Loading [MathJax]/jax/output/SVG/jax.js
Research article Special Issues

Evaluation of the bioenergy potential of agricultural and agroindustrial waste generated in southeastern Mexico

  • Received: 22 May 2024 Revised: 31 July 2024 Accepted: 12 August 2024 Published: 29 August 2024
  • The generation of large volumes of agricultural and agroindustrial waste in the state of Tabasco represents a significant waste management challenge. We aimed to determine the bioenergy potential of five types of biomasses: Banana rachis, coconut shell, cocoa pod husk, sugarcane bagasse, and palm kernel shell, generated in agricultural and agroindustrial processes. This research involved characterizing and evaluating the energy quality of these biomasses by determining their calorific values and assessing their viability as fuel alternative sources. Additionally, we explored these biomasses' calorific value potential to reduce the inadequate disposal of wastes, reduce environmental impact, and provide alternative uses for these materials, which are typically discarded or have limited added value in the southeast region. The yield of waste generation per amount of production was estimated, with cocoa pod husk biomass and sugarcane bagasse, banana rachis, coconut shell, and palm kernel shell generating 0.685, 0.283, 0.16, 0.135, and 0.0595 kg of biomass per kg of crop, respectively. The bioenergy potential was evaluated through direct measurements using a calorimeter bomb, and indirect measurements using stoichiometric calculations. Four stoichiometric methods based on predictive equations were employed to determine the energy content of the biomasses from their elemental composition (Dulong, Friedl, Channiwala, Boie). The biomasses with the highest calorific values were coconut shell and cocoa pod husk, with values of 16.47 ± 0.24 and 16.02 ± 1.54 MJ/kg, respectively. Moreover, banana rachis had the lowest calorific value at 13.68 ± 3.22 MJ/kg. The calorific values of the sugarcane bagasse and palm kernel shell were 13.91 ± 0.98 and 15.29 ± 1.02, respectively. The factorial experimental design and statistical analysis revealed trends and magnitudes in the evaluation of energy determination methods and types of waste. The predictive equation of Dulong showed the highest similarity to the experimental values, especially for coconut shell (16.02 ± 0.08 MJ/kg). The metal content in biomasses such as palm kernel shell and coconut shell were below the limits established in ISO 17225:2014. Finally, our results indicated that coconut shell has superior characteristics for potential use as an alternative fuel, whereas banana rachis requires exploring alternative utilization options.

    Citation: Nathaly A. Díaz Molina, José A. Sosa Olivier, José R. Laines Canepa, Rudy Solis Silvan, Donato A. Figueiras Jaramillo. Evaluation of the bioenergy potential of agricultural and agroindustrial waste generated in southeastern Mexico[J]. AIMS Energy, 2024, 12(5): 984-1009. doi: 10.3934/energy.2024046

    Related Papers:

    [1] Yousaf Khurshid, Muhammad Adil Khan, Yu-Ming Chu . Conformable integral version of Hermite-Hadamard-Fejér inequalities via η-convex functions. AIMS Mathematics, 2020, 5(5): 5106-5120. doi: 10.3934/math.2020328
    [2] M. Emin Özdemir, Saad I. Butt, Bahtiyar Bayraktar, Jamshed Nasir . Several integral inequalities for (α, s,m)-convex functions. AIMS Mathematics, 2020, 5(4): 3906-3921. doi: 10.3934/math.2020253
    [3] Muhammad Uzair Awan, Nousheen Akhtar, Artion Kashuri, Muhammad Aslam Noor, Yu-Ming Chu . 2D approximately reciprocal ρ-convex functions and associated integral inequalities. AIMS Mathematics, 2020, 5(5): 4662-4680. doi: 10.3934/math.2020299
    [4] Yue Wang, Ghulam Farid, Babar Khan Bangash, Weiwei Wang . Generalized inequalities for integral operators via several kinds of convex functions. AIMS Mathematics, 2020, 5(5): 4624-4643. doi: 10.3934/math.2020297
    [5] Hengxiao Qi, Muhammad Yussouf, Sajid Mehmood, Yu-Ming Chu, Ghulam Farid . Fractional integral versions of Hermite-Hadamard type inequality for generalized exponentially convexity. AIMS Mathematics, 2020, 5(6): 6030-6042. doi: 10.3934/math.2020386
    [6] Ghulam Farid, Saira Bano Akbar, Shafiq Ur Rehman, Josip Pečarić . Boundedness of fractional integral operators containing Mittag-Leffler functions via (s,m)-convexity. AIMS Mathematics, 2020, 5(2): 966-978. doi: 10.3934/math.2020067
    [7] Gou Hu, Hui Lei, Tingsong Du . Some parameterized integral inequalities for p-convex mappings via the right Katugampola fractional integrals. AIMS Mathematics, 2020, 5(2): 1425-1445. doi: 10.3934/math.2020098
    [8] Hasan Kara, Hüseyin Budak, Mehmet Eyüp Kiriş . On Fejer type inequalities for co-ordinated hyperbolic ρ-convex functions. AIMS Mathematics, 2020, 5(5): 4681-4701. doi: 10.3934/math.2020300
    [9] Tekin Toplu, Mahir Kadakal, İmdat İşcan . On n-Polynomial convexity and some related inequalities. AIMS Mathematics, 2020, 5(2): 1304-1318. doi: 10.3934/math.2020089
    [10] Naila Mehreen, Matloob Anwar . Some inequalities via Ψ-Riemann-Liouville fractional integrals. AIMS Mathematics, 2019, 4(5): 1403-1415. doi: 10.3934/math.2019.5.1403
  • The generation of large volumes of agricultural and agroindustrial waste in the state of Tabasco represents a significant waste management challenge. We aimed to determine the bioenergy potential of five types of biomasses: Banana rachis, coconut shell, cocoa pod husk, sugarcane bagasse, and palm kernel shell, generated in agricultural and agroindustrial processes. This research involved characterizing and evaluating the energy quality of these biomasses by determining their calorific values and assessing their viability as fuel alternative sources. Additionally, we explored these biomasses' calorific value potential to reduce the inadequate disposal of wastes, reduce environmental impact, and provide alternative uses for these materials, which are typically discarded or have limited added value in the southeast region. The yield of waste generation per amount of production was estimated, with cocoa pod husk biomass and sugarcane bagasse, banana rachis, coconut shell, and palm kernel shell generating 0.685, 0.283, 0.16, 0.135, and 0.0595 kg of biomass per kg of crop, respectively. The bioenergy potential was evaluated through direct measurements using a calorimeter bomb, and indirect measurements using stoichiometric calculations. Four stoichiometric methods based on predictive equations were employed to determine the energy content of the biomasses from their elemental composition (Dulong, Friedl, Channiwala, Boie). The biomasses with the highest calorific values were coconut shell and cocoa pod husk, with values of 16.47 ± 0.24 and 16.02 ± 1.54 MJ/kg, respectively. Moreover, banana rachis had the lowest calorific value at 13.68 ± 3.22 MJ/kg. The calorific values of the sugarcane bagasse and palm kernel shell were 13.91 ± 0.98 and 15.29 ± 1.02, respectively. The factorial experimental design and statistical analysis revealed trends and magnitudes in the evaluation of energy determination methods and types of waste. The predictive equation of Dulong showed the highest similarity to the experimental values, especially for coconut shell (16.02 ± 0.08 MJ/kg). The metal content in biomasses such as palm kernel shell and coconut shell were below the limits established in ISO 17225:2014. Finally, our results indicated that coconut shell has superior characteristics for potential use as an alternative fuel, whereas banana rachis requires exploring alternative utilization options.



    Let IR be an interval. Then a real-valued function h:IR is said to be convex (concave) on the interval I if the inequality

    h(tκ1+(1t)κ2)()th(κ1)+(1t)h(κ2)

    holds for all κ1,κ2I and t[0,1].

    It is well known that convexity (concavity) has wide applications in pure and applied mathematics [1,2,3,4,5,6,7,8,9,10,11,12]. The well known Hermite-Hadamard inequality [13,14,15,16,17,18,19,20] for the convex (concave) function h:IR can be stated as follows:

    h(κ1+κ22)()1κ2κ1κ2κ1h(x)dx()h(κ1)+h(κ2)2

    for all κ1,κ2I with κ1κ2.

    Recently, many generalizations, invariants and extensions have been made for the convexity, for example, harmonic-convexity [21,22], exponential-convexity [23,24], s-convexity [25,26], Schur-convexity [27,28,29], strong convexity [30,31,32,33], Hp,q-convexity [34,35,36,37,38], generalized convexity [39], GG- and GA-convexities [40], preinvexity [41] and quasi-convexity [42]. In particular, many remarkable inequalities can be found in the literature [43,44,45,46,47,48,49,50,51,52,53,54,55,56,57,58] via the convexity theory.

    Niculescu [59,60] defined the GG- and GA-convex functions as follows.

    Definition 1.1. (See [59]) A real-valued function h:I[0,) is said to be GG-convex on the interval I if the inequality

    h(κt1κ1t2)h(κ1)th(κ2)1t

    holds for all κ1,κ2I and t[0,1].

    Definition 1.2. (See [60]) A real-valued function h:I[0,) is said to be GA-convex if the inequality

    h(κt1κ1t2)th(κ1)+(1t)h(κ2)

    holds for all κ1,κ2I and t[0,1].

    Ardıç et al. [61] established several novel inequalities (Theorem 1.1) involving the GG- and GA-convex functions via an identity (Lemma 1.1) for differentiable functions.

    Lemma 1.1. (See [61]) Let κ1,κ2(0,) with κ1<κ2 and h:[κ1,κ2]R be a differentiable function such that hL([κ1,κ2]). Then the identity

    κ22h(κ2)κ21h(κ1)2κ2κ1xh(x)dx (1.1)
    =(logκ2logη)10(κt2η1t)3h(κt2η1t)dt+(logηlogκ1)10(ηtκ1t1)3h(ηtκ1t1)dt

    holds for all η[κ1,κ2].

    Theorem 1.1. (See [61]) Let κ1,κ2(0,) with κ1<κ2 and h:[κ1,κ2]R be a differentiable function such that hL([κ1,κ2]). Then the following statements are true:

    (1) If |h(x)| is GG-convex on [κ1,κ2], then the inequality

    |κ22h(κ2)κ21h(κ1)2κ2κ1xh(x)dx| (1.2)
    (logκ2logη)L(κ32|h(κ2)|,η3|h(η)|)+(logηlogκ1)L(η3|h(η)|,κ31|h(κ1)|)

    holds for all η[κ1,κ2], where L(κ1,κ2)=(κ2κ1)/(logκ2logκ1) is the logarithmic mean of κ1 and κ2.

