Loading [MathJax]/jax/element/mml/optable/GeneralPunctuation.js
Review Special Issues

Recent advances in peridynamic theory: A review

  • Peridynamics is a new approach to continuum mechanics. There has been rapid progress in peridynamics research, especially in recent years. In this review study, recent advances in peridynamics research were summarised. A large number of studies were considered and classified into different categories ranging from additive manufacturing, artificial intelligence and machine learning, composite materials, fatigue, functionally graded materials, impact, reduced order modelling, structural health monitoring, topology optimisation, and many more. Finally, some future directions were highlighted.

    Citation: Erkan Oterkus, Selda Oterkus. Recent advances in peridynamic theory: A review[J]. AIMS Materials Science, 2024, 11(3): 515-546. doi: 10.3934/matersci.2024026

    Related Papers:

    [1] Hasib Khan, Jehad Alzabut, Anwar Shah, Sina Etemad, Shahram Rezapour, Choonkil Park . A study on the fractal-fractional tobacco smoking model. AIMS Mathematics, 2022, 7(8): 13887-13909. doi: 10.3934/math.2022767
    [2] Shabir Ahmad, Aman Ullah, Mohammad Partohaghighi, Sayed Saifullah, Ali Akgül, Fahd Jarad . Oscillatory and complex behaviour of Caputo-Fabrizio fractional order HIV-1 infection model. AIMS Mathematics, 2022, 7(3): 4778-4792. doi: 10.3934/math.2022265
    [3] Sabri T. M. Thabet, Reem M. Alraimy, Imed Kedim, Aiman Mukheimer, Thabet Abdeljawad . Exploring the solutions of a financial bubble model via a new fractional derivative. AIMS Mathematics, 2025, 10(4): 8587-8614. doi: 10.3934/math.2025394
    [4] Murugesan Sivashankar, Sriramulu Sabarinathan, Vediyappan Govindan, Unai Fernandez-Gamiz, Samad Noeiaghdam . Stability analysis of COVID-19 outbreak using Caputo-Fabrizio fractional differential equation. AIMS Mathematics, 2023, 8(2): 2720-2735. doi: 10.3934/math.2023143
    [5] Muhammad Altaf Khan, Sajjad Ullah, Saif Ullah, Muhammad Farhan . Fractional order SEIR model with generalized incidence rate. AIMS Mathematics, 2020, 5(4): 2843-2857. doi: 10.3934/math.2020182
    [6] Mehmet Kocabiyik, Mevlüde Yakit Ongun . Construction a distributed order smoking model and its nonstandard finite difference discretization. AIMS Mathematics, 2022, 7(3): 4636-4654. doi: 10.3934/math.2022258
    [7] Rahat Zarin, Abdur Raouf, Amir Khan, Aeshah A. Raezah, Usa Wannasingha Humphries . Computational modeling of financial crime population dynamics under different fractional operators. AIMS Mathematics, 2023, 8(9): 20755-20789. doi: 10.3934/math.20231058
    [8] Maryam Amin, Muhammad Farman, Ali Akgül, Mohammad Partohaghighi, Fahd Jarad . Computational analysis of COVID-19 model outbreak with singular and nonlocal operator. AIMS Mathematics, 2022, 7(9): 16741-16759. doi: 10.3934/math.2022919
    [9] Manal Elzain Mohamed Abdalla, Hasanen A. Hammad . Solving functional integrodifferential equations with Liouville-Caputo fractional derivatives by fixed point techniques. AIMS Mathematics, 2025, 10(3): 6168-6194. doi: 10.3934/math.2025281
    [10] Sara Salem Alzaid, Badr Saad T. Alkahtani . Real-world validation of fractional-order model for COVID-19 vaccination impact. AIMS Mathematics, 2024, 9(2): 3685-3706. doi: 10.3934/math.2024181
  • Peridynamics is a new approach to continuum mechanics. There has been rapid progress in peridynamics research, especially in recent years. In this review study, recent advances in peridynamics research were summarised. A large number of studies were considered and classified into different categories ranging from additive manufacturing, artificial intelligence and machine learning, composite materials, fatigue, functionally graded materials, impact, reduced order modelling, structural health monitoring, topology optimisation, and many more. Finally, some future directions were highlighted.



    Intelligent optimization algorithms are increasingly popular in the field of intelligent computing and are widely applied in various other fields, including engineering, medicine, ecology and environment, marine engineering, and so forth. Classical intelligent optimization algorithms include: Particle swarm algorithm (PSO)[1], genetic algorithm (GA)[2], simulated annealing (SA)[3], etc. PSO refers to a swarm intelligence optimization algorithm that simulating bird predation, in which each bird is treated as a particle and the particles follow the current optimal particle to find the optimal solution in the solution space. GA is a computational model based on Darwin's theory of evolution and Mendelian genetics to simulate biological evolution. Genetic algorithms obtain the optimal solutions through three basic operations: chromosomal self-selection, crossover and mutation. SA marks the first natural algorithm proposed to simulate the high-temperature annealing process of metallic materials. When SA is heated at high temperatures and then slowly cooled, the particles eventually reach a state of equilibrium and solidify into crystals of minimal energy. Many scholars have also developed many bionic intelligence optimization algorithms based on classical intelligence algorithms, such as Sine Cosine Algorithm (SCA) [4], the Artificial swarm algorithm (ABC) [5], the Bat algorithm(BA) [6], the Bee Evolutionary Genetic Algorithm (BEGA) [7], the Squirrel Search Algorithm (SSA) [8], the Atomic Search optimisation (ASO) Algorithm [9], etc.

    The Atomic Search Optimisation (ASO) algorithm is a new intelligent optimisation algorithm based on molecular dynamics derivatives that was proposed in 2019. ASO is composed of geometric binding force and the interaction force between atoms, following the laws of classical mechanics [10,11]. Geometric binding forces are the interaction between the Lennard-Jones(LJ) potential [12,13] and the co-borrowing bonds among atoms. In ASO, atoms represent solutions in the search space. The larger the atomic mass, the better the solution, and vice versa. Compared to traditional intelligent system algorithms, ASO requires fewer physical parameters and can achieve better performance. As a result, it has been widely used in various fields, Zhang et al. applied ASO to hydrogeological parameters estimation [9] and groundwater dispersion coefficients calculation [14]. Ahmed et al. utilized ASO in fuel cell modeling and successfully built an accurate model. Simulations showed that it was as good as commercial proton exchange membrane(PEM) fuel cells [15], Mohammed et al. used ASO to reduce the peak sidelobe level of the beam pattern [16], Saeid combined the ASO with the Tree Seeding Algorithm (TSA) to enhance its performance in exploration [17]. Ghosh et al. proposed an improved Atomic Search Algorithm(ASO) based on binary variables and combined it with Simulated Annealing (SA) technique [18]. Elaziz et al. proposed an automatic clustering algorithm combining the ASO and the SCA algorithm to automatically find the best prime numbers and the corresponding positions [19]. Sun et al. applied improved ASO to engineering design [20].

    Since ASO is prone to finding only locally optimal solutions with low accuracy, an Improved Atom Search Algorithm(IASO) algorithm based on particle velocity updating is proposed in this paper. The IASO algorithm has the same principle as the ASO algorithm, but IASO is optimized for speed iterative updates to improve the convergence speed of the algorithm, avoid finding local optimal solutions, and allow a more extensive search for optimal solutions. IASO adopts the idea of particle update speed in PSO and introduces inertia weights w to improve the performance of ASO. In addition, the learning factors c1 and c2 are added into IASO, which not only ensure the convergence performance of the algorithm, but also accelerate the convergence speed, effectively solving the problem that the original ASO tends to find only the local optimal solution.

    Array signal processing is one of the important research directions of signal processing, which has been developing rapidly in recent years. DOA estimation of signals is an ongoing research hotspot in the field of array signal processing. It has great potential for hydrophone applications. Hydrophones are generally divided into scalar hydrophones and vector hydrophones. Due to the scalar hydrophones can only test scalar parameters in the sound field, many scholars have turned to the study of vector hydrophones. Xu et al. used alternating iterative weighted least squares to deal with the off-grid problem of sparsity-based [21], DOA of an array of acoustic vector water-modulated microphones. Amiri designed a micro-electro-mechanical system (MEMS) bionic vector hydrophone with a piezoelectric gated metal oxide semiconductor field-effect transistor (MOSFET) [22]. More and more scholars have been doing research in the direction of vector array. Song et al. studied the measurement results of an acoustic vector sensor array and proposed a new method to obtain better DOA estimation performance in noisy and coherent environments [23], using the time-frequency spatial information of the vector sensor array signal, Gao et al. combined elevation, azimuth and polarization for the estimation of electromagnetic vector sensor arrays based on nested tensor modeling [24], Baron et al. optimised, conceptualised and evaluated a hydrophone array for deep-sea mining sound source localisation validation [25], and Wand et al. proposed an iterative sparse covariance matrix fitting direction estimation method based on a vector hydrophone array [26]. In recent years, Some scholars applied compressed sensing to signal DOA estimation. Keyvan et al., proposed the Three Dimensional Orthogonal Matching Pursuit(3D-FOMP) algorithm and the Three Dimensional Focused Orthogonal Matching Pursuit (3D-FOMP) algorithm to obtain better estimation performance in low signal-to-noise ratio and multi-source environments, and to solve the problem that conventional DOA estimation algorithms cannot distinguish between two adjacent sources [27]. Keyvan et al, designed a new hybrid nonuniform linear array consisting of two uniform linear subarrays and proposed a new DOA estimation method based on the OMP algorithm. This algorithm has lower computational complexity and higher accuracy compared with the FOMP algorithm. It can distinguish adjacent signal sources more accurately and solve the phase ambiguity problem [28].

    With the development of vector hydrophone, the direction of arrival estimation of the vector hydrophones signal has an increasingly wide application, which is of great importance for the functional extension of sonar devices [29]. Many useful estimation methods, multiple signal classification (MUSIC)[30], estimated signal parameters via rotational invariance technique (ESPRIT) [31] and maximum likelihood (ML) [32] etc. have been proposed by many scholars.

    In 1988, Ziskind and Max added ML estimation to DOA and achieved ideal results [33]. compared with MISIC and Espirit, the ML estimation method is more effective and stable, especially in the case of low signal-to-noise ratios (SNR) or small snapshots.However, in MLDOA estimation, the solving problem of the likelihood function is a multidimensional nonlinear polar problem that requires a multidimensional search for global extrema, which increases the computational burden.

    Many scholars have used various methods in combination with ML to improve the estimation performance of DOA. Zhang, C.Y. et al. proposed a sparse iterative covariance-based estimation method and combined it with ML to improve its performance. However, its resolution and stability [34] are not high, and Hu et al. proposed a multi-source DOA estimation based on the ML in the spherical harmonic domain [35], Ji analyzed the asymptotic performance of ML DOA estimation [36], Selva proposed an effective method to calculate ML DOA estimation in the case of unknown sensor noise power [37], Yoon et al. optimized the sequence and branching length of taxa in phylogenetic trees by using the maximum likelihood method [38], Vishnu proposed a line propagation function (LSF)-based sinusoidal frequency estimation algorithm to improve the performance of ML DOA [39].

    In response to the complexity of the ML DOA estimation problem, some scholars have used intelligent optimization algorithms to optimize MLDOA and achieved better performance. Li et al. applied the bionic algorithm genetic algorithm to MLDOA estimation for the first time, but the genetic algorithm is prone to problems such as premature convergence [40]. Sharma et al. applied the PSO algorithm to MLDOA estimation, but there are still some drawbacks in the estimation of multi-directional angles because the PSO algorithm converges slowly and tends to fall into local optimal solutions [41], Zhang et al. combined artificial colony bees with ML DOA estimation to reduce the computational complexity in calculating ML functions [5], Feng et al. combining bat algorithms with ML to optimize the multidimensional nonlinear estimation of spectral functions [6], Fan et al. applied the Improved Bee Evolutionary Genetic Algorithm (IBEGA) to MLDOA estimation [7], Wang et al. used an improved squirrel search algorithm (ISSA) in MLDOA estimation, which reduced computational complexity and enhanced the simulation effect [42], and Li et al. proposed a search space that limits the search space for particle swarm optimization [43].

    As calculating the likelihood function for maximum likelihood DOA estimation is a multi-dimensional non-linear polar problem, a multi-dimensional search for global extremes is required, which requires extensive computation. To solve this problem, the proposed IASO is applied to MLDOA estimation. Simulation results show that the combination of IASO and MLDOA estimation significantly reduces the computational complexity of multidimensional nonlinear optimization of ML estimation.

    The main structure of this article is as follows: Section2 presented the improved ASO and compared the convergence performance of ASO and IASO on 23 benchmark functions; Section3 gives the data model and ML estimation; Section4 combines IASO with ML DOA, providing the simulation results to validate the convergence performance and statistical performance of IASO ML estimation and compareing it with ASO, PSO, GA and SCA combined with ML DOA estimation separately. Section 5 concludes the paper.

    The Atomic Search Algorithm (ASO) was proposed by Zhao et al. in 2018. It is a physics-inspired algorithm developed by molecular dynamics. The algorithm is simple to implement, featured with few parameters and good convergence performance and thus it has been used to solve a variety of optimization problems.

    The ASO algorithm is based on the interaction forces between atoms and geometric constraints, and the position of each atom in the search space can be measured by its mass. This means that the heavier the atoms, the better the solution. The search and optimisation process is based on the mutual repulsion or attraction of atoms depending on the distance between them. The lighter atoms flow at an accelerated speed to the larger atoms, which widens the search area and performs a large search. The acceleration of heavier atoms is smaller, making it more concentrated to find better solutions. Suppose that a group of atoms has N atoms, the position of the ith atom is Xi=[x1i,x2i,,xdi], according to Newton's second law

    Fi+Gi=miai, (2.1)

    where Fi is the total force of the interaction force on the atom i, Gi is the geometric binding force on the atom i, and mi is the mass of the atom i.

    The general unconstrained optimization problem can be defined as

    minf(x),x=[x1,x2,,xD], (2.2)
    LbxUb,
    Lb=[lb1,,lbD],Ub=[ub1,,ubD],

    where xd(d=1,2,.D) is the d components in the search space, Lb is the lower limit, Ub is the upper limit, and D is the dimension of the search space.

    The fitness value Fiti(t) of the position of each atom is calculated according to the fitness function defined by the user. The mass of each atom is Eq (2.3) and Eq (2.4), which can be derived from its fitness.

    Mi(t)=eFiti(t)Fitbest(t)Fitworst(t)Fitbest(t), (2.3)
    mi(t)=eMi(t)Nj=1Mj(t), (2.4)

    where Fitbest(t) and Fitworst(t) refer to the best fitness value and worst fitness value of the atom in ith iterations, Fiti(t) is the fitness value of atom i at the ith iteration, and the expressions of Fitbest(t) and Fitworst(t) are as follows

    Fitbest(t)=mini{1,2,3,,N}Fiti(t), (2.5)
    Fitworst(t)=maxi{1,2,3,,N}Fiti(t). (2.6)

    The interaction force between atoms is obtained from the literature [9,11], after optimizated by the LJ potential energy

    Fij(t)=η(t)[2(hij(t))13(hij(t))7], (2.7)
    η(t)=α(1t1T)3e20tT, (2.8)

    where η(t) is the depth function that adjusts the repulsion and attractive force, α is the depth weight, T is the maximum number of iterations, and t is the current number of iterations. Figure 1 shows the functional behavior of function F, the η(t) corresponding to different h ranges from 0.9 to 2. It can be seen that when h is from 0.9 to 1.12, it is repulsion; when h is from 1.12 to 2, it is gravity; and when h=1.12, it reaches a state of equilibrium. Therefore, in order to improve the exploration in ASO, the lower limit of the repulsive force with a smaller function value is h=1.1, and the upper limit of the gravitational force is 1.24.

    hij(t)={hmin,rij(t)σ(t)<hmin,rij(t)σ(t),hminrij(t)σ(t)hmax,hmax,rij(t)σ(t)>hmin, (2.9)
    Figure 1.  Function behaviors of Fwith different values of η.

    where hij(t) is the distance function, hmin=1.1 and hmax=1.24 represent the lower and upper limits of h, rij is the Euclidean distance between atom i and atom j, and σ(t) is defined as follows

    σ(t)= (2.10)

    where x_{ij} is the position component of atom i^{th} in the j^{th} dimensional search space, \|\cdot\|_{2} stands for two norm and KBest is a subset of the atom group, which is composed of the first K atoms with the best function fitness value.

    \begin{equation} K(t) = N-(N-2) \times \sqrt{\frac{t}{T}}, \end{equation} (2.11)
    \begin{equation} \begin{cases}h_{min} = g_{0}+g(t),\\h_{max} = u,\end{cases} \end{equation} (2.12)

    where g_{0} is a drift factor, which can shift the algorithm from exploration to development

    \begin{equation} g(t) = 0.1\times\sin\left(\frac{\pi}{2}\times\frac{t}{T}\right), \end{equation} (2.13)

    Therefore, the atom i^{th} acting on other atoms can be considered as a total force, expressed as

    \begin{equation} F_{i}^d(t) = \sum\limits_{j\in KBest} rand_{j}F_{ij}^d(t), \end{equation} (2.14)

    The geometric binding force also plays an important role in ASO. Assume that each atom has a covalent bond with each atom in KBest, and that each atom is bound by KBest, Figure 2 shows the effect of atomic interactions. A_{1}, A_{2}, A_{3} and A_{4} are the atoms with the best fitness value, called KBest.In KBest, A_{1}, A_{2}, A_{3} and A_{4} attract or repel each other, and A_{5}, A_{6}, A_{7} attract or repel each other for every atom. Each atom in the population is bound by the optimal atom A_{1} ( X_{best} ), the binding force of the atom i^{th} is

    \begin{equation} G_{i}^d(t) = \lambda(t)(x_{best}^d(t)-x_{i}^d(t)), \end{equation} (2.15)
    \begin{equation} \lambda(t) = \beta e^\frac{-20t}{T}, \end{equation} (2.16)
    Figure 2.  Forces of an atom system with KBest for K = 5 .

    where x_{best}^d(t) is the atom which is in the best position in the i^{th} iteration, \beta is the multiplier weight, and \lambda(t) is the Lagrange multiplier.

    Under the action of geometric constraint force and interaction force, the acceleration of atom i^{th} atom at time t is

    \begin{equation} \begin{array}{ll} a_{i}^d(t)& = \frac{F_{i}^d(t)+G_{i}^d(t)}{m_{i}^d(t)}\\ & = -\alpha(1-\frac{t-1}{T})^3e^\frac{-20t}{T}\\ &\sum\limits_{j\in KBest} \frac{rand_{j}[2\times(h_{ij}(t))^{13}-(h_{ij})^7]}{m_{i}(t)}\\ &\frac{(x_{i}^d(t)-x_{i}^d(t))}{\parallel {x_{i}(t),x_{j}(t)}\parallel_{2}}+\beta e^{-\frac{20t}{T}}\frac{x_{best}^d(t)-x_{i}^d(t)}{m_{i}(t)}. \end{array} \end{equation} (2.17)

    In the original ASO, the algorithm was found to be prone to local optima. As a result, changes were made in the iterative update process of the speed, allowing the algorithm to go beyond the local optimum, search and optimise more broadly. The particle update velocity from PSO is used in ASO and the inertial weight w is introduced in the original ASO velocity update.The algorithm is not prone to local optima at the start of the algorithm and improves the performance of the IASO algorithm. The addition of learning factors c_{1} and c_{2} not only ensures convergence performance, but also speeds up convergence, effectively solving the problem that the original ASO tends to fall into local optimality.

    w = 0.9-0.5\times\left(\frac{t}{T}\right), c_{1} = -10\times\left(\frac{t}{T}\right)^2,
    c_{2} = 1-\left(-10\times\left(\frac{t}{T}\right)^2\right),
    \begin{equation} \begin{array}{ll} v_{i}^d(t+1) = &w\times rand_{i}^dv_{i}^d(t)+c_{1}\times rand_{i}^da_{i}^d(t)\\&+c_{2}\times rand_{i}^d(x_{best}^d(t)-x_{i}^d(t))\\ \end{array} \end{equation} (2.18)

    At the (t+1)^{th} iteration, the position updating of the i^{th} atom can be expressed as

    \begin{equation} x_{i}^d(t+1) = x_{i}^d(t)+v_{i}^d(t+1). \end{equation} (2.19)

    The maximum number of iterations, convergence normalisation, maximum running time and accuracy of the fitness function value are commonly used convergence criteria.In this paper, the maximum number of iterations and convergence normalisation are used as criteria for stopping the iterations.The maximum number of iterations is 200 and the convergence normalisation results are as follows

    \begin{equation} D = \sqrt{\sum\limits_{i = 1}^n (Fit_i-\overline{Fit})^2} < \varepsilon, \end{equation} (2.20)

    where Fit_i is the fitness value of i^{th} squirrel and \overline{Fit} is the average fitness value of the population, the accuracy \varepsilon is often taken as 1E-6 .

    Thus, by iterating over the above operations several times, we can eventually find the optimal solution exactly. Table 1 shows the main steps of the IASO algorithm.

    Table 1.  Unimodal test functions F_1(x)-F_7(x) .
    Name Function n Range Optimum
    Sphere F_{1}(x)=\sum\limits_{i=1}^{n} x_{i}^{2} 30 [-100,100]^{n} 0
    Schwefel 2.22 F_{2}(x)=\sum\limits_{i=1}^{n}\mid x_{i}\mid +\prod\limits_{i=1}^{n}\mid x_{i}\mid 30 [-100,100]^{n} 0
    Schwefel 1.2 F_{3}(x)=\sum\limits_{i=1}^{n}(\sum\limits_{j=1}^{i} x_{j})^{2} 30 [-100,100]^{n} 0
    Schwefel 2.21 F_{4}(x)=\max\limits_{i}\{\mid x_{i}\mid, 1\leq i\leq n\} 30 [-100,100]^{n} 0
    Rosenbrock F_{5}(x)=\sum\limits_{i=1}^{n-1}(100(x_{i+1}-x_{i}^{2})^{2}+(x_{i}-1)^{2}) 30 [-200,200]^{n} 0
    Step F_{6}(x)=\sum\limits_{i=1}^{n}(x_{i}+0.5)^{2} 30 [-100,100]^{n} 0
    Quartic F_{7}(x)=\sum\limits_{i=1}^{n}ix_{i}^{4}+rand() 30 [-1.28, 1.28]^{n} 0

     | Show Table
    DownLoad: CSV

    The pseudocode of IASO is present in Algorithm 1.

    Algorithm 1 Pseudocode of IASO
    Begin:
    Randomly initialize a group of atoms x (solutions) and their velocity v and Fit_{best} = Inf .
    While the stop criterion is not satisfied do
      For each atom x_{i} do
        Calculate its fitness value Fit_{i} ;
        If Fit_{i} < Fit_{best} then
           Fit_{best} = Fit_{i} ;
           X_{Best} = x_{i} ;
        End If
        Calculate the mass using Eq (2.3)and Eq (2.4);
        Use K(t) = N-(N-2)\times\frac{t}{T} to determine K neighbors;
        Use Eq (2.14) and Eq (2.15) to calculate the interaction force and geometric restraint force;
        Calculate acceleration using formula Eq (2.17);
        Update the velocity
         v_{i}^d(t+1) = w\times rand_{i}^dv_{i}^d(t)+c_{1}\times rand_{i}^da_{i}^d(t)+c_{2}\times rand_{i}^d(x_{best}^d(t)-x_{i}^d(t)) .
        Update the position
           x_{i}^d(t+1) = x_{i}^d(t)+v_{i}^d(t+1) .
      End For.
    End while.
    Find the best solution so far X_{Best} .

    To test the performance of the IASO algorithm, 23 known benchmark functions were used. These benchmark functions are described in Tables 1, 2, 3, F1-F7 is unimodal function, and each unimodal function has no local optimization, only one global optimum. Therefore, the convergence speed of the algorithm can be verified. F8-F13 are multimodal functions with many local optimizations. While F14-F23 is a low dimensional function, each function has less local optimal value. Therefore, multimodal function and low dimensional function are very suitable for local optimal test avoidance and algorithm exploration ability.

    Table 2.  Multimodal test functions F_8(x)-F_{13}(x) .
    Name Function n Range Optimum
    Schwefel F_{8}(x)=-\sum\limits_{i=1}^{n}(x_{i}\sin(\sqrt{\mid x_{i}\mid})) 30 [-500,500]^{n} -12569.5
    Rastrigin F_{9}(x)=\sum\limits_{i=1}^{n}(x_{i}^{2}-10\cos(2\pi x_{i})+10) 30 [-5.12, 5.12]^{n} 0
    Ackley F_{10}(x)=-20\exp(-0.2\sqrt{\frac{1}{n}\sum\limits_{i=1}^{n}x_{i}^{2}})-\exp(\frac{1}{n}\sum\limits_{i=1}^{n}\cos2\pi x_{i})+20+\varepsilon 30 [-32, 32]^{n} 0
    Griewank F_{11}(x)=\frac{1}{4000}\sum\limits_{i=1}^{n}x_{i}^{2}-\prod\limits_{i=1}^{n}\cos(\frac{x_{i}}{\sqrt{i}})+1 30 [-600,600]^{n} 0
    Penalized F_{12}(x)=\frac{\pi}{n}\{10\sin^{2}(\pi y_{1})+\sum\limits_{i=1}^{n-1}(y_{i}-1)^{2}[1+10\sin^{2}(\pi y_{i+1})]+(y_{n}-1)^{2}\}+\sum\limits_{i=1}^{n}u(x_{i}, 10,100, 4) 30 [-50, 50]^{n} 0
    Penalized2 F_{13}(x)=0.1\{\sin^{2}(3\pi x_{1})+\sum\limits_{i=1}^{29}(x_{i}-1)^{2}p[1+\sin^{2}(3\pi X_{i+1})] +(x_{n}-1)^{2}[1+\sin^{2}(2\pi x_{n})]\}+\sum\limits_{i=1}^{n}u(x_{i}, 5,100, 4) 30 [-50, 50]^{n} 0

     | Show Table
    DownLoad: CSV
    Table 3.  Low-dimensional test functions F_{14}(x)-F_{23}(x) .
    Name Function n Range Optimum
    Foxholes F_{14}(x)=[\frac{1}{500}+\sum\limits_{j=1}^{25}\frac{1}{j+\sum\limits_{j=1}^{2}(x_{i}-a_{ij})^{6}}]^{-1} 2 [-65.536, 65.536]^{n} 0.998
    Kowalik F_{15}(x)=\sum\limits_{i=1}^{11}\mid a_{i}-\frac{x_{i}(b_{i}^{2}+b_{i}x_{2})}{b_{i}^{2}+b_{i}x_{3}+x_{4}}\mid^{2} 4 [-5, 5]^{n} 3.075\times 10^{-4}
    Six Hump Camel F_{16}(x)=4x_{1}^{2}-2.1x_{1}^{4}+\frac{1}{3}x_{1}^{6}+x_{1}x_{2}-4x_{2}^{2}+4x_{2}^{4} 2 [-5, 5]^{n} -1.0316
    Branin F_{17}(x)=(x_{2}-\frac{5.1}{4\pi^{2}}x_{1}^{2}+\frac{5}{\pi}x_{1}-6)^{2} +10(1-\frac{1}{8\pi})\cos x_{1}+10 2 [-5, 10]\times[0, 15] 0.398
    Goldstein-Price F_{18}(x)=1+(x_{1}+x_{2}+1)^{2}19-14x_{1}+3x_{1}^{2}-14x_{2} +6x_{1}x_{2}+3x_{2}^{2})] \times[30+(2x_{1}+1-3x_{2})^{2}(18-32x_{1} 12x_{1}^{2}+48x_{2}-36x_{1}x_{2}+27x_{2}^{2})] 2 [-2, 2]^{n} 3
    Hartman 3 F_{19}(x)=-\sum\limits_{i=1}^{4}c_{i}\exp[-\sum\limits_{j=1}^{3}a_{ij}(x_{j}-p_{ij})^{2}] 3 [0, 1]^{n} -3.86
    Hartman 6 F_{20}(x)=-\sum\limits_{i=1}^{4}c_{i}\exp[-\sum\limits_{j=1}^{6}a_{ij}(x_{j}-p_{ij})^{2}] 6 [0, 1]^{n} -3.322
    Shckel 5 F_{21}(x)=-\sum\limits_{i=1}^{5} [(x_{i}-a_{i})(x_{i}-a_{i})^{T}+c_{i}]^{-1} 4 [0, 10]^{n} -10.1532
    Shckel 7 F_{22}(x)=-\sum\limits_{i=1}^{7} [(x_{i}-a_{i})(x_{i}-a_{i})^{T}+c_{i}]^{-1} 4 [0, 10]^{n} -10.4028
    Shckel 10 F_{23}(x)=-\sum\limits_{i=1}^{10}[ (x_{i}-a_{i})(x_{i}-a_{i})^{T}+c_{i}]^{-1} 4 [0, 10]^{n} -10.5363

     | Show Table
    DownLoad: CSV

    In this experiment, the population size for IASO and ASO was 50 and the maximum number of iterations was 100 . There are three performance evaluation indexes for comparing IASO and ASO: the average, minimum and standard deviation of the optimal solution. The smaller the average value of the optimal solution, the less likely it is that the algorithm will enter a local optimum and the easier it is to find the global optimum; The smaller the standard deviation of the optimal solution, the more stable the algorithm will be; the smaller the minimum value, the more accurate it will be. Tables 35 shows the comparison of optimization results of different types of functions, and the corresponding convergence curve is shown in Figures 35. Table 4 and Figure 6 are the optimization results and convergence curves of unimodal function F_1(x)-F_7(x) . It can be seen that IASO algorithm has better performance than ASO algorithm and its convergence speed is faster. Table 5 and Figure 7 are the optimization results and convergence curves of multimodal function F_8(x)-F_{13}(x) . It can be seen that the overall performance of IASO is better than that of ASO. Table 6 and Figure 8 are the optimization results and convergence curves of low dimensional function F_{14}(x)- F_{23}(x) . The convergence curve shows that ASO converges faster, but IASO is more accurate. By comparing IASO with ASO, it can be seen that the improved IASO converges much faster and is more stable than ASO It is also less likely to enter the local optimum.

    Table 4.  Comparisons of results for unimodal functions.
    Function Index ASO IASO
    F_{1}(x) Mean 2.54e-12 1.88e-18
    Std 3.24e-12 1.03e-20
    Best 3.48e-15 5.22e-19
    F_{2}(x) Mean 3.33e-08 3.39e-09
    Std 1.89e-10 9.90e-12
    Best 5.11e-08 1.84e-09
    F_{3}(x) Mean 186.5664 1.06e-17
    Std 86.3065 1.23e-21
    Best 24.1115 1.81e-18
    F_{4}(x) Mean 3.24e-09 8.77e-10
    Std 6.14-09 2.32e-12
    Best 2.13e-10 4.75e-10
    F_{5}(x) Mean 0.2905 0.0034
    Std 0.9888 0.0039
    Best 4.5370e+03 28.8627
    F_{6}(x) Mean 0 0
    Std 0 0
    Best 0 0
    F_{7}(x) Mean 0.02124 3.91e-04
    Std 0.02981 3.60e-04
    Best 0.03319 1.8710e-04

     | Show Table
    DownLoad: CSV
    Table 5.  Comparisons of results for multimodal functions.
    Function Index ASO IASO
    F_{8}(x) Mean -3887 -6772.47
    Std 564.7 354.77
    Best -4245 -6878.93
    F_{9}(x) Mean 0 0
    Std 0 0
    Best 0 0
    F_{10}(x) Mean 3.91e-09 8.63e-10
    Std 2.15e-09 2.68e-13
    Best 1.13e-09 7.257e-10
    F_{11}(x) Mean 0 0
    Std 0 0
    Best 0 0
    F_{12}(x) Mean 4.34e-23 3.69e-23
    Std 1.84e-22 1.51e-22
    Best 7.83e-24 6.53e-24
    F_{13}(x) Mean 2.03e-22 2.33e-23
    Std 2.83e-22 3.12e-22
    Best 1.91e-23 1.90e-23

     | Show Table
    DownLoad: CSV
    Figure 3.  2D plots of function F_{1}(x)-F_{7}(x) .
    Figure 4.  2D plots of function F_{8}(x)-F_{13}(x) .
    Figure 5.  2D plots of function F_{14}(x)-F_{23}(x) .
    Figure 6.  Convergence curve of the function F_{1}(x)-F_{7}(x) .
    Figure 7.  Convergence curve of the function F_{8}(x)-F_{13}(x) .
    Table 6.  Comparisons of results for low-dimensional functions.
    Function Index ASO IASO
    F_{14}(x) Mean 0.998004 0.998004
    Std 7.04e-16 4.25e-16
    Best 0.998004 0.998004
    F_{15}(x) Mean 9.47e-04 4.69e-04
    Std 2.79e-04 1.81e-04
    Best 2.79e-04 1.45e-04
    F_{16}(x) Mean -1.03163 -1.03163
    Std 0 0
    Best -1.03163 -1.03163
    F_{17}(x) Mean 0.397887 0.397887
    Std 0 0
    Best 0.397887 0.397887
    F_{18}(x) Mean 3 3
    Std 1.68e-14 1.65e-14
    Best 3 3
    F_{19}(x) Mean -3.8627 -3.8627
    Std 2.68e-15 2.53e-17
    Best -3.8627 -3.8627
    F_{20}(x) Mean -3.322 -3.322
    Std 1.12e-08 8.95e-09
    Best -3.322 -3.322
    F_{21}(x) Mean -8.7744 -9.4724
    Std 2.1867 1.3031
    Best -10.1532 -10.1532
    F_{22}(x) Mean -10.4029 -10.4029
    Std 1.84e-15 1.76e-18
    Best -10.4029 -10.4029
    F_{23}(x) Mean -10.5364 -10.5364
    Std 1.54e-15 1.62e-18
    Best -10.5364 -10.5364

     | Show Table
    DownLoad: CSV
    Figure 8.  Convergence curve of the function F_{14}(x)-F_{23}(x) .

    Assume that N far-field narrowband signal sources are incident on the hydrophone array of the M(M > N) vector sensor. The incident angle is { \bf{\Theta} } = [\Theta_1, \Theta_2, \cdots, \Theta_N]^T , where \Theta_n = (\theta_n, \alpha_n)^T , (\cdot)^T is the transposition, \theta_n is the horizontal azimuth angle of the n^{\rm{th}} incident signal, \alpha_n is the elevation angle of the n^{\rm{th}} incident signal, respectively, the incident wavelength is \lambda , and the distance between adjacent arrays is d . Then the signal received by the array can be expressed in vector form as

    \begin{equation} { \bf{Z} }(t) = { \bf{A} }({ \bf{\Theta} }){ \bf{S} }(t)+{ \bf{N} }(t), \end{equation} (3.1)

    Among them, { \bf{Z} }(t) is the 4M\times 1 dimensional received signal vector, and { \bf{N} }(t) is the array 4M\times 1 dimensional gaussian noise vector. It is assumed that the noise is gaussian white noise, which are independent of each other in time and space. { \bf{S} }(t) is the M\times 1 dimensional signal source vector. {\bf{A}}({\bf{\Theta }}) is the signal direction matrix of the vector hydrophone array

    \begin{align} { \bf{A} }({ \bf{\Theta} }) & = [{ \bf{a} }(\Theta_1), { \bf{a} }(\Theta_2), \cdots, { \bf{a} }(\Theta_N)] \\ & = [{ \bf{a} }_1(\Theta_1) \otimes { \bf{u} }_1, { \bf{a} }_2(\Theta_2) \otimes { \bf{u} }_2, \cdots, { \bf{a} }_N(\Theta_N) \otimes { \bf{u} }_N], \end{align} (3.2)

    where \otimes is the Kronecker product, { \bf{a} }_n(\Theta_n) = [1, e^{-j\beta_n}, e^{-j2\beta_n}, \cdots, e^{-j(M-1)\beta_n}]^T is the sound pressure corresponding to n^{\rm{th}} signal, { \bf{u} }_n = [1, \cos\theta_n \sin \alpha_n, \sin\theta_n \sin \alpha_n, \cos \alpha_n]^T is the direction vector of the n^{\rm{th}} signal source, and \beta_n = \frac{2\pi}{\lambda}d\cos \theta_n \sin \alpha_n . Then the array covariance matrix of the received signal is

    \begin{align} { \bf{R} } & = {\rm{E}}[{ \bf{Z} }(t){ \bf{Z} }^H(t)] \\ & = { \bf{A} }{\rm{E}}[{ \bf{S} }(t){ \bf{S} }^H(t)]{ \bf{A} }^H+ {\rm{E}}[{ \bf{N} }(t){ \bf{N} }^H(t)] \\ & = { \bf{A} }{ \bf{R} }_s{ \bf{A} }^H+\sigma^2 { \bf{I} }, \end{align} (3.3)

    where { \bf{R} }_s is the signal covariance matrix, \sigma^2 is Gaussian white noise, { \bf{I} } is the identity matrix, (\cdot)^H is the conjugate transpose of matrix (\cdot) , Assume that the signal and the array are on the same plane, that is, \alpha_n = \frac{\pi}{2} , so only \theta_n is considered in this paper. In actual calculations, the received data is limited, so the array covariance matrix is

    \begin{equation} \hat{{ \bf{R} }} = \frac{1}{K}\sum\limits_{k = 1}^K { \bf{Z} }(k){ \bf{Z} }^H(k), \end{equation} (3.4)

    where K represents the number of snapshots.

    By uniformly and independently sampling the received signal, the joint probability density function of the sampled data can be obtained as follows

    \begin{align} &P\left({ \bf{Z} }(1), { \bf{Z} }(2),\cdots, { \bf{Z} }(K)\right)\\ & = \prod\limits_{k = 1}^K \frac{\exp\left( -\frac{1}{\sigma^2}\|{ \bf{Z} }(k)-{ \bf{A} }(\tilde{\theta}){ \bf{S} }(k)\|^2\right)}{\det(\pi\sigma^2 { \bf{I} })}, \end{align} (3.5)

    where {\rm{det}}(\cdot) represents the determinant of the matrix (\cdot) , \tilde{\theta} is the unknown signal orientation estimation, P(\cdot) is a multidimensional nonlinear function of unknown parameters \tilde{\theta}, \sigma^2 and { \bf{S} } . Take the logarithm of Eq (3.5)

    \begin{align} -\ln P & = K\ln\pi+3MK\ln\sigma^2 \\ &+\frac{1}{\sigma^2}\sum\limits_{k = 1}^K\|{ \bf{Z} }(k)-{ \bf{A} }(\tilde{\theta}){ \bf{S} }(k)\|^2, \end{align} (3.6)

    In Eq (3.6), Take the partial derivative of \sigma^2 , set it to 0, get \sigma^2 = \frac{1}{4M}{\rm{tr}}\left\{{{\bf{P_A}}^\perp \hat{{ \bf{R} }}}\right\} , where {\rm{tr}}\{\cdot\} is the trace of matrix (\cdot) , {\bf{P_A}}^\perp is the orthogonal projection matrix of matrix {\bf{A}} , \hat{{ \bf{S} }} = {\bf{A}}^{+}{ \bf{Z} } and {\bf{A}}^{+} = ({\bf{A}}^H{\bf{A}})^{-1}{\bf{A}}^H are the pseudo-inverse of matrix {\bf{A}} , substitute \sigma^2 and \hat{{ \bf{S} }} , into Eq (3.6), then

    \begin{equation} \hat{\theta} = \arg \max\limits_{\tilde{\theta}} g(\tilde{\theta}), \end{equation} (3.7)

    where g(\tilde{\theta}) is the likelihood function, which can be expressed as

    \begin{equation} g(\tilde{\theta}) = {\rm{tr}} \left\{\left[{ \bf{A} }(\tilde{{ \bf{\Theta} }})({ \bf{A} }^H(\tilde{\theta}){ \bf{A} }(\tilde{\theta}))^{-1}{ \bf{A} }^H(\tilde{\theta})\right]\hat{{ \bf{R} }}\right\}. \end{equation} (3.8)

    \hat{\theta} is the estimated DOA angle of the estimated signal. Seeking the maximum value of the likelihood function g(\tilde{\theta}) can get a set of solutions corresponding to this value, which is the estimated angle sought.In order to compare the convergence of different methods, the following equation is defined as the fitness function

    \begin{equation} f(\tilde{\theta}) = |g(\tilde{\theta})-g(\theta)|, \end{equation} (3.9)

    where \theta is the known signal in Eq (3.1), g(\theta) = {\rm{tr}} \left\{\left[{\bf{A}}(\theta)({\bf{A}}^H(\theta){\bf{A}}(\theta))^{-1}{\bf{A}}^H(\theta)\right]\hat{{ \bf{R} }}\right\} , Eq (3.7) can thus be expressed as

    \begin{equation} \hat{\theta} = \arg \min\limits_{\tilde{\theta}} f(\tilde{\theta}), \end{equation} (3.10)

    when f(\tilde{\theta}) is close to 0, it means that the estimated angle is more accurate.

    The initial position is expressed as \theta_i = [ \theta_{i}^1, \theta_{i}^2, \cdots, \theta_{i}^d] . Taking Eq (3.9) in ML DOA as the fitness function Fit_{i}(t) in IASO, then the fitness function Fit_{i}(t) of Eq (2.3) in Section 2 is changed to f(\tilde{\theta}) . Then the geometric binding force of Eq (2.15) can be expressed as x_{i}^d(t+1) = x_{i}^d(t)+v_{i}^d(t+1) ; The acceleration is changed from Eq (2.17) to

    \begin{equation} \begin{array}{ll} a_{i}^d(t)& = \frac{F_{i}^d(t)+G_{i}^d(t)}{m_{i}^d(t)}\\ & = -\alpha(1-\frac{t-1}{T})^3e^\frac{-20t}{T}\\ &\sum\limits_{j\in KBest} \frac{rand_{j}[2\times(h_{ij}(t))^{13}-(h_{ij})^7]}{m_{i}(t)}\\ &\frac{(\theta_{i}^d(t)-\theta_{i}^d(t))}{\parallel {\theta_{i}(t),\theta_{j}(t)}\parallel_{2}}+\beta e^{-\frac{20t}{T}}\frac{\theta_{best}^d(t)-\theta_{i}^d(t)}{m_{i}(t)} \end{array} \end{equation} (4.1)

    The speed update is changed from Eq (2.18) to

    \begin{equation} \begin{array}{ll} v_{i}^d(t+1)& = w\times rand_{i}^dv_{i}^d(t)+c_{1}\times rand_{i}^da_{i}^d(t)\\&+c_{2}\times rand_{i}^d(\theta_{best}^d(t)-\theta_{i}^d(t)), \end{array} \end{equation} (4.2)

    the location update is changed from Eq (2.19) to

    \begin{equation} \theta_{i}^d(t+1) = \theta_{i}^d(t)+v_{i}^d(t+1). \end{equation} (4.3)

    In this part, we demonstrated the simulation results of the iterative process and convergence performance of the IASO. Then, we compared the ML DOA estimation performance between the IASO and ASO, SCA, GA, and PSO. In the experiment, the receiving array should be a uniform linear array composed of 10 acoustic vector sensors, the number of snapshots is 300, and the added noise is Gaussian white noise.

    In the simulation experiment, in 100 independent Monte Carlo experiments, the population number is 30 , the maximum number of iterations is 200 , the signal-to-noise ratio is 10 dB, and the search range is [0,180] . Taking one source \theta = [30^\circ] , two sources \theta = [30^\circ, 60^{\circ}] , respectively, the minimum process curve of fitness value is obtained. Compared with IASO, ASO, SCA, GA and PSO, Table 7 shows the parameters of the five algorithmsan and Figure 9 shows the fitness convergence curve.

    Table 7.  Parameter values of different algorithms for ML DOA estimator.
    Name of Parameter IASO ASO SCA GA PSO
    Problem dimension 2(3, 4) 2(3, 4) 2(3, 4) 2(3, 4) 2(3, 4)
    Population Size 30 30 30 30 30
    Maximum number of iterations 200 200 200 200 200
    Initial search area [0,180] [0,180] [0,180] [0,180] [0,180]
    Depth weight 50 50 - - -
    Multiplier weight 0.2 0.2 - - -
    Lower limit of repulsion 1.1 1.1 - - -
    Upper limit of attraction 1.24 1.24 - - -
    Acceleration factor c_{1} -2.5000e-04 - - - -
    Acceleration factor c_{2} 1.003 - - - -
    Acceleration factor w 0.8975 - - - -
    Crossover Fraction - - - 0.8 -
    Migration Fraction - - - 0.2 -
    Cognitive Constants - - - - 1.25
    Social Constants - - - - 0.5
    Inertial Weight - - - - 0.9

     | Show Table
    DownLoad: CSV
    Figure 9.  The curves of fitness function for ML DOA estimator with IASO, ASO, SCA, GA and PSO at SNR = 10 dB, when the number of signal sources is 1, 2, and 3, respectively.

    Figure 9 shows the fitness variation curves of the ML DOA estimators of the IASO, ASO, SCA, GA and PSO in the case of 1, 2, 3 signal source and 200 iterations. As can be seen from the picture. Regardless of the number of signal sources is 1, 2, or 3, IASO has the fastest convergence speed. When the number of signal sources is 1, IASO converges fastest, followed by ASO, In comparsion PSO, SCA and GA have large convergence range, and their fitness values are high, which indicates that they can easily to fall into local optimum, when the number of signal sources is 2, IASO has better convergence effect. When the signal source is 3, IASO still remained the best, followed by ASO. But SCA, GA and PSO not only converge rather slowly but can also easily fall into local optimum. Even after 200 iterations, the fitness function cannot converge to 0.

    In order to compare the statistical performance of different algorithms and their relationship with Cramér–Rao Bound(CRB), we performed a comparison and estimated the mean-variance of the algorithm based on the root mean square error (RMSE). The overall size is 30 iterations and the maximum number of iterations is 200.

    \begin{equation} {\rm{RMSE}} = \sqrt{\frac{1}{N\cdot L}\sum\limits_{l = 1}^L\sum\limits_{i = 1}^N \left[\hat{\theta}_i(l)-\theta_i\right]^2}, \end{equation} (4.4)

    where L is the number of experiments, \theta_i is the DOA of the i^{th} signal, N is the number of signals, and \hat{\theta}_i(j) denotes the estimate of the i^{th} DOA achieved in the j^{th} experiment.

    Figure 10 shows the RMSE of the ML DOA estimator for the five algorithms of IASO, ASO, SCA, GA and PSO when the number of signal sources is 1, 2 and 3, changing the signal-to-noise ratio ranges from -20dB to 20dB. It can be seen that the performance of IASO is more stable regardless of the source and more closer to CRB. When the number of signal sources is 3, the estimation performance of several algorithms decreases, but the DOA estimation performance based on IASO algorithm is still closer to CRB, followed by ASO, GA, PSO and SCA.The SCA performs well at low signal-to-noise ratios, but poorly at high signal-to-noise ratios. However, the MLDOA estimation performance of PSO and GA is poor, and their fitness functions have difficulty converging to the global optimum solution. Even after 200 iterations, a large RMSE is still generated.

    Figure 10.  CRB and RMSE curve of ML DOA estimator with IASO, ASO, SCA, GA and PSO as SNR changes from -20dB to 20dB, when the number of signal sources is 1, 2 and 3, respectively.

    Population size marks the most important parameter in biological evolutionary algorithms. In general, the estimation accuracy of intelligent algorithms improves as the population size increases. However, when the population increases, the computational load on the algorithm also increases. For ML DOA problems, the population size determines the number of likelihood functions calculated in each iteration. Therefore, this highlights the need for an algorithm with a small population size and high estimation accuracy.

    Figure 11 shows the RMSE curves of the ML DOA estimators of IASO, ASO, SCA, GA and PSO when the population size ranges from 10 to 100. As can be seen from the figure, the IASO can maintain low RMSE, high estimation accuracy and closer to CRB regardless of the number of signal sources. When there is one signal source, the RMSE of IASO, ASO, SCA and PSO is similar, while the GA algorithm keeps a relatively high RMSE when the population is less than 50. When there are two signal sources, the RMSE of IASO algorithm maintains a lower RMSE, while the ASO algorithm is somewhat unstable, and the PSO and GA still keep a higher RMSE. When the signal source is three, only IASO algorithm has lower RMSE, ASO, PSO, SCA and GA, and they have higher RMSE. This shows the population size is 100, GA and PSO algorithms only need a large population number size, bue also they also need a large number of iterations. For ML DOA estimation, when the number of signal source are 1, 2, 3, IASO algorithm can accurately estimate DOA with a smaller population number requiring less computational effort.

    Figure 11.  CRB and RMSE curve of ML DOA estimator with IASO, ASO, SCA, GA and PSO as population size changes from 10 to 100, when the number of signal sources is 1, 2 and 3, respectively.

    In addition to the convergence and statistical performance described above, the quality of an algorithm can also be judged by its computational complexity. The computational complexity is independent of the number of signal sources. Rather it is related to the maximum number of iterations, the population size and the maximum number of spatial variations. The following figure illustrates the average number of iterations calculated by stopping the standard formula 30 in the case of two signal sources: 1e-6 .

    Figure 12 shows the average iteration time curves of the different algorithms for 100 independent Monte Carlo experiments. It can be seen that the IASO algorithm has the smallest number of iterations when the signal-to-noise ratio range from -20dB to 20dB and the number of iterations is 200 , followed by the ASO, PSO, GA and SCA algorithms, which require at least 100 iterations. When the number of IASO iterations was significantly lower than the other groups, the number of iterations was significantly lower than the other algorithms. In general, the IASO algorithm has the smallest number of iterations on the mean curve of signal-to-noise ratio and overall size. For ASO, SCA, GA and PSO, more iterations are still needed to find the optimal solution under signal-to-noise ratio and overall transformation. As a result, IASO has the lowest computational load.

    Figure 12.  The average iteration number of different algorithms with 3 signal sources as SNR changes from -20dB to 20dB, the population size changes from 10 to 100, respectively.

    This paper proposes an improved ASO, employing 23 test functions to test IASO and ASO and finds that it overcomes the shortcomings of ASO that it can easily to fall into local optimality and poor convergence performance. ML DOA estimation is a high-resolution optimization method in theory, but the huge computational burden hinders its practical applications. In this paper, IASO is used in ML DOA estimation, and simulation experiments are carried out. The results show that, compared with ASO, SCA, GA and PSO methods, the ML DOA estimator of IASO proposed in this paper has faster convergence speed, lower RMSE and lower computational complexity.

    This research was funded by National Natural Science Foundation of China (Grant No. 61774137, 51875535 and 61927807), Key Research and Development Foundation of Shanxi Province(Grant No. 201903D121156), and Shanxi Scholarship Council of China (Grant No. 2020-104 and 2021-108). The authors express their sincere thanks to the anonymous referee for many valuable comments and suggestions.

    The authors declare that they have no conflict of interest.



    [1] Javili A, Morasata R, Oterkus E, et al. (2019) Peridynamics review. Math Mech Solids 24: 3714–3739. https://doi.org/10.1177/1081286518803411 doi: 10.1177/1081286518803411
    [2] Oterkus E (2022) Science of cracks: Fracture mechanics. IES J Eng 161: 38–44.
    [3] Silling SA (2000) Reformulation of elasticity theory for discontinuities and long-range forces. J Mech Phys Solids 48: 175–209. https://doi.org/10.1016/S0022-5096(99)00029-0 doi: 10.1016/S0022-5096(99)00029-0
    [4] Madenci E, Oterkus E (2013) Peridynamic Theory and its Applications, New York: Springer. https://doi.org/10.1007/978-1-4614-8465-3
    [5] Hartmann P, Weiß enfels C, Wriggers P (2021) A curing model for the numerical simulation within additive manufacturing of soft polymers using peridynamics. Comp Part Mech 8: 369–388. https://doi.org/10.1007/s40571-020-00337-2 doi: 10.1007/s40571-020-00337-2
    [6] Karpenko O, Oterkus S, Oterkus E (2021) Peridynamic investigation of the effect of porosity on fatigue nucleation for additively manufactured titanium alloy Ti6Al4V. Theor Appl Fract Mec 112: 102925. https://doi.org/10.1016/j.tafmec.2021.102925 doi: 10.1016/j.tafmec.2021.102925
    [7] Karpenko O, Oterkus S, Oterkus E (2022) Peridynamic analysis to investigate the influence of microstructure and porosity on fatigue crack propagation in additively manufactured Ti6Al4V. Eng Fract Mech 261: 108212. https://doi.org/10.1016/j.engfracmech.2021.108212 doi: 10.1016/j.engfracmech.2021.108212
    [8] Karpenko O, Oterkus S, Oterkus E (2022) Investigating the influence of residual stresses on fatigue crack growth for additively manufactured titanium alloy Ti6Al4V by using peridynamics. Int J Fatigue 155: 106624. https://doi.org/10.1016/j.ijfatigue.2021.106624 doi: 10.1016/j.ijfatigue.2021.106624
    [9] Kendibilir A, Kefal A, Sohouli A, et al. (2022) Peridynamics topology optimtion of three-dimensional structures with surface cracks for additive manufacturing. Comput Method Appl M 401: 115665. https://doi.org/10.1016/j.cma.2022.115665 doi: 10.1016/j.cma.2022.115665
    [10] Zhu J, Ren X, Cervera M (2023) Peridynamic buildability analysis of 3D-printed concrete including damage, plastic flow and collapse. Addit Manuf 73: 103683. https://doi.org/10.1016/j.addma.2023.103683 doi: 10.1016/j.addma.2023.103683
    [11] Yang Z, Ma CC, Oterkus E, et al. (2023) Analytical solution of 1-dimensional peridynamic equation of motion. J Peridyn Nonlocal Model 5: 356–374. https://doi.org/10.1007/s42102-022-00086-1 doi: 10.1007/s42102-022-00086-1
    [12] Yang Z, Ma CC, Oterkus E, et al. (2023) Analytical solution of the peridynamic equation of motion for a 2-dimensional membrane. J Peridyn Nonlocal Model 5: 375–391. https://doi.org/10.1007/s42102-022-00090-5 doi: 10.1007/s42102-022-00090-5
    [13] Yang Z, Naumenko K, Altenbach H, et al. (2022) Some analytical solutions to peridynamic beam equations. Z Angew Math Mech 102: e202200132. https://doi.org/10.1002/zamm.202200132 doi: 10.1002/zamm.202200132
    [14] Yang Z, Naumenko K, Ma CC, et al. (2022) Some closed form series solutions to peridynamic plate equations. Mec Res Commun 126: 104000. https://doi.org/10.1016/j.mechrescom.2022.104000 doi: 10.1016/j.mechrescom.2022.104000
    [15] Mikata Y (2019) Linear peridynamics for isotropic and anisotropic materials. Int J Solids Struct 158: 116–127. https://doi.org/10.1016/j.ijsolstr.2018.09.004 doi: 10.1016/j.ijsolstr.2018.09.004
    [16] Mikata Y (2023) Analytical solutions of peristatics and peridynamics for 3D isotropic materials. Eur J Mech A-Solid 101: 104978. https://doi.org/10.1016/j.euromechsol.2023.104978 doi: 10.1016/j.euromechsol.2023.104978
    [17] Kim M, Winovich N, Lin G, et al. (2019) Peri-net: Analysis of crack patterns using deep neural networks. J Peridyn Nonlocal Model 1: 131–142. https://doi.org/10.1007/s42102-019-00013-x doi: 10.1007/s42102-019-00013-x
    [18] Nguyen CT, Oterkus S, Oterkus E (2020) A peridynamic-based machine learning model for one-dimensional and two-dimensional structures. Continuum Mech Therm 35: 741–773. https://doi.org/10.1007/s00161-020-00905-0 doi: 10.1007/s00161-020-00905-0
    [19] Nguyen CT, Oterkus S, Oterkus E (2021) A physics-guided machine learning model for two-dimensional structures based on ordinary state-based peridynamics. Theor Appl Fract Mec 112: 102872. https://doi.org/10.1016/j.tafmec.2020.102872 doi: 10.1016/j.tafmec.2020.102872
    [20] Bekar AC, Madenci E (2021) Peridynamics enabled learning partial differential equations. J Comput Phys 434: 110193. https://doi.org/10.1016/j.jcp.2021.110193 doi: 10.1016/j.jcp.2021.110193
    [21] Xu X, D'Elia M, Foster JT (2021) A machine-learning framework for peridynamic material models with physical constraints. Comput Method Appl M 386: 114062. https://doi.org/10.1016/j.cma.2021.114062 doi: 10.1016/j.cma.2021.114062
    [22] Ning L, Cai Z, Dong H, et al. (2023) A peridynamic-informed neural network for continuum elastic displacement characterization. Comput Method Appl M 407: 115909. https://doi.org/10.1016/j.cma.2023.115909 doi: 10.1016/j.cma.2023.115909
    [23] Babu JR, Gopalakrishanan S (2024) Thermal diffusion in discontinuous media: A hybrid peridynamics-based machine learning model. Comput Struct 290: 107179. https://doi.org/10.1016/j.compstruc.2023.107179 doi: 10.1016/j.compstruc.2023.107179
    [24] Nguyen CT, Oterkus S (2019) Peridynamics formulation for beam structures to predict damage in offshore structures. Ocean Eng 173: 244–267. https://doi.org/10.1016/j.oceaneng.2018.12.047 doi: 10.1016/j.oceaneng.2018.12.047
    [25] Nguyen CT, Oterkus S (2019) Peridynamics for the thermomechanical behavior of shell structures. Eng Fract Mech 219: 106623. https://doi.org/10.1016/j.engfracmech.2019.106623 doi: 10.1016/j.engfracmech.2019.106623
    [26] Diyaroglu C, Oterkus E, Oterkus S (2019) An euler-bernoulli beam formulation in ordinary-state based peridynamic framework. Math Mech Solids 24: 361–376. https://doi.org/10.1177/1081286517728424 doi: 10.1177/1081286517728424
    [27] Yang Z, Oterkus E, Nguyen CT, et al. (2019) Implementation of peridynamic beam and plate formulations in finite element framework. Continuum Mech Therm 31: 301–315. https://doi.org/10.1007/s00161-018-0684-0 doi: 10.1007/s00161-018-0684-0
    [28] Yang Z, Oterkus S, Oterkus E (2020) Peridynamic formulation for timoshenko beam. Procedia Struct Integr 28: 464–471. https://doi.org/10.1016/j.prostr.2020.10.055 doi: 10.1016/j.prostr.2020.10.055
    [29] Yang Z, Vazic B, Diyaroglu C, et al. (2020) A kirchhoff plate formulation in a state-based peridynamic framework. Math Mech Solids 25: 727–738. https://doi.org/10.1177/1081286519887523 doi: 10.1177/1081286519887523
    [30] Vazic B, Oterkus E, Oterkus S (2020) Peridynamic model for a Mindlin plate resting on a Winkler elastic foundation. J Peridyn Nonlocal Model 2: 229–242. https://doi.org/10.1007/s42102-019-00019-5 doi: 10.1007/s42102-019-00019-5
    [31] Oterkus E, Madenci E, Oterkus S (2020) Peridynamic shell membrane formulation. Procedia Struct Integr 28: 411–417. https://doi.org/10.1016/j.prostr.2020.10.048 doi: 10.1016/j.prostr.2020.10.048
    [32] Yolum U, Güler MA (2020) On the peridynamic formulation for an orthotropic Mindlin plate under bending. Math Mech Solids 25: 263–287. https://doi.org/10.1177/1081286519873694 doi: 10.1177/1081286519873694
    [33] Nguyen CT, Oterkus S (2021) Peridynamics for geometrically nonlinear analysis of three-dimensional beam structures. Eng Anal Bound Elem 126: 68–92. https://doi.org/10.1016/j.enganabound.2021.02.010 doi: 10.1016/j.enganabound.2021.02.010
    [34] Nguyen CT, Oterkus S (2021) Ordinary state-based peridynamics for geometrically nonlinear analysis of plates. Theor Appl Fract Mec 112: 102877. https://doi.org/10.1016/j.tafmec.2020.102877 doi: 10.1016/j.tafmec.2020.102877
    [35] Shen G, Xia Y, Li W, et al. (2021) Modeling of peridynamic beams and shells with transverse shear effect via interpolation method. Comput Method Appl M 378: 113716. https://doi.org/10.1016/j.cma.2021.113716 doi: 10.1016/j.cma.2021.113716
    [36] Yang Z, Oterkus E, Oterkus S (2021) A novel peridynamic mindlin plate formulation without limitation on material constants. J Peridyn Nonlocal Model 3: 287–306. https://doi.org/10.1007/s42102-021-00050-5 doi: 10.1007/s42102-021-00050-5
    [37] Yang Z, Oterkus E, Oterkus S (2021) Peridynamic higher-order beam formulation. J Peridyn Nonlocal Model 3: 67–83. https://doi.org/10.1007/s42102-020-00043-w doi: 10.1007/s42102-020-00043-w
    [38] Yang Z, Oterkus E, Oterkus S (2021) Peridynamic formulation for higher-order plate theory. J Peridyn Nonlocal Model 3: 185–210. https://doi.org/10.1007/s42102-020-00047-6 doi: 10.1007/s42102-020-00047-6
    [39] Zhang Q, Li S, Zhang AM, et al. (2021) A peridynamic Reissner-Mindlin shell theory. Int J Numer Meth Eng 122: 122–147. https://doi.org/10.1002/nme.6527 doi: 10.1002/nme.6527
    [40] Dai MJ, Tanaka S, Bui TQ, et al. (2021) Fracture parameter analysis of flat shells under out-of-plane loading using ordinary state-based peridynamics. Eng Fract Mech 244: 107560. https://doi.org/10.1016/j.engfracmech.2021.107560 doi: 10.1016/j.engfracmech.2021.107560
    [41] Dai MJ, Tanaka S, Guan PC, et al. (2021) A peridynamic shell model in arbitrary horizon domains for fracture mechanics analysis. Theor Appl Fract Mec 115: 103068. https://doi.org/10.1016/j.tafmec.2021.103068 doi: 10.1016/j.tafmec.2021.103068
    [42] Dai MJ, Tanaka S, Oterkus S, et al. (2022) Static and dynamic mechanical behaviors of cracked mindlin plates in ordinary state-based peridynamic framework. Acta Mech 233: 299–316. https://doi.org/10.1007/s00707-021-03127-w doi: 10.1007/s00707-021-03127-w
    [43] Naumenko K, Eremeyev VA (2022) A non-linear direct peridynamics plate theory. Compos Struct 279: 114728. https://doi.org/10.1016/j.compstruct.2021.114728 doi: 10.1016/j.compstruct.2021.114728
    [44] Behzadinasab M, Alaydin M, Trask N, et al. (2022) A general-purpose, inelastic, rotation-free Kirchhoff-Love shell formulation for peridynamics. Comput Method Appl M 389: 114422. https://doi.org/10.1016/j.cma.2021.114422 doi: 10.1016/j.cma.2021.114422
    [45] Yang Z, Naumenko K, Ma CC, et al. (2023) Peridynamic analysis of curved beams. Eur J Mech A-Solid 101: 105075. https://doi.org/10.1016/j.euromechsol.2023.105075 doi: 10.1016/j.euromechsol.2023.105075
    [46] Xia Y, Wang H, Zheng G, et al. (2023) Mesh-free discretization of peridynamic shell structures and coupling model with isogeometric analysis. Eng Fract Mech 277: 108997. https://doi.org/10.1016/j.engfracmech.2022.108997 doi: 10.1016/j.engfracmech.2022.108997
    [47] Heo J, Yang Z, Xia W, et al. (2020) Free vibration analysis of cracked plates using peridynamics. Ships Offshore Struc 15: 220–229. https://doi.org/10.1080/17445302.2020.1834266 doi: 10.1080/17445302.2020.1834266
    [48] Heo J, Yang Z, Xia W, et al. (2020) Buckling analysis of cracked plates using peridynamics. Ocean Eng 214: 107817. https://doi.org/10.1016/j.oceaneng.2020.107817 doi: 10.1016/j.oceaneng.2020.107817
    [49] Yang Z, Naumenko K, Altenbach H, et al. (2022) Beam buckling analysis in peridynamic framework. Arch Appl Mech 92: 3503–3514. https://doi.org/10.1007/s00419-022-02245-8 doi: 10.1007/s00419-022-02245-8
    [50] Zhang Y, Cheng Z, Feng H (2019) Dynamic fracture analysis of functional gradient material coating based on the peridynamic method. Coatings 9: 62. https://doi.org/10.3390/coatings9010062 doi: 10.3390/coatings9010062
    [51] Guski V, Verestek W, Oterkus E, et al. (2020) Microstructural investigation of plasma sprayed ceramic coatings using peridynamics. J Mech 36: 183–196. https://doi.org/10.1017/jmech.2019.58 doi: 10.1017/jmech.2019.58
    [52] Vasenkov AV (2021) Multi-physics peridynamic modeling of damage processes in protective coatings. J Peridyn Nonlocal Model 3: 167–183. https://doi.org/10.1007/s42102-020-00046-7 doi: 10.1007/s42102-020-00046-7
    [53] Wang H, Dong H, Cai Z, et al. (2022) Peridynamic-based investigation of the cracking behavior of multilayer thermal barrier coatings. Ceram Int 48: 23543–23553. https://doi.org/10.1016/j.ceramint.2022.05.002 doi: 10.1016/j.ceramint.2022.05.002
    [54] Wen Z, Hou C, Zhao M, et al. (2023) A peridynamic model for coupled thermo-mechanical-oxygenic analysis of C/C composites with SiC coating. Compos Struct 323: 117441. https://doi.org/10.1016/j.compstruct.2023.117441 doi: 10.1016/j.compstruct.2023.117441
    [55] Rä del M, Willberg C, Krause D (2019) Peridynamic analysis of fibre-matrix debond and matrix failure mechanisms in composites under transverse tensile load by an energy-based damage criterion. Compos Part B-Eng 158: 18–27. https://doi.org/10.1016/j.compositesb.2018.08.084 doi: 10.1016/j.compositesb.2018.08.084
    [56] Gao Y, Oterkus S (2019) Fully coupled thermomechanical analysis of laminated composites by using ordinary state based peridynamic theory. Compos Struct 207: 397–424. https://doi.org/10.1016/j.compstruct.2018.09.034 doi: 10.1016/j.compstruct.2018.09.034
    [57] Hu YL, Yu Y, Madenci E (2020) Peridynamic modeling of composite laminates with material coupling and transverse shear deformation. Compos Struct 253: 112760. https://doi.org/10.1016/j.compstruct.2020.112760 doi: 10.1016/j.compstruct.2020.112760
    [58] Postek E, Sadowski T (2021) Impact model of the Al2O3/ZrO2 composite by peridynamics. Compos Struct 271: 114071. https://doi.org/10.1016/j.compstruct.2021.114071 doi: 10.1016/j.compstruct.2021.114071
    [59] Basoglu F, Kefal A, Zerin Z, et al. (2022) Peridynamic modeling of toughening enhancement in unidirectional fiber-reinforced composites with micro-cracks. Compos Struct 297: 115950. https://doi.org/10.1016/j.compstruct.2022.115950 doi: 10.1016/j.compstruct.2022.115950
    [60] Li FS, Gao WC, Liu W, et al. (2023) Coupling of single-layer material point peridynamics and finite element method for analyzing the fracture behavior of composite laminates. Int J Solids Struct 283: 112495. https://doi.org/10.1016/j.ijsolstr.2023.112495 doi: 10.1016/j.ijsolstr.2023.112495
    [61] Yang Z, Zheng S, Han F, et al. (2023) An efficient peridynamics-based statistical multiscale method for fracture in composite structures. Int J Mech Sci 259: 108611. https://doi.org/10.1016/j.ijmecsci.2023.108611 doi: 10.1016/j.ijmecsci.2023.108611
    [62] Madenci E, Yaghoobi A, Barut A, et al. (2023) Peridynamics for failure prediction in variable angle tow composites. Arch Appl Mech 93: 93–107. https://doi.org/10.1007/s00419-022-02216-z doi: 10.1007/s00419-022-02216-z
    [63] Yang X, Gao W, Liu W, et al. (2023) Peridynamics for out-of-plane damage analysis of composite laminates. Eng Comput. https://doi.org/10.1007/s00366-023-01903-x doi: 10.1007/s00366-023-01903-x
    [64] Ma Q, Huang D, Wu L, et al. (2023) An extended peridynamic model for analyzing interfacial failure of composite materials with non-uniform discretization. Theor Appl Fract Mec 125: 103854. https://doi.org/10.1016/j.tafmec.2023.103854 doi: 10.1016/j.tafmec.2023.103854
    [65] Wang H, Tanaka S, Oterkus S, et al. (2024) Fracture mechanics investigation for 2D orthotropic materials by using ordinary state-based peridynamics. Compos Struct 329: 117757. https://doi.org/10.1016/j.compstruct.2023.117757 doi: 10.1016/j.compstruct.2023.117757
    [66] Kamensky D, Behzadinasab M, Foster JT, et al. (2019) Peridynamic modeling of frictional contact. J Peridyn Nonlocal Model 1: 107–121. https://doi.org/10.1007/s42102-019-00012-y doi: 10.1007/s42102-019-00012-y
    [67] Lu W, Oterkus S, Oterkus E (2020) Peridynamic modelling of hertzian indentation fracture. Procedia Struct Integr 28: 1559–1571. https://doi.org/10.1016/j.prostr.2020.10.128 doi: 10.1016/j.prostr.2020.10.128
    [68] Lu W, Oterkus S, Oterkus E, et al. (2021) Modelling of cracks with frictional contact based on peridynamics. Theor Appl Fract Mec 116: 103082. https://doi.org/10.1016/j.tafmec.2021.103082 doi: 10.1016/j.tafmec.2021.103082
    [69] Wang L, Sheng X, Luo J (2022) A peridynamic frictional contact model for contact fatigue crack initiation and propagation. Eng Fract Mech 264: 108338. https://doi.org/10.1016/j.engfracmech.2022.108338 doi: 10.1016/j.engfracmech.2022.108338
    [70] Zhang H, Zhang X, Liu Y (2022) A peridynamic model for contact problems involving fracture. Eng Fract Mech 267: 108436. https://doi.org/10.1016/j.engfracmech.2022.108436 doi: 10.1016/j.engfracmech.2022.108436
    [71] Mohajerani S, Wang G (2022) "Touch–aware" contact model for peridynamics modeling of granular systems. Int J Numer Meth Eng 123: 3850–3878. https://doi.org/10.1002/nme.7000 doi: 10.1002/nme.7000
    [72] Guan J, Yan X, Guo L (2023) An adaptive contact model involving friction based on peridynamics. Eur J Mech A-Solid 100: 104966. https://doi.org/10.1016/j.euromechsol.2023.104966 doi: 10.1016/j.euromechsol.2023.104966
    [73] Zhu F, Zhao JD, Ballarini R, et al. (2022) Peridynamic modeling of stochastic fractures in bolted glass plates. Mech Res Commun 122: 103890. https://doi.org/10.1016/j.mechrescom.2022.103890 doi: 10.1016/j.mechrescom.2022.103890
    [74] Naumenko K, Pander M, Würkner M (2022) Damage patterns in float glass plates: Experiments and peridynamics analysis. Theor Appl Fract Mec 118: 103264. https://doi.org/10.1016/j.tafmec.2022.103264 doi: 10.1016/j.tafmec.2022.103264
    [75] Rokkam S, Gunzburger M, Brothers M, et al. (2019) A nonlocal peridynamics modeling approach for corrosion damage and crack propagation. Theor Appl Fract Mec 101: 373–387. https://doi.org/10.1016/j.tafmec.2019.03.010 doi: 10.1016/j.tafmec.2019.03.010
    [76] Nguyen CT, Oterkus S (2021) Brittle damage prediction for corroded stiffened structures under static loading conditions by using peridynamics. Ships Offshore Struc 16: 153–170. https://doi.org/10.1080/17445302.2021.1884811 doi: 10.1080/17445302.2021.1884811
    [77] Karpenko O, Oterkus S, Oterkus E (2022) Titanium alloy corrosion fatigue crack growth rates prediction: Peridynamics based numerical approach. Int J Fatigue 162: 107023. https://doi.org/10.1016/j.ijfatigue.2022.107023 doi: 10.1016/j.ijfatigue.2022.107023
    [78] Jafarzadeh S, Zhao J, Shakouri M, et al. (2022) A peridynamic model for crevice corrosion damage. Electrochim Acta 401: 139512. https://doi.org/10.1016/j.electacta.2021.139512 doi: 10.1016/j.electacta.2021.139512
    [79] Tan C, Qian S, Zhang J (2022) Crack extension analysis of atmospheric stress corrosion based on peridynamics. Appl Sci 12: 10008. https://doi.org/10.3390/app121910008 doi: 10.3390/app121910008
    [80] Wang H, Dong H, Cai Z, et al. (2023) Corrosion fatigue crack growth in stainless steels: A peridynamic study. Int J Mech Sci 254: 108445. https://doi.org/10.1016/j.ijmecsci.2023.108445 doi: 10.1016/j.ijmecsci.2023.108445
    [81] Zhou XP, Du EB, Wang YT (2023) Chemo-mechanical coupling bond-based peridynamic model for electrochemical corrosion and stress chemical corrosion. Eng Anal Bound Elem 151: 360–369. https://doi.org/10.1016/j.enganabound.2023.03.013 doi: 10.1016/j.enganabound.2023.03.013
    [82] Basoglu MF, Zerin Z, Kefal A, et al. (2019) Peridynamic model for deflecting propagation of cracks with micro-cracks. Comp Mater Sci 162: 33–46. https://doi.org/10.1016/j.commatsci.2019.02.032 doi: 10.1016/j.commatsci.2019.02.032
    [83] Karpenko O, Oterkus S, Oterkus E (2020) Influence of different types of small-size defects on propagation of macro-cracks in brittle materials. J Peridyn Nonlocal Model 2: 289–316. https://doi.org/10.1007/s42102-020-00032-z doi: 10.1007/s42102-020-00032-z
    [84] Rahimi N, Kefal A, Yildiz M, et al. (2020) An ordinary state-based peridynamic model for toughness enhancement of brittle materials through drilling stop-holes. Int J Mech Sci 182: 105773. https://doi.org/10.1016/j.ijmecsci.2020.105773 doi: 10.1016/j.ijmecsci.2020.105773
    [85] Candas A, Oterkus E, Irmak CE (2021) Dynamic crack propagation and its interaction with micro-cracks in an impact problem. J Eng Mater-T ASME 143: 011003. https://doi.org/10.1115/1.4047746 doi: 10.1115/1.4047746
    [86] Wang J, Yu Y, Mu Z, et al. (2022) Peridynamic meso-scale modeling for degradation in transverse mechanical properties of composites with micro-void defects. Acta Mech Solida Sin 35: 813–823. https://doi.org/10.1007/s10338-022-00329-0 doi: 10.1007/s10338-022-00329-0
    [87] Ozdemir M, Imachi M, Tanaka S, et al. (2022) A comprehensive investigation on macro-micro crack interactions in functionally graded materials using ordinary-state based peridynamics. Compos Struct 287: 115299. https://doi.org/10.1016/j.compstruct.2022.115299 doi: 10.1016/j.compstruct.2022.115299
    [88] Cheng Z, Wang Z, Luo Z (2019) Dynamic fracture analysis for shale material by peridynamic modelling. CMES-Comp Model Eng 118: 509–527. https://doi.org/10.31614/cmes.2019.04339 doi: 10.31614/cmes.2019.04339
    [89] Imachi M, Tanaka S, Ozdemir M, et al. (2020) Dynamic crack arrest analysis by ordinary state-based peridynamics. Int J Fracture 221: 155–169. https://doi.org/10.1007/s10704-019-00416-3 doi: 10.1007/s10704-019-00416-3
    [90] Butt SN, Meschke G (2021) Peridynamic analysis of dynamic fracture: influence of peridynamic horizon, dimensionality and specimen size. Comput Mech 67: 1719–1745. https://doi.org/10.1007/s00466-021-02017-1 doi: 10.1007/s00466-021-02017-1
    [91] Yang Y, Liu Y (2022) Analysis of dynamic crack propagation in two-dimensional elastic bodies by coupling the boundary element method and the bond-based peridynamics. Comput Method Appl M 399: 115339. https://doi.org/10.1016/j.cma.2022.115339 doi: 10.1016/j.cma.2022.115339
    [92] Imachi M, Tanaka S, Bui TQ, et al. (2019) A computational approach based on ordinary state-based peridynamics with new transition bond for dynamic fracture analysis. Eng Fract Mech 206: 359–374. https://doi.org/10.1016/j.engfracmech.2018.11.054 doi: 10.1016/j.engfracmech.2018.11.054
    [93] Jiang XW, Wang H, Guo S (2019) Peridynamic open-hole tensile strength prediction of fiber-reinforced composite laminate using energy-based failure criteria. Adv Mater Sci Eng 2019: 7694081. https://doi.org/10.1155/2019/7694081 doi: 10.1155/2019/7694081
    [94] Karpenko O, Oterkus S, Oterkus E (2020) An in-depth investigation of critical stretch based failure criterion in ordinary state-based peridynamics. Int J Fracture 226: 97–119. https://doi.org/10.1007/s10704-020-00481-z doi: 10.1007/s10704-020-00481-z
    [95] Silling SA (2021) Kinetics of failure in an elastic peridynamic material. J Peridyn Nonlocal Model 3: 1–23. https://doi.org/10.1007/s42102-020-00031-0 doi: 10.1007/s42102-020-00031-0
    [96] Wang Y, Han F, Lubineau G (2021) Strength-induced peridynamic modeling and simulation of fractures in brittle materials. Comput Method Appl M 374: 113558. https://doi.org/10.1016/j.cma.2020.113558 doi: 10.1016/j.cma.2020.113558
    [97] Kumagai T (2021) A parameter to represent a local deformation mode and a fracture criterion based on the parameter in ordinary-state based peridynamics. Int J Solids Struct 217: 40–47. https://doi.org/10.1016/j.ijsolstr.2021.01.025 doi: 10.1016/j.ijsolstr.2021.01.025
    [98] Ignatiev MO, Petrov YV, Kazarinov NA, et al. (2023) Peridynamic formulation of the mean stress and incubation time fracture criteria and its correspondence to the classical griffith's approach. Continuum Mech Therm 35: 1523–1534. https://doi.org/10.1007/s00161-022-01159-8 doi: 10.1007/s00161-022-01159-8
    [99] Ma X, Xu J, Liu L, et al. (2020) A 2D peridynamic model for fatigue crack initiation of railheads. Int J Fatigue 135: 105536. https://doi.org/10.1016/j.ijfatigue.2020.105536 doi: 10.1016/j.ijfatigue.2020.105536
    [100] Han J, Chen W (2020) An ordinary state-based peridynamic model for fatigue cracking of ferrite and pearlite wheel material. Appl Sci 10: 4325. https://doi.org/10.3390/app10124325 doi: 10.3390/app10124325
    [101] Nguyen CT, Oterkus S, Oterkus E (2021) Peridynamic model for predicting fatigue crack growth under overload and underload. Theor Appl Fract Mec 116: 103115. https://doi.org/10.1016/j.tafmec.2021.103115 doi: 10.1016/j.tafmec.2021.103115
    [102] Hong K, Oterkus S, Oterkus E (2021) Peridynamic analysis of fatigue crack growth in fillet welded joints. Ocean Eng 235: 109348. https://doi.org/10.1016/j.oceaneng.2021.109348 doi: 10.1016/j.oceaneng.2021.109348
    [103] Bang DJ, Ince A, Oterkus E, et al. (2021) Crack growth modeling and simulation of a peridynamic fatigue model based on numerical and analytical solution approaches. Theor Appl Fract Mec 114: 103026. https://doi.org/10.1016/j.tafmec.2021.103026 doi: 10.1016/j.tafmec.2021.103026
    [104] Zhu N, Kochan C, Oterkus E, et al. (2021) Fatigue analysis of polycrystalline materials using peridynamic theory with a novel crack tip detection algorithm. Ocean Eng 222: 108572. https://doi.org/10.1016/j.oceaneng.2021.108572 doi: 10.1016/j.oceaneng.2021.108572
    [105] Nguyen CT, Oterkus S, Oterkus E (2021) An energy-based peridynamic model for fatigue cracking. Eng Fract Mech 241: 107373. https://doi.org/10.1016/j.engfracmech.2020.107373 doi: 10.1016/j.engfracmech.2020.107373
    [106] Liu B, Bao R, Sui F (2021) A fatigue damage-cumulative model in peridynamics. Chinese J Aeronaut 34: 329–342. https://doi.org/10.1016/j.cja.2020.09.046 doi: 10.1016/j.cja.2020.09.046
    [107] Li H, Hao Z, Li P, et al. (2022) A low cycle fatigue cracking simulation method of non-ordinary state-based peridynamics. Int J Fatigue 156: 106638. https://doi.org/10.1016/j.ijfatigue.2021.106638 doi: 10.1016/j.ijfatigue.2021.106638
    [108] Hamarat M, Papaelias M, Kaewunruen S (2022) Fatigue damage assessment of complex railway turnout crossings via peridynamics-based digital twin. Sci Rep 12: 14377. https://doi.org/10.1038/s41598-022-18452-w doi: 10.1038/s41598-022-18452-w
    [109] Zhang Y, Madenci E (2022) A coupled peridynamic and finite element approach in ANSYS framework for fatigue life prediction based on the kinetic theory of fracture. J Peridyn Nonlocal Model 4: 51–87. https://doi.org/10.1007/s42102-021-00055-0 doi: 10.1007/s42102-021-00055-0
    [110] Cao X, Qin X, Li H, et al. (2022) Non-ordinary state-based peridynamic fatigue modelling of composite laminates with arbitrary fibre orientation. Theor Appl Fract Mec 120: 103393. https://doi.org/10.1016/j.tafmec.2022.103393 doi: 10.1016/j.tafmec.2022.103393
    [111] Cruz AL, Donadon MV (2022) A mixed-mode energy-based elastoplastic fatigue induced damage model for the peridynamic theory. Eng Fract Mech 275: 108834. https://doi.org/10.1016/j.engfracmech.2022.108834 doi: 10.1016/j.engfracmech.2022.108834
    [112] Bang DJ, Ince A (2022) Integration of a peridynamic fatigue model with two-parameter crack driving force. Eng Comput 38: 2859–2877. https://doi.org/10.1007/s00366-022-01619-4 doi: 10.1007/s00366-022-01619-4
    [113] Nguyen CT, Oterkus S, Oterkus E, et al. (2023) Fatigue crack prediction in ceramic material and its porous media by using peridynamics. Procedia Struct Integr 46: 80–86. https://doi.org/10.1016/j.prostr.2023.06.014 doi: 10.1016/j.prostr.2023.06.014
    [114] Wang H, Tanaka S, Oterkus S, et al. (2023) Study on two-dimensional mixed-mode fatigue crack growth employing ordinary state-based peridynamics. Theor Appl Fract Mec 124: 103761. https://doi.org/10.1016/j.tafmec.2023.103761 doi: 10.1016/j.tafmec.2023.103761
    [115] Ni T, Zaccariotto M, Galvanetto U (2023) A peridynamic approach to simulating fatigue crack propagation in composite materials. Philos T R Soc A 381: 20210217. https://doi.org/10.1098/rsta.2021.0217 doi: 10.1098/rsta.2021.0217
    [116] Altay U, Dorduncu M, Kadioglu S (2023) An improved peridynamic approach for fatigue analysis of two dimensional functionally graded materials. Theor Appl Fract Mec 128: 104152. https://doi.org/10.1016/j.tafmec.2023.104152 doi: 10.1016/j.tafmec.2023.104152
    [117] Chen Y, Yang Y, Liu Y (2023) Fatigue crack growth analysis of hydrogel by using peridynamics. Int J Fract 244: 113–123. https://doi.org/10.1007/s10704-023-00722-x doi: 10.1007/s10704-023-00722-x
    [118] Cheng Z, Jia X, Tang J, et al. (2023) Peridynamic study of fatigue failure of engineered cementitious composites. Eng Fract Mech 293: 109704. https://doi.org/10.1016/j.engfracmech.2023.109704 doi: 10.1016/j.engfracmech.2023.109704
    [119] Zhang Z, Chen Z (2024) A peridynamic model for structural fatigue crack propagation analysis under spectrum loadings. Int J Fatigue 181: 108129. https://doi.org/10.1016/j.ijfatigue.2023.108129 doi: 10.1016/j.ijfatigue.2023.108129
    [120] Gao Y, Oterkus S (2019) Nonlocal numerical simulation of low Reynolds number laminar fluid motion by using peridynamic differential operator. Ocean Eng 179: 135–158. https://doi.org/10.1016/j.oceaneng.2019.03.035 doi: 10.1016/j.oceaneng.2019.03.035
    [121] Mikata Y (2021) Peridynamics for fluid mechanics and acoustics. Acta Mech 232: 3011–3032. https://doi.org/10.1007/s00707-021-02947-0 doi: 10.1007/s00707-021-02947-0
    [122] Nguyen CT, Oterkus S, Oterkus E, et al. (2021) Peridynamic model for incompressible fluids based on eulerian approach. Ocean Eng 239: 109815. https://doi.org/10.1016/j.oceaneng.2021.109815 doi: 10.1016/j.oceaneng.2021.109815
    [123] Kim KH, Bhalla AP, Griffith BE (2023) An immersed peridynamics model of fluid-structure interaction accounting for material damage and failure. J Comput Phys 493: 112466. https://doi.org/10.1016/j.jcp.2023.112466 doi: 10.1016/j.jcp.2023.112466
    [124] Wang B, Oterkus S, Oterkus E (2023) Nonlocal modelling of multiphase flow wetting and thermo-capillary flow by using peridynamic differential operator. Eng Comput. https://doi.org/10.1007/s00366-023-01888-7
    [125] Cheng ZQ, Sui ZB, Yin H, et al. (2019) Studies of dynamic fracture in functionally graded materials using peridynamic modeling with composite weighted bond. Theor Appl Fract Mec 103: 102242. https://doi.org/10.1016/j.tafmec.2019.102242 doi: 10.1016/j.tafmec.2019.102242
    [126] Cheng Z, Sui Z, Yin H, et al. (2019) Numerical simulation of dynamic fracture in functionally graded materials using peridynamic modeling with composite weighted bonds. Eng Anal Bound Elem 105: 31–46. https://doi.org/10.1016/j.enganabound.2019.04.005 doi: 10.1016/j.enganabound.2019.04.005
    [127] Dorduncu M (2020) Stress analysis of sandwich plates with functionally graded cores using peridynamic differential operator and refined zigzag theory. Thin Wall Struct 146: 106468. https://doi.org/10.1016/j.tws.2019.106468 doi: 10.1016/j.tws.2019.106468
    [128] Ozdemir M, Kefal A, Imachi M, et al. (2020) Dynamic fracture analysis of functionally graded materials using ordinary state-based peridynamics. Compos Struct 244: 112296. https://doi.org/10.1016/j.compstruct.2020.112296 doi: 10.1016/j.compstruct.2020.112296
    [129] Yang Z, Oterkus E, Oterkus S (2020) A state-based peridynamic formulation for functionally graded euler-bernoulli beams. CMES-Comp Model Eng 124: 527–544. https://doi.org/10.32604/cmes.2020.010804 doi: 10.32604/cmes.2020.010804
    [130] Yang Z, Oterkus E, Oterkus S (2020) Peridynamic mindlin plate formulation for functionally graded materials. J Compos Sci 4: 76. https://doi.org/10.3390/jcs4020076 doi: 10.3390/jcs4020076
    [131] Yang Z, Oterkus E, Oterkus S (2021) Analysis of functionally graded timoshenko beams by using peridynamics. J Peridyn Nonlocal Model 3: 148–166. https://doi.org/10.1007/s42102-020-00044-9 doi: 10.1007/s42102-020-00044-9
    [132] Yang Z, Oterkus E, Oterkus S (2021) A state-based peridynamic formulation for functionally graded Kirchhoff plates. Math Mech Solids 26: 530–551. https://doi.org/10.1177/1081286520963383 doi: 10.1177/1081286520963383
    [133] Yang Z, Oterkus E, Oterkus S (2021) Peridynamic formulation for higher order functionally graded beams. Thin Wall Struct 160: 107343. https://doi.org/10.1016/j.tws.2020.107343 doi: 10.1016/j.tws.2020.107343
    [134] Yang Z, Oterkus E, Oterkus S (2021) Peridynamic modelling of higher order functionally graded plates. Math Mech Solids 26: 1737–1759. https://doi.org/10.1177/10812865211004671 doi: 10.1177/10812865211004671
    [135] He D, Huang D, Jiang D (2021) Modeling and studies of fracture in functionally graded materials under thermal shock loading using peridynamics. Theor Appl Fract Mec 111: 102852. https://doi.org/10.1016/j.tafmec.2020.102852 doi: 10.1016/j.tafmec.2020.102852
    [136] Dorduncu M, Olmus I, Rabczuk T (2022) A peridynamic approach for modeling of two dimensional functionally graded plates. Compos Struct 279: 114743. https://doi.org/10.1016/j.compstruct.2021.114743 doi: 10.1016/j.compstruct.2021.114743
    [137] Wang H, Tanaka S, Oterkus S, et al. (2022) Fracture parameter investigations of functionally graded materials by using ordinary state based peridynamics. Eng Anal Bound Elem 139: 180–191. https://doi.org/10.1016/j.enganabound.2022.03.005 doi: 10.1016/j.enganabound.2022.03.005
    [138] Candas A, Oterkus E, Imrak CE (2023) Peridynamic simulation of dynamic fracture in functionally graded materials subjected to impact load. Eng Comput 39: 253–267. https://doi.org/10.1007/s00366-021-01540-2 doi: 10.1007/s00366-021-01540-2
    [139] Candas A, Oterkus E, Imrak CE (2023) Ordinary state-based peridynamic modelling of crack propagation in functionally graded materials with micro cracks under impact loading. Mech Adv Mater Struct. https://doi.org/10.1080/15376494.2023.2287180
    [140] Jiang X, Fang G, Liu S, et al. (2024) Fracture analysis of orthotropic functionally graded materials using element-based peridynamics. Eng Fract Mech 297: 109886. https://doi.org/10.1016/j.engfracmech.2024.109886 doi: 10.1016/j.engfracmech.2024.109886
    [141] Celik E, Oterkus E, Guven I (2019) Peridynamic simulations of nanoindentation tests to determine elastic modulus of polymer thin films. J Peridyn Nonlocal Model 1: 36–44. https://doi.org/10.1007/s42102-019-0005-4 doi: 10.1007/s42102-019-0005-4
    [142] Liu X, Bie Z, Wang J, et al. (2019) Investigation on fracture of pre-cracked single-layer graphene sheets. Comp Mater Sci 159: 365–375. https://doi.org/10.1016/j.commatsci.2018.12.014 doi: 10.1016/j.commatsci.2018.12.014
    [143] Liu X, He X, Sun L, et al. (2020) A chirality-dependent peridynamic model for the fracture analysis of graphene sheets. Mech Mater 149: 103535. https://doi.org/10.1016/j.mechmat.2020.103535 doi: 10.1016/j.mechmat.2020.103535
    [144] Silling SA, Fermen-Coker M (2021) Peridynamic model for microballistic perforation of multilayer graphene. Theor Appl Fract Mec 113: 102947. https://doi.org/10.1016/j.tafmec.2021.102947 doi: 10.1016/j.tafmec.2021.102947
    [145] Torkaman-Asadi MA, Kouchakzadeh MA (2023) Fracture analysis of pre-cracked graphene layer sheets using peridynamic theory. Int J Fracture 243: 229–245. https://doi.org/10.1007/s10704-023-00744-5 doi: 10.1007/s10704-023-00744-5
    [146] Liu X, He X, Oterkus E, et al. (2023) Peridynamic simulation of fracture in polycrystalline graphene. J Peridyn Nonlocal Model 5: 260–274. https://doi.org/10.1007/s42102-021-00073-y doi: 10.1007/s42102-021-00073-y
    [147] Silling SA, D'Elia M, Yu Y, et al. (2023) Peridynamic model for single-layer graphene obtained from coarse-grained bond forces. J Peridyn Nonlocal Model 5: 183–204. https://doi.org/10.1007/s42102-021-00075-w doi: 10.1007/s42102-021-00075-w
    [148] Liu X, Yu P, Zheng B, et al. (2024) Prediction of Mechanical and fracture properties of graphene via peridynamics. Int J Mech Sci 266: 108914. https://doi.org/10.1016/j.ijmecsci.2023.108914 doi: 10.1016/j.ijmecsci.2023.108914
    [149] Liu X, Bie Z, Yu P, et al. (2024) Peridynamics for the fracture study on multi-layer graphene sheets. Compos Struct 332: 117926. https://doi.org/10.1016/j.compstruct.2024.117926 doi: 10.1016/j.compstruct.2024.117926
    [150] Xia W, Galadima YK, Oterkus E, et al. (2019) Representative volume element homogenisation of a composite material by using bond-based peridynamics. J Compos Biodegrad Polym 7: 51–56. https://doi.org/10.12974/2311-8717.2019.07.7 doi: 10.12974/2311-8717.2019.07.7
    [151] Diyaroglu C, Madenci E, Phan N (2019) Peridynamic homogenization of microstructures with orthotropic constituents in a finite element framework. Compos Struct 227: 111334. https://doi.org/10.1016/j.compstruct.2019.111334 doi: 10.1016/j.compstruct.2019.111334
    [152] Buryachenko VA (2019) Computational homogenization in linear elasticity of peristatic periodic structure composites. Math Mech Solids 24: 2497–2525. https://doi.org/10.1177/1081286518768039 doi: 10.1177/1081286518768039
    [153] Galadima YK, Oterkus E, Oterkus S (2020) Investigation of the effect of shape of inclusions on homogenized properties by using peridynamics. Procedia Struct Integr 28: 1094–1105. https://doi.org/10.1016/j.prostr.2020.11.124 doi: 10.1016/j.prostr.2020.11.124
    [154] Xia W, Oterkus E, Oterkus S (2020) Peridynamic modelling of periodic microstructured materials. Procedia Struct Integr 28: 820–828. https://doi.org/10.1016/j.prostr.2020.10.096 doi: 10.1016/j.prostr.2020.10.096
    [155] Eriksson K, