This work aims to study the role of sex disparities on the overall outcome of influenza A disease. Therefore, the classical Susceptible-Infected-Susceptible (SIS) endemic model was extended to include the impact of sex disparities on the overall dynamics of influenza A infection which spreads in an open population with a varying size, and took the potential lethality of the infection. The model was mathematically analyzed, where the equilibrium and bifurcation analyses were established. The model was shown to undergo a backward bifurcation at R0=1, for certain range of the model parameters, where R0 is the basic reproduction number of the model. The asymptotic stability of the equilibria was numerically investigated, and the effective threshold was determined. The differences in susceptibility, transmissibility and case fatality (of females with respect to males) are shown to remarkably affect the disease outcomes. Simulations were performed to illustrate the theoretical results.
Citation: Muntaser Safan, Bayan Humadi. An SIS sex-structured influenza A model with positive case fatality in an open population with varying size[J]. Mathematical Biosciences and Engineering, 2024, 21(8): 6975-7011. doi: 10.3934/mbe.2024306
[1] | Bakhtiar Ahmad, Muhammad Ghaffar Khan, Basem Aref Frasin, Mohamed Kamal Aouf, Thabet Abdeljawad, Wali Khan Mashwani, Muhammad Arif . On q-analogue of meromorphic multivalent functions in lemniscate of Bernoulli domain. AIMS Mathematics, 2021, 6(4): 3037-3052. doi: 10.3934/math.2021185 |
[2] | Bo Wang, Rekha Srivastava, Jin-Lin Liu . Certain properties of multivalent analytic functions defined by q-difference operator involving the Janowski function. AIMS Mathematics, 2021, 6(8): 8497-8508. doi: 10.3934/math.2021493 |
[3] | Ekram E. Ali, Rabha M. El-Ashwah, R. Sidaoui . Application of subordination and superordination for multivalent analytic functions associated with differintegral operator. AIMS Mathematics, 2023, 8(5): 11440-11459. doi: 10.3934/math.2023579 |
[4] | Sarem H. Hadi, Maslina Darus, Choonkil Park, Jung Rye Lee . Some geometric properties of multivalent functions associated with a new generalized q-Mittag-Leffler function. AIMS Mathematics, 2022, 7(7): 11772-11783. doi: 10.3934/math.2022656 |
[5] | Ying Yang, Jin-Lin Liu . Some geometric properties of certain meromorphically multivalent functions associated with the first-order differential subordination. AIMS Mathematics, 2021, 6(4): 4197-4210. doi: 10.3934/math.2021248 |
[6] | Cai-Mei Yan, Jin-Lin Liu . On second-order differential subordination for certain meromorphically multivalent functions. AIMS Mathematics, 2020, 5(5): 4995-5003. doi: 10.3934/math.2020320 |
[7] | Nazar Khan, Bilal Khan, Qazi Zahoor Ahmad, Sarfraz Ahmad . Some Convolution Properties of Multivalent Analytic Functions. AIMS Mathematics, 2017, 2(2): 260-268. doi: 10.3934/Math.2017.2.260 |
[8] | Huo Tang, Shahid Khan, Saqib Hussain, Nasir Khan . Hankel and Toeplitz determinant for a subclass of multivalent q-starlike functions of order α. AIMS Mathematics, 2021, 6(6): 5421-5439. doi: 10.3934/math.2021320 |
[9] | Yu-Qin Tao, Yi-Hui Xu, Rekha Srivastava, Jin-Lin Liu . Geometric properties of a certain class of multivalent analytic functions associated with the second-order differential subordination. AIMS Mathematics, 2021, 6(1): 390-403. doi: 10.3934/math.2021024 |
[10] | Wei-Mao Qian, Miao-Kun Wang . Sharp bounds for Gauss Lemniscate functions and Lemniscatic means. AIMS Mathematics, 2021, 6(7): 7479-7493. doi: 10.3934/math.2021437 |
This work aims to study the role of sex disparities on the overall outcome of influenza A disease. Therefore, the classical Susceptible-Infected-Susceptible (SIS) endemic model was extended to include the impact of sex disparities on the overall dynamics of influenza A infection which spreads in an open population with a varying size, and took the potential lethality of the infection. The model was mathematically analyzed, where the equilibrium and bifurcation analyses were established. The model was shown to undergo a backward bifurcation at R0=1, for certain range of the model parameters, where R0 is the basic reproduction number of the model. The asymptotic stability of the equilibria was numerically investigated, and the effective threshold was determined. The differences in susceptibility, transmissibility and case fatality (of females with respect to males) are shown to remarkably affect the disease outcomes. Simulations were performed to illustrate the theoretical results.
