In this article, a new generalized q-Mittag-Leffler function is introduced and investigated. Motivated by the newly defined function and using the concept of differential subordination, a new subclass of multivalent functions is introduced. Some geometric properties of them are obtained. Furthermore, the radii for the aforementioned subclass associated with a generalized Srivastava-Attiya integral operator are also studied.
Citation: Sarem H. Hadi, Maslina Darus, Choonkil Park, Jung Rye Lee. Some geometric properties of multivalent functions associated with a new generalized q-Mittag-Leffler function[J]. AIMS Mathematics, 2022, 7(7): 11772-11783. doi: 10.3934/math.2022656
[1] | Ye Yue, Ghulam Farid, Ayșe Kübra Demirel, Waqas Nazeer, Yinghui Zhao . Hadamard and Fejér-Hadamard inequalities for generalized $ k $-fractional integrals involving further extension of Mittag-Leffler function. AIMS Mathematics, 2022, 7(1): 681-703. doi: 10.3934/math.2022043 |
[2] | Xiuzhi Yang, G. Farid, Waqas Nazeer, Muhammad Yussouf, Yu-Ming Chu, Chunfa Dong . Fractional generalized Hadamard and Fejér-Hadamard inequalities for m-convex functions. AIMS Mathematics, 2020, 5(6): 6325-6340. doi: 10.3934/math.2020407 |
[3] | Ghulam Farid, Maja Andrić, Maryam Saddiqa, Josip Pečarić, Chahn Yong Jung . Refinement and corrigendum of bounds of fractional integral operators containing Mittag-Leffler functions. AIMS Mathematics, 2020, 5(6): 7332-7349. doi: 10.3934/math.2020469 |
[4] | Maryam Saddiqa, Ghulam Farid, Saleem Ullah, Chahn Yong Jung, Soo Hak Shim . On Bounds of fractional integral operators containing Mittag-Leffler functions for generalized exponentially convex functions. AIMS Mathematics, 2021, 6(6): 6454-6468. doi: 10.3934/math.2021379 |
[5] | Bushra Kanwal, Saqib Hussain, Thabet Abdeljawad . On certain inclusion relations of functions with bounded rotations associated with Mittag-Leffler functions. AIMS Mathematics, 2022, 7(5): 7866-7887. doi: 10.3934/math.2022440 |
[6] | Sabir Hussain, Rida Khaliq, Sobia Rafeeq, Azhar Ali, Jongsuk Ro . Some fractional integral inequalities involving extended Mittag-Leffler function with applications. AIMS Mathematics, 2024, 9(12): 35599-35625. doi: 10.3934/math.20241689 |
[7] | Gauhar Rahman, Iyad Suwan, Kottakkaran Sooppy Nisar, Thabet Abdeljawad, Muhammad Samraiz, Asad Ali . A basic study of a fractional integral operator with extended Mittag-Leffler kernel. AIMS Mathematics, 2021, 6(11): 12757-12770. doi: 10.3934/math.2021736 |
[8] | Hengxiao Qi, Muhammad Yussouf, Sajid Mehmood, Yu-Ming Chu, Ghulam Farid . Fractional integral versions of Hermite-Hadamard type inequality for generalized exponentially convexity. AIMS Mathematics, 2020, 5(6): 6030-6042. doi: 10.3934/math.2020386 |
[9] | Miguel Vivas-Cortez, Muhammad Zakria Javed, Muhammad Uzair Awan, Artion Kashuri, Muhammad Aslam Noor . Generalized $ (p, q) $-analogues of Dragomir-Agarwal's inequalities involving Raina's function and applications. AIMS Mathematics, 2022, 7(6): 11464-11486. doi: 10.3934/math.2022639 |
[10] | Ghulam Farid, Saira Bano Akbar, Shafiq Ur Rehman, Josip Pečarić . Boundedness of fractional integral operators containing Mittag-Leffler functions via (s,m)-convexity. AIMS Mathematics, 2020, 5(2): 966-978. doi: 10.3934/math.2020067 |
In this article, a new generalized q-Mittag-Leffler function is introduced and investigated. Motivated by the newly defined function and using the concept of differential subordination, a new subclass of multivalent functions is introduced. Some geometric properties of them are obtained. Furthermore, the radii for the aforementioned subclass associated with a generalized Srivastava-Attiya integral operator are also studied.
In 1903, Mittag-Leffler [22] provided the function Eσ(z) defined by
Eσ(z)=∞∑j=0 zjΓ(σj+1),(σ,z∈C,R(σ)>0), |
where Γ is the gamma function and R means the real part.