    (2) If ϑ,γ>1 with 1/ϑ+1/γ=1 and |h(x)|γ is GG-convex on [κ1,κ2], then the inequalities

    |κ22h(κ2)κ21h(κ1)2κ2κ1xh(x)dx| (1.3)
    (logκ2logη)(L(κ3ϑ2,η3ϑ))1ϑ(L(|h(κ2)|γ,|h(η)|γ))1γ
    +(logηlogκ1)(L(η3ϑ,κ3ϑ1))1ϑ(L(|h(η)|γ,κ31|h(κ1)|γ))1γ,
    |κ22h(κ2)κ21h(κ1)2κ2κ1xh(x)dx| (1.4)
    (logκ2logη)(L(κ3γ2|h(κ2)|γ,η3γ|h(η)|γ))1γ
    +(logηlogκ1)(L(η3γ|h(η)|γ,κ3γ1|h(κ1)|γ))1γ

    and

    |κ22h(κ2)κ21h(κ1)2κ2κ1xh(x)dx| (1.5)
    (logκ2logη)(L(κ32,η3))11γ(L(κ32|h(κ2)|γ,η3|h(η)|γ))1γ
    +(logηlogκ1)(L(η3,κ31))11γ(L(η3|h(η)|γ,κ31|h(κ1)|γ))1γ

    hold for all η[κ1,κ2].

    (3) If |h(x)| is GA-convex on [κ1,κ2], then we have

    |κ22h(κ2)κ21h(κ1)2κ2κ1xh(x)dx| (1.6)
    |h(κ2)|3[κ32L(η3,κ32)]+|h(η)|3[L(η3,κ32)L(κ31,η3)]+|h(κ1)|3[L(κ31,η3)η3]

    for all η[κ1,κ2].

    (4) If ϑ,γ>1 with 1/ϑ+1/γ=1 and |h(x)|γ is GA-convex on [κ1,κ2], then one has

    |κ22h(κ2)κ21h(κ1)2κ2κ1xh(x)dx| (1.7)
    (logκ2logη)11γ(L(κ32,η3))11γ(|h(κ2)|γ[κ32L(η3,κ32)]+|h(η)|γ[L(η3,κ32)η3]3)1γ
    +(logηlogκ1)11γ(L(η3,κ31))11γ(|h(η)|γ[η3L(κ31,η3)]+|h(κ1)|γ[L(κ31,η3)κ31]3)1γ,
    |κ22h(κ2)κ21h(κ1)2κ2κ1xh(x)dx| (1.8)
    (logκ2logη)11γϑ1γ(L(κ3(γϑ)γ12,η3(γϑ)γ1))γ1γ(Aγ(κ2,η))1γ
    +(logηlogκ1)11γϑ1γ(L(η3(γϑ)γ1,κ3(γϑ)γ11))γ1γ(Aγ(η,κ1))1γ,
    |κ22h(κ2)κ21h(κ1)2κ2κ1xh(x)dx| (1.9)
    (logκ2logη)11γ(L(κ3γγ12,η3γγ1))11γ(|h(κ2)|γ+|h(η)|γ2)1γ
    +(logηlogκ1)11γ(L(η3γγ1,κ3γγ11))11γ(|h(η)|γ+|h(κ1)|γ2)1γ,
    |κ22h(κ2)κ21h(κ1)2κ2κ1xh(x)dx| (1.10)
    (logκ2logη)11γγ1γ(Aγ(κ2,η))1/γ+(logηlogκ1)11γγ1γ(Aγ(η,κ1))1/γ,

    where

    Aγ(κ2,η)=|h(κ2)|γ[κ3γ2L(η3γ,κ3γ2)]+|h(η)|γ[L(η3γ,κ3γ2)η3γ]3

    and

    Aγ(η,κ1)=|h(η)|γ[η3γL(κ3γ1,η3γ)]+|h(κ1)|γ[L(κ3γ1,η3γ)κ3γ1]3.

    The conformable fractional derivative Dα(h)(t) [62] of order 0<α1 at t>0 for a function h:[0,)R is defined by

    Dα(h)(t)=limϵ0h(t+ϵt1α)h(t)ϵ,

    h is said to be α-fractional differentiable if the conformable fractional derivative Dα(h)(t) exists. The conformable fractional derivative at 0 is defined by hα(0)=limt0+hα(t). If h1 and h2 are α-differentiable at t>0, and κ1,κ2,λ,cR are constants, then the conformable fractional derivative satisfies the following formulas

    dαdαt(tλ)=λtλα,dαdαt(c)=0,
    dαdαt(κ1h1(t)+κ2h2(t))=κ1dαdαt(h1(t))+κ2dαdαt(h2(t)),
    dαdαt(h1(t)h2(t))=h1(t)dαdαt(h2(t))+h2(t)dαdαt(h1(t)),
    dαdαt(h1(t)h2(t))=h2(t)dαdαt(h1(t))h1(t)dαdαt(h2(t))(h2(t))2

    and

    dαdαt(h1(h2(t)))=h1(h2(t))dαdαt(h2(t))

    if h1 differentiable at h2(t). Moreover,

    dαdαt(h1(t))=t1αddt(h1(t))

    if h1 is differentiable.

    Let α(0,1] and 0κ1<κ2. Then the function h:[κ1,κ2]R is said to be α-fractional integrable on [κ1,κ2] if the integral

    κ2κ1h(x)dαx=κ2κ1h(x)xα1dx

    exists and is finite. All α-fractional integrable functions on [κ1,κ2] is denoted by Lα([κ1,κ2]). Note that

    Iκ1α(h1)(s)=Iκ11(sα1h1)=sκ1h1(x)x1αdx

    for all α(0,1], where the integral is the usual Riemann improper integral.

    Recently, the conformable integrals and derivatives have attracted the attention of many researchers. Anderson [63] established the conformable integral version of the Hermite-Hadamard inequality as follows:

    ακα2κα1κ2κ1h(x)dαxh(κ1)+h(κ2)2

    if α(0,1] and h:[κ1,κ2]R is an α-fractional differentiable function such that Dα(h) is increasing. Moreover, if function h is decreasing on [κ1,κ2], then

    h(κ1+κ22)ακα2κα1κ2κ1h(x)dαx.

    The main purpose of the article is to establish the conformable fractional integral versions of the Hermite-Hadamard type inequality for GG- and GA-convex functions.

    In order to establish our main results, we need a lemma which we present in this section.

    Lemma 2.1. Let κ1,κ2(0,) with κ1<κ2, α(0,1] and h:[κ1,κ2]R be an α-fractional differentiable function on (κ1,κ2) such that Dα(h)Lα([κ1,κ2]). Then the identity

    κ2α2h(κ2)κ2α1h(κ1)2ακ2κ1xαh(x)dαx (2.1)
    =(logκ2logη)10(κt2η1t)3αDα(h)(κt2η1t)t1αdt
    +(logηlogκ1)10(ηtκ1t1)3αDα(h)(ηtκ1t1)t1αdt

    holds for all η[κ1,κ2].

    Proof. Integration by parts, we get

    I1=10(κt2η1t)3αDα(h)(κt2η1t)t1αdt
    =10(κt2η1t)2α+1h(κt2η1t)dt.

    Let x=κt2η1t. Then I1 can be rewritten as

    I1=1logκ2logηκ2ηx2αh(x)dx
    =1logκ2logη[κα2h(κ2)ηαh(η)2ακ2ηx2α1h(x)dx]
    =1logκ2logη[κα2h(κ2)ηαh(η)2ακ2ηxαh(x)dαx].

    Similarly, we have

    I2=10(ηtκ1t1)3αDα(h)(ηtκ1t1)t1αdt
    =1logηlogκ1[ηαh(η)κα1h(κ1)2αηκ1xαh(x)dαx].

    Multiplying I1 by (logκ2logη) and I2 by (logηlogκ1), then add them we get the desired identity.

    Remark 2.1. Let α=1. Then identity (2.1) reduces to (1.1).

    Theorem 2.1. Let κ1,κ2(0,) with κ1<κ2, α(0,1], h:[κ1,κ2]R be an α-fractional differentiable function on (κ1,κ2) such that Dα(h)Lα([κ1,κ2]) and |h(x)| be a GG-convex function on [κ1,κ2]. Then the inequality

    |κ2α2h(κ2)κ2α1h(κ1)2ακ2κ1xαh(x)dαx| (2.2)
    (logκ2logη)L(κ2α+12|h(κ2)|,η2α+1|h(η)|)
    +(logηlogκ1)L(η2α+1|h(η)|,κ2α+11|h(κ1)|)

    holds for all η[κ1,κ2].

    Proof. It follows from the GG-convexity of the function |h(x)| on the interval [κ1,κ2] and Lemma 2.1 that

    |κ2α2h(κ2)κ2α1h(κ1)2ακ2κ1xαh(x)dαx|
    (logκ2logη)10(κt2η1t)2α+1|h(κt2η1t)|dt
    +(logηlogκ1)10(ηtκ1t1)2α+1|h(ηtκ1t1)|dt
    (logκ2logη)10(κt2η1t)2α+1|h(κ2)|t|h(η)|1tdt
    +(logηlogκ1)10(ηtκ1t1)2α+1|h(η)|t|h(κ1)|1tdt
    =(logκ2logη)L(κ2α+12|h(κ2)|,η2α+1|h(η)|)
    +(logηlogκ1)L(η2α+1|h(η)|,κ2α+11|h(κ1)|).

    Remark 2.2. Let α=1. Then inequality (2.2) reduces to (1.2).

    Theorem 2.2. Let κ1,κ2(0,) with κ1<κ2, ϑ,γ>1 with 1/ϑ+1/γ=1, α(0,1], h:[κ1,κ2]R be an α-fractional differentiable function on (κ1,κ2) such that Dα(h)Lα([κ1,κ2]) and |h(x)|γ be a GG-convex function on [κ1,κ2]. Then the inequality

    |κ2α2h(κ2)κ2α1h(κ1)2ακ2κ1xαh(x)dαx| (2.3)
    (logκ2logη)(L(κ(2α+1)ϑ2,η(2α+1)ϑ))1ϑ(L(|h(κ2)|γ,|h(η)|γ))1γ
    +(logηlogκ1)(L(η(2α+1)ϑ,κ(2α+1)ϑ1))1ϑ(L(|h(η)|γ,|h(κ1)|γ))1γ

    holds for all η[κ1,κ2].

    Proof. From Lemma 2.1, the property of the modulus, GG-convexity of |h|γ and Hölder inequality we clearly see that

    |κ2α2h(κ2)κ2α1h(κ1)2ακ2κ1xαh(x)dαx|
    (logκ2logη)10(κt2η1t)2α+1|h(κt2η1t)|dt
    +(logηlogκ1)10(ηtκ1t1)2α+1|h(ηtκ1t1)|dt
    (logκ2logη)(10(κt2η1t)(2α+1)ϑdt)1ϑ(10|h(κt2η1t)|γdt)1γ
    +(logηlogκ1)(10(ηtκ1t1)(2α+1)ϑdt)1ϑ(10|h(ηtκ1t1)|γdt)1γ
    (logκ2logη)(10(κt2η1t)(2α+1)ϑdt)1ϑ(10|h(κ2)|γt|h(η)|(1t)γdt)1γ
    +(logηlogκ1)(10(ηtκ1t1)(2α+1)ϑdt)1ϑ(10|h(η)|γt|h(κ1)|(1t)γdt)1γ
    =(logκ2logη)(L(κ(2α+1)ϑ2,η(2α+1)ϑ))1ϑ(L(|h(κ2)|γ,|h(η)|γ))1γ
    +(logηlogκ1)(L(η(2α+1)ϑ,κ(2α+1)ϑ1))1ϑ(L(|h(η)|γ,|h(κ1)|γ))1γ.

    Remark 2.3. Let α=1. Then inequality (2.3) reduces to (1.3).

    Theorem 2.3. Let κ1,κ2(0,) with κ1<κ2, γ>1, α(0,1], h:[κ1,κ2]R be an α-fractional differentiable function on (κ1,κ2) such that Dα(h)Lα([κ1,κ2]) and |h(x)|γ be a GG-convex function on [κ1,κ2]. Then the inequality

    |κ2α2h(κ2)κ2α1h(κ1)2ακ2κ1xαh(x)dαx| (2.4)
    (logκ2logη)(L(κ(2α+1)γ2|h(κ2)|γ,η(2α+1)γ|h(η)|γ))1γ
    +(logηlogκ1)(L(η(2α+1)γ|h(η)|γ,κ(2α+1)γ1|h(κ1)|γ))1γ

    holds for all η[κ1,κ2].

    Proof. It follows from Lemma 2.1 that

    |κ2α2h(κ2)κ2α1h(κ1)2ακ2κ1xαh(x)dαx|
    (logκ2logη)10(κt2η1t)2α+1|h(κt2η1t)|dt
    +(logηlogκ1)10(ηtκ1t1)2α+1|h(ηtκ1t1)|dt.

    Let ϑ>1 such that ϑ1+γ1=1. Then making use of the Hölder integral inequality and the GG-convexity of |h|γ, we get

    |κ2α2h(κ2)κ2α1h(κ1)2ακ2κ1xαh(x)dαx|
    (logκ2logη)(10dt)1ϑ(10(κt2η1t)(2α+1)γ|h(κt2η1t)|γdt)1γ
    +(logηlogκ1)(10dt)1ϑ(10(ηtκ1t1)(2α+1)γ|h(ηtκ1t1)|γdt)1γ
    (logκ2logη)(10dt)1ϑ(10(κt2η1t)(2α+1)γ|h(κ2)|γt|h(η)|(1t)γdt)1γ
    +(logηlogκ1)(10dt)1ϑ(10(ηtκ1t1)(2α+1)γ|h(η)|γt|h(κ1)|(1t)γdt)1γ
    =(logκ2logη)(L(κ(2α+1)γ2|h(κ2)|γ,η(2α+1)γ|h(η)|γ))1γ
    +(logηlogκ1)(L(η(2α+1)γ|h(η)|γ,κ(2α+1)γ1|h(κ1)|γ))1γ.

    Remark 2.4. Let α=1. Then inequality (2.4) reduces to (1.4).

    Theorem 2.4. Let κ1,κ2(0,) with κ1<κ2, γ>1, α(0,1], h:[κ1,κ2]R be an α-fractional differentiable function on (κ1,κ2) such that Dα(h)Lα([κ1,κ2]) and |h(x)|γ be a GG-convex function on [κ1,κ2]. Then the inequality

    |κ2α2h(κ2)κ2α1h(κ1)2ακ2κ1xαh(x)dαx| (2.5)
    (logκ2logη)(L(κ(2α+1)2,η(2α+1)))11γ(L(κ(2α+1)2|h(κ2)|γ,η(2α+1)|h(η)|γ))1γ
    +(logηlogκ1)(L(η(2α+1),κ(2α+1)1))11γ(L(η(2α+1)|h(η)|γ,κ(2α+1)1|h(κ1)|γ))1γ

    holds whenever η[κ1,κ2].

    Proof. From the GG-convexity of |h|γ, power mean inequality, the property of the modulus and Lemma 2.1 we clearly see that

    |κ2α2h(κ2)κ2α1h(κ1)2ακ2κ1xαh(x)dαx|
    (logκ2logη)10(κt2η1t)2α+1|h(κt2η1t)|dt
    +(logηlogκ1)10(ηtκ1t1)2α+1|h(ηtκ1t1)|dt
    (logκ2logη)(10(κt2η1t)2α+1dt)11γ(10(κt2η1t)2α+1|h(κt2η1t)|γdt)1γ
    +(logηlogκ1)(10(ηtκ1t1)2α+1dt)11γ(10(ηtκ1t1)2α+1|h(ηtκ1t1)|γdt)1γ
    (logκ2logη)(10(κt2η1t)2α+1dt)11γ(10(κt2η1t)2α+1|h(κ2)|γt|h(η)|(1t)γdt)1γ
    +(logηlogκ1)(10(ηtκ1t1)2α+1dt)11γ(10(ηtκ1t1)2α+1|h(η)|γt|h(κ1)|(1t)γdt)1γ
    =(logκ2logη)(L(κ(2α+1)2,η(2α+1)))11γ(L(κ(2α+1)2|h(κ2)|γ,η(2α+1)|h(η)|γ))1γ
    +(logηlogκ1)(L(η(2α+1),κ(2α+1)1))11γ(L(η(2α+1)|h(η)|γ,κ(2α+1)1|h(κ1)|γ))1γ.

    Remark 2.5. Let α=1. Then inequality (2.5) reduces to (1.5).

    Theorem 2.5. Let κ1,κ2(0,) with κ1<κ2, α(0,1], h:[κ1,κ2]R be an α-fractional differentiable function on (κ1,κ2) such that Dα(h)Lα([κ1,κ2]) and |h(x)| be a GA-convex function on [κ1,κ2]. Then the inequality

    |κ2α2h(κ2)κ2α1h(κ1)2ακ2κ1xαh(x)dαx| (2.6)
    |h(κ2)|2α+1[κ2α+12L(η2α+1,κ2α+12)]+|h(η)|2α+1[L(η2α+1,κ2α+12)L(κ2α+11,η2α+1)]
    +|h(κ1)|2α+1[L(κ2α+11,η2α+1)η2α+1]

    holds for each η[κ1,κ2].

    Proof. It follows from the GA-convexity of |h(x)| and Lemma 2.1 that

    |κ2α2h(κ2)κ2α1h(κ1)2ακ2κ1xαh(x)dαx|
    (logκ2logη)10(κt2η1t)2α+1|h(κt2η1t)|dt
    +(logηlogκ1)10(ηtκ1t1)2α+1|h(ηtκ1t1)|dt
    (logκ2logη)10(κt2η1t)2α+1[t|h(κ2)|+(1t)|h(η)|]dt
    +(logηlogκ1)10(ηtκ1t1)2α+1[t|h(η)|+(1t)|h(κ1)|]dt
    =|h(κ2)|2α+1[κ2α+12L(η2α+1,κ2α+12)]+|h(η)|2α+1[L(η2α+1,κ2α+12)L(κ2α+11,η2α+1)]
    +|h(κ1)|2α+1[L(κ2α+11,η2α+1)η2α+1].

    Remark 2.6. Let α=1. Then inequality (2.6) becomes (1.6).

    Theorem 2.6. Let κ1,κ2(0,) with κ1<κ2, α(0,1], γ>1, h:[κ1,κ2]R be an α-fractional differentiable function on (κ1,κ2) such that Dα(h)Lα([κ1,κ2]) and |h(x)|γ be a GA-convex function on [κ1,κ2]. Then the inequality

    |κ2α2h(κ2)κ2α1h(κ1)2ακ2κ1xαh(x)dαx| (2.7)
    (logκ2logη)11γ(L(κ(2α+1)2,η(2α+1)))11γ
    ×(|h(κ2)|γ[κ2α+12L(η2α+1,κ2α+12)]+|h(η)|γ[L(η2α+1,κ2α+12)η2α+1]2α+1)1γ
    +(logηlogκ1)11γ(L(η(2α+1),κ(2α+1)1))11γ
    ×(|h(η)|γ[η2α+1L(κ2α+11),η2α+1]+|h(κ1)|γ[L(κ2α+11,η2α+1)κ2α+11]2α+1)1γ

    holds for any η[κ1,κ2].

    Proof. From the GA-convexity of |h|γ, power mean inequality, the property of the modulus and Lemma 2.1, one has

    |κ2α2h(κ2)κ2α1h(κ1)2ακ2κ1xαh(x)dαx|
    (logκ2logη)10(κt2η1t)2α+1|h(κt2η1t)|dt
    +(logηlogκ1)10(ηtκ1t1)2α+1|h(ηtκ1t1)|dt
    (logκ2logη)(10(κt2η1t)2α+1dt)11γ(10(κt2η1t)2α+1|h(κt2η1t)|γdt)1γ
    +(logηlogκ1)(10(ηtκ1t1)2α+1dt)11γ(10(ηtκ1t1)2α+1|h(ηtκ1t1)|γdt)1γ
    (logκ2logη)(10(κt2η1t)2α+1dt)11γ(10(κt2η1t)2α+1[t|h(κ2)|γ+(1t)|h(η)|γ]dt)1γ
    +(logηlogκ1)(10(ηtκ1t1)2α+1dt)11γ(10(ηtκ1t1)2α+1[t|h(η)|γ+(1t)|h(κ1)|γ]dt)1γ
    =(logκ2logη)11γ(L(κ(2α+1)2,η(2α+1)))11γ
    ×(|h(κ2)|γ[κ2α+12L(η2α+1,κ2α+12)]+|h(η)|γ[L(η2α+1,κ2α+12)η2α+1]2α+1)1γ
    +(logηlogκ1)11γ(L(η(2α+1),κ(2α+1)1))11γ
    ×(|h(η)|γ[η2α+1L(κ2α+11),η2α+1]+|h(κ1)|γ[L(κ2α+11,η2α+1)κ2α+11]2α+1)1γ.

    Remark 2.7. Let α=1. Then inequality (2.7) reduces to (1.7).