To understand in a clear way the notions used in our main results, we need to add here some basic literature of Geometric function theory. For this we start first with the notation A which denotes the class of holomorphic or analytic functions in the region D={z∈C:|z|<1} and if a function g∈A, then the relations g(0)=g′(0)−1=0 must hold. Also, all univalent functions will be in a subfamily S of A. Next we consider to define the idea of subordinations between analytic functions g1 and g2, indicated by g1(z)≺g2(z), as; the functions g1,g2∈A are connected by the relation of subordination, if there exists an analytic function w with the restrictions w(0)=0 and |w(z)|<1 such that g1(z)=g2(w(z)). Moreover, if the function g2∈S in D, then we obtain:
g1(z)≺g2(z)⇔[g1(0)=g2(0) & g1(D)⊂g1(D)]. |
In 1992, Ma and Minda [16] considered a holomorphic function φ normalized by the conditions φ(0)=1 and φ′(0)>0 with Reφ>0 in D. The function φ maps the disc D onto region which is star-shaped about 1 and symmetric along the real axis. In particular, the function φ(z)=(1+Az)/(1+Bz), (−1≤B<A≤1) maps D onto the disc on the right-half plane with centre on the real axis and diameter end points 1−A1−B and 1+A1+B. This interesting familiar function is named as Janowski function [10]. The image of the function φ(z)=√1+z shows that the image domain is bounded by the right-half of the Bernoulli lemniscate given by |w2−1|<1, [25]. The function φ(z)=1+43z+23z2 maps D into the image set bounded by the cardioid given by (9x2+9y2−18x+5)2−16(9x2+9y2−6x+1)=0, [21] and further studied in [23]. The function φ(z)=1+sinz was examined by Cho and his coauthors in [3] while φ(z)=ez is recently studied in [17] and [24]. Further, by choosing particular φ, several subclasses of starlike functions have been studied. See the details in [2,4,5,11,12,14,19].
Recently, Ali et al. [1] have obtained sufficient conditions on α such that
1+zg′(z)/gn(z)≺√1+z⇒g(z)≺√1+z,for n=0,1,2. |
Similar implications have been studied by various authors, for example see the works of Halim and Omar [6], Haq et al [7], Kumar et al [13,15], Paprocki and Sokól [18], Raza et al [20] and Sharma et al [22].
In 1994, Hayman [8] studied multivalent (p-valent) functions which is a generalization of univalent functions and is defined as: an analytic function g in an arbitrary domain D⊂C is said to be p-valent, if for every complex number ω, the equation g(z)=ω has maximum p roots in D and for a complex number ω0 the equation g(z)=ω0 has exactly p roots in D. Let Ap (p∈N={1,2,…}) denote the class of functions, say g∈Ap, that are multivalent holomorphic in the unit disc D and which have the following series expansion:
g(z)=zp+∞∑k=p+1akzk, (z∈D). | (1.1) |
Using the idea of multivalent functions, we now introduce the class SL∗p of multivalent starlike functions associated with lemniscate of Bernoulli and as given below:
SL∗p={g(z)∈Ap:zg′(z)pg(z)≺√1+z, (z∈D)}. |
In this article, we determine conditions on α such that for each
1+αz2+p(j−1)g′(z)pgj(z), for each j=0,1,2,3, |
are subordinated to Janowski functions implies g(z)zp≺√1+z, (z∈D). These results are then utilized to show that g are in the class SL∗p.
