | NA |
OIWO [32] | 9981.9834 | 9982.991 | 9983.998 | NA |
BBO [28] | 10008.71 | 10009.16 | 10010.59 | NA |
DE/BBO [28] | 10007.05 | 10007.56 | 10010.26 | NA |
CBA [31] | 10002.8596 | 10006.3251 | 10045.2265 | 9.5811 |
IWO | 9984.8409 | 9985.5127 | 9986.1947 | 0.3252 |
HIWO | 9981.7867 | 9982.0010 | 9982.1922 | 0.0934 |
To illustrate the convergence ability of HIWO for solving different-scale ED problems with various constraints, the convergence curves of HIWO and IWO on six test systems are drawn, as shown in Figure 2. It can be found from Figure 2 that HIWO can converge to the optimal areas in the six test systems, and the convergence speed of HIWO on the 15, 40, 80, 110 and 140-generator power systems, is faster than that of IWO. Although the convergence speed of HIWO on the 160-generator power system is slower than that of IWO in the early evolutionary stage, it is faster than that of IWO in the later evolutionary stage. The reason is that the crossover and mutation decrease the fitness value of offspring weeds in 160-generator power system having lots of constraints, and then reduce the convergence speed in the early evolutionary stage, but increase the diversity of the population to jump out local optimization in the later stage.
In this paper, a hybrid HIWO algorithm combining IWO with GA is proposed to solve ED problems in power systems. The HIWO adopts IWO to explore the various regions in the solution space, while the crossover and mutation operations of GA are applied to improve the quality and diversity of solutions, thereby preventing the optimization from prematurity and enhancing the search capability. Moreover, an effective repair method is proposed to repair infeasible solutions to feasible solutions. The experimental results of the six test systems studies show that HIWO can obtain the cheapest dispatch solutions compared to other algorithms in the literature, and have a better optimization ability and faster convergence speed compared to the classical IWO. In summary, the proposed HIWO algorithm is an effective and promising approach for solving ED problems in different-scale power systems.
This research is partially supported by the National Science Foundation of China under grant numbers 61773192 and 61773246, the Key Laboratory of Computer Network and Information Integration (Southeast University), the Ministry of Education (K93-9-2017-02), and the State Key Laboratory of Synthetical Automation for Process Industries (PAL-N201602).
The authors declare no conflict of interest.
[1] |
R. Baghban, L. Roshangar, R. Jahanban-Esfahlan, K. Seidi, A. Ebrahimi-Kalan, M. Jaymand, et al., Tumor microenvironment complexity and therapeutic implications at a glance, Cell Commun. Signaling, 18 (2020), 1–19. https://doi.org/10.1186/s12964-020-0530-4 doi: 10.1186/s12964-020-0530-4
![]() |
[2] |
F. R. Balkwill, M. Capasso, T. Hagemann, The tumor microenvironment at a glance, J. Cell Sci., 125 (2012), 5591–5596. https://doi.org/10.1242/jcs.116392 doi: 10.1242/jcs.116392
![]() |
[3] |
B. Coban, C. Bergonzini, A. J. Zweemer, E. H. Danen, Metastasis: crosstalk between tissue mechanics and tumour cell plasticity, Br. J. Cancer, 124 (2021), 49–57. https://doi.org/10.1038/s41416-020-01150-7 doi: 10.1038/s41416-020-01150-7
![]() |
[4] |
M. L. Taddei, E. Giannoni, G. Comito, P. Chiarugi, Microenvironment and tumor cell plasticity: an easy way out, Cancer Lett., 341 (2013), 80–96. https://doi.org/10.1016/j.canlet.2013.01.042 doi: 10.1016/j.canlet.2013.01.042
![]() |
[5] |
A. L. Ribeiro, O. K. Okamoto, Combined effects of pericytes in the tumor microenvironment, Stem Cells Int., 1 (2015), 868475. https://doi.org/10.1155/2015/868475 doi: 10.1155/2015/868475
![]() |
[6] | B. M. Lopes-Bastos, W. G. Jiang, J. Cai, Tumour-endothelial cell communications: important and indispensable mediators of tumour angiogenesis, Anticancer Res., 36 (2016), 1119–1126. |
[7] |
F. Xing, J. Saidou, K. Watabe, Cancer associated fibroblasts (CAFs) in tumor microenvironment, Front. Biosci., 15 (2010), 166. https://doi.org/10.2741/3613 doi: 10.2741/3613
![]() |
[8] |
M. R. Galdiero, E. Bonavita, I. Barajon, C. Garlanda, A. Mantovani, S. Jaillon, Tumor associated macrophages and neutrophils in cancer, Immunobiology, 218 (2013), 1402–1410. https://doi.org/10.1016/j.imbio.2013.06.003 doi: 10.1016/j.imbio.2013.06.003
![]() |
[9] |
A. M. Høye, J. T. Erler, Structural ECM components in the premetastatic and metastatic niche, Am. J. Physiol. Cell Physiol., 310 (2016), C955–C967. https://doi.org/10.1152/ajpcell.00326.2015 doi: 10.1152/ajpcell.00326.2015
![]() |
[10] |
P. Lu, V. M. Weaver, Z. Werb, The extracellular matrix: a dynamic niche in cancer progression, J. Cell Biol., 196 (2012), 395–406. https://doi.org/10.1083/jcb.201102147 doi: 10.1083/jcb.201102147
![]() |
[11] |
A. D. Theocharis, S. S. Skandalis, C. Gialeli, N. K. Karamanos, Extracellular matrix structure, Adv. Drug Delivery Rev., 97 (2016), 4–27. https://doi.org/10.1016/j.addr.2015.11.001 doi: 10.1016/j.addr.2015.11.001
![]() |
[12] |
B. Yue, Biology of the extracellular matrix: an overview, J. Glaucoma, 23 (2014), S20–S23. https://doi.org/10.1097/IJG.0000000000000108 doi: 10.1097/IJG.0000000000000108
![]() |
[13] |
J. Huang, L. Zhang, D. Wan, L. Zhou, S. Zheng, S. Lin, et al., Extracellular matrix and its therapeutic potential for cancer treatment, Signal Transduction Targeted Ther., 6 (2021), 1–24. https://doi.org/10.1038/s41392-021-00544-0 doi: 10.1038/s41392-021-00544-0
![]() |
[14] | K. Yuan, R. K. Singh, G. Rezonzew, G. P. Siegal, In vitro matrices for studying tumor cell invasion, in Cell Motility in Cancer Invasion and Metastasis, Springer, (2006), 25–54. https://doi.org/10.1007/b103440 |
[15] |
N. M. Hooper, Y. Itoh, H. Nagase, Matrix metalloproteinases in cancer, Essays Biochem., 38 (2002), 21–36. https://doi.org/10.1042/bse0380021 doi: 10.1042/bse0380021
![]() |
[16] |
L. A. Liotta, U. P. Thorgeirsson, S. Garbisa, Role of collagenases in tumor cell invasion, Cancer Metastasis Rev., 1 (1982), 277–288. https://doi.org/10.1007/BF00124213 doi: 10.1007/BF00124213
![]() |
[17] | T. R. Cox, The matrix in cancer, Nat. Rev. Cancer, 21 (2021), 217–238. https://doi.org/10.1038/s41568-020-00329-7 |
[18] |