    Theorem 2.7. Let κ1,κ2(0,) with κ1<κ2, ϑ,γ>1 with 1/ϑ+1/γ=1, α(0,1], h:[κ1,κ2]R be an α-fractional differentiable function on (κ1,κ2) such that Dα(h)Lα([κ1,κ2]) and |h(x)|γ be a GA-convex function on [κ1,κ2]. Then the inequality

    |κ2α2h(κ2)κ2α1h(κ1)2ακ2κ1xαh(x)dαx| (2.8)
    (logκ2logη)11γϑ1γ(L(κ(γϑ)(2α+1)γ12,η(γϑ)(2α+1)γ1))γ1γ(Aγ(κ2,η))1γ
    +(logηlogκ1)11γϑ1γ(L(η(γϑ)(2α+1)γ1,κ(γϑ)(2α+1)γ11))γ1γ(Aγ(η,κ1))1γ

    holds for any η[κ1,κ2], where

    Aγ(κ2,η)=|h(κ2)|γ[κγ(2α+1)2L(ηγ(2α+1),κγ(2α+1)2)]+|h(η)|γ[L(ηγ(2α+1),κγ(2α+1)2)ηγ(2α+1)]2α+1,
    Aγ(η,κ1)=|h(η)|γ[ηγ(2α+1)L(κγ(2α+1)1,ηγ(2α+1))]+|h(κ1)|γ[L(κγ(2α+1)1,ηγ(2α+1))κγ(2α+1)1]2α+1.

    Proof. It follows from Lemma 2.1, the GA-convexity of |h|γ, power mean inequality, Hölder integral inequality and the property of the modulus that

    |κ2α2h(κ2)κ2α1h(κ1)2ακ2κ1xαh(x)dαx|
    (logκ2logη)10(κt2η1t)2α+1|h(κt2η1t)|dt
    +(logηlogκ1)10(ηtκ1t1)2α+1|h(ηtκ1t1)|dt
    (logκ2logη)(10(κ(2α+1)t2η(2α+1)(1t))γϑγ1dt)γ1γ
    ×(10(κ(2α+1)t2η(2α+1)(1t))ϑ|h(κt2η1t)|γdt)1γ
    +(logηlogκ1)(10(η(2α+1)tκ(2α+1)(1t)1)γϑγ1dt)γ1γ
    ×(10(η(2α+1)tκ(2α+1)(1t)1)ϑ|h(ηtκ1t1)|γdt)1γ
    (logκ2logη)(10(κ(2α+1)t2η(2α+1)(1t))γϑγ1dt)γ1γ
    ×(10(κ(2α+1)t2η(2α+1)(1t))ϑ[t|h(κ2)|γ+(1t)|h(η)|γ]dt)1γ
    +(logηlogκ1)(10(η(2α+1)tκ(2α+1)(1t)1)γϑγ1dt)γ1γ
    ×(10(η(2α+1)tκ(2α+1)(1t)1)ϑ[t|h(η)|γ+(1t)|h(κ1)|γ]dt)1γ
    =(logκ2logη)11γϑ1γ(L(κ(γϑ)(2α+1)γ12,η(γϑ)(2α+1)γ1))γ1γ(Aγ(κ2,η))1γ
    +(logηlogκ1)11γϑ1γ(L(η(γϑ)(2α+1)γ1,κ(γϑ)(2α+1)γ11))γ1γ(Aγ(η,κ1))1γ.

    Remark 2.8. Let α=1. Then inequality (2.8) becomes (1.8).

    Theorem 2.8. Let κ1,κ2(0,) with κ1<κ2, γ>1, α(0,1], h:[κ1,κ2]R be an α-fractional differentiable function on (κ1,κ2) such that Dα(h)Lα([κ1,κ2]) and |h(x)|γ be a GA-convex function on [κ1,κ2]. Then the inequality

    |κ2α2h(κ2)κ2α1h(κ1)2ακ2κ1xαh(x)dαx| (2.9)
    (logκ2logη)11γ(L(κγ(2α+1)γ12,ηγ(2α+1)γ1))11γ(A(|h(κ2)|γ,|h(η)|γ))1γ
    +(logηlogκ1)11γ(L(ηγ(2α+1)γ1,κγ(2α+1)γ11))11γ(A(|h(η)|γ,|h(κ1)|γ))1γ

    holds for any η[κ1,κ2].

    Proof. From Lemma 2.1, the GG-convexity of |h|γ, Hölder inequality and the property of the modulus, we have

    |κ2α2h(κ2)κ2α1h(κ1)2ακ2κ1xαh(x)dαx|
    (logκ2logη)10(κt2η1t)2α+1|h(κt2η1t)|dt
    +(logηlogκ1)10(ηtκ1t1)2α+1|h(ηtκ1t1)|dt
    (logκ2logη)(10(κt2η1t)2α+1dt)11γ(10|h(κt2η1t)|γdt)1γ
    +(logηlogκ1)(10(ηtκ1t1)2α+1dt)11γ(10|h(ηtκ1t1)|γdt)1γ
    (logκ2logη)(10(κt2η1t)2α+1dt)11γ(10[t|h(κ2)|γ+(1t)|h(η)|γ]dt)1γ
    +(logηlogκ1)(10(ηtκ1t1)2α+1dt)11γ(10[t|h(η)|γ+(1t)|h(κ1)|γ]dt)1γ
    =(logκ2logη)11γ(L(κγ(2α+1)γ12,ηγ(2α+1)γ1))11γ(A(|h(κ2)|γ,|h(η)|γ))1γ
    +(logηlogκ1)11γ(L(ηγ(2α+1)γ1,κγ(2α+1)γ11))11γ(A(|h(η)|γ,|h(κ1)|γ))1γ.

    Remark 2.9. Let α=1. Then inequality (2.9) leads to (1.9).

    Theorem 2.9. Let κ1,κ2(0,) with κ1<κ2, γ>1, α(0,1], h:[κ1,κ2]R be an α-fractional differentiable function on (κ1,κ2) such that Dα(h)Lα([κ1,κ2]) and |h(x)|γ be a GA-convex function on [κ1,κ2]. Then the inequality

    |κ2α2h(κ2)κ2α1h(κ1)2ακ2κ1xαh(x)dαx| (2.10)
    (logκ2logη)11γγ1γBγ(κ2,η)+(logηlogκ1)11γγ1γBγ(η,κ1)

    holds for any η[κ1,κ2], where

    Bγ(κ2,η)=(|h(κ2)|γ[κγ(2α+1)2L(ηγ(2α+1),κγ(2α+1)2)]+|h(η)|γ[L(ηγ(2α+1),κγ(2α+1)2)ηγ(α+1)]2α+1)1γ,
    Bγ(η,κ1)=(|h(η)|γ[ηγ(2α+1)L(κγ(2α+1)1,ηγ(2α+1))]+|h(κ1)|γ[L(κγ(2α+1)1,ηγ(2α+1))κγ(α+1)1]2α+1)1γ.

    Proof. It follows from Lemma 2.1, the GA-convexity of |h|γ, power mean inequality and property of the modulus that

    |κ2α2h(κ2)κ2α1h(κ1)2ακ2κ1xαh(x)dαx|
    (logκ2logη)10(κt2η1t)2α+1|h(κt2η1t)|dt
    +(logηlogκ1)10(ηtκ1t1)2α+1|h(ηtκ1t1)|dt
    (logκ2logη)(10dt)11γ(10(κt2η1t)2α+1|h(κt2η1t)|γdt)1γ
    +(logηlogκ1)(10dt)11γ(10(ηtκ1t1)2α+1|h(ηtκ1t1)|γdt)1γ
    (logκ2logη)(10dt)11γ(10(κt2η1t)2α+1[t|h(κ2)|γ+(1t)|h(η)|γ]dt)1γ
    +(logηlogκ1)(10dt)11γ(10(ηtκ1t1)2α+1[t|h(η)|γ+(1t)|h(κ1)|γ]dt)1γ
    =(logκ2logη)11γγ1γBγ(κ2,η)+(logηlogκ1)11γγ1γBγ(η,κ1).

    Remark 2.10. Let α=1. Then inequality (2.10) reduces to (1.10).

    We have generalized the Hermite-Hadamard type inequalities for GG- and GA-convex functions established by Ardıç, Akdemir and Yıdız in [61] to the conformable fractional integrals. Our ideas and approach may lead to a lot of follow-up research.

    The authors would like to thank the anonymous referees for their valuable comments and suggestions, which led to considerable improvement of the article.

    The work was supported by the Natural Science Foundation of China (Grant Nos. 61673169, 11971142, 11701176, 11626101, 11601485).

    The authors declare no conflict of interest.