Let w be analytic non-constant function in D with w(0)=0. If
|w(z0)|=max{|w(z)|, |z|≤|z0|}, z∈D, |
then there exists a real number m (m≥1) such that z0w′(z0)=mw(z0).
This Lemma is known as Jack's Lemma and it has been proved in [9].
Let g∈Ap and satisfying
1+αz1−pg′(z)p≺1+Az1+Bz, |
with the restriction on α is
|α|≥232p(A−B)1−|B|−4p(1+|B|). | (2.1) |
Then
g(z)zp≺√1+z. |
Proof
Let us define a function
p(z)=1+αz1−pg′(z)p, | (2.2) |
where the function p is analytic in D with p(0)=1. Also consider
g(z)zp=√1+w(z). | (2.3) |
Now to prove our result we will only require to prove that |w(z)|<1. Logarithmically differentiating (2.3) and then using (2.2), we get
p(z)=1+αzw′(z)2p√1+w(z)+α√1+w(z), |
and so
|p(z)−1A−Bp(z)|=|αzw′(z)2p√1+w(z)+α√1+w(z)A−B(1+αzw′(z)2p√1+w(z)+α√1+w(z))|=|αzw′(z)+2pα(1+w(z))2p(A−B)√1+w(z)−B(αzw′(z)+2pα(1+w(z)))|. |
Now, we suppose that a point z0∈D occurs such that
max|z|≤|z0||w(z)|=|w(z0)|=1. |
Also by Lemma 1.1, a number m≥1 exists with z0w′(z0)=mw(z0). In addition, we also suppose that w(z0)=eiθ for θ∈[−π,π]. Then we have
|p(z0)−1A−Bp(z0)|=|αmw(z0)−2pα(1+w(z0))2p(A−B)√1+w(z0)−B(αmw(z0)+2pα(1+w(z0)))|,≥|α|m−2p|α|(|1+eiθ|)2p(A−B)√|1+eiθ|+|B|(|α|m+2pα|1+eiθ|),≥|α|m−4p|α|232p(A−B)+|B||α|(m+4p). |
Now if
ϕ(m)=|α|(m−4p)232p(A−B)+|B||α|(m+4p), |
then
ϕ′(m)=232p(A−B)|α|+8|α|2p|B|(232p(A−B)+|B||α|(m+4p))2>0, |
which illustrates that the function ϕ(m) is increasing and hence ϕ(m)≥ϕ(1) for m≥1, so
|p(z0)−1A−Bp(z0)|≥|α|(1−4p)232p(A−B)+|B||α|(1+4p). |
Now, by using (2.1), we have
|p(z0)−1A−Bp(z0)|≥1 |
which contradicts the fact that p(z)≺1+Az1+Bz. Thus |w(z)|<1 and so we get the desired result.
Taking g(z)=zp+1f′(z)pf(z) in the last result, we obtain the following Corollary:
Let f∈Ap and satisfying
1+αzf′(z)p2f(z)(p+1+zf′′(z)f′(z)−zf′(z)f(z))≺1+Az1+Bz, | (2.4) |
with the condition on α is
|α|≥232p(A−B)1−|B|−4p(1+|B|). |
Then f∈SL∗p.