S. Turner, J. A. Sherratt, Intercellular adhesion and cancer invasion: a discrete simulation using the extended potts model, J. Theor. Biol., 216 (2002), 85–100. https://doi.org/10.1006/jtbi.2001.2522 doi: 10.1006/jtbi.2001.2522
![]() |
[19] |
M. DePalma, D. Biziato, T. V. Petrova, Microenvironmental regulation of tumour angiogenesis, Nat. Rev. Cancer, 17 (2017), 457–474. https://doi.org/10.1038/nrc.2017.51 doi: 10.1038/nrc.2017.51
![]() |
[20] |
R. J. Gillies, J. S. Brown, A. R. Anderson, R. A. Gatenby, Eco-evolutionary causes and consequences of temporal changes in intratumoural blood flow, Nat. Rev. Cancer, 18 (2018), 576–585. https://doi.org/10.1038/s41568-018-0030-7 doi: 10.1038/s41568-018-0030-7
![]() |
[21] |
B. T. Finicle, V. Jayashankar, A. L. Edinger, Nutrient scavenging in cancer, Nat. Rev. Cancer, 18 (2018), 619–633. https://doi.org/10.1038/s41568-018-0048-x doi: 10.1038/s41568-018-0048-x
![]() |
[22] | C. García-Jiménez, C. R. Goding, Starvation and pseudo-starvation as drivers of cancer metastasis through translation reprogramming, Cell Metab., 29 (2019), 254–267. |
[23] |
R. J. DeBerardinis, N. S. Chandel, Fundamentals of cancer metabolism, Sci. Adv., 2 (2016), e1600200. https://doi.org/10.1126/sciadv.1600200 doi: 10.1126/sciadv.1600200
![]() |
[24] |
M. G. Vander Heiden, Targeting cancer metabolism: a therapeutic window opens, Nat. Rev. Drug Discovery, 10 (2011), 671–684. https://doi.org/10.1038/nrd3504 doi: 10.1038/nrd3504
![]() |
[25] |
B. Kalyanaraman, Teaching the basics of cancer metabolism: Developing antitumor strategies by exploiting the differences between normal and cancer cell metabolism, Redox Biol., 12 (2017), 833–842. https://doi.org/10.1016/j.redox.2017.04.018 doi: 10.1016/j.redox.2017.04.018
![]() |
[26] |
R. A. Cairns, I. S. Harris, T. W. Mak, Regulation of cancer cell metabolism, Nat. Rev. Cancer, 11 (2011), 85–95. https://doi.org/10.1038/nrc2981 doi: 10.1038/nrc2981
![]() |
[27] |
C. A. Lyssiotis, A. C. Kimmelman, Metabolic interactions in the tumor microenvironment, Trends Cell Biol., 27 (2017), 863–875. https://doi.org/10.1016/j.tcb.2017.06.003 doi: 10.1016/j.tcb.2017.06.003
![]() |
[28] |
S. Bowling, K. Lawlor, T. A. Rodríguez, Cell competition: the winners and losers of fitness selection, Development, 146 (2019), dev167486. https://doi.org/10.1242/dev.167486 doi: 10.1242/dev.167486
![]() |
[29] |
A. Gutiérrez-Martínez, W. Q. G. Sew, M. Molano-Fernández, M. Carretero-Junquera, H. Herranz, Mechanisms of oncogenic cell competition-paths of victory, Semin. Cancer Biol., 63 (2020), 27–35. https://doi.org/10.1016/j.semcancer.2019.05.015 doi: 10.1016/j.semcancer.2019.05.015
![]() |
[30] |
R. Levayer, Solid stress, competition for space and cancer: The opposing roles of mechanical cell competition in tumour initiation and growth, Nat. Rev. Cancer, 63 (2020), 69–80. https://doi.org/10.1016/j.semcancer.2019.05.004 doi: 10.1016/j.semcancer.2019.05.004
![]() |
[31] |
E. Moreno, Is cell competition relevant to cancer?, Nat. Rev. Cancer, 8 (2008), 141–147. https://doi.org/10.1038/nrc2252 doi: 10.1038/nrc2252
![]() |
[32] | M. Vishwakarma, E. Piddini, Outcompeting cancer, Nat. Rev. Cancer, 20 (2020), 187–198. https://doi.org/10.1038/s41568-019-0231-8 |
[33] |
T. M. Parker, V. Henriques, A. Beltran, H. Nakshatri, R. Gogna, Cell competition and tumor heterogeneity, Nat. Rev. Cancer, 63 (2020), 1–10. https://doi.org/10.1016/j.semcancer.2019.09.003 doi: 10.1016/j.semcancer.2019.09.003
![]() |
[34] |
S. Di Giacomo, M. Sollazzo, D. De Biase, M. Ragazzi, P. Bellosta, A. Pession, et al., Human cancer cells signal their competitive fitness through MYC activity, Sci. Rep., 7 (2017), 1–12. https://doi.org/10.1038/s41598-017-13002-1 doi: 10.1038/s41598-017-13002-1
![]() |
[35] |
E. Madan, M. L. Peixoto, P. Dimitrion, T. D. Eubank, M. Yekelchyk, S. Talukdar, et al., Cell competition boosts clonal evolution and hypoxic selection in cancer, Trends Cell Biol., 12 (2020), 967–978. https://doi.org/10.1016/j.tcb.2020.10.002 doi: 10.1016/j.tcb.2020.10.002
![]() |
[36] |
U. Cavallaro, G. Christofori, Cell adhesion in tumor invasion and metastasis: loss of the glue is not enough, Biochim. Biophys. Acta, Rev. Cancer, 1552 (2001), 39–45. https://doi.org/10.1016/S0304-419X(01)00038-5 doi: 10.1016/S0304-419X(01)00038-5
![]() |
[37] |
M. Janiszewska, M. C. Primi, T. Izard, Cell adhesion in cancer: Beyond the migration of single cells, J. Biol. Chem., 295 (2020), 2495–2505. https://doi.org/10.1074/jbc.REV119.007759 doi: 10.1074/jbc.REV119.007759
![]() |
[38] |
M. C. Moh, S. Shen, The roles of cell adhesion molecules in tumor suppression and cell migration: a new paradox, Cell Adhes. Migr., 3 (2009), 334–336. https://doi.org/10.4161/cam.3.4.9246 doi: 10.4161/cam.3.4.9246
![]() |
[39] |
H. Son, A. Moon, Epithelial-mesenchymal transition and cell invasion, Toxicol. Res., 26 (2010), 245–252. https://doi.org/10.5487/TR.2010.26.4.245 doi: 10.5487/TR.2010.26.4.245
![]() |
[40] |
P. M. Altrock, L. L. Liu, F. Michor, The mathematics of cancer: integrating quantitative models, Nat. Rev. Cancer, 15 (2015), 730–745. https://doi.org/10.1038/nrc4029 doi: 10.1038/nrc4029
![]() |
[41] |
G. Jordão, J. N. Tavares, Mathematical models in cancer therapy, Biosystems, 162 (2017), 12–23. https://doi.org/10.1016/j.biosystems.2017.08.007 doi: 10.1016/j.biosystems.2017.08.007
![]() |
[42] |
V. Quaranta, A. M. Weaver, P. T. Cummings, A. R. Anderson, Mathematical modeling of cancer: The future of prognosis and treatment, Clin. Chim. Acta, 357 (2005), 173–179. https://doi.org/10.1016/j.cccn.2005.03.023 doi: 10.1016/j.cccn.2005.03.023
![]() |
[43] |
H. N. Weerasinghe, P. M. Burrage, K. Burrage, D. V. Nicolau Jr, Mathematical models of cancer cell plasticity, J. Oncol., 2019 (2019), 2403483. https://doi.org/10.1155/2019/2403483 doi: 10.1155/2019/2403483
![]() |
[44] | P. Macklin, M. E. Edgerton, Discrete cell modeling, in Multiscale Modeling of Cancer: an Integrated Experimental and Mathematical Modeling Approach, Cambridge University Press, (2010), 88–122. https://doi.org/10.1017/CBO9780511781452 |
[45] |
J. Metzcar, Y. Wang, R. Heiland, P. Macklin, A review of cell-based computational modeling in cancer biology, JCO Clin. Cancer Inf., 2 (2019), 1–13. https://doi.org/10.1200/CCI.18.00069 doi: 10.1200/CCI.18.00069
![]() |
[46] |