Wiman [34] introduced the following generalized Mittag-Leffler function
Eσ,μ(z)=∞∑j=0 zjΓ(σj+μ),(σ,μ,z∈C,[R(σ),R(μ)]>0). |
Prabhakar [25] introduced the following function Eρσ,μ(z) in the form
Eρσ,μ(z)=∞∑j=0 (ρ)jΓ(μ+σj).zjj!, (σ,μ,ρ,z∈C,[R(σ),R(μ),R(ρ)]>0). |
Later, Shukla and Prajapati [27] (see also [32]) defined another generalized Mittag-Leffler function
Eρ,kσ,μ(z)=∞∑j=0 (ρ)kjΓ(μ+σj)zjj!,(σ,μ,ρ,z∈C,[R(σ),R(μ),R(ρ)]>0) |
where k∈(0,1)⋃N and (ρ)kj=Γ(ρ+kj)Γ(ρ) is the generalized Pochhammer symbol defined as
kkjk∏m=1(ρ+m−1k)j if k∈N. |
Bansal and Prajapat [5] and Srivastava and Bansal [31] investigated geometric properties of the Mittag-Leffler function Eσ,μ(z), including starlikeness, convexity, and close-to-convexity (see [1,4,6,8,12,13,17,28,29]). In reality, the generalized Mittag-Leffler function Eσ,μ(z) and its extensions are still widely used in geometric function theory and in a variety of applications (see, for details, [2,3,7,16,24]).
Let S(p) be the class of functions of the form
f(z)=zp+∞∑j=p+1ajzj, | (1.1) |
where f is holomorphic and multivalent in the open unit disk O={z:|z|<1}.
Let f and F be two functions in S(p). Then the convolution (or Hadamard product), denoted by f∗F, is defined as
(f∗F)(z)=zp+∞∑j=p+1ajdjzj=(F∗f)(z), |
where f(z) is in (1.1) and F(z)=zp+∞∑j=p+1djzj.
Let f(z) and h(z) be two analytic functions defined in O. The function f(z) is called subordinate to h(z), or h(z) is superordinate to f(z), denoted by f(z)≺h(z) and h(z)≺f(z), respectively, if there is a Schwarz function φ with φ(z)=0,|φ(z)|<1 and f(z)=h(φ(z)). If the function h is univalent in O, then the following equivalence is true if
f(z)≺h(z) (z∈O)⇔f(0)=h(0) and f(O)⊂h(O). |
Definition 1.1. ([18]). Let 0<q<1. Then [j]q! denotes the q-factorial, which is defined as follows:
[j]q!={[j]q[j−1]q…[2]q[1]q, j=1,2,3,…1, j=0 |
where [j]q=1−qj1−q=1+∑j−1m=1 qm and [0]q=0.
Definition 1.2 ([18]). The q-generalized Pochhammer symbol [ρ]j,q, ρ∈C, is given as
[ρ]j,q=[ρ]q[ρ+1]q[ρ+2]q…[ρ+j−1]q, |
and the q-Gamma function is defined as
Γq(ρ+1)=[ρ]qΓq(ρ) and Γq(1)=1. |
It follows that Γq(j+1)=[j]q!.
Lately, many results have been given for some related special functions such as the Wright function [3] and multivalent functions (see [10,23,26]).
Here, we propose a q-extension of specific extensions of the Mittag-Leffler function, motivated by the success of Mittag-Leffler function applications in physics, biology, engineering, and applied sciences. We generalize the Mittag-Leffler function given by Shukla and Prajapati [27] and obtain a new generalized q-Mittag-Leffler function.
Now, we present a new generalized q-Mittag-Leffler function as follows
Eρσ,μ(q;z)=z+∞∑j=2 (ρ)kjΓq(μ+σj)zjj!. | (1.2) |
It is obvious that, when q→1−, the resulting function is the generalized Mittag-Leffler function, which is given by Shukla and Prajapati [27].
Corresponding to the function Eρσ,μ(q;z) in (1.2), we establish the following generalized q-Mittag-Leffler function Eρσ,μ(p,q;z) in multivalent functions S(p), as given below
Eρσ,μ(p,q;z)=zp+∞∑j=p+1 (ρ)k(j−p)Γq(μ+σ(j−p))zj(j−p)!. | (1.3) |
Again, using the new function (1.3), we define the following function:
Gρσ,μ(p,q;z):=zpΓq(μ)Eρσ,μ(p,q;z)=zp+∞∑j=p+1 Γq(μ)(ρ)k(j−p)Γq(μ+σ(j−p))zj(j−p)!. | (1.4) |
Definition 1.3. For f∈S(p), we define the new linear operator Aμ,ρ;kσ;p,qf(z):S(p)→S(p) by
Aμ,ρ;kσ;p,qf(z)=Gρσ,μ(p,q;z)∗f(z)=zp+∞∑j=p+1 χjajzj, | (1.5) |
where χj=Γq(μ)(ρ)kjΓq(μ+σj)j!.