If g∈Ap such that
1+αpzg′(z)g(z)≺1+Az1+Bz, | (2.5) |
with
|α|≥8p(A−B)1−|B|−4p(1+|B|), | (2.6) |
then
g(z)zp≺√1+z. |
Proof
Let us choose a function p by
p(z)=1+αzg′(z)pg(z), |
in such a way that p is analytic in D with p(0)=1. Also consider
g(z)zp=√1+w(z). |
Using some simple calculations, we obtain
p(z)=1+αzw′(z)2p(1+w(z))+α, |
and so
|p(z)−1A−Bp(z)|=|αzw′(z)2p(1+w(z))+αA−B(1+αzw′(z)2p(1+w(z))+α)|=|αzw′(z)+2pα(1+w(z))2p(A−B)(1+w(z))−B(αzw′(z)+2pα(1+w(z)))|. |
Let a point z0∈D exists in such a way
max|z|≤|z0||w(z)|=|w(z0)|=1. |
Then, by virtue of Lemma 1.1, a number m≥1 occurs such that z0w′(z0)=mw(z0). In addition, we set w(z0)=eiθ, so we have
|p(z0)−1A−Bp(z0)|=|αmw(z0)+2pα(1+w(z0))2p(A−B)(1+w(z0))−B(αmw(z0)+2pα(1+w(z0)))|,≥|α|m−2p|α||1+eiθ|2(A−B)|1+eiθ|+|B||α|m+2p|B||α||1+eiθ|,=|α|m−2p|α|√2+2cosθ2(2(A−B)+|B||α|)p√2+2cosθ+|B||α|m,≥|α|(m−4p)4p(2(A−B)+|B||α|)+|B||α|m. |
Now let
ϕ(m)=|α|(m−4p)4p(2(A−B)+|B||α|)+|B||α|m, |
it implies
ϕ′(m)=|α|8p((A−B)+|α||B|)(4p(2(A−B)+|B||α|)+|B||α|m)2>0, |
which illustrates that the function ϕ(m) is increasing and so ϕ(m)≥ϕ(1) for m≥1, hence
|p(z0)−1A−Bp(z0)|≥|α|(1−4p)4p(2(A−B)+|B||α|)+|B||α|. |
Now, by using (2.6), we have
|p(z0)−1A−Bp(z0)|≥1, |
which contradicts (2.5). Thus |w(z)|<1 and so the desired proof is completed.
Putting g(z)=zp+1f′(z)pf(z) in last Theorem, we get the following Corollary:
If f∈Ap and satisfying
1+αp(p+1+zf′′(z)f′(z)−zf′(z)f(z))≺1+Az1+Bz, |
with
|α|≥8p(A−B)1−|B|−4p(1+|B|), |
then f∈SL∗p.
If g∈Ap and satisfy the subordination relation
1+αz1−pg′(z)p(g(z))2≺1+Az1+Bz, | (2.7) |
with the condition on α
|α|≥252p(A−B)1−|B|−4p(1+|B|) | (2.8) |
is true, then
g(z)zp≺√1+z. |
Proof
Let us define a function
p(z)=1+αz1−pg′(z)p(g(z))2. |
Then p is analytic in D with p(0)=1. Also let us consider
g(z)zp=√1+w(z). |
Using some simplification, we obtain
p(z)=1+αzw′(z)2p(1+w(z))32+α√1+w(z), |
and so
|p(z)−1A−Bp(z)|=|αzw′(z)2p(1+w(z))32+α√1+w(z)A−B(1+αzw′(z)2p(1+w(z))32+α√1+w(z))|=|αzw′(z)+2pα(1+w(z))2p(A−B)(1+w(z))32−Bαzw′(z)−2pαB(1+w(z))|. |
Let us choose a point z0∈D such a way that
max|z|≤|z0||w(z)|=|w(z0)|=1. |
Then, by the consequences of Lemma 1.1, a number m≥1 occurs such that z0w′(z0)=mw(z0) and also put w(z0)=eiθ,for θ∈[−π,π], we have
|p(z0)−1A−Bp(z0)|=|αmw(z0)+2pα(1+w(z0))2p(A−B)(1+w(z0))32−Bαmw(z0)−2pαB(1+w(z0))|,≥|α|m−2p|α||1+eiθ|2p(A−B)|1+eiθ|32+|B||α|m+2p|α||B||1+eiθ|,=|α|m−4p|α|252p(A−B)+|B||α|m+4p|α||B|,≥|α|(m−4p)252p(A−B)+|B||α|m+4p|α||B|=ϕ(m) (say). |
Then
ϕ′(m)=252p(A−B)+8|α|2|B|p(252p(A−B)+B|α|m+4p|α|B)2>0, |
which demonstrates that the function ϕ(m) is increasing and thus ϕ(m)≥ϕ(1) for m≥1, hence
|p(z0)−1A−Bp(z0)|≥|α|(1−4p)252p(A−B)+|B||α|+4p|α||B|. |
Now, using (2.8), we have
|p(z0)−1A−Bp(z0)|≥1, |
which contradicts (2.7). Thus |w(z)|<1 and so we get the required proof.
If we set g(z)=zp+1f′(z)pf(z) in last theorem, we easily have the following Corollary:
Assume that
|α|≥252p(A−B)1−|B|−4p(1+|B|), |
and if f∈Ap satisfy
1+αf(z)z2p+1f′(z)(p+1+zf′′(z)f′(z)−zf′(z)f(z))≺1+Az1+Bz, |
then f∈SL∗p.
If g∈Ap satisfy the subordination
1+αz1−2pg′(z)p(g(z))3≺1+Az1+Bz, |
with restriction on α is
|α|≥8p(A−B)1−|B|−4p(1+|B|). | (2.9) |
then
g(z)zp≺√1+z. |
Proof. Let us define a function
p(z)=1+αz1−2pg′(z)p(g(z))3, |
where p is analytic in D with p(0)−1=0. Also let
g(z)zp=√1+w(z). |
Using some simple calculations, we obtain
p(z)=1+αzw′(z)2p(1+w(z))2+α1+w(z), |
and so
|p(z)−1A−Bp(z)|=|αzw′(z)2p(1+w(z))2+α1+w(z)A−B(1+αzw′(z)2p(1+w(z))2+α1+w(z))|=|αzw′(z)+2pα(1+w(z))2p(A−B)(1+w(z))2−Bαzw′(z)−2pαB(1+w(z))|. |
Let us pick a point z0∈D in such a way that
max|z|≤|z0||w(z)|=|w(z0)|=1. |
Then, by using Lemma 1.1, a number m≥1 exists such that z0w′(z0)=mw(z0) and put w(z0)=eiθ, for θ∈[−π,π], we have
|p(z0)−1A−Bp(z0)|=|αmw(z0)+2pα(1+w(z0))2p(A−B)(1+w(z0))2−Bαmw(z0)−2pαB(1+w(z0))|≥|α|m−2p|α||1+eiθ|2p(A−B)|1+eiθ|2+|B||α|m+2p|α||B||1+eiθ|=|α|m−2p|α|√2+2cosθ2p(A−B)(√2+2cosθ)2+|B||α|m+2p|α||B|√2+2cosθ≥|α|(m−4p)8p(A−B)+|B||α|m+4p|α||B|, |
Now let
ϕ(m)=|α|(m−4p)8p(A−B)+|B||α|m+4p|α||B|, |
then
ϕ′(m)=8p|α|(A−B)+8|α|2|B|p(8p(A−B)+|B||α|m+4p|α||B|)2>0 |
which shows that ϕ(m) is an increasing function and hence it will have its minimum value at m=1, so
|p(z0)−1A−Bp(z0)|≥|α|(1−4p)8p(A−B)+|B||α|+4p|α||B|. |
Using (2.9), we easily obtain
|p(z0)−1A−Bp(z0)|≥1, |
which is a contradiction to the fact that p(z)≺1+Az1+Bz, and so |w(z)|<1. Hence we get the desired result.
If we put g(z)=zp+1f′(z)pf(z) in last Theorem, we achieve the following result:
If f∈Ap and satisfy the condition
|α|≥8p(A−B)1−|B|−4p(1+|B|), |
and
1+αp(f(z))2z3p+2(f′(z))2(p+1+zf′′(z)f′(z)−zf′(z)f(z))≺1+Az1+Bz, |
then f∈SL∗p.
All authors declare no conflict of interest in this paper.
[1] | WHO, The burden of Influenza. Available from: https://www.who.int/news-room/feature-stories/detail/the-burden-of-influenza#: : text = Nevertheless. |
[2] |
J. Paget, P. Spreeuwenberg, V. Charu, R. J. Taylor, A. D. Luliano, J. Bresee, et al., Global mortality associated with seasonal influenza epidemics: New burden estimates and predictors from the GLaMOR Project, J. Glob. Health, 9 (2019), 020421. https://doi.org/10.7189/jogh.09.020421 doi: 10.7189/jogh.09.020421
![]() |
[3] |
S. S. Chaves, J. Nealon, K. G. Burkart, D. Modin, T. Biering-Sørensen, J. R. Ortiz, et al., Global, regional and national estimates of influenza-attributable ischemic heart disease mortality, eClinicalMedicine, 55 (2023), 101740. https://doi.org/10.1016/j.eclinm.2022.101740 doi: 10.1016/j.eclinm.2022.101740
![]() |
[4] |
M. Safan, Mathematical analysis of an SIR respiratory infection model with sex and gender disparity: Special reference to influenza A, Math. Biosci. Eng., 16 (2019), 2613–2649. https://doi.org/10.3934/mbe.2019131 doi: 10.3934/mbe.2019131
![]() |
[5] | World Health Organization, Sex, Gender and Influenza, WHO Library Cataloguing-in-Publication Data, 2010. Available from: https://iris.who.int/bitstream/handle/10665/44401/9789241500111_eng.pdf. |
[6] |
S. L. Klein, A. Hodgson, D. P. Robinson, Mechanisms of sex disparities in influenza pathogenesis, J. Leukocyte Biol., 92 (2012), 67–73. https://doi.org/10.1189/jlb.0811427 doi: 10.1189/jlb.0811427
![]() |
[7] |
R. Casagrandi, L. Bolzoni, S. A. Levin, V. Andreasen, The SIRC model and influenza A, Math. Biosci., 200 (2006), 152–169. https://doi.org/10.1016/j.mbs.2005.12.029 doi: 10.1016/j.mbs.2005.12.029
![]() |
[8] |
M. E. Alexander, C. Bowman, S. M. Moghadas, R. Summers, A. B. Gumel, B. M. Sahai, A vaccination model for transmission dynamics of influenza, SIAM J. Appl. Dyn. Syst., 3 (2004), 503–524. https://doi.org/10.1137/030600370 doi: 10.1137/030600370
![]() |
[9] |
Z. Qiu, Z. Feng, Transmission dynamics of an influenza model with vaccination and antiviral treatment, Bull. Math. Biol., 72 (2010), 1–33. https://doi.org/10.1007/s11538-009-9435-5 doi: 10.1007/s11538-009-9435-5
![]() |
[10] |
A. L. Vivas-Barber, C. Castillo-Chavez, E. Barany, Dynamics of an "SAIQR" influenza model, Biomath, 3 (2014), 1409251. https://doi.org/10.11145/j.biomath.2014.09.251 doi: 10.11145/j.biomath.2014.09.251
![]() |
[11] |
M. Erdem, M. Safan, C. Castillo-Chavez, Mathematical analysis of an SIQR influenza model with imperfect quarantine, Bull. Math. Biol., 79 (2017), 1612–1636. https://doi.org/10.1007/s11538-017-0301-6 doi: 10.1007/s11538-017-0301-6
![]() |
[12] |
H. Manchanda, N. Seidel, A. Krumbholz, A. Sauerbrei, M. Schmidtke, R. Guthke, Within-host influenza dynamics: A small-scale mathematical modeling approach, Biosystems, 118 (2014), 51–59. https://doi.org/10.1016/j.biosystems.2014.02.004 doi: 10.1016/j.biosystems.2014.02.004
![]() |
[13] |
B. Emerenini, R. Williams, R. N. G. R. Grimaldo, K. Wurscher, R. Ijioma, Mathematical modeling and analysis of influenza in-host Infection dynamics, Lett. Biomath., 8 (2021), 229–253. https://doi.org/10.30707/LiB8.1.1647878866.124006 doi: 10.30707/LiB8.1.1647878866.124006
![]() |
[14] |
M. Samsuzzoha, M. Singh, D. Lucy, Parameter estimation of influenza epidemic model, Appl. Math. Comput., 220 (2013), 616–629. https://doi.org/10.1016/j.amc.2013.07.040 doi: 10.1016/j.amc.2013.07.040
![]() |
[15] |
M. Nuño, Z. Feng, M. Martcheva, C. Castillo-Chavez, Dynamics of two-strain influenza with isolation and partial cross-immunity, SIAM J. Appl. Math., 65 (2005), 964–982. https://doi.org/10.1137/S003613990343882X doi: 10.1137/S003613990343882X
![]() |
[16] |
M. E. Alexander, S. M. Moghadas, G. Röst, J. Wu, A delay differential model for pandemic influenza with antiviral treatment, Bull. Math. Biol., 70 (2008), 382–397. https://doi.org/10.1007/s11538-007-9257-2 doi: 10.1007/s11538-007-9257-2
![]() |
[17] |
P. Krishnapriya, M. Pitchaimani, T. M. Witten, Mathematical analysis of an influenza A epidemic model with discrete delay, J. Comput. Appl. Math., 324 (2017), 155–172. https://doi.org/10.1016/j.cam.2017.04.030 doi: 10.1016/j.cam.2017.04.030
![]() |
[18] | L. Bailey, What determines our human carrying capacity on the planet, Population Education. Available from: https://populationeducation.org/what-determines-our-human-carrying-capacity-planet/#: : text = The. |
[19] |
X. Tan, L. Yuan, J. Zhou, Y. Zheng, F. Yang, Modeling the initial transmission dynamics of influenza A H1N1 in Guangdong Province, China, Int. J. Infect. Dis., 17 (2013), e479–e484. https://doi.org/10.1016/j.ijid.2012.11.018 doi: 10.1016/j.ijid.2012.11.018
![]() |
[20] |
P. van den Driessche, J. Watmough, Reproduction numbers and sub-threshold endemic equilibria for compartmental models of disease transmission, Math. Biosci., 180 (2002), 29–48. https://doi.org/10.1016/S0025-5564(02)00108-6 doi: 10.1016/S0025-5564(02)00108-6
![]() |
[21] |
M. Safan, K. Dietz, On the eradicability of infections with partially protective vaccination in models with backward bifurcation, Math. Biosci. Eng., 6 (2009), 395–407. https://doi.org/10.3934/mbe.2009.6.395 doi: 10.3934/mbe.2009.6.395
![]() |
[22] |
M. Safan, M. Kretzschmar, K. P. Hadeler, Vaccination based control of infections in SIRS models with reinfection: Special reference to pertussis, J. Math. Biol., 67 (2013), 1083–1110. https://doi.org/10.1007/s00285-012-0582-1 doi: 10.1007/s00285-012-0582-1
![]() |
[23] |
M. Safan, H. Heesterbeek, K. Dietz, The minimum effort required to eradicate infections in models with backward bifurcation, J. Math. Biol., 53 (2006), 703–718. https://doi.org/10.1007/s00285-006-0028-8 doi: 10.1007/s00285-006-0028-8
![]() |
1. | Francisco Martínez, Inmaculada Martínez, Mohammed K. A. Kaabar, Silvestre Paredes, Mustafa Inc, On Conformable Laplace’s Equation, 2021, 2021, 1563-5147, 1, 10.1155/2021/5514535 | |