    [1] FAO (2022) FAOSTAT, Land use, 2022. Available from: https://www.fao.org/faostat/en/#data/RL.
    [2] FAO (2022) FAOSTAT, Crops and livestock products, 2022. Available from: https://www.fao.org/faostat/en/#data/QCL.
    [3] FAO (2022) FAOSTAT, Value of agricultural production, 2022. Available from: https://www.fao.org/faostat/en/#data/QV.
    [4] FAO (2022) FAOSTAT, Macro indicators, 2022. Available from: https://www.fao.org/faostat/en/#data/MK.
    [5] SIAP (2022) Statistical yearbook of agricultural production, 2022. Available from: https://nube.siap.gob.mx/cierreagricola/.
    [6] SIAP (2023) Performance of the agri-food GDP in the third quarter of 2023 (2022: Ⅲ–2023 Ⅲ).
    [7] SEDEC (2023) State profile, 2023. Available from: https://tabasco.gob.mx/sites/default/files/users/sdettabasco/Perfil%20del%20Estado.pdf.
    [8] INEGI Quarterly indicator of State economic activity (ITAEE), Tabasco.
    [9] Chauhan A, Upadhyay S, Saini G, et al. (2022) Agricultural crop residue-based biomass in India: Potential assessment, methodology and key issues. Sustainable Energy Technol Assess 53: 102552.https://doi.org/10.1016/j.seta.2022.102552 doi: 10.1016/j.seta.2022.102552
    [10] Tauro R, García C, Skutsch M, et al. (2018) The potential for sustainable biomass pellets in Mexico: An analysis of energy potential, logistic costs and market demand. Renewable Sustainable Energy Rev 82: 380–389.https://doi.org/10.1016/j.rser.2017.09.036 doi: 10.1016/j.rser.2017.09.036
    [11] Peñaloza DF, Laiton LJ, Caballero DF, et al. (2012) Sciencimetric study of trends in the utilization of cocoa by-products (Theobroma cacao L.). Rev Espacio I+D, Innov Desarro 10: 83–94.https://doi.org/10.31644/IMASD.27.2021.a05 doi: 10.31644/IMASD.27.2021.a05
    [12] Balladares CA (2016) Physicochemical characterization of cocoa and coffee leachates from the Ecuadorian coast, as potential sources of bioethanol production. Available from: http://hdl.handle.net/10553/22931.
    [13] Lu F, Rodriguez J, Van Damme I, et al. (2018) Valorisation strategies for cocoa pod husk and its fractions. Curr Opin Green Sustainable Chem 14: 80–88.https://doi.org/10.1016/j.cogsc.2018.07.007 doi: 10.1016/j.cogsc.2018.07.007
    [14] Vásquez ZS, de Carvalho Neto DP, Pereira GVM, et al. (2019) Biotechnological approaches for cocoa waste management: A review. Waste Manage 90: 72–83.https://doi.org/10.1016/j.wasman.2019.04.030 doi: 10.1016/j.wasman.2019.04.030
    [15] Campos R, Nieto KH, Oomah BD (2018) Cocoa (Theobroma cacao L.) pod husk: Renewable source of bioactive compounds. Trends Food Sci Technol 81: 172–184.https://doi.org/10.1016/j.tifs.2018.09.022 doi: 10.1016/j.tifs.2018.09.022
    [16] Fernandes ERK, Marangoni C, Souza O, et al. (2013) Thermochemical characterization of banana leaves as a potential energy source. Energy Convers Manage 75: 603–608.https://doi.org/10.1016/j.enconman.2013.08.008 doi: 10.1016/j.enconman.2013.08.008
    [17] Espina R, Barroca R, Abundo MLS (2022) The optimal high heating value of the torrefied coconut shells. Eng Technol Appl Sci Res 12: 8605–8610.https://doi.org/10.48084/etasr.4931 doi: 10.48084/etasr.4931
    [18] Trujillo AF, Arias LS (2013) Coconut, a renewable resource for the design of green materials. Entre Cienc Ing 7: 93–100. Available from:https://revistas.ucp.edu.co/index.php/entrecienciaeingenieria/article/view/637.
    [19] Irawan A, US Latifah, DIP Meity (2017) Effect of torrefaction process on the coconut shell energy content for solid fuel, AIP Conf Proc 1826: 020010.https://doi.org/10.1063/1.4979226 doi: 10.1063/1.4979226
    [20] Triana O, León TS, Céspedes MI, et al. (2014) Characterization of sugarcane harvest residues stored in bulk. ICIDCA Sobre Deriv Caña Azúc 48: 65–70. Available from:https://www.redalyc.org/articulo.oa?id = 223131337010.
    [21] Kalifa MA, Habtu NG, Jembere AL, et al. (2024) Characterization and evaluation of torrefied sugarcane bagasse to improve the fuel properties. Curr Res Green Sustain Chem 8: 100395.https://doi.org/10.1016/j.crgsc.2023.100395 doi: 10.1016/j.crgsc.2023.100395
    [22] Schmitt CC, Moreira R, Neves RC, et al. (2020) From agriculture residue to upgraded product: The thermochemical conversion of sugarcane bagasse for fuel and chemical products. Fuel Proc Technol 197: 106199.https://doi.org/10.1016/j.fuproc.2019.106199 doi: 10.1016/j.fuproc.2019.106199
    [23] Liew RK, Nam WL, Chong MY, et al. (2018) Oil palm waste: An abundant and promising feedstock for microwave pyrolysis conversion into good quality biochar with potential multi-applications. Proc Saf Environ Prot 115: 57–69.https://doi.org/10.1016/j.psep.2017.10.005 doi: 10.1016/j.psep.2017.10.005
    [24] Ohimain EI, Izah SC (2014) Energy self-sufficiency of smallholder oil palm processing in Nigeria. Renewable Energy 63: 426–431.https://doi.org/10.1016/j.renene.2013.10.007 doi: 10.1016/j.renene.2013.10.007
    [25] Syamsiro M, Saptoadi H, Tambunan BH, et al. (2012) A preliminary study on use of cocoa pod husk as a renewable source of energy in Indonesia. Energy Sustainable Dev 16: 74–77.https://doi.org/10.1016/j.esd.2011.10.005 doi: 10.1016/j.esd.2011.10.005
    [26] Vásquez ZS, de Carvalho Neto DP, Pereira GVM, et al. (2019) Biotechnological approaches for cocoa waste management: A review. Waste Manage 90: 72–83.https://doi.org/10.1016/j.wasman.2019.04.030 doi: 10.1016/j.wasman.2019.04.030
    [27] Redondo C, Rodríguez M, Vallejo S, et al. (2020) Biorefinery of biomass of agro-industrial banana waste to obtain high-value biopolymers. Molecules 25: 3829.https://doi.org/10.3390/molecules25173829 doi: 10.3390/molecules25173829
    [28] da Silva JCG, Alves JLF, de Araujo WV, et al. (2019) Pyrolysis kinetics and physicochemical characteristics of skin, husk, and shell from green coconut wastes. Energy Ecol Environ 4: 125–132.https://doi.org/10.1007/s40974-019-00120-x doi: 10.1007/s40974-019-00120-x
    [29] Sarkar JK, Wang Q (2020) Different pyrolysis process conditions of South Asian waste coconut shell and characterization of gas, bio-char, and bio-oil. Energies 13: 1970.https://doi.org/10.3390/en13081970 doi: 10.3390/en13081970
    [30] Nadzri SNIHA, Sultan MTH, Shah AUM, et al. (2022) A comprehensive review of coconut shell powder composites: Preparation, processing, and characterization. J Thermoplast Compos Mater 35: 2641–2664.https://doi.org/10.1177/089270572093080 doi: 10.1177/089270572093080
    [31] Dewajani H, Zamrudy W, Irfin Z, et al. (2023) Utilization of Indonesian sugarcane bagasse into bio asphalt through pyrolysis process using zeolite-based catalyst. Mater Today Proc 87: 383–389.https://doi.org/10.1016/j.matpr.2023.04.171 doi: 10.1016/j.matpr.2023.04.171
    [32] Sales A, Lima SA (2010) Use of Brazilian sugarcane bagasse ash in concrete as sand replacement. Waste Manage 30: 1114–1122.https://doi.org/10.1016/j.wasman.2010.01.026 doi: 10.1016/j.wasman.2010.01.026
    [33] Abnisa F, Daud WMAW, Husin WNW, et al. (2011) Utilization possibilities of palm shell as a source of biomass energy in Malaysia by producing bio-oil in pyrolysis process. Biomass Bioenergy 35: 1863–1872.https://doi.org/10.1016/j.biombioe.2011.01.033 doi: 10.1016/j.biombioe.2011.01.033
    [34] Sosa JA, Laines JR, García DS, et al. (2022) Activated carbon: A review of residual precursors, synthesis processes, characterization techniques, and applications in the improvement of biogas. Environ Eng Res 28: 220100.https://doi.org/10.4491/eer.2022.100 doi: 10.4491/eer.2022.100
    [35] Pérez M de L, Hernández JC, Bideshi DK, et al. (2020) Agave: a natural renewable resource with multiple applications. J Sci Food Agric 100: 5324–5333.https://doi.org/10.1002/jsfa.10586 doi: 10.1002/jsfa.10586
    [36] Borrega M, Hinkka V, Hörhammer H, et al. (2022) Utilizing and valorizing oat and barley straw as an alternative source of lignocellulosic fibers. Materials 15: 7826.https://doi.org/10.3390/ma15217826 doi: 10.3390/ma15217826
    [37] Ali AH, Wanderlind EH, Almerindo GI (2024) Activated carbon obtained from malt bagasse as a support in heterogeneous catalysis for biodiesel production. Renewable Energy 220: 119656.https://doi.org/10.1016/j.renene.2023.119656 doi: 10.1016/j.renene.2023.119656
    [38] Chung WJ, Shim J, Ravindran B (2022) Application of wheat bran-based biomaterials and nano-catalyst in textile wastewater. J King Saud Univ Sci 34: 101775.https://doi.org/10.1016/j.jksus.2021.101775 doi: 10.1016/j.jksus.2021.101775
    [39] Armynah B, Tahir D, Tandilayuk M, et al. (2019) Potentials of biochars derived from bamboo leaf biomass as energy sources: Effect of temperature and time of heating. Int J Biomater 2019: 1–9.https://doi.org/10.1155/2019/3526145 doi: 10.1155/2019/3526145
    [40] Sagastume A, Cabello JJ, Hens L, et al. (2020) The energy potential of agriculture, agroindustrial, livestock, and slaughterhouse biomass wastes through direct combustion and anaerobic digestion. The case of Colombia. J Clean Prod 269: 122317.https://doi.org/10.1016/j.jclepro.2020.122317 doi: 10.1016/j.jclepro.2020.122317
    [41] Mdhluli FT, Harding KG (2021) Comparative life-cycle assessment of maize cobs, maize stover and wheat stalks for the production of electricity through gasification vs traditional coal power electricity in South Africa. Clean Environ Syst 3: 100046.https://doi.org/10.1016/j.cesys.2021.100046 doi: 10.1016/j.cesys.2021.100046
    [42] Appiah NB, Li J, Rooney W, et al. (2019) A review of sweet sorghum as a viable renewable bioenergy crop and its techno-economic analysis. Renewable Energy 143: 1121–1132.https://doi.org/10.1016/j.renene.2019.05.066 doi: 10.1016/j.renene.2019.05.066
    [43] Mazurkiewicz J, Marczuk A, Pochwatka P, et al. (2019) Maize straw as a valuable energetic material for giogas plant feeding. Materials 12: 3848.https://doi.org/10.3390/ma12233848 doi: 10.3390/ma12233848
    [44] Niju S, Swathika M, Balajii M (2020) Pretreatment of lignocellulosic sugarcane leaves and tops for bioethanol production. Lignocellulosic Biomass Liquid Biofuels, 301–324.https://doi.org/10.1016/B978-0-12-815936-1.00010-1 doi: 10.1016/B978-0-12-815936-1.00010-1
    [45] Chala B, Oechsner H, Latif S, et al. (2018) Biogas potential of coffee processing waste in Ethiopia. Sustainability 10: 2678.https://doi.org/10.3390/su10082678 doi: 10.3390/su10082678
    [46] Mekuria D, Diro A, Melak F, et al. (2022) Adsorptive removal of methylene blue dye using biowaste materials: Barley bran and enset midrib leaf. J Chem 2022: 1–13.https://doi.org/10.1155/2022/4849758 doi: 10.1155/2022/4849758
    [47] Kosheleva RI, Mitropoulos AC, Kyzas GZ (2019) Synthesis of activated carbon from food waste. Environ Chem Lett 17: 429–438.https://doi.org/10.1007/s10311-018-0817-5 doi: 10.1007/s10311-018-0817-5
    [48] Prieto García F, Canales-Flores RA, Prieo-Méndez J, et al. (2022) Evaluation of three lignocellulose biomass materials (barley husk, corn cobs, agave leaves) as precursors of activated carbon. Rev Fac Cienc 11: 17–39.https://doi.org/10.15446/rev.fac.cienc.v11n1.97719 doi: 10.15446/rev.fac.cienc.v11n1.97719
    [49] Araújo L, Machado AR, Pintado M, et al. (2023) Toward a circular bioeconomy: Extracting cellulose from grape stalks. Eng Proc 86.https://doi.org/10.3390/ECP2023-14746 doi: 10.3390/ECP2023-14746
    [50] Martinelli FRB, Ribeiro FRC, Marvila MT, et al. (2023) A Review of the use of coconut fiber in cement composites. Polymers 15: 1309.https://doi.org/10.3390/polym15051309 doi: 10.3390/polym15051309
    [51] Elnagdy NA, Ragab TIM, Fadel MA, et al. (2024) Bioethanol production from characterized pre-treated sugarcane trash and Jatropha agrowastes. J Biotechnol 386: 28–41.https://doi.org/10.1016/j.jbiotec.2024.02.015 doi: 10.1016/j.jbiotec.2024.02.015
    [52] Darmayanti R, Wika Amini H, Fitri Rizkiana M, et al. (2019) Lignocellulosic material from main indonesian plantation commodity as the feedstock for fermentable sugar in biofuel production. ARPN J Eng Appl Sci 14: 3524–3534.
    [53] Perea MA, Manzano F, Hernandez Q, et al. (2018) Peanut shell for energy: Properties and its potential to respect the environment. Sustainability 10: 3254.https://doi.org/10.3390/su10093254 doi: 10.3390/su10093254
    [54] Daud WMAW, Ali WSW (2004) Comparison on pore development of activated carbon produced from palm shell and coconut shell. Bioresour Technol 93: 63–69.https://doi.org/10.1016/j.biortech.2003.09.015 doi: 10.1016/j.biortech.2003.09.015
    [55] Abnisa F, Arami A, Daud WMAW, et al. (2013) Characterization of bio-oil and bio-char from pyrolysis of palm oil wastes. Bioenergy Res 6: 830–840.https://doi.org/10.1007/s12155-013-9313-8 doi: 10.1007/s12155-013-9313-8
    [56] Sable H, Kumar V, Mishra R, et al. (2024) Bamboo stem derived biochar for biosorption of Cadmium (Ⅱ) ions from contaminated wastewater. Environ Nanotechnol Monit Manag 21: 100936.https://doi.org/10.1016/j.enmm.2024.100936 doi: 10.1016/j.enmm.2024.100936
    [57] Manríquez A, Sierra J, Muñoz P, et al. (2020) Analysis of urban agriculture solid waste in the frame of circular economy: Case study of tomato crop in integrated rooftop greenhouse. Sci Total Environ 734.https://doi.org/10.1016/j.scitotenv.2020.139375 doi: 10.1016/j.scitotenv.2020.139375
    [58] Soares IS, Perrechil F, Grandis A, et al. (2024) Cassava waste (stem and leaf) analysis for reuse. Food Chem Adv 4: 100675.https://doi.org/10.1016/j.focha.2024.100675 doi: 10.1016/j.focha.2024.100675
    [59] Gómez E, Roriz CL, Heleno SA, et al. (2021) Valorisation of black mulberry and grape seeds: Chemical characterization and bioactive potential. Food Chem 337: 127998.https://doi.org/10.1016/j.foodchem.2020.127998 doi: 10.1016/j.foodchem.2020.127998
    [60] Al Afif R, Pfeifer C, Pröll T (2020) Bioenergy recovery from cotton stalk. Advances Cotton Res. https://doi.org/10.5772/intechopen.88005 doi: 10.5772/intechopen.88005
    [61] Stavropoulos GG, Zabaniotou AA (2005) Production and characterization of activated carbons from olive-seed waste residue. Microporous Mesoporous Mater 82: 79–85.https://doi.org/10.1016/j.micromeso.2005.03.009 doi: 10.1016/j.micromeso.2005.03.009
    [62] Dominguez EL, Uttran A, Loh SK, et al. (2020) Characterisation of industrially produced oil palm kernel shell biochar and its potential as slow release nitrogen-phosphate fertilizer and carbon sink. Mater Today Proc 31: 221–227.https://doi.org/10.1016/j.matpr.2020.05.143 doi: 10.1016/j.matpr.2020.05.143
    [63] Toro JL, Carrillo ES, Bustos D, et al. (2019) Thermogravimetric characterization and pyrolysis of soybean hulls. Bioresour Technol Rep 6: 183–189.https://doi.org/10.1016/j.biteb.2019.02.009 doi: 10.1016/j.biteb.2019.02.009
    [64] Marafon AC, Salomon KR, Amorim ELC, et al. (2020) Use of sugarcane vinasse to biogas, bioenergy, and biofertilizer production. Sugarcane Biorefinery, Technol Perspectives, 179–194.https://doi.org/10.1016/B978-0-12-814236-3.00010-X doi: 10.1016/B978-0-12-814236-3.00010-X
    [65] Sindhu R, Binod P, Pandey A, et al. (2019) Biofuel production from biomass. Current Dev Biotechnol Bioeng, 79–92.https://doi.org/10.1016/B978-0-444-64083-3.00005-1 doi: 10.1016/B978-0-444-64083-3.00005-1
    [66] Solís JA, Morales M, Ayala RC, et al. (2012) Obtaining activated carbon from agro-industrial waste and its evaluation in the removal of color from sugarcane juice. Tecnol, Cienc, Educ 27: 36–48. Available from:https://www.redalyc.org/articulo.oa?id = 48224413006.
    [67] Medhat A, El-Maghrabi HH, Abdelghany A, et al. (2021) Efficiently activated carbons from corn cob for methylene blue adsorption. Appl Surface Sci Advances 3: 100037.https://doi.org/10.1016/j.apsadv.2020.100037 doi: 10.1016/j.apsadv.2020.100037
    [68] Abbey CYB, Duwiejuah AB, Quianoo AK (2023) Removal of toxic metals from aqueous phase using cacao pod husk biochar in the era of green chemistry. Appl Water Sci 13: 57.https://doi.org/10.1007/s13201-022-01863-5 doi: 10.1007/s13201-022-01863-5
    [69] Marín FJ, García RM, Barrezueta SA (2020) Results of the application of biochar obtained from banana and cocoa residues in corn cultivation. Rev Cient Agroecosist 8: 83–88. Available from:https://aes.ucf.edu.cu/index.php/aes/article/view/404.
    [70] Pinzon DA, Adarme CA, Vargas LY, et al. (2022) Biochar as a waste management strategy for cadmium contaminated cocoa pod husk residues. Int JRecycl Org Waste Agric 11: 101–115.https://doi.org/10.30486/ijrowa.2021.1920124.1192 doi: 10.30486/ijrowa.2021.1920124.1192
    [71] Nosratpour MJ, Karimi K, Sadeghi M (2018) Improvement of ethanol and biogas production from sugarcane bagasse using sodium alkaline pretreatments. J Environ Manage 226: 329–339.https://doi.org/10.1016/j.jenvman.2018.08.058 doi: 10.1016/j.jenvman.2018.08.058
    [72] Santos CV, Lourenzani AEBS, Mollo M, et al. (2021) Study of the biogas potential generated from residue: peanut shells. Rev Bras Ciênc Ambient (Online) 56: 318–326.https://doi.org/10.5327/Z21769478765
    [73] Tsai WT, Lee MK, Chang YM (2006) Fast pyrolysis of rice straw, sugarcane bagasse and coconut shell in an induction-heating reactor. J Anal Appl Pyrolysis 76: 230–237.https://doi.org/10.1016/j.jaap.2005.11.007 doi: 10.1016/j.jaap.2005.11.007
    [74] Zheng J, Yi W, Wang N (2008) Bio-oil production from cotton stalk. Energy Convers Manage 49: 1724–1730.https://doi.org/10.1016/j.enconman.2007.11.005 doi: 10.1016/j.enconman.2007.11.005
    [75] Kim SW, Koo BS, Lee DH (2014) Catalytic pyrolysis of palm kernel shell waste in a fluidized bed. Bioresour Technol 167: 425–432.https://doi.org/10.1016/j.biortech.2014.06.050 doi: 10.1016/j.biortech.2014.06.050
    [76] Robak K, Balcerek M (2018) Review of second-generation bioethanol production from residual biomass. Food Technol Biotechnol 56: 174–187.https://doi.org/10.17113/ftb.56.02.18.5428 doi: 10.17113/ftb.56.02.18.5428
    [77] Guerrero AB, Ballesteros I, Ballesteros M (2018) The potential of agricultural banana waste for bioethanol production. Fuel 213: 176–185.https://doi.org/10.1016/j.fuel.2017.10.105 doi: 10.1016/j.fuel.2017.10.105
    [78] Kaur M, Kaur M (2012) A review on utilization of coconut shell as coarse aggregates in mass concrete. Int J Appl Eng Res 7: 2063–2065.
    [79] Tomar R, Kishore K, Singh Parihar H, et al. (2021) A comprehensive study of waste coconut shell aggregate as raw material in concrete. Mater Today Proc 44: 437–443.https://doi.org/10.1016/j.matpr.2020.09.754 doi: 10.1016/j.matpr.2020.09.754
    [80] Chávez V, Valencia A, Córdova C, et al. (2017) Banana stem leachates: Obtaining and potential uses. Cuad Biodivers 53: 1–8.https://doi.org/10.14198/cdbio.2017.53.01 doi: 10.14198/cdbio.2017.53.01
    [81] Abdul Wahid FRA, Saleh S, Abdul Samad NAF (2017) Estimation of higher heating value of torrefied palm oil wastes from proximate analysis. Energy Proc 138: 307–312.https://doi.org/10.1016/j.egypro.2017.10.102 doi: 10.1016/j.egypro.2017.10.102
    [82] Florian TDM, Villani N, Aguedo M, et al. (2019) Chemical composition analysis and structural features of banana rachis lignin extracted by two organosolv methods. Ind Crops Prod 132: 269–274.https://doi.org/10.1016/j.indcrop.2019.02.022 doi: 10.1016/j.indcrop.2019.02.022
    [83] Granados DA, Velásquez HI, Chejne F (2014) Energetic and exergetic evaluation of residual biomass in a torrefaction process. Energy 74: 181–189.https://doi.org/10.1016/j.energy.2014.05.046 doi: 10.1016/j.energy.2014.05.046
    [84] Jirón EG, Rodríguez K, Bernal C (2020) Cellulose nanofiber production from banana rachis. IJESC 10: 24683–24689.
    [85] Balogun AO, Lasode OA, McDonald AG (2018) Thermochemical and pyrolytic analyses of Musa spp. residues from the rainforest belt of Nigeria. Environ Prog Sustainable Energy 37: 1932–1941.https://doi.org/10.1002/ep.12869 doi: 10.1002/ep.12869
    [86] Meramo SI, Ojeda KA, Sanchez E (2019) Environmental and safety assessments of industrial production of levulinic acid via acid-catalyzed dehydration. ACS Omega 4: 22302–22312.https://doi.org/10.1021/acsomega.9b02231 doi: 10.1021/acsomega.9b02231
    [87] Guerrero AB, Aguado PL, Sánchez J, et al. (2016) GIS-Based assessment of banana residual biomass potential for ethanol production and power generation: A case study. Waste Biomass Valor 7: 405–415.https://doi.org/10.1007/s12649-015-9455-3 doi: 10.1007/s12649-015-9455-3
    [88] Ozyuguran A, Akturk A, Yaman S (2018) Optimal use of condensed parameters of ultimate analysis to predict the calorific value of biomass. Fuel 214: 640–646.https://doi.org/10.1016/j.fuel.2017.10.082 doi: 10.1016/j.fuel.2017.10.082
    [89] Titiloye JO, Abu Bakar MS, Odetoye TE (2013) Thermochemical characterisation of agricultural wastes from West Africa. Ind Crops Prod 47: 199–203.https://doi.org/10.1016/j.indcrop.2013.03.011 doi: 10.1016/j.indcrop.2013.03.011
    [90] Ghysels S, Acosta N, Estrada A, et al. (2020) Integrating anaerobic digestion and slow pyrolysis improves the product portfolio of a cocoa waste biorefinery. Sustainable Energy Fuels 4: 3712–3725.https://doi.org/10.1039/D0SE00689K doi: 10.1039/D0SE00689K
    [91] Akinola AO, Eiche JF, Owolabi PO, et al. (2018) Pyrolytic analysis of cocoa pod for biofuel production. Niger J Technol 37: 1026.https://doi.org/10.4314/njt.374.1866 doi: 10.4314/njt.374.1866
    [92] Londoño-Larrea P, Villamarin-Barriga E, García AN, et al. (2022) Study of cocoa pod husks thermal decomposition. Appl Sci 12: 9318.https://doi.org/10.3390/app12189318 doi: 10.3390/app12189318
    [93] Tsai C, Tsai W, Liu S, et al. (2018) Thermochemical characterization of biochar from cocoa pod husk prepared at low pyrolysis temperature. Biomass Convers Biorefin 8: 237–243.https://doi.org/10.1007/s13399-017-0259-5 doi: 10.1007/s13399-017-0259-5
    [94] Adjin M, Asiedu N, Dodoo D, et al. (2018) Thermochemical conversion and characterization of cocoa pod husks a potential agricultural waste from Ghana. Ind Crops Prod 119: 304–312.https://doi.org/10.1016/j.indcrop.2018.02.060 doi: 10.1016/j.indcrop.2018.02.060
    [95] Channiwala SA, Parikh PP (2002) A unified correlation for estimating HHV of solid, liquid and gaseous fuels. Fuel 81: 1051–1063.https://doi.org/10.1016/S0016-2361(01)00131-4 doi: 10.1016/S0016-2361(01)00131-4
    [96] Kabir R, Anwar S, Yusup S, et al. (2022) Exploring the potential of coconut shell biomass for charcoal production. Ain Shams Eng J 13: 101499.https://doi.org/10.1016/j.asej.2021.05.013 doi: 10.1016/j.asej.2021.05.013
    [97] Borel LDMS, de Lira TS, Ataíde CH, et al. (2021) Thermochemical conversion of coconut waste: Material characterization and identification of pyrolysis products. J Therm Anal Calorim 143: 637–646.https://doi.org/10.1007/s10973-020-09281-y doi: 10.1007/s10973-020-09281-y
    [98] Said M, John G, Mhilu C, et al. (2015) The study of kinetic properties and analytical pyrolysis of coconut shells. J Renewable Energy 2015: 1–8.https://doi.org/10.1155/2015/307329 doi: 10.1155/2015/307329
    [99] Rout T, Pradhan D, Singh RK, et al. (2016) Exhaustive study of products obtained from coconut shell pyrolysis. J Environ Chem Eng 4: 3696–3705.https://doi.org/10.1016/j.jece.2016.02.024 doi: 10.1016/j.jece.2016.02.024
    [100] Gani A, Erdiwansyah, Desvita H, et al. (2024) Comparative analysis of HHV and LHV values of biocoke fuel from palm oil mill solid waste. Case Stud Chem EnvironEng 9: 100581.https://doi.org/10.1016/j.cscee.2023.100581 doi: 10.1016/j.cscee.2023.100581
    [101] Nizamuddin S, Jayakumar NS, Sahu JN, et al. (2015) Hydrothermal carbonization of oil palm shell. Korean J Chem Eng 32: 1789–1797.https://doi.org/10.1007/s11814-014-0376-9 doi: 10.1007/s11814-014-0376-9
    [102] Kim SJ, Jung SH, Kim JS (2010) Fast pyrolysis of palm kernel shells: Influence of operation parameters on the bio-oil yield and the yield of phenol and phenolic compounds. Bioresour Technol 101: 9294–9300.https://doi.org/10.1016/j.biortech.2010.06.110 doi: 10.1016/j.biortech.2010.06.110
    [103] Uemura Y, Omar WN, Tsutsui T, et al. (2011) Torrefaction of oil palm wastes. Fuel 90: 2585–2591.https://doi.org/10.1016/j.fuel.2011.03.021 doi: 10.1016/j.fuel.2011.03.021
    [104] Chang G, Huang Y, Xie J, et al. (2016) The lignin pyrolysis composition and pyrolysis products of palm kernel shell, wheat straw, and pine sawdust. Energy Convers Manage 124: 587–597.https://doi.org/10.1016/j.enconman.2016.07.038 doi: 10.1016/j.enconman.2016.07.038
    [105] Marrugo G, Valdés CF, Chejne F (2016) Characterization of colombian agroindustrial biomass residues as energy resources. Energy Fuels 30: 8386–8398.https://doi.org/10.1021/acs.energyfuels.6b01596 doi: 10.1021/acs.energyfuels.6b01596
    [106] Ma Z, Chen D, Gu J, et al. (2015) Determination of pyrolysis characteristics and kinetics of palm kernel shell using TGA–FTIR and model-free integral methods. Energy Convers Manage 89: 251–259.https://doi.org/10.1016/j.enconman.2014.09.074 doi: 10.1016/j.enconman.2014.09.074
    [107] Liew RK, Chong MY, Osazuwa OU, et al. (2018) Production of activated carbon as catalyst support by microwave pyrolysis of palm kernel shell: a comparative study of chemical versus physical activation. Res Chem Intermed 44: 3849–3865.https://doi.org/10.1007/s11164-018-3388-y doi: 10.1007/s11164-018-3388-y
    [108] Athira G, Bahurudeen A, Appari S (2021) Thermochemical conversion of sugarcane Bagasse: composition, reaction kinetics, and characterisation of by-products. Sugar Tech 23: 433–452.https://doi.org/10.1007/s12355-020-00865-4 doi: 10.1007/s12355-020-00865-4
    [109] Kanwal S, Chaudhry N, Munir S, et al. (2019) Effect of torrefaction conditions on the physicochemical characterization of agricultural waste (sugarcane bagasse). Waste Manage 88: 280–290.https://doi.org/10.1016/j.wasman.2019.03.053 doi: 10.1016/j.wasman.2019.03.053
    [110] Chen WH, Ye SC, Sheen HK (2012) Hydrothermal carbonization of sugarcane bagasse via wet torrefaction in association with microwave heating. Bioresour Technol 118: 195–203.https://doi.org/10.1016/j.biortech.2012.04.101 doi: 10.1016/j.biortech.2012.04.101
    [111] Iryani DA, Kumagai S, Nonaka M, et al. (2017) Characterization and production of solid biofuel from sugarcane bagasse by hydrothermal carbonization. Waste Biomass Valor 8: 1941–1951.https://doi.org/10.1007/s12649-017-9898-9 doi: 10.1007/s12649-017-9898-9
    [112] Beta San Miguel Beta San Miguel, Responsabilidad BSM. Available from: https://www.bsm.com.mx/resp_ambiental.html.
    [113] Oleopalma (2022) 2022 Sustainable ability report.
    [114] American Society of Testing Methods (2002) ASTM D-2974, standard test methods for moisture, ash, and organic matter of peat and other organic soils, 2002. Available from: https://www.astm.org/d2974-14.html.
    [115] Sheng C, Azevedo JLT (2005) Estimating the higher heating value of biomass fuels from basic analysis data. Biomass Bioenergy 28: 499–507.https://doi.org/10.1016/j.biombioe.2004.11.008 doi: 10.1016/j.biombioe.2004.11.008
    [116] Friedl A, Padouvas E, Rotter H, et al. (2005) Prediction of heating values of biomass fuel from elemental composition. Anal Chim Acta 544: 191–198.https://doi.org/10.1016/j.aca.2005.01.041 doi: 10.1016/j.aca.2005.01.041
    [117] Wang C, Deng X, Xiang W, et al. (2020) Calorific value variations in each component and biomass-based energy accumulation of red-heart Chinese fir plantations at different ages. Biomass Bioenergy 134: 105467.https://doi.org/10.1016/j.biombioe.2020.105467 doi: 10.1016/j.biombioe.2020.105467
    [118] Yin CY (2011) Prediction of higher heating values of biomass from proximate and ultimate analyses. Fuel 90: 1128–1132.https://doi.org/10.1016/j.fuel.2010.11.031 doi: 10.1016/j.fuel.2010.11.031
    [119] Environmental Protection Agency USA (1996) EPA, METHOD 6010B, Inductively coupled plasma-atomic emission spectrometry, 1996.
    [120] Husain Z, Zainac Z, Abdullah Z (2002) Briquetting of palm fibre and shell from the processing of palm nuts to palm oil. Biomass Bioenergy 22: 505–509.https://doi.org/10.1016/S0961-9534(02)00022-3 doi: 10.1016/S0961-9534(02)00022-3
    [121] Sosa JA, Laines JR, Guerrero D, et al. (2022) Bioenergetic valorization of Sargassum fluitans in the Mexican Caribbean: The determination of the calorific value and washing mechanism. AIMS Energy 10: 45–63.https://doi.org/10.3934/energy.2022003 doi: 10.3934/energy.2022003
    [122] Demirbas A (2002) Relationships between heating value and lignin, moisture, ash and extractive contents of biomass fuels. Energy Explor Exploit 20: 105–111.https://doi.org/10.1260/014459802760170420 doi: 10.1260/014459802760170420
    [123] López MI, Sosa JA, Laines JR, et al. (2023) Aerobic biotransformation of Sargassum fluitans in combination with sheep manure: optimization of control variables. Chem Ecol 39: 823–842.https://doi.org/10.1080/02757540.2023.2263427 doi: 10.1080/02757540.2023.2263427
    [124] Vergara GR (2022) Physical and energetic characterization of the fibrous residue from the processing of African palm by varying the percentage of humidity for bioenergy use in the Quevepalma company. Available from: http://repositorio.espe.edu.ec/handle/21000/28641.
    [125] Huaraca JN (2022) Determination of the calorific value of agroindustrial waste from wheat husk and barley straw enriched with cellulose nanoparticles as an energy alternative. Available from: http://dspace.espoch.edu.ec/handle/123456789/20236.
  • This article has been cited by:

    1. Yu-Ming Chu, Muhammad Uzair Awan, Muhammad Zakria Javad, Awais Gul Khan, Bounds for the Remainder in Simpson’s Inequality via n-Polynomial Convex Functions of Higher Order Using Katugampola Fractional Integrals, 2020, 2020, 2314-4629, 1, 10.1155/2020/4189036
    2. Shu-Bo Chen, Saima Rashid, Muhammad Aslam Noor, Rehana Ashraf, Yu-Ming Chu, A new approach on fractional calculus and probability density function, 2020, 5, 2473-6988, 7041, 10.3934/math.2020451
    3. Yousaf Khurshid, Muhammad Adil Khan, Yu-Ming Chu, Conformable integral version of Hermite-Hadamard-Fejér inequalities via η-convex functions, 2020, 5, 2473-6988, 5106, 10.3934/math.2020328
    4. Humaira Kalsoom, Muhammad Idrees, Artion Kashuri, Muhammad Uzair Awan, Yu-Ming Chu, Some New (p1p2,q1q2)-Estimates of Ostrowski-type integral inequalities via n-polynomials s-type convexity, 2020, 5, 2473-6988, 7122, 10.3934/math.2020456
    5. Ming-Bao Sun, Yu-Ming Chu, Inequalities for the generalized weighted mean values of g-convex functions with applications, 2020, 114, 1578-7303, 10.1007/s13398-020-00908-1
    6. Shuang-Shuang Zhou, Saima Rashid, Muhammad Aslam Noor, Khalida Inayat Noor, Farhat Safdar, Yu-Ming Chu, New Hermite-Hadamard type inequalities for exponentially convex functions and applications, 2020, 5, 2473-6988, 6874, 10.3934/math.2020441
    7. Ming-Bao Sun, Xin-Ping Li, Sheng-Fang Tang, Zai-Yun Zhang, Schur Convexity and Inequalities for a Multivariate Symmetric Function, 2020, 2020, 2314-8896, 1, 10.1155/2020/9676231
    8. Muhammad Uzair Awan, Sadia Talib, Artion Kashuri, Muhammad Aslam Noor, Yu-Ming Chu, Estimates of quantum bounds pertaining to new q-integral identity with applications, 2020, 2020, 1687-1847, 10.1186/s13662-020-02878-5
    9. Xi-Fan Huang, Miao-Kun Wang, Hao Shao, Yi-Fan Zhao, Yu-Ming Chu, Monotonicity properties and bounds for the complete p-elliptic integrals, 2020, 5, 2473-6988, 7071, 10.3934/math.2020453
    10. Saima Rashid, Aasma Khalid, Gauhar Rahman, Kottakkaran Sooppy Nisar, Yu-Ming Chu, On New Modifications Governed by Quantum Hahn’s Integral Operator Pertaining to Fractional Calculus, 2020, 2020, 2314-8896, 1, 10.1155/2020/8262860
    11. Muhammad Uzair Awan, Sadia Talib, Artion Kashuri, Muhammad Aslam Noor, Khalida Inayat Noor, Yu-Ming Chu, A new q-integral identity and estimation of its bounds involving generalized exponentially μ-preinvex functions, 2020, 2020, 1687-1847, 10.1186/s13662-020-03036-7
    12. Sabir Hussain, Javairiya Khalid, Yu Ming Chu, Some generalized fractional integral Simpson’s type inequalities with applications, 2020, 5, 2473-6988, 5859, 10.3934/math.2020375
    13. Eze R. Nwaeze, Muhammad Adil Khan, Yu-Ming Chu, Fractional inclusions of the Hermite–Hadamard type for m-polynomial convex interval-valued functions, 2020, 2020, 1687-1847, 10.1186/s13662-020-02977-3
    14. Muhammad Uzair Awan, Sadia Talib, Muhammad Aslam Noor, Yu-Ming Chu, Khalida Inayat Noor, Some Trapezium-Like Inequalities Involving Functions Having Strongly n-Polynomial Preinvexity Property of Higher Order, 2020, 2020, 2314-8896, 1, 10.1155/2020/9154139
    15. Ling Zhu, New Cusa-Huygens type inequalities, 2020, 5, 2473-6988, 5320, 10.3934/math.2020341
    16. Jian-Mei Shen, Saima Rashid, Muhammad Aslam Noor, Rehana Ashraf, Yu-Ming Chu, Certain novel estimates within fractional calculus theory on time scales, 2020, 5, 2473-6988, 6073, 10.3934/math.2020390
    17. Hu Ge-JiLe, Saima Rashid, Muhammad Aslam Noor, Arshiya Suhail, Yu-Ming Chu, Some unified bounds for exponentially tgs-convex functions governed by conformable fractional operators, 2020, 5, 2473-6988, 6108, 10.3934/math.2020392
    18. Tie-Hong Zhao, Zai-Yin He, Yu-Ming Chu, On some refinements for inequalities involving zero-balanced hypergeometric function, 2020, 5, 2473-6988, 6479, 10.3934/math.2020418
    19. Sadia Khalid, Josip Pečarić, Refinements of some Hardy–Littlewood–Pólya type inequalities via Green’s functions and Fink’s identity and related results, 2020, 2020, 1029-242X, 10.1186/s13660-020-02498-3
    20. Li Xu, Yu-Ming Chu, Saima Rashid, A. A. El-Deeb, Kottakkaran Sooppy Nisar, On New Unified Bounds for a Family of Functions via Fractionalq-Calculus Theory, 2020, 2020, 2314-8896, 1, 10.1155/2020/4984612
    21. Arshad Iqbal, Muhammad Adil Khan, Noor Mohammad, Eze R. Nwaeze, Yu-Ming Chu, Revisiting the Hermite-Hadamard fractional integral inequality via a Green function, 2020, 5, 2473-6988, 6087, 10.3934/math.2020391
    22. Thabet Abdeljawad, Saima Rashid, Zakia Hammouch, İmdat İşcan, Yu-Ming Chu, Some new Simpson-type inequalities for generalized p-convex function on fractal sets with applications, 2020, 2020, 1687-1847, 10.1186/s13662-020-02955-9
    23. Shu-Bo Chen, Saima Rashid, Muhammad Aslam Noor, Zakia Hammouch, Yu-Ming Chu, New fractional approaches for n-polynomial P-convexity with applications in special function theory, 2020, 2020, 1687-1847, 10.1186/s13662-020-03000-5
    24. Humaira Kalsoom, Muhammad Idrees, Dumitru Baleanu, Yu-Ming Chu, New Estimates of q1q2-Ostrowski-Type Inequalities within a Class of n-Polynomial Prevexity of Functions, 2020, 2020, 2314-8896, 1, 10.1155/2020/3720798
    25. Saad Ihsan Butt, Muhammad Umar, Saima Rashid, Ahmet Ocak Akdemir, Yu-Ming Chu, New Hermite–Jensen–Mercer-type inequalities via k-fractional integrals, 2020, 2020, 1687-1847, 10.1186/s13662-020-03093-y
    26. Yu-Ming Chu, Muhammad Uzair Awan, Sadia Talib, Muhammad Aslam Noor, Khalida Inayat Noor, New post quantum analogues of Ostrowski-type inequalities using new definitions of left–right (p,q)-derivatives and definite integrals, 2020, 2020, 1687-1847, 10.1186/s13662-020-03094-x
    27. Imran Abbas Baloch, Aqeel Ahmad Mughal, Yu-Ming Chu, Absar Ul Haq, Manuel De La Sen, A variant of Jensen-type inequality and related results for harmonic convex functions, 2020, 5, 2473-6988, 6404, 10.3934/math.2020412
    28. Thabet Abdeljawad, Saima Rashid, A. A. El-Deeb, Zakia Hammouch, Yu-Ming Chu, Certain new weighted estimates proposing generalized proportional fractional operator in another sense, 2020, 2020, 1687-1847, 10.1186/s13662-020-02935-z
    29. Hu Ge-JiLe, Saima Rashid, Fozia Bashir Farooq, Sobia Sultana, Shanhe Wu, Some Inequalities for a New Class of Convex Functions with Applications via Local Fractional Integral, 2021, 2021, 2314-8888, 1, 10.1155/2021/6663971
    30. Yu‐ming Chu, Saima Rashid, Jagdev Singh, A novel comprehensive analysis on generalized harmonically ψ ‐convex with respect to Raina's function on fractal set with applications , 2021, 0170-4214, 10.1002/mma.7346
    31. Xue Wang, Absar ul Haq, Muhammad Shoaib Saleem, Sami Ullah Zakir, Mohsan Raza, The Strong Convex Functions and Related Inequalities, 2022, 2022, 2314-8888, 1, 10.1155/2022/4056201
    32. SAIMA RASHID, AASMA KHALID, YELIZ KARACA, YU-MING CHU, REVISITING FEJÉR–HERMITE–HADAMARD TYPE INEQUALITIES IN FRACTAL DOMAIN AND APPLICATIONS, 2022, 30, 0218-348X, 10.1142/S0218348X22401338
    33. Waewta Luangboon, Kamsing Nonlaopon, Jessada Tariboon, Sotiris K. Ntouyas, Simpson- and Newton-Type Inequalities for Convex Functions via (p,q)-Calculus, 2021, 9, 2227-7390, 1338, 10.3390/math9121338
    34. Waewta Luangboon, Kamsing Nonlaopon, Jessada Tariboon, Sotiris K. Ntouyas, Hüseyin Budak, On generalizations of some integral inequalities for preinvex functions via (p,q)-calculus, 2022, 2022, 1029-242X, 10.1186/s13660-022-02896-9
    35. Khuram Ali Khan, Saeeda Fatima, Ammara Nosheen, Rostin Matendo Mabela, Kenan Yildirim, New Developments of Hermite–Hadamard Type Inequalities via s-Convexity and Fractional Integrals, 2024, 2024, 2314-4785, 1, 10.1155/2024/1997549
    36. Ghada AlNemer, Samir H. Saker, Gehad M. Ashry, Mohammed Zakarya, Haytham M. Rezk, Mohammed R. Kenawy, Some Hardy's inequalities on conformable fractional calculus, 2024, 57, 2391-4661, 10.1515/dema-2024-0027
    37. Tahir Ullah Khan, Muhammad Adil Khan, Hermite-Hadamard inequality for new generalized conformable fractional operators, 2021, 6, 2473-6988, 23, 10.3934/math.2021002
  • Reader Comments
  • © 2024 the Author(s), licensee AIMS Press. This is an open access article distributed under the terms of the Creative Commons Attribution License (http://creativecommons.org/licenses/by/4.0)
通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索

Metrics

Article views(1703) PDF downloads(247) Cited by(0)

Figures and Tables

Figures(6)  /  Tables(8)

/

DownLoad:  Full-Size Img  PowerPoint
Return
Return

Catalog