Z. Wang, J. D. Butner, V. Cristini, T. S. Deisboeck, Integrated PK-PD and agent-based modeling in oncology, J. Pharmacokinet. Pharmacodyn., 42 (2015), 179189. https://doi.org/10.1007/s10928-015-9403-7 doi: 10.1007/s10928-015-9403-7
![]() |
[47] |
C. K. Macnamara, Biomechanical modelling of cancer: Agent-based force-based models of solid tumours within the context of the tumour microenvironment, Comput. Syst. Oncol., 1 (2021), e1018. https://doi.org/10.1002/cso2.1018 doi: 10.1002/cso2.1018
![]() |
[48] |
J. S. Lowengrub, H. B. Frieboes, F. Jin, Y. L. Chuang, X. Li, P. Macklin, et al., Nonlinear modelling of cancer: bridging the gap between cells and tumours, Nonlinearity, 23 (2009), R1–R91. https://doi.org/10.1088/0951-7715/23/1/R01 doi: 10.1088/0951-7715/23/1/R01
![]() |
[49] |
R. Sachs, L. Hlatky, P. Hahnfeldt, Simple ODE models of tumor growth and anti-angiogenic or radiation treatment, Math. Comput. Modell., 33 (2001), 1297–1305. https://doi.org/10.1016/S0895-7177(00)00316-2 doi: 10.1016/S0895-7177(00)00316-2
![]() |
[50] |
H. Enderling, A. R. Anderson, M. A. Chaplain, A. J. Munro, J. S. Vaidya, Mathematical modelling of radiotherapy strategies for early breast cancer, J. Theor. Biol., 241 (2006), 158–171. https://doi.org/10.1016/j.jtbi.2005.11.015 doi: 10.1016/j.jtbi.2005.11.015
![]() |
[51] | H. Enderling, M. A. Chaplain, A. R. Anderson, J. S. Vaidya, A mathematical model of breast cancer development, local treatment and recurrence, J. Theor. Biol., 246 (2007), 245–259. |
[52] |
V. Andasari, M. A. Chaplain, Intracellular modelling of cell-matrix adhesion during cancer cell invasion, Math. Modell. Nat. Phenom., 7 (2012), 29–48. https://doi.org/10.1051/mmnp/20127103 doi: 10.1051/mmnp/20127103
![]() |
[53] | J. C. Larsen, A mathematical model of adoptive T cell therapy, JP J. Appl. Math., 15 (2017), 1–33. |
[54] |
L. Glass, Instability and mitotic patterns in tissue growth, IFAC Proc. Vol., 6 (1973), 129–131. https://doi.org/10.1016/S1474-6670(17)67989-8 doi: 10.1016/S1474-6670(17)67989-8
![]() |
[55] |
R. Shymko, L. Glass, Cellular and geometric control of tissue growth and mitotic instability, J. Theor. Biol., 63 (1976), 355–374. https://doi.org/10.1016/0022-5193(76)90039-4 doi: 10.1016/0022-5193(76)90039-4
![]() |
[56] |
M. Chaplain, Avascular growth, angiogenesis and vascular growth in solid tumours: The mathematical modelling of the stages of tumour development, Math. Comput. Modell., 23 (1996), 47–87. https://doi.org/10.1016/0895-7177(96)00019-2 doi: 10.1016/0895-7177(96)00019-2
![]() |
[57] |
J. A. Adam, A simplified mathematical model of tumor growth, Math. Biosci., 81 (1986), 229–244. https://doi.org/10.1016/0025-5564(86)90119-7 doi: 10.1016/0025-5564(86)90119-7
![]() |
[58] |
J. A. Adam, A mathematical model of tumor growth by diffusion, Math. Biosci., 94 (1989), 155. https://doi.org/10.1016/0895-7177(88)90533-X doi: 10.1016/0895-7177(88)90533-X
![]() |
[59] |
J. A. Adam, S. Maggelakis, Mathematical models of tumor growth. iv. effects of a necrotic core, Math. Biosci., 97 (1989), 121–136. https://doi.org/10.1016/0025-5564(89)90045-X doi: 10.1016/0025-5564(89)90045-X
![]() |
[60] | T. S. Deisboeck, Z. Wang, P. Macklin, V. Cristini, Multiscale cancer modeling, Ann. Rev. Biomed. Eng., 13 (2011), 127–155. https://doi.org/10.1201/b10407 |
[61] | E. Gavagnin, C. A. Yates, Stochastic and deterministic modeling of cell migration, in Handbook of Statistics, 39 (2018), 37–91. https://doi.org/10.1016/bs.host.2018.06.002 |
[62] |
A. S. Qi, X. Zheng, C. Y. Du, B. S. An, A cellular automaton model of cancerous growth, J. Theor. Biol., 161 (1993), 1–12. https://doi.org/10.1006/jtbi.1993.1035 doi: 10.1006/jtbi.1993.1035
![]() |
[63] |
J. Smolle, R. Hofmann-Wellenhof, R. Kofler, L. Cerroni, J. Haas, H. Kerl, Computer simulations of histologic patterns in melanoma using a cellular automaton provide correlations with prognosis, J. Invest. Dermatol., 105 (1995), 797–801. https://doi.org/10.1111/1523-1747.ep12326559 doi: 10.1111/1523-1747.ep12326559
![]() |
[64] |
S. F. Junior, M. Martins, M. Vilela, A growth model for primary cancer, Physica A, 261 (1998), 569–580. https://doi.org/10.1016/S0378-4371(98)00318-5 doi: 10.1016/S0378-4371(98)00318-5
![]() |
[65] |
H. Hatzikirou, A. Deutsch, Cellular automata as microscopic models of cell migration in heterogeneous environments, Curr. Topics Dev. Biol., 81 (2008), 401–434. https://doi.org/10.1016/S0070-2153(07)81014-3 doi: 10.1016/S0070-2153(07)81014-3
![]() |
[66] |
B. Chopard, R. Ouared, A. Deutsch, H. Hatzikirou, D. Wolf-Gladrow, Lattice-gas cellular automaton models for biology: from fluids to cells, Acta Biotheor., 58 (2010), 329–340. https://doi.org/10.1007/s10441-010-9118-5 doi: 10.1007/s10441-010-9118-5
![]() |
[67] |
Y. Jiang, J. Pjesivac-Grbovic, C. Cantrell, J. P. Freyer, A multiscale model for avascular tumor growth, Biophys. J., 89 (2005), 3884–3894. https://doi.org/10.1529/biophysj.105.060640 doi: 10.1529/biophysj.105.060640
![]() |
[68] |
A. Shirinifard, J. S. Gens, B. L. Zaitlen, N. J. Popławski, M. Swat, J. A. Glazier, 3D multi-cell simulation of tumor growth and angiogenesis, PloS One, 4 (2009), e7190. https://doi.org/10.1371/journal.pone.0007190 doi: 10.1371/journal.pone.0007190
![]() |
[69] |
A. Szabó, R. M. Merks, Cellular potts modeling of tumor growth, tumor invasion, and tumor evolution, Front. Oncol., 3 (2013), 87. https://doi.org/10.3389/fonc.2013.00087 doi: 10.3389/fonc.2013.00087
![]() |
[70] |
C. E. Donaghey, CELLSIM: cell cycle simulation made easy, Int. Rev. Cytol., 66 (1980), 171–210. https://doi.org/10.1016/S0074-7696(08)61974-9 doi: 10.1016/S0074-7696(08)61974-9
![]() |
[71] |
W. Duchting, G. Dehl, Spatial structure of tumor growth: A simulation study, IEEE Trans. Syst. Man Cybern., 10 (1980), 292–296. https://doi.org/10.1109/TSMC.1980.4308502 doi: 10.1109/TSMC.1980.4308502
![]() |
[72] |
W. Duchting, T. Vogelsaenger, Aspects of modelling and simulating tumor growth and treatment, J. Cancer Res. Clin. Oncol., 105 (1983), 1–12. https://doi.org/10.1007/BF00391824 doi: 10.1007/BF00391824
![]() |
[73] |
W. Duchting, T. Vogelsaenger, Recent progress in modelling and simulation of three dimensional tumor growth and treatment, Biosystems, 18 (1985), 79–91. https://doi.org/10.1016/0303-2647(85)90061-9 doi: 10.1016/0303-2647(85)90061-9
![]() |
[74] |
W. Duchting, T. Vogelsaenger, Three-dimensional pattern generation applied to spheroidal tumor growth in a nutrient medium, Int. J. Biomed. Comput., 12 (1981), 377–392. https://doi.org/10.1016/0020-7101(81)90050-7 doi: 10.1016/0020-7101(81)90050-7
![]() |
[75] | W. Duchting, T. Ginsberg, W. Ulmer, Modelling of tumor growth and treatment, Z. Angew. Math. Mech., 76 (1996), 347–350. |
[76] |
J. E. Schmitz, A. R. Kansaland, S. Torquato, A cellular automaton model of brain tumor treatment and resistance, J. Theor. Med., 4 (2002), 223–239. https://doi.org/10.1080/1027366031000086674 doi: 10.1080/1027366031000086674
![]() |
[77] |
C. Gong, O. Milberg, B. Wang, P. Vicini, R. Narwal, L. Roskos, et al., A computational multiscale agent-based model for simulating spatio-temporal tumour immune response to PD1 and PDL1 inhibition, J. R. Soc. Interface, 14 (2017), 20170320. https://doi.org/10.1098/rsif.2017.0320 doi: 10.1098/rsif.2017.0320
![]() |
[78] |
H. Xie, Y. Jiao, Q. Fan, M. Hai, J. Yang, Z. Hu, et al., Modeling three-dimensional invasive solid tumor growth in heterogeneous microenvironment under chemotherapy, PloS One, 13 (2018), e0206292. https://doi.org/10.1371/journal.pone.0206292 doi: 10.1371/journal.pone.0206292
![]() |
[79] |
A. R. Anderson, M. A. Chaplain, Continuous and discrete mathematical models of tumor induced angiogenesis, Bull. Math. Biol., 60 (1998), 857–899. https://doi.org/10.1006/bulm.1998.0042 doi: 10.1006/bulm.1998.0042
![]() |
[80] |
A. R. Anderson, M. A. Chaplain, E. L. Newman, R. J. Steele, A. M. Thompson, Mathematical modelling of tumour invasion and metastasis, Comput. Math. Methods Med., 2 (2000), 129–154. https://doi.org/10.1080/10273660008833042 doi: 10.1080/10273660008833042
![]() |
[81] | D. Dréau, D. Stanimirov, T. Carmichael, M. Hadzikadic, An agent-based model of solid tumor progression, in International Conference on Bioinformatics and Computational Biology, Springer, (2009), 187–198. https://doi.org/10.1007/978-3-642-00727-9_19 |
[82] |
P. Gerlee, A. Anderson, Evolution of cell motility in an individual-based model of tumour growth, J. Theor. Biol., 259 (2009), 67–83. https://doi.org/10.1016/j.jtbi.2009.03.005 doi: 10.1016/j.jtbi.2009.03.005
![]() |
[83] |
C. A. Athale, T. S. Deisboeck, The effects of EGF-receptor density on multiscale tumor growth patterns, J. Theor. Biol., 238 (2006), 771–779. https://doi.org/10.1016/j.jtbi.2005.06.029 doi: 10.1016/j.jtbi.2005.06.029
![]() |
[84] |
D. Walker, N. T. Georgopoulos, J. Southgate, Anti-social cells: predicting the influence of e-cadherin loss on the growth of epithelial cell populations, J. Theor. Biol., 262 (2010), 425–440. https://doi.org/10.1016/j.jtbi.2009.10.002 doi: 10.1016/j.jtbi.2009.10.002
![]() |
[85] |
H. Byrne, D. Drasdo, Individual-based and continuum models of growing cell populations: a comparison, J. Math. Biol., 58 (2009), 657–687. https://doi.org/10.1007/s00285-008-0212-0 doi: 10.1007/s00285-008-0212-0
![]() |
[86] |
S. Bekisz, L. Geris, Cancer modeling: From mechanistic to data-driven approaches, and from fundamental insights to clinical applications, J. Comput. Sci., 46 (2020), 101198. https://doi.org/10.1016/j.jocs.2020.101198 doi: 10.1016/j.jocs.2020.101198
![]() |
[87] |
G. Letort, A. Montagud, G. Stoll, R. Heiland, E. Barillot, P. Macklin, et al., PhysiBoSS: a multi-scale agent-based modelling framework integrating physical dimension and cell signalling, Bioinformatics, 35 (2019), 1188–1196. https://doi.org/10.1093/bioinformatics/bty766 doi: 10.1093/bioinformatics/bty766
![]() |
[88] |
M. Ponce-de Leon, A. Montagud, V. Noel, A. Meert, G. Pradas, E. Barillot, et al., Physiboss 2.0: a sustainable integration of stochastic boolean and agent-based modelling frameworks, npj Syst. Biol. Appl., 9 (2023), 54. https://doi.org/10.1038/s41540-023-00314-4 doi: 10.1038/s41540-023-00314-4
![]() |
[89] |
G. Stoll, B. Caron, E. Viara, A. Dugourd, A. Zinovyev, A. Naldi, et al., Maboss 2.0: an environment for stochastic Boolean modeling, Bioinformatics, 33 (2017), 2226–2228. https://doi.org/10.1093/bioinformatics/btx123 doi: 10.1093/bioinformatics/btx123
![]() |
[90] |
A. Ghaffarizadeh, R. Heiland, S. H. Friedman, S. M. Mumenthaler, P. Macklin, PhysiCell: an open source physics-based cell simulator for 3-D multicellular systems, PLoS Comput. Biol., 14 (2018), e1005991. https://doi.org/10.1371/journal.pcbi.1005991 doi: 10.1371/journal.pcbi.1005991
![]() |
[91] |
R. J. Preen, L. Bull, A. Adamatzky, Towards an evolvable cancer treatment simulator, Biosystems, 182 (2019), 1–7. https://doi.org/10.1016/j.biosystems.2019.05.005 doi: 10.1016/j.biosystems.2019.05.005
![]() |
[92] | D. Hanahan, R. A. Weinberg, The hallmarks of cancer, Cell, 100 (2000), 57–70. https://doi.org/10.1093/med/9780199656103.003.0001 |
[93] |
D. Hanahan, R. A. Weinberg, Hallmarks of cancer: the next generation, Cell, 144 (2011), 646–674. https://doi.org/10.1016/j.cell.2011.02.013 doi: 10.1016/j.cell.2011.02.013
![]() |
[94] |
D. Hanahan, L. M. Coussens, Accessories to the crime: functions of cells recruited to the tumor microenvironment, Cancer Cell, 21 (2012), 309–322. https://doi.org/10.1016/j.ccr.2012.02.022 doi: 10.1016/j.ccr.2012.02.022
![]() |
[95] | E. Ruoslahti, How cancer spreads, Sci. Am., 275 (1996), 72–77. https://doi.org/10.1038/scientificamerican0996-72 |
[96] |
L. Jiang, M. Wang, S. Lin, R. Jian, X. Li, J. Chan, et al., A quantitative proteome map of the human body, Cell, 183 (2020), 269–283. https://doi.org/10.1016/j.cell.2020.08.036 doi: 10.1016/j.cell.2020.08.036
![]() |
[97] |
L. Hayflick, The limited in vitro lifetime of human diploid cell strains, Exp. Cell. Res., 37 (1965), 614–636. https://doi.org/10.1016/B978-1-4832-3075-7.50017-7 doi: 10.1016/B978-1-4832-3075-7.50017-7
![]() |
[98] | N. F. Mathon, A. C. Lloyd, Cell senescence and cancer, Nat. Rev. Cancer, 1 (2001), 203–213. https://doi.org/10.1038/35106045 |
[99] | R. DiLoreto, C. T. Murphy, The cell biology of aging, Mol. Biol. Cell, 26 (2015), 4524–4531. https://doi.org/10.1091/mbc.E14-06-1084 |
[100] | A. Catic, Cellular metabolism and aging, in Metabolic Aspects of Aging, vol. 155 of Progress in Molecular Biology and Translational Science, Academic Press, (2018), 85–107. https://doi.org/10.1016/bs.pmbts.2017.12.003 |
1. | Ling Wang, Shunbin Ning, TRIMming Type I Interferon-Mediated Innate Immune Response in Antiviral and Antitumor Defense, 2021, 13, 1999-4915, 279, 10.3390/v13020279 | |
2. | Shunbin Ning, Ling Wang, The Multifunctional Protein p62 and Its Mechanistic Roles in Cancers, 2019, 19, 15680096, 468, 10.2174/1568009618666181016164920 | |
3. | Olga V. Matveeva, Peter M. Chumakov, Defects in interferon pathways as potential biomarkers of sensitivity to oncolytic viruses, 2018, 28, 1052-9276, 10.1002/rmv.2008 | |
4. | Cheryl M.T. Dvorak, Sumathy Puvanendiran, Michael P. Murtaugh, Porcine circovirus 2 infection induces IFNβ expression through increased expression of genes involved in RIG-I and IRF7 signaling pathways, 2018, 253, 01681702, 38, 10.1016/j.virusres.2018.05.027 | |
5. | Vijay Kumar, A STING to inflammation and autoimmunity, 2019, 106, 07415400, 171, 10.1002/JLB.4MIR1018-397RR | |
6. | Sherri Newmyer, Marvin A. Ssemadaali, Harikrishnan Radhakrishnan, Harold S. Javitz, Parijat Bhatnagar, Electrically regulated cell‐based intervention for viral infections, 2022, 2380-6761, 10.1002/btm2.10434 | |
7. | Anil Kumar, Adeleh Taghi Khani, Srividya Swaminathan, Type I interferons: One stone to concurrently kill two birds, viral infections and cancers, 2021, 2, 2666478X, 100014, 10.1016/j.crviro.2021.100014 | |
8. | Ahmad Zaid, Amiram Ariel, Harnessing anti-inflammatory pathways and macrophage nano delivery to treat inflammatory and fibrotic disorders, 2024, 0169409X, 115204, 10.1016/j.addr.2024.115204 |
Generators | Pi | Generators | Pi | Generators | Pi | Generators | Pi | Generators | Pi |
1 | 455.0000 | 4 | 130.0000 | 7 | 430.0000 | 10 | 159.7871 | 13 | 25.0000 |
2 | 380.0000 | 5 | 170.0000 | 8 | 71.2594 | 11 | 80.0000 | 14 | 15.0000 |
3 | 130.0000 | 6 | 460.0000 | 9 | 58.4944 | 12 | 80.0000 | 15 | 15.0000 |
Algorithms | SCmin ($) | SCavg ($) | SCmax ($) | SCstd |
EMA [52] | 32704.4503 | 32704.4504 | 32704.4506 | NA |
FA [27] | 32704.5000 | 32856.1000 | 33175.0000 | 147.17022 |
ICS [50] | 32706.7358 | 32714.4669 | 32752.5183 | NA |
WCA [49] | 32704.4492 | 32704.5096 | 32704.5196 | 4.513e-05 |
RTO [51] | 32701.8145 | 32704.5300 | 32715.1800 | 5.07 |
OLCSO [2] | 32692.3961 | 32692.3981 | 32692.4033 | 0.0022 |
IWO | 32691.8615 | 32691.9392 | 32692.1421 | 0.0927 |
HIWO | 32691.5614 | 32691.8615 | 32691.8616 | 0.0001 |
Generators | Pi | Generators | Pi | Generators | Pi | Generators | Pi | Generators | Pi |
1 | 113.9993 | 9 | 289.4281 | 17 | 489.2798 | 25 | 523.2794 | 33 | 190.0000 |
2 | 113.9993 | 10 | 279.5996 | 18 | 489.2793 | 26 | 523.2794 | 34 | 200.0000 |
3 | 120.0000 | 11 | 243.5995 | 19 | 511.2795 | 27 | 10.0000 | 35 | 199.9999 |
4 | 179.7330 | 12 | 94.0000 | 20 | 511.2793 | 28 | 10.0000 | 36 | 164.7999 |
5 | 87.7999 | 13 | 484.0391 | 21 | 523.2794 | 29 | 10.0000 | 37 | 109.9998 |
6 | 139.9998 | 14 | 484.0390 | 22 | 523.2794 | 30 | 87.7999 | 38 | 110.0000 |
7 | 300.0000 | 15 | 484.0393 | 23 | 523.2794 | 31 | 190.0000 | 39 | 109.9999 |
8 | 299.9997 | 16 | 484.0391 | 24 | 523.2794 | 32 | 190.0000 | 40 | 549.9999 |
Algorithms | SCmin ($) | SCavg ($) | SCmax ($) | SCstd |
ORCCRO [28] | 136855.19 | 136855.19 | 136855.19 | NA |
BBO [28] | 137026.82 | 137116.58 | 137587.82 | NA |
DE/BBO [28] | 136950.77 | 136966.77 | 137150.77 | NA |
SDE [29] | 138157.46 | NA | NA | NA |
OIWO [32] | 136452.68 | 136452.68 | 136452.68 | NA |
HAAA [37] | 136433.5 | 136436.6 | NA | 3.341896 |
IWO | 136543.8580 | 137009.5641 | 137679.1073 | 292.9686 |
HIWO | 136430.9504 | 136435.2127 | 136441.1059 | 4.3238 |
Generators | Pi | Generators | Pi | Generators | Pi | Generators | Pi | Generators | Pi |
1 | 110.8335 | 17 | 489.3362 | 33 | 189.9994 | 49 | 284.6071 | 65 | 523.2794 |
2 | 111.5439 | 18 | 489.2794 | 34 | 165.1983 | 50 | 130.0000 | 66 | 523.2835 |
3 | 97.3834 | 19 | 511.2731 | 35 | 199.9997 | 51 | 94.0040 | 67 | 10.0000 |
4 | 179.7603 | 20 | 511.2666 | 36 | 199.9998 | 52 | 94.0000 | 68 | 10.0000 |
5 | 87.9806 | 21 | 523.2525 | 37 | 109.9999 | 53 | 214.7298 | 69 | 10.0000 |
6 | 139.9997 | 22 | 523.2805 | 38 | 110.0000 | 54 | 394.2675 | 70 | 87.8052 |
7 | 259.5584 | 23 | 523.2794 | 39 | 109.9987 | 55 | 394.2967 | 71 | 190.0000 |
8 | 284.7677 | 24 | 523.2794 | 40 | 511.2603 | 56 | 304.4839 | 72 | 189.9997 |
9 | 284.6331 | 25 | 523.2794 | 41 | 110.9296 | 57 | 489.3082 | 73 | 189.9991 |
10 | 130.0000 | 26 | 523.2958 | 42 | 110.8195 | 58 | 489.2773 | 74 | 164.7786 |
11 | 169.0220 | 27 | 10.0000 | 43 | 97.3706 | 59 | 511.2121 | 75 | 199.9994 |
12 | 94.0000 | 28 | 10.0000 | 44 | 179.7187 | 60 | 511.2992 | 76 | 200.0000 |
13 | 214.7422 | 29 | 10.0000 | 45 | 87.8560 | 61 | 523.2830 | 77 | 109.9990 |
14 | 394.1929 | 30 | 89.6856 | 46 | 139.9995 | 62 | 523.3201 | 78 | 110.0000 |
15 | 394.2794 | 31 | 189.9993 | 47 | 259.6320 | 63 | 523.2794 | 79 | 109.9996 |
16 | 394.3050 | 32 | 189.9992 | 48 | 284.6702 | 64 | 523.2794 | 80 | 511.2482 |
Algorithms | SCmin ($) | SCavg ($) | SCmax ($) | SCstd |
THS [34] | 243192.6899 | 243457.36 | NA | 120.9889 |
CSO [40] | 243195.3781 | 243546.6283 | 244038.7352 | NA |
HAAA [37] | 242815.9 | 242883 | 242944.5 | 29.2849 |
GWO [35] | 242825.4799 | 242829.8192 | 242837.1303 | 0.093 |
IWO | 246386.4038 | 248088.2077 | 249888.0623 | 844.0919 |
HIWO | 242815.2096 | 242836.1110 | 242872.4662 | 10.3458 |
Generators | Pi | Generators | Pi | Generators | Pi | Generators | Pi | Generators | Pi |
1 | 2.4000 | 23 | 68.9000 | 45 | 659.9999 | 67 | 70.0000 | 89 | 82.4977 |
2 | 2.4000 | 24 | 350.0000 | 46 | 616.2499 | 68 | 70.0000 | 90 | 89.2333 |
3 | 2.4000 | 25 | 400.0000 | 47 | 5.4000 | 69 | 70.0000 | 91 | 57.5687 |
4 | 2.4000 | 26 | 400.0000 | 48 | 5.4000 | 70 | 359.9999 | 92 | 99.9986 |
5 | 2.4000 | 27 | 499.9992 | 49 | 8.4000 | 71 | 399.9999 | 93 | 439.9998 |
6 | 4.0000 | 28 | 500.0000 | 50 | 8.4000 | 72 | 399.9998 | 94 | 499.9999 |
7 | 4.0000 | 29 | 199.9997 | 51 | 8.4000 | 73 | 105.2864 | 95 | 600.0000 |
8 | 4.0000 | 30 | 99.9998 | 52 | 12.0000 | 74 | 191.4091 | 96 | 471.5717 |
9 | 4.0000 | 31 | 10.0000 | 53 | 12.0000 | 75 | 89.9996 | 97 | 3.6000 |
10 | 64.5432 | 32 | 19.9993 | 54 | 12.0000 | 76 | 49.9999 | 98 | 3.6000 |
11 | 62.2465 | 33 | 79.9950 | 55 | 12.0000 | 77 | 160.0000 | 99 | 4.4000 |
12 | 36.2739 | 34 | 249.9998 | 56 | 25.2000 | 78 | 295.4962 | 100 | 4.4000 |
13 | 56.6406 | 35 | 359.9999 | 57 | 25.2000 | 79 | 175.0102 | 101 | 10.0000 |