2. | Rabha W. Ibrahim, Dania Altulea, Controlled homeodynamic concept using a conformable calculus in artificial biological systems, 2020, 140, 09600779, 110132, 10.1016/j.chaos.2020.110132 | |
3. | Sania Qureshi, Rashid Jan, Modeling of measles epidemic with optimized fractional order under Caputo differential operator, 2021, 145, 09600779, 110766, 10.1016/j.chaos.2021.110766 | |
4. | Francisco Martínez, Inmaculada Martínez, Mohammed K. A. Kaabar, Silvestre Paredes, Ahmet Ocak Akdemir, Generalized Conformable Mean Value Theorems with Applications to Multivariable Calculus, 2021, 2021, 2314-4785, 1, 10.1155/2021/5528537 | |
5. | Nauman Ahmed, Muhammad Aziz-ur Rehman, Waleed Adel, Fahd Jarad, Mubasher Ali, Muhammad Rafiq, Ali Akgül, Youssri Hassan Youssri, Structure Preserving Numerical Analysis of Reaction-Diffusion Models, 2022, 2022, 2314-8888, 1, 10.1155/2022/5128343 | |
6. | Hao Ji, Yinghong Xu, Chaoqing Dai, Lipu Zhang, Propagation of local spatial solitons in power-law nonlinear PT-symmetric potentials based on finite difference, 2021, 73, 0253-6102, 125002, 10.1088/1572-9494/ac29b6 | |
7. | Abd-Allah Hyder, Ahmed H. Soliman, Clemente Cesarano, M. A. Barakat, Solving Schrödinger–Hirota Equation in a Stochastic Environment and Utilizing Generalized Derivatives of the Conformable Type, 2021, 9, 2227-7390, 2760, 10.3390/math9212760 | |
8. | Melih Cinar, Ismail Onder, Aydin Secer, Mustafa Bayram, Abdullahi Yusuf, Tukur Abdulkadir Sulaiman, A comparison of analytical solutions of nonlinear complex generalized Zakharov dynamical system for various definitions of the differential operator, 2022, 30, 2688-1594, 335, 10.3934/era.2022018 | |
9. | Hassan Ranjbar, Leila Torkzadeh, Dumitru Baleanu, Kazem Nouri, Simulating systems of Itô SDEs with split-step (α,β)-Milstein scheme, 2023, 8, 2473-6988, 2576, 10.3934/math.2023133 | |
10. | Vitalii Shpakivskyi, Conformable fractional derivative in commutative algebras, 2023, 20, 1810-3200, 269, 10.37069/1810-3200-2023-20-2-7 | |
11. | Syed T. R. Rizvi, Aly R. Seadawy, Sarfaraz Ahmed, Farrah Ashraf, Novel rational solitons and generalized breathers for (1+1)-dimensional longitudinal wave equation, 2023, 37, 0217-9792, 10.1142/S0217979223502697 | |
12. | Vitalii S. Shpakivskyi, Conformable fractional derivative in commutative algebras, 2023, 274, 1072-3374, 392, 10.1007/s10958-023-06608-6 | |
13. | Yifan Liu, Guozeng Cui, Ze Li, Fixed-time consensus control of stochastic nonlinear multi-agent systems with input saturation using command-filtered backstepping, 2024, 9, 2473-6988, 14765, 10.3934/math.2024718 | |
14. | Mohamed Kharrat, Moez Krichen, Loay Alkhalifa, Karim Gasmi, Neural networks-based adaptive command filter control for nonlinear systems with unknown backlash-like hysteresis and its application to single link robot manipulator, 2024, 9, 2473-6988, 959, 10.3934/math.2024048 | |
15. | Honghong Wang, Kai Wang, Application of sample-data control for a class of time-delay nonlinear systems in circuit systems, 2025, 10, 2473-6988, 11316, 10.3934/math.2025514 |