We now define a subclass Qμ,ρ;kσ;q(M,N;τ,p) of the family S(p) using the multivalent linear operator in (1.5) and the subordination concept.
Definition 1.4. Let Aμ,ρ;kσ;p,qf(z) be an operator in (1.5). A function f(z)∈S(p) is said to be in the class Qμ,ρ;kσ;q(M,N;τ,p) if satisfies the following subordination condition:
1p−τ(z(Aμ,ρ;kσ;p,qf(z))′Aμ,ρ;kσ;p,qf(z)−τ)≺1+Mz1+Nz, (z∈O) | (1.6) |
or equivalently
z(Aμ,ρ;kσ;p,qf(z))′Aμ,ρ;kσ;p,qf(z)≺p+(pN+(M−N)(p−τ))z1+Nz, (z∈O) |
and
|z(Aμ,ρ;kσ;p,qf(z))′Aμ,ρ;kσ;p,qf(z)−pNz(Aμ,ρ;kσ;p,qf(z))′Aμ,ρ;kσ;p,qf(z)−[pN+(M−N)(p−τ)]|<1, | (1.7) |
where −1≤M<N≤1, 0≤τ<p, and p∈N.
Remark 1.1. Some well-known special classes of the class Qμ,ρ;kσ;q(M,N;τ,p) can be obtained by choosing the values of the parameters ς,μ,ρ;τ,k,p,q, M, and N.
(1) Q0,0,10,1(M,N;τ,p)=S∗p(M,N;τ,p) was provided by Aouf [2].
(2) Q0,0,10,1(M,N;0,p)=S∗p(M,N;p) was provided by Goel and Sohi [16].
In this work, we introduce a new subclass of multivalent functions Qμ,ρ;kσ;q(M,N;τ,p) defined by the new linear operator Aμ,ρ;kσ;p,qf(z). And we study some geometric properties for the class Qμ,ρ;kσ;q(M,N;τ,p) such as the coefficient estimates, convexity and convex linear combination. Finally, the radius theorems associated with the generalized Srivastava-Attiya integral operator will be investigated.
The first theorem in this section presents the necessary and sufficient condition for the function f(z) in (1.1) belong to the class Qμ,ρ;kσ;q(M,N;τ,p).
Theorem 2.1. A function f(z) is in the class Qμ,ρ;kσ;q(M,N;τ,p) if and only if
∞∑j=p+1 ((1+N)(j−p)+(M−N)(p−τ))χj|aj|≤(M−N)(p−τ), | (2.1) |
where 1≤M<N≤1, 0≤τ<p, and p∈N.
Proof. Assume that the condition (2.1) is true. Then by (1.7), we have
|z(Aμ,ρ;kσ;p,qf(z))′−pAμ,ρ;kσ;p,qf(z)|−|Nz(Aμ,ρ;kσ;p,qf(z))′−[(M−N)(p−τ)+pN]Aμ,ρ;kσ;p,qf(z)|=|∞∑j=p+1(j−p)χjajzj|−|(M−N)(p−τ)zj−∞∑j=p+1[Nj−((M−N)(p−τ)+pN)]χjajzj|≤−(M−N)(p−τ)+∞∑j=p+1[(1+N)(j−p)+((M−N)(p−τ))]χj|aj|≤0. |
By maximum modulus theorem [11], we get f(z)∈Qμ,ρ;kσ;q(M,N;τ,p).
Conversely, suppose that f(z)∈Qμ,ρ;kσ;q(M,N;τ,p). Then
|z(Aμ,ρ;kσ;p,qf(z))′Aμ,ρ;kσ;p,qf(z)−pNz(Aμ,ρ;kσ;p,qf(z))′Aμ,ρ;kσ;p,qf(z)−[pN+(M−N)(p−τ)]|=|∑∞j=p+1(j−p)χjajzj(M−N)(p−τ)zj−∑∞j=p+1[Nj−((M−N)(p−τ)+pN)]χjajzj|<1. |
Since R(z)≤|z|, we get
R{∑∞j=p+1(j−p)χjajzj(M−N)(p−τ)zj−∑∞j=p+1[Nj−((M−N)(p−τ)+pN)]χjajzj}<1. |
Taking z→1−, we have
∞∑j=p+1 ((1+N)(j−p)+(M−N)(p−τ))χj|aj|≤(M−N)(p−τ). |
This completes the proof.
Theorem 2.2. Let f1 and f2 be analytic functions in the class Qμ,ρ;kσ;q(M,N;τ,p). Then f1∗f2∈Qμ,ρ;kσ;q(M,N;τ,p), where
τ1=p−(1−p)(1+N)(M−N)(p−τ)2χ1[((1+N)(1−p)+(M−N)(p−τ1))χ1]2−(M−N)2(p−τ)2χ1, | (2.2) |
where χ1=Γq(μ)(ρ)kΓq(μ+ς).
Proof. We will show that τ1 is the largest satisfying
∞∑j=p+1 ((1+N)(j−p)+(M−N)(p−τ1))χj(M−N)(p−τ1)aj,1aj,2≤1. | (2.3) |
Since f1,f2∈Qμ,ρ;kσ;q(M,N;τ,p), by the condition (2.1) and the Cauchy-Schwarz inequality, we get
∞∑j=p+1 ((1+N)(j−p)+(M−N)(p−τ))χj(M−N)(p−τ)√aj,1aj,2≤1. | (2.4) |
From (2.3) and (2.4), we observe that
√aj,1aj,2≤[((1+N)(j−p)+(M−N)(p−τ))χj](p−τ1)[((1+N)(j−p)+(M−N)(p−τ1))χj](p−τ). |
From (2.4), it is necessary to prove
(M−N)(p−τ)((1+N)(j−p)+(M−N)(p−τ))χj≤[((1+N)(j−p)+(M−N)(p−τ))χj](p−τ1)[((1+N)(j−p)+(M−N)(p−τ1))χj](p−τ). | (2.5) |
Furthermore, from the inequality (2.5) it follows that
τ1≤p−(j−p)(1+N)(M−N)(p−τ)2χj[((1+N)(j−p)+(M−N)(p−τ1))χj]2−(M−N)2(p−τ)2χj. |
Now, set
E(j)=p−(j−p)(1+N)(M−N)(p−τ)2χj[((1+N)(j−p)+(M−N)(p−τ1))χj]2−(M−N)2(p−τ)2χj. |
We observe that the function E(j) is increasing for j∈N. Putting j=1, we have
τ1=E(1)=p−(1−p)(1+N)(M−N)(p−τ)2χ1[((1+N)(1−p)+(M−N)(p−τ1))χ1]2−(M−N)2(p−τ)2χ1. |
This completes the proof.
Theorem 2.3. Let f1 and f2 be analytic functions in the class Qμ,ρ;kσ;q(M,N;τ,p) of forms given in (1.1) with aj,1 and aj,2, respectively. Then
w(z)=zp+∞∑j=p+1(a2j,1+a2j,2)zj∈Qμ,ρ;kσ;q(M,N;τ,p), |
where
η=p−(1−p)(1+N)(M−N)(p−τ)2χ1[((1+N)(1−p)+(M−N)(p−τ1))χ1]2−(M−N)2(p−τ)2χ1. |
Proof. By Theorem 2.1, we have
∞∑j=p+1 [((1+N)(j−p)+(M−N)(p−τ))χj(M−N)(p−τ)]2a2j,s≤∞∑j=p+1 [((1+N)(j−p)+(M−N)(p−τ))χj(M−N)(p−τ)aj,s]2≤1, (s=1,2). |
From the above inequality, we obtain
∞∑j=p+1 12[((1+N)(j−p)+(M−N)(p−τ))χj(M−N)(p−τ)]2(a2j,1+a2j,2)≤1. |
Therefore, the largest η can be obtained such that
((1+N)(j−p)+(M−N)(p−τ))χj(M−N)(p−τ)≤12[((1+N)(j−p)+(M−N)(p−τ))χj(M−N)(p−τ)]2. |
That is,
η≤p−2(j−p)(1+N)(M−N)(p−τ)2χ1[((1+N)(j−p)+(M−N)(p−τ1))χ1]2−2(M−N)2(p−τ)2χ1. |
Now, set
E(j)=p−2(j−p)(1+N)(M−N)(p−τ)2χ1[((1+N)(j−p)+(M−N)(p−τ1))χ1]2−2(M−N)2(p−τ)2χ1. |
We observe that the function E(j) is increasing for j∈N. Putting j=1, we have
η=E(1)=p−2(1−p)(1+N)(M−N)(p−τ)2χ1[((1+N)(1−p)+(M−N)(p−τ1))χ1]2−2(M−N)2(p−τ)2χ1. |
This completes the proof.
Theorem 2.4. Let f1,f2∈Qμ,ρ;kσ;q(M,N;τ,p). Then for γ∈[0,1], the function F(z)=(1−γ)f1+γf2 belongs to the class Qμ,ρ;kσ;q(M,N;τ,p).
Proof. Since the functions f1 and f2 belong to the class Qμ,ρ;kσ;q(M,N;τ,p),
F(z)=(1−γ)f1+γf2=zp+∞∑j=p+1ηjzj, |
where ηj=(1−γ)aj,1+γaj,2.
By (2.1), we observe that
∞∑j=p+1 ((1+N)(j−p)+(M−N)(p−τ))χj[(1−γ)aj,1+γaj,2]=(1−γ)∞∑j=p+1 ((1+N)(j−p)+(M−N)(p−τ))χjaj,1+γ∞∑j=p+1 ((1+N)(j−p)+(M−N)(p−τ))χjaj,2≤(1−γ)(M−N)(p−τ)+γ(M−N)(p−τ). |
Hence F(z)∈Qμ,ρ;kσ;q(M,N;τ,p).
Theorem 2.5. Let fs(z)=zp+∑∞j=p+1aj,szj be in the class Qμ,ρ;kσ;q(M,N;τ,p) for s=1,2,…,m. Then the function P(z)=∑ms=1ℵsfs, where ∑ms=1ℵs=1, is also in the class Qμ,ρ;kσ;q(M,N;τ,p).
Proof. By Theorem 2.1, we have
∞∑j=p+1 ((1+N)(j−p)+(M−N)(p−τ))χj(M−N)(p−τ)aj,s≤1. |
Since
P(z)=m∑s=1ℵsfs=m∑s=1ℵs(zp+∞∑j=p+1aj,szj)=zp+∞∑j=p+1(m∑s=1ℵsaj,s)zj, |
∞∑j=p+1((1+N)(j−p)+(M−N)(p−τ))χj(M−N)(p−τ)m∑s=1ℵsaj,s≤1. |
Thus P(z)∈Qμ,ρ;kσ;q(M,N;τ,p).
In this section, we investigate radii of multivalent starlikeness, multivalent convexity, and multivalent close-to-convex for the function f(z) in the class Qμ,ρ;kσ;q(M,N;τ,p) with the generalized integral operator of Srivastava-Attiya.
Jung et al. [19] introduced an integral operator with one parameter as follows:
Iδ(f)(z):=2δzΓ(δ)∫z0 (log(zv) )δ−1f(v)dv=z+∞∑j=2 (2j+1)δajzj(δ>0;f∈S). |
In 2007, Srivastava and Attiya [30] investigated a new integral operator, which is called Srivastava-Attiya operator, given by
Ju,mf(z)=z+∞∑j=1(1+uj+u)δajzj. |
Many studies are concerned with the study of the operator of Srivastava-Attiya (see [9,14,15,20]).
Mishra and Gochhayat [21] (also [33]) provided a fractional differintegral operator Jmu,pf(z):S(p)→S(p) which is called a generalized of Srivastava-Attiya integral operator, defined by
Jmu,pf(z)=zp+∞∑j=p+1(p+uj+u)δajzj. | (3.1) |
Theorem 3.1. If f(z)∈Qμ,ρ;kσ;q(M,N;τ,p) and 0≤τ<p, then Jmu,pf(z) in (3.1) is multivalent starlike of order τ in |z|≤r1, where
r1=infj≥p+1{((1+N)(j−p)+(M−N)(p−τ))χj(j+u)δ(M−N)(j−2p+τ)(p+u)δ}. | (3.2) |
Proof. According to the definition of a starlike function in [28], we have
|z(Jmu,pf(z))′Jmu,pf(z)−p|≤p−τ, | (3.3) |
|z(Jmu,pf(z))′Jmu,pf(z)−p|=|∑∞j=p+1(j−p)(p+uj+u)δajzj∑∞j=p+1(p+uj+u)δajzj|≤∑∞j=p+1(j−p)(p+uj+u)δaj|z|j∑∞j=p+1(p+uj+u)δaj|z|j. |
By (3.2), we have
∞∑j=p+1(j−2p+τ)(p+u)δaj|z|j(p−τ)(j+u)δ≤1. |
By (2.1) in Theorem 2.1, it is clear that
(j−2p+τ)(p+u)δ(p−τ)(j+u)δ|z|j≤((1+N)(j−p)+(M−N)(p−τ))χj(M−N)(p−τ). |
Therefore,
|z|≤{((1+N)(j−p)+(M−N)(p−τ))χj(j+u)δ(M−N)(j−2p+τ)(p+u)δ}1j. |
This completes the proof.
Theorem 3.2. If f(z)∈Qμ,ρ;kσ;q(M,N;τ,p) and 0≤τ<p, then Jmu,pf(z) in (3.1) is multivalent convex of order τ in |z|≤r2, where
r2=infj≥p+1{((1+N)(j−p)+(M−N)(p−τ))χjp(j+u)δ(M−N)[j(j−2p+τ)](p+u)δ}. | (3.4) |
Proof. To verify (3.4), it is necessary to prove
|(1+z(Jmu,pf(z))′′(Jmu,pf(z))′)−p|≤p−τ, |
but the result is obtained by repeating the steps in Theorem 3.1.
Corollary 3.1. If f(z)∈Qμ,ρ;kσ;q(M,N;τ,p) and 0≤τ<p, then Jmu,pf(z) in (3.1) is multivalent close-to-convex of order τ in |z|≤r3, where
r3=infj≥1{((1+N)(j−p)+(M−N)(p−τ))χj(j+u)δ(M−N)j(p+u)δ}. | (3.5) |
In this work, we established and investigated a new generalized Mittag-Leffler function, which is a generalization of q-Mittag-Leffler function defined by Shukla and Prajapati [27]. Also, we studied some of the geometric properties of a certain subclass of multivalent functions. In addition, we introduced radius theorem using a generalized Srivastava-Attiya integral operator. Since the Mittag-Leffler function is of importance, it is related to a wide range of problems in mathematical physics, engineering, and the applied sciences. The results obtained in this article may have many other applications in special functions.
The authors express many thanks to the Editor-in-Chief, handling editor, and the reviewers for their outstanding comments that improve our paper.
The authors declare that they have no competing interests concerning the publication of this article.
[1] | O. Ahuja, S. Kumar, A. Cetinkaya, Normalized multivalent functions connected with generalized Mittag-Leffler functions, Acta Univ. Apulensis, 67 (2021), 111–123. |
[2] |
M. K. Aouf, A generalization of multivalent functions with negative coefficient, J. Korean Math. Soc., 25 (1989), 681095. http://dx.doi.org/10.1155/S0161171289000633 doi: 10.1155/S0161171289000633
![]() |
[3] |
M. K. Aouf, J. Dziok, Distortion and convolutional theorems for operators of generalized fractional calculus involving Wright function, J. Appl. Anal., 14 (2008), 183–192. https://doi.org/10.1515/JAA.2008.183 doi: 10.1515/JAA.2008.183
![]() |
[4] |
A. A. Attiya, Some applications of Mittag-Leffler function in the unit disk, Filomat, 30 (2016), 2075–2081. http://dx.doi.org/10.2298/FIL1607075A doi: 10.2298/FIL1607075A
![]() |
[5] |
D. Bansal, J. K. Prajapat, Certain geometric properties of the Mittag-Leffler functions, Complex Var. Ellip. Equ., 61 (2016), 338–350. https://doi.org/10.1080/17476933.2015.1079628 doi: 10.1080/17476933.2015.1079628
![]() |
[6] | A. Baricz, A. Prajapati, Radii of starlikeness and convexity of generalized Mittag-Leffler functions, Math. Commun., 25 (2020), 117–135. |
[7] |
E. Bas, B. Acay, The direct spectral problem via local derivative including truncated Mittag-Leffler function, Appl. Math. Comput., 367 (2020), 124787. https://doi.org/10.1016/j.amc.2019.124787 doi: 10.1016/j.amc.2019.124787
![]() |
[8] |
Y. L. Cang, J. L. Liu, A family of multivalent analytic functions associated with Srivastava-Tomovski generalization of the Mittag-Leffler function, Filomat, 32 (2018), 4619–4625. http://dx.doi.org/10.2298/FIL1813619C doi: 10.2298/FIL1813619C
![]() |
[9] | K. A. Challab, M. Darus, F. Ghanim, Some application on Hurwitz Lerch Zeta function defined by a generalization of the Srivastava Attiya operator, Kragujev. J. Math., 43 (2019), 201–217. |
[10] | E. Deniz, On p-valently close-to-convex, starlike and convex functions, Hacet. J. Math. Stat., 41 (2012), 635–642. |
[11] | P. L. Duren, Univalent functions, Grundlehren der Mathematischen Wissenschaften, New York: Springer-Verlag, 1983. |
[12] |
J. Dziok, A new class of multivalent analytic functions defined by the Hadamard product, Demonstr. Math., 44 (2011), 233–251. https://doi.org/10.1515/dema-2013-0313 doi: 10.1515/dema-2013-0313
![]() |
[13] | S. Elhaddad, M. Darus, Differential subordination and superordination for a new differential operator containing Mittag-Leffler function, Kraguj. J. Math., 45 (2021), 699–708. |
[14] |
E. A. Elrifai, H. E. Darwish, A. R. Ahmed, Some applications of Srivastava-Attiya operator to p-valent starlike functions, J. Inequal. Appl., 2010 (2010), 790730. https://doi.org/10.1155/2010/790730 doi: 10.1155/2010/790730
![]() |
[15] |
P. Gochhayat, Convolution properties of p-valent functions associated with a generalization of the Srivastava-Attiya operator, J. Complex Anal., 2013 (2013), 6760275. http://dx.doi.org/10.1155/2013/676027 doi: 10.1155/2013/676027
![]() |
[16] | R. M. Goel, N. S. Sohi, Multivalent functions with negative coefficients, Indian J. Pure. Appl. Math., 12 (1981), 844–853. |
[17] |
S. Horrigue, S. M. Madian, Some inclusion relationships of meromorphic functions associated to new generalization of Mittag-Leffler function, Filomat, 34 (2020), 1545–1556. https://doi.org/10.2298/FIL2005545H doi: 10.2298/FIL2005545H
![]() |
[18] |
F. H. Jackson, On q-functions and a certain difference operator, Trans. Royal Soc. Edinburgh, 46 (1908), 253–281. https://doi.org/10.1017/S0080456800002751 doi: 10.1017/S0080456800002751
![]() |
[19] |
I. Jung, Y. Kim, H. M. Srivastava, The Hardy space of analytic functions associated with certain one-parameter families of integral operators, J. Math. Anal. Appl., 176 (1993), 138–147. https://doi.org/10.1006/jmaa.1993.1204 doi: 10.1006/jmaa.1993.1204
![]() |
[20] |
J. L. Liu, Sufficient conditions for strongly star-like functions involving the generalized Srivastava-Attiya operator, Integr. Transf. Spec. F., 22 (2011), 79–90. https://doi.org/10.1080/10652469.2010.498110 doi: 10.1080/10652469.2010.498110
![]() |
[21] |
A. K. Mishra, P. Gochhayat, Invariance of some subclass of multivalent functions under a differintegral operator, Complex Var. Elliptic Equ., 55 (2010), 677–689. https://doi.org/10.1080/17476930903568712 doi: 10.1080/17476930903568712
![]() |
[22] | G. M. Mittag-Leffler, Sur la nouvelle function Eα(x), C. R. Acad. Sci. Paris, 137 (1903), 554–558. |
[23] |
M. Nunokawa, J. Sokoł, N. Tuneski, On coefficients of some p-valent starlike functions, Filomat, 33 (2019), 2277–2284. https://doi.org/10.2298/FIL1908277N doi: 10.2298/FIL1908277N
![]() |
[24] |
R. Ozarslan, E. Bas, D. Baleanu, B. Acay, Fractional physical problems including wind-influenced projectile motion with Mittag-Leffler kernel, AIMS Math., 5 (2020), 467–481. https://doi.org/10.3934/math.2020031 doi: 10.3934/math.2020031
![]() |
[25] | T. R. Prabhakar, A singular integral equation with a generalized Mittag Leffler function in the kernel, Yokohama Math. J., 19 (1971), 2277–2284. |
[26] |
T. M. Seoudy, M. K. Aouf, Coefficient estimates of new classes of q-starlike and q-convex functions of complex order, J. Math. Inequal., 10 (2016), 135–145. https://doi.org/10.7153/jmi-10-11 doi: 10.7153/jmi-10-11
![]() |
[27] |
A. K. Shukla, J. C. Prajapati, On a generalization of Mittag-Leffler function and its properties, J. Math. Anal. Appl., 336 (2007), 797–811. https://doi.org/10.1016/j.jmaa.2007.03.018 doi: 10.1016/j.jmaa.2007.03.018
![]() |
[28] |
P. Singh, S. Jain, C. Cattani, Some unified integrals for generalized Mittag-Leffler functions, Axioms, 10 (2021), 261. https://doi.org/10.3390/axioms10040261 doi: 10.3390/axioms10040261
![]() |
[29] | H. M. Srivastava, Some families of Mittag-Leffler type functions and associated operators of fractional calculus, TWMS J. Pure Appl. Math., 7 (2016), 123–145. |
[30] |
H. M. Srivastava, A. A. Attiya, An integral operator associated with the Hurwitz-Lerch Zeta function and differential subordination, Integr. Transf. Spec. F., 18 (2007), 207–216. https://doi.org/10.1080/10652460701208577 doi: 10.1080/10652460701208577
![]() |
[31] | H. M. Srivastava, D. Bansal, Close-to-convexity of a certain family of q-Mittag-Leffer functions, J. Nonlinear Var. Anal., 1 (2017), 61–69. |
[32] |
H. M. Srivastava, Z. Tomovski, Fractional calculus with an integral operator containing a generalized Mittag-Leffler function in the kernal, Appl. Math. Comput., 211 (2009), 198–210. https://doi.org/10.1016/j.amc.2009.01.055 doi: 10.1016/j.amc.2009.01.055
![]() |
[33] |
Z. G. Wang, Z. H. Liu, Y. Sun, Some properties of the generalized Srivastava-Attiya operator, Integr. Transf. Spec. F., 23 (2012), 223–236. https://doi.org/10.1080/10652469.2011.585425 doi: 10.1080/10652469.2011.585425
![]() |
[34] |
A. Wiman, Uber den fundamental satz in der theory der funktionen, Acta Math., 29 (1905), 191–201. https://doi.org/10.1007/BF02403202 doi: 10.1007/BF02403202
![]() |
1. | H. M. Srivastava, Sarem H. Hadi, Maslina Darus, Some subclasses of p-valent $$\gamma $$-uniformly type q-starlike and q-convex functions defined by using a certain generalized q-Bernardi integral operator, 2023, 117, 1578-7303, 10.1007/s13398-022-01378-3 | |
2. | Alina Alb Lupaş, Applications of the q-Sălăgean Differential Operator Involving Multivalent Functions, 2022, 11, 2075-1680, 512, 10.3390/axioms11100512 | |
3. | Ali Mohammed Ramadhan, Najah Ali Jiben Al-Ziadi, New Class of Multivalent Functions with Negative Coefficients, 2022, 2581-8147, 271, 10.34198/ejms.10222.271288 | |
4. | Sarem H. Hadi, Maslina Darus, Alina Alb Lupaş, A Class of Janowski-Type (p,q)-Convex Harmonic Functions Involving a Generalized q-Mittag–Leffler Function, 2023, 12, 2075-1680, 190, 10.3390/axioms12020190 | |
5. | Abdullah Alatawi, Maslina Darus, Badriah Alamri, Applications of Gegenbauer Polynomials for Subfamilies of Bi-Univalent Functions Involving a Borel Distribution-Type Mittag-Leffler Function, 2023, 15, 2073-8994, 785, 10.3390/sym15040785 | |
6. | Abdulmtalb Hussen, An application of the Mittag-Leffler-type Borel distribution and Gegenbauer polynomials on a certain subclass of bi-univalent functions, 2024, 10, 24058440, e31469, 10.1016/j.heliyon.2024.e31469 | |
7. | Sarem H. Hadi, Maslina Darus, Firas Ghanim, Alina Alb Lupaş, Sandwich-Type Theorems for a Family of Non-Bazilevič Functions Involving a q-Analog Integral Operator, 2023, 11, 2227-7390, 2479, 10.3390/math11112479 | |
8. | Sarem H. Hadi, Maslina Darus, Rabha W. Ibrahim, Third-order Hankel determinants for q -analogue analytic functions defined by a modified q -Bernardi integral operator , 2024, 47, 1607-3606, 2109, 10.2989/16073606.2024.2352873 | |
9. | Haewon Byeon, Manivannan Balamurugan, T. Stalin, Vediyappan Govindan, Junaid Ahmad, Walid Emam, Some properties of subclass of multivalent functions associated with a generalized differential operator, 2024, 14, 2045-2322, 10.1038/s41598-024-58781-6 | |
10. | Timilehin Gideon Shaba, Serkan Araci, Babatunde Olufemi Adebesin, 2023, Investigating q-Exponential Functions in the Context of Bi-Univalent Functions: Insights into the Fekctc-Szcgö Problem and Second Hankel Determinant, 979-8-3503-5883-4, 1, 10.1109/ICMEAS58693.2023.10429891 | |
11. | Sarem H. Hadi, Maslina Darus, 2024, 3023, 0094-243X, 070002, 10.1063/5.0172085 | |
12. | Sarem H. Hadi, Maslina Darus, Badriah Alamri, Şahsene Altınkaya, Abdullah Alatawi, On classes of ζ -uniformly q -analogue of analytic functions with some subordination results , 2024, 32, 2769-0911, 10.1080/27690911.2024.2312803 | |
13. | Sarem H. Hadi, Khalid A. Challab, Ali Hasan Ali, Abdullah A. Alatawi, A ϱ-Weyl fractional operator of the extended S-type function in a complex domain, 2024, 13, 22150161, 103061, 10.1016/j.mex.2024.103061 | |
14. | Ehsan Mejeed Hameed, Elaf Ali Hussein, Rafid Habib Buti, 2025, 3264, 0094-243X, 050109, 10.1063/5.0258939 | |
15. | Girish D. Shelake, Sarika K. Nilapgol, Priyanka D. Jirage, 2025, 3283, 0094-243X, 040016, 10.1063/5.0265526 |