14 | 25.0000 | 36 | 399.9997 | 58 | 35.0000 | 80 | 98.2829 | 102 | 10.0000 |
15 | 25.0000 | 37 | 39.9998 | 59 | 35.0000 | 81 | 10.0000 | 103 | 20.0000 |
16 | 25.0000 | 38 | 69.9996 | 60 | 45.0000 | 82 | 12.0000 | 104 | 20.0000 |
17 | 154.9999 | 39 | 99.9998 | 61 | 45.0000 | 83 | 20.0000 | 105 | 40.0000 |
18 | 154.9993 | 40 | 119.9984 | 62 | 45.0000 | 84 | 199.9999 | 106 | 40.0000 |
19 | 155.0000 | 41 | 157.4299 | 63 | 184.9996 | 85 | 324.9972 | 107 | 50.0000 |
20 | 155.0000 | 42 | 219.9999 | 64 | 184.9996 | 86 | 440.0000 | 108 | 30.0000 |
21 | 68.9000 | 43 | 439.9999 | 65 | 184.9984 | 87 | 14.0886 | 109 | 40.0000 |
22 | 68.9000 | 44 | 559.9998 | 66 | 184.9997 | 88 | 24.0910 | 110 | 20.0000 |
Algorithms | SCmin ($) | SCavg ($) | SCmax ($) | SCstd |
ORCCRO [28] | 198016.29 | 198016.32 | 198016.89 | NA |
BBO [28] | 198241.166 | 198413.45 | 199102.59 | NA |
DE/BBO [28] | 198231.06 | 198326.66 | 198828.57 | NA |
OIWO [32] | 197989.14 | 197989.41 | 197989.93 | NA |
OLCSO [2] | 197988.8576 | 197989.5832 | 197990.4551 | 0.3699 |
IWO | 198252.3594 | 198621.3233 | 198902.7697 | 138.4714 |
HIWO | 197988.1927 | 197988.1969 | 197988.2045 | 0.0025 |
Generators | Pi | Generators | Pi | Generators | Pi | Generators | Pi | Generators | Pi |
1 | 115.2442 | 29 | 500.9998 | 57 | 103.0000 | 85 | 115.0000 | 113 | 94.0000 |
2 | 189.0000 | 30 | 500.9994 | 58 | 198.0000 | 86 | 207.0000 | 114 | 94.0000 |
3 | 190.0000 | 31 | 505.9993 | 59 | 311.9941 | 87 | 207.0000 | 115 | 244.0000 |
4 | 190.0000 | 32 | 505.9997 | 60 | 281.1604 | 88 | 175.0000 | 116 | 244.0000 |
5 | 168.5393 | 33 | 506.0000 | 61 | 163.0000 | 89 | 175.0000 | 117 | 244.0000 |
6 | 189.9932 | 34 | 505.9998 | 62 | 95.0000 | 90 | 175.0000 | 118 | 95.0000 |
7 | 489.9992 | 35 | 499.9996 | 63 | 160.0000 | 91 | 175.0000 | 119 | 95.0000 |
8 | 489.9996 | 36 | 500.0000 | 64 | 160.0000 | 92 | 579.9998 | 120 | 116.0000 |
9 | 495.9997 | 37 | 240.9993 | 65 | 489.9465 | 93 | 645.0000 | 121 | 175.0000 |
10 | 495.9994 | 38 | 240.9999 | 66 | 196.0000 | 94 | 983.9998 | 122 | 2.0000 |
11 | 495.9997 | 39 | 773.9996 | 67 | 489.9717 | 95 | 977.9993 | 123 | 4.0000 |
12 | 496.0000 | 40 | 769.0000 | 68 | 489.9908 | 96 | 681.9997 | 124 | 15.0000 |
13 | 506.0000 | 41 | 3.0000 | 69 | 130.0000 | 97 | 719.9998 | 125 | 9.0000 |
14 | 509.0000 | 42 | 3.0000 | 70 | 234.7202 | 98 | 717.9993 | 126 | 12.0000 |
15 | 506.0000 | 43 | 249.2474 | 71 | 137.0000 | 99 | 719.9997 | 127 | 10.0000 |
16 | 504.9997 | 44 | 246.0287 | 72 | 325.4950 | 100 | 963.9998 | 128 | 112.0000 |
17 | 505.9997 | 45 | 249.9973 | 73 | 195.0000 | 101 | 958.0000 | 129 | 4.0000 |
18 | 505.9997 | 46 | 249.9863 | 74 | 175.0000 | 102 | 1006.9992 | 130 | 5.0000 |
19 | 504.9994 | 47 | 241.0622 | 75 | 175.0000 | 103 | 1006.0000 | 131 | 5.0000 |
20 | 505.0000 | 48 | 249.9950 | 76 | 175.0000 | 104 | 1012.9999 | 132 | 50.0000 |
21 | 504.9998 | 49 | 249.9916 | 77 | 175.0000 | 105 | 1019.9996 | 133 | 5.0000 |
22 | 505.0000 | 50 | 249.9995 | 78 | 330.0000 | 106 | 953.9999 | 134 | 42.0000 |
23 | 504.9998 | 51 | 165.0000 | 79 | 531.0000 | 107 | 951.9998 | 135 | 42.0000 |
24 | 504.9996 | 52 | 165.0000 | 80 | 530.9995 | 108 | 1005.9996 | 136 | 41.0000 |
25 | 536.9997 | 53 | 165.0000 | 81 | 398.6524 | 109 | 1013.0000 | 137 | 17.0000 |
26 | 536.9995 | 54 | 165.0000 | 82 | 56.0000 | 110 | 1020.9998 | 138 | 7.0000 |
27 | 548.9998 | 55 | 180.0000 | 83 | 115.0000 | 111 | 1014.9996 | 139 | 7.0000 |
28 | 548.9993 | 56 | 180.0000 | 84 | 115.0000 | 112 | 94.0000 | 140 | 26.0000 |
Algorithms | SCmin ($) | SCavg ($) | SCmax ($) | SCstd |
SDE [29] | 1560236.85 | NA | NA | NA |
OIWO [32] | 1559712.2604 | NA | NA | NA |
HAAA [37] | 1559710.00 | 1559712.87 | 1559731.00 | 4.1371 |
GWO [35] | 1559953.18 | 1560132.93 | 1560228.40 | 1.024 |
KGMO [41] | 1583944.60 | 1583952.14 | 1583963.52 | NA |
IWO | 1564050.0027 | 1567185.2227 | 1571056.6280 | 1678.8488 |
HIWO | 1559709.5266 | 1559709.6956 | 1559709.8959 | 0.0856 |
Generators | Pi | Generators | Pi | Generators | Pi | Generators | Pi | Generators | Pi |
1 | 218.6095 | 33 | 280.6560 | 65 | 279.6118 | 97 | 287.7203 | 129 | 431.0758 |
2 | 209.2361 | 34 | 238.9676 | 66 | 238.5645 | 98 | 238.6988 | 130 | 275.8790 |
3 | 279.6486 | 35 | 279.9554 | 67 | 287.7296 | 99 | 426.2750 | 131 | 219.6189 |
4 | 240.3113 | 36 | 240.9831 | 68 | 241.2519 | 100 | 272.6741 | 132 | 210.4739 |
5 | 280.0206 | 37 | 290.1069 | 69 | 427.7708 | 101 | 217.5647 | 133 | 281.6640 |
6 | 238.4301 | 38 | 240.0425 | 70 | 272.9907 | 102 | 211.9593 | 134 | 238.9676 |
7 | 288.2326 | 39 | 426.3102 | 71 | 218.5918 | 103 | 280.6578 | 135 | 276.5752 |
8 | 239.5051 | 40 | 275.6392 | 72 | 212.7020 | 104 | 239.2363 | 136 | 239.3707 |
9 | 425.6549 | 41 | 219.6195 | 73 | 281.6629 | 105 | 276.3263 | 137 | 287.7806 |
10 | 275.6903 | 42 | 210.9690 | 74 | 238.9676 | 106 | 240.7144 | 138 | 238.5645 |
11 | 217.5646 | 43 | 282.6711 | 75 | 279.3688 | 107 | 290.0715 | 139 | 430.7874 |
12 | 212.4544 | 44 | 240.3113 | 76 | 237.6239 | 108 | 238.8332 | 140 | 275.8606 |
13 | 280.6558 | 45 | 279.7868 | 77 | 289.9995 | 109 | 425.7918 | 141 | 218.6539 |
14 | 238.6988 | 46 | 237.4895 | 78 | 239.9082 | 110 | 275.2705 | 142 | 210.7215 |
15 | 279.9370 | 47 | 287.7274 | 79 | 425.2406 | 111 | 217.5671 | 143 | 281.6640 |
16 | 240.7144 | 48 | 240.0425 | 80 | 276.0112 | 112 | 212.2069 | 144 | 239.3707 |
17 | 287.6968 | 49 | 427.4497 | 81 | 218.5923 | 113 | 281.6664 | 145 | 276.3578 |
18 | 239.7738 | 50 | 275.6817 | 82 | 212.2069 | 114 | 239.6394 | 146 | 239.6394 |
19 | 427.4049 | 51 | 219.6197 | 83 | 282.7049 | 115 | 276.0940 | 147 | 287.7565 |
20 | 275.6990 | 52 | 213.4447 | 84 | 237.7582 | 116 | 240.3113 | 148 | 239.3707 |
21 | 217.5665 | 53 | 282.6717 | 85 | 279.7940 | 117 | 290.0972 | 149 | 426.3023 |
22 | 212.2069 | 54 | 237.8926 | 86 | 239.3707 | 118 | 239.5051 | 150 | 275.6371 |
23 | 283.6805 | 55 | 276.2856 | 87 | 290.0916 | 119 | 429.4367 | 151 | 217.5647 |
24 | 239.7738 | 56 | 239.5051 | 88 | 239.2363 | 120 | 275.6690 | 152 | 212.2069 |
25 | 279.9011 | 57 | 287.6883 | 89 | 427.0504 | 121 | 217.5656 | 153 | 279.6493 |
26 | 240.9831 | 58 | 238.5645 | 90 | 275.7937 | 122 | 210.2264 | 154 | 238.4301 |
27 | 290.0737 | 59 | 429.9489 | 91 | 217.5643 | 123 | 280.6617 | 155 | 279.9078 |
28 | 240.8488 | 60 | 275.5096 | 92 | 212.9496 | 124 | 239.7738 | 156 | 240.4457 |
29 | 427.1007 | 61 | 218.5915 | 93 | 282.6732 | 125 | 275.9409 | 157 | 287.7385 |
30 | 276.2995 | 62 | 212.9496 | 94 | 240.4457 | 126 | 240.1769 | 158 | 238.5645 |
31 | 219.6189 | 63 | 282.6705 | 95 | 279.4854 | 127 | 287.6965 | 159 | 426.9110 |
32 | 211.7117 | 64 | 239.9082 | 96 | 240.1769 | 128 | 238.4301 | 160 | 272.7775 |
Algorithms | SCmin ($) | SCavg ($) | SCmax ($) | SCstd |
ORCCRO [28] | 10004.20 | 10004.21 | 10004.45 | NA |
OIWO [32] | 9981.9834 | 9982.991 | 9983.998 | NA |
BBO [28] | 10008.71 | 10009.16 | 10010.59 | NA |
DE/BBO [28] | 10007.05 | 10007.56 | 10010.26 | NA |
CBA [31] | 10002.8596 | 10006.3251 | 10045.2265 | 9.5811 |
IWO | 9984.8409 | 9985.5127 | 9986.1947 | 0.3252 |
HIWO | 9981.7867 | 9982.0010 | 9982.1922 | 0.0934 |
Generators | Pi | Generators | Pi | Generators | Pi | Generators | Pi | Generators | Pi |
1 | 455.0000 | 4 | 130.0000 | 7 | 430.0000 | 10 | 159.7871 | 13 | 25.0000 |
2 | 380.0000 | 5 | 170.0000 | 8 | 71.2594 | 11 | 80.0000 | 14 | 15.0000 |
3 | 130.0000 | 6 | 460.0000 | 9 | 58.4944 | 12 | 80.0000 | 15 | 15.0000 |
Algorithms | SCmin ($) | SCavg ($) | SCmax ($) | SCstd |
EMA [52] | 32704.4503 | 32704.4504 | 32704.4506 | NA |
FA [27] | 32704.5000 | 32856.1000 | 33175.0000 | 147.17022 |
ICS [50] | 32706.7358 | 32714.4669 | 32752.5183 | NA |
WCA [49] | 32704.4492 | 32704.5096 | 32704.5196 | 4.513e-05 |
RTO [51] | 32701.8145 | 32704.5300 | 32715.1800 | 5.07 |
OLCSO [2] | 32692.3961 | 32692.3981 | 32692.4033 | 0.0022 |
IWO | 32691.8615 | 32691.9392 | 32692.1421 | 0.0927 |
HIWO | 32691.5614 | 32691.8615 | 32691.8616 | 0.0001 |
Generators | Pi | Generators | Pi | Generators | Pi | Generators | Pi | Generators | Pi |
1 | 113.9993 | 9 | 289.4281 | 17 | 489.2798 | 25 | 523.2794 | 33 | 190.0000 |
2 | 113.9993 | 10 | 279.5996 | 18 | 489.2793 | 26 | 523.2794 | 34 | 200.0000 |
3 | 120.0000 | 11 | 243.5995 | 19 | 511.2795 | 27 | 10.0000 | 35 | 199.9999 |
4 | 179.7330 | 12 | 94.0000 | 20 | 511.2793 | 28 | 10.0000 | 36 | 164.7999 |
5 | 87.7999 | 13 | 484.0391 | 21 | 523.2794 | 29 | 10.0000 | 37 | 109.9998 |
6 | 139.9998 | 14 | 484.0390 | 22 | 523.2794 | 30 | 87.7999 | 38 | 110.0000 |
7 | 300.0000 | 15 | 484.0393 | 23 | 523.2794 | 31 | 190.0000 | 39 | 109.9999 |
8 | 299.9997 | 16 | 484.0391 | 24 | 523.2794 | 32 | 190.0000 | 40 | 549.9999 |
Algorithms | SCmin ($) | SCavg ($) | SCmax ($) | SCstd |
ORCCRO [28] | 136855.19 | 136855.19 | 136855.19 | NA |
BBO [28] | 137026.82 | 137116.58 | 137587.82 | NA |
DE/BBO [28] | 136950.77 | 136966.77 | 137150.77 | NA |
SDE [29] | 138157.46 | NA | NA | NA |
OIWO [32] | 136452.68 | 136452.68 | 136452.68 | NA |
HAAA [37] | 136433.5 | 136436.6 | NA | 3.341896 |
IWO | 136543.8580 | 137009.5641 | 137679.1073 | 292.9686 |
HIWO | 136430.9504 | 136435.2127 | 136441.1059 | 4.3238 |
Generators | Pi | Generators | Pi | Generators | Pi | Generators | Pi | Generators | Pi |
1 | 110.8335 | 17 | 489.3362 | 33 | 189.9994 | 49 | 284.6071 | 65 | 523.2794 |
2 | 111.5439 | 18 | 489.2794 | 34 | 165.1983 | 50 | 130.0000 | 66 | 523.2835 |
3 | 97.3834 | 19 | 511.2731 | 35 | 199.9997 | 51 | 94.0040 | 67 | 10.0000 |
4 | 179.7603 | 20 | 511.2666 | 36 | 199.9998 | 52 | 94.0000 | 68 | 10.0000 |
5 | 87.9806 | 21 | 523.2525 | 37 | 109.9999 | 53 | 214.7298 | 69 | 10.0000 |
6 | 139.9997 | 22 | 523.2805 | 38 | 110.0000 | 54 | 394.2675 | 70 | 87.8052 |
7 | 259.5584 | 23 | 523.2794 | 39 | 109.9987 | 55 | 394.2967 | 71 | 190.0000 |
8 | 284.7677 | 24 | 523.2794 | 40 | 511.2603 | 56 | 304.4839 | 72 | 189.9997 |
9 | 284.6331 | 25 | 523.2794 | 41 | 110.9296 | 57 | 489.3082 | 73 | 189.9991 |
10 | 130.0000 | 26 | 523.2958 | 42 | 110.8195 | 58 | 489.2773 | 74 | 164.7786 |
11 | 169.0220 | 27 | 10.0000 | 43 | 97.3706 | 59 | 511.2121 | 75 | 199.9994 |
12 | 94.0000 | 28 | 10.0000 | 44 | 179.7187 | 60 | 511.2992 | 76 | 200.0000 |
13 | 214.7422 | 29 | 10.0000 | 45 | 87.8560 | 61 | 523.2830 | 77 | 109.9990 |
14 | 394.1929 | 30 | 89.6856 | 46 | 139.9995 | 62 | 523.3201 | 78 | 110.0000 |
15 | 394.2794 | 31 | 189.9993 | 47 | 259.6320 | 63 | 523.2794 | 79 | 109.9996 |
16 | 394.3050 | 32 | 189.9992 | 48 | 284.6702 | 64 | 523.2794 | 80 | 511.2482 |
Algorithms | SCmin ($) | SCavg ($) | SCmax ($) | SCstd |
THS [34] | 243192.6899 | 243457.36 | NA | 120.9889 |
CSO [40] | 243195.3781 | 243546.6283 | 244038.7352 | NA |
HAAA [37] | 242815.9 | 242883 | 242944.5 | 29.2849 |
GWO [35] | 242825.4799 | 242829.8192 | 242837.1303 | 0.093 |
IWO | 246386.4038 | 248088.2077 | 249888.0623 | 844.0919 |
HIWO | 242815.2096 | 242836.1110 | 242872.4662 | 10.3458 |
Generators | Pi | Generators | Pi | Generators | Pi | Generators | Pi | Generators | Pi |
1 | 2.4000 | 23 | 68.9000 | 45 | 659.9999 | 67 | 70.0000 | 89 | 82.4977 |
2 | 2.4000 | 24 | 350.0000 | 46 | 616.2499 | 68 | 70.0000 | 90 | 89.2333 |
3 | 2.4000 | 25 | 400.0000 | 47 | 5.4000 | 69 | 70.0000 | 91 | 57.5687 |
4 | 2.4000 | 26 | 400.0000 | 48 | 5.4000 | 70 | 359.9999 | 92 | 99.9986 |
5 | 2.4000 | 27 | 499.9992 | 49 | 8.4000 | 71 | 399.9999 | 93 | 439.9998 |
6 | 4.0000 | 28 | 500.0000 | 50 | 8.4000 | 72 | 399.9998 | 94 | 499.9999 |
7 | 4.0000 | 29 | 199.9997 | 51 | 8.4000 | 73 | 105.2864 | 95 | 600.0000 |
8 | 4.0000 | 30 | 99.9998 | 52 | 12.0000 | 74 | 191.4091 | 96 | 471.5717 |
9 | 4.0000 | 31 | 10.0000 | 53 | 12.0000 | 75 | 89.9996 | 97 | 3.6000 |
10 | 64.5432 | 32 | 19.9993 | 54 | 12.0000 | 76 | 49.9999 | 98 | 3.6000 |
11 | 62.2465 | 33 | 79.9950 | 55 | 12.0000 | 77 | 160.0000 | 99 | 4.4000 |
12 | 36.2739 | 34 | 249.9998 | 56 | 25.2000 | 78 | 295.4962 | 100 | 4.4000 |
13 | 56.6406 | 35 | 359.9999 | 57 | 25.2000 | 79 | 175.0102 | 101 | 10.0000 |
14 | 25.0000 | 36 | 399.9997 | 58 | 35.0000 | 80 | 98.2829 | 102 | 10.0000 |
15 | 25.0000 | 37 | 39.9998 | 59 | 35.0000 | 81 | 10.0000 | 103 | 20.0000 |
16 | 25.0000 | 38 | 69.9996 | 60 | 45.0000 | 82 | 12.0000 | 104 | 20.0000 |
17 | 154.9999 | 39 | 99.9998 | 61 | 45.0000 | 83 | 20.0000 | 105 | 40.0000 |
18 | 154.9993 | 40 | 119.9984 | 62 | 45.0000 | 84 | 199.9999 | 106 | 40.0000 |
19 | 155.0000 | 41 | 157.4299 | 63 | 184.9996 | 85 | 324.9972 | 107 | 50.0000 |
20 | 155.0000 | 42 | 219.9999 | 64 | 184.9996 | 86 | 440.0000 | 108 | 30.0000 |
21 | 68.9000 | 43 | 439.9999 | 65 | 184.9984 | 87 | 14.0886 | 109 | 40.0000 |
22 | 68.9000 | 44 | 559.9998 | 66 | 184.9997 | 88 | 24.0910 | 110 | 20.0000 |
Algorithms | SCmin ($) | SCavg ($) | SCmax ($) | SCstd |
ORCCRO [28] | 198016.29 | 198016.32 | 198016.89 | NA |
BBO [28] | 198241.166 | 198413.45 | 199102.59 | NA |
DE/BBO [28] | 198231.06 | 198326.66 | 198828.57 | NA |
OIWO [32] | 197989.14 | 197989.41 | 197989.93 | NA |
OLCSO [2] | 197988.8576 | 197989.5832 | 197990.4551 | 0.3699 |
IWO | 198252.3594 | 198621.3233 | 198902.7697 | 138.4714 |
HIWO | 197988.1927 | 197988.1969 | 197988.2045 | 0.0025 |
Generators | Pi | Generators | Pi | Generators | Pi | Generators | Pi | Generators | Pi |
1 | 115.2442 | 29 | 500.9998 | 57 | 103.0000 | 85 | 115.0000 | 113 | 94.0000 |
2 | 189.0000 | 30 | 500.9994 | 58 | 198.0000 | 86 | 207.0000 | 114 | 94.0000 |
3 | 190.0000 | 31 | 505.9993 | 59 | 311.9941 | 87 | 207.0000 | 115 | 244.0000 |
4 | 190.0000 | 32 | 505.9997 | 60 | 281.1604 | 88 | 175.0000 | 116 | 244.0000 |
5 | 168.5393 | 33 | 506.0000 | 61 | 163.0000 | 89 | 175.0000 | 117 | 244.0000 |
6 | 189.9932 | 34 | 505.9998 | 62 | 95.0000 | 90 | 175.0000 | 118 | 95.0000 |
7 | 489.9992 | 35 | 499.9996 | 63 | 160.0000 | 91 | 175.0000 | 119 | 95.0000 |
8 | 489.9996 | 36 | 500.0000 | 64 | 160.0000 | 92 | 579.9998 | 120 | 116.0000 |
9 | 495.9997 | 37 | 240.9993 | 65 | 489.9465 | 93 | 645.0000 | 121 | 175.0000 |
10 | 495.9994 | 38 | 240.9999 | 66 | 196.0000 | 94 | 983.9998 | 122 | 2.0000 |
11 | 495.9997 | 39 | 773.9996 | 67 | 489.9717 | 95 | 977.9993 | 123 | 4.0000 |
12 | 496.0000 | 40 | 769.0000 | 68 | 489.9908 | 96 | 681.9997 | 124 | 15.0000 |
13 | 506.0000 | 41 | 3.0000 | 69 | 130.0000 | 97 | 719.9998 | 125 | 9.0000 |
14 | 509.0000 | 42 | 3.0000 | 70 | 234.7202 | 98 | 717.9993 | 126 | 12.0000 |
15 | 506.0000 | 43 | 249.2474 | 71 | 137.0000 | 99 | 719.9997 | 127 | 10.0000 |
16 | 504.9997 | 44 | 246.0287 | 72 | 325.4950 | 100 | 963.9998 | 128 | 112.0000 |
17 | 505.9997 | 45 | 249.9973 | 73 | 195.0000 | 101 | 958.0000 | 129 | 4.0000 |
18 | 505.9997 | 46 | 249.9863 | 74 | 175.0000 | 102 | 1006.9992 | 130 | 5.0000 |
19 | 504.9994 | 47 | 241.0622 | 75 | 175.0000 | 103 | 1006.0000 | 131 | 5.0000 |
20 | 505.0000 | 48 | 249.9950 | 76 | 175.0000 | 104 | 1012.9999 | 132 | 50.0000 |
21 | 504.9998 | 49 | 249.9916 | 77 | 175.0000 | 105 | 1019.9996 | 133 | 5.0000 |
22 | 505.0000 | 50 | 249.9995 | 78 | 330.0000 | 106 | 953.9999 | 134 | 42.0000 |
23 | 504.9998 | 51 | 165.0000 | 79 | 531.0000 | 107 | 951.9998 | 135 | 42.0000 |
24 | 504.9996 | 52 | 165.0000 | 80 | 530.9995 | 108 | 1005.9996 | 136 | 41.0000 |
25 | 536.9997 | 53 | 165.0000 | 81 | 398.6524 | 109 | 1013.0000 | 137 | 17.0000 |
26 | 536.9995 | 54 | 165.0000 | 82 | 56.0000 | 110 | 1020.9998 | 138 | 7.0000 |
27 | 548.9998 | 55 | 180.0000 | 83 | 115.0000 | 111 | 1014.9996 | 139 | 7.0000 |
28 | 548.9993 | 56 | 180.0000 | 84 | 115.0000 | 112 | 94.0000 | 140 | 26.0000 |
Algorithms | SCmin ($) | SCavg ($) | SCmax ($) | SCstd |
SDE [29] | 1560236.85 | NA | NA | NA |
OIWO [32] | 1559712.2604 | NA | NA | NA |
HAAA [37] | 1559710.00 | 1559712.87 | 1559731.00 | 4.1371 |
GWO [35] | 1559953.18 | 1560132.93 | 1560228.40 | 1.024 |
KGMO [41] | 1583944.60 | 1583952.14 | 1583963.52 | NA |
IWO | 1564050.0027 | 1567185.2227 | 1571056.6280 | 1678.8488 |
HIWO | 1559709.5266 | 1559709.6956 | 1559709.8959 | 0.0856 |
Generators | Pi | Generators | Pi | Generators | Pi | Generators | Pi | Generators | Pi |
1 | 218.6095 | 33 | 280.6560 | 65 | 279.6118 | 97 | 287.7203 | 129 | 431.0758 |
2 | 209.2361 | 34 | 238.9676 | 66 | 238.5645 | 98 | 238.6988 | 130 | 275.8790 |
3 | 279.6486 | 35 | 279.9554 | 67 | 287.7296 | 99 | 426.2750 | 131 | 219.6189 |
4 | 240.3113 | 36 | 240.9831 | 68 | 241.2519 | 100 | 272.6741 | 132 | 210.4739 |
5 | 280.0206 | 37 | 290.1069 | 69 | 427.7708 | 101 | 217.5647 | 133 | 281.6640 |
6 | 238.4301 | 38 | 240.0425 | 70 | 272.9907 | 102 | 211.9593 | 134 | 238.9676 |
7 | 288.2326 | 39 | 426.3102 | 71 | 218.5918 | 103 | 280.6578 | 135 | 276.5752 |
8 | 239.5051 | 40 | 275.6392 | 72 | 212.7020 | 104 | 239.2363 | 136 | 239.3707 |
9 | 425.6549 | 41 | 219.6195 | 73 | 281.6629 | 105 | 276.3263 | 137 | 287.7806 |
10 | 275.6903 | 42 | 210.9690 | 74 | 238.9676 | 106 | 240.7144 | 138 | 238.5645 |
11 | 217.5646 | 43 | 282.6711 | 75 | 279.3688 | 107 | 290.0715 | 139 | 430.7874 |
12 | 212.4544 | 44 | 240.3113 | 76 | 237.6239 | 108 | 238.8332 | 140 | 275.8606 |
13 | 280.6558 | 45 | 279.7868 | 77 | 289.9995 | 109 | 425.7918 | 141 | 218.6539 |
14 | 238.6988 | 46 | 237.4895 | 78 | 239.9082 | 110 | 275.2705 | 142 | 210.7215 |
15 | 279.9370 | 47 | 287.7274 | 79 | 425.2406 | 111 | 217.5671 | 143 | 281.6640 |
16 | 240.7144 | 48 | 240.0425 | 80 | 276.0112 | 112 | 212.2069 | 144 | 239.3707 |
17 | 287.6968 | 49 | 427.4497 | 81 | 218.5923 | 113 | 281.6664 | 145 | 276.3578 |
18 | 239.7738 | 50 | 275.6817 | 82 | 212.2069 | 114 | 239.6394 | 146 | 239.6394 |
19 | 427.4049 | 51 | 219.6197 | 83 | 282.7049 | 115 | 276.0940 | 147 | 287.7565 |
20 | 275.6990 | 52 | 213.4447 | 84 | 237.7582 | 116 | 240.3113 | 148 | 239.3707 |
21 | 217.5665 | 53 | 282.6717 | 85 | 279.7940 | 117 | 290.0972 | 149 | 426.3023 |
22 | 212.2069 | 54 | 237.8926 | 86 | 239.3707 | 118 | 239.5051 | 150 | 275.6371 |
23 | 283.6805 | 55 | 276.2856 | 87 | 290.0916 | 119 | 429.4367 | 151 | 217.5647 |
24 | 239.7738 | 56 | 239.5051 | 88 | 239.2363 | 120 | 275.6690 | 152 | 212.2069 |
25 | 279.9011 | 57 | 287.6883 | 89 | 427.0504 | 121 | 217.5656 | 153 | 279.6493 |
26 | 240.9831 | 58 | 238.5645 | 90 | 275.7937 | 122 | 210.2264 | 154 | 238.4301 |
27 | 290.0737 | 59 | 429.9489 | 91 | 217.5643 | 123 | 280.6617 | 155 | 279.9078 |
28 | 240.8488 | 60 | 275.5096 | 92 | 212.9496 | 124 | 239.7738 | 156 | 240.4457 |
29 | 427.1007 | 61 | 218.5915 | 93 | 282.6732 | 125 | 275.9409 | 157 | 287.7385 |
30 | 276.2995 | 62 | 212.9496 | 94 | 240.4457 | 126 | 240.1769 | 158 | 238.5645 |
31 | 219.6189 | 63 | 282.6705 | 95 | 279.4854 | 127 | 287.6965 | 159 | 426.9110 |
32 | 211.7117 | 64 | 239.9082 | 96 | 240.1769 | 128 | 238.4301 | 160 | 272.7775 |
Algorithms | SCmin ($) | SCavg ($) | SCmax ($) | SCstd |
ORCCRO [28] | 10004.20 | 10004.21 | 10004.45 | NA |
OIWO [32] | 9981.9834 | 9982.991 | 9983.998 | NA |
BBO [28] | 10008.71 | 10009.16 | 10010.59 | NA |
DE/BBO [28] | 10007.05 | 10007.56 | 10010.26 | NA |
CBA [31] | 10002.8596 | 10006.3251 | 10045.2265 | 9.5811 |
IWO | 9984.8409 | 9985.5127 | 9986.1947 | 0.3252 |
HIWO | 9981.7867 | 9982.0010 | 9982.1922 | 0.0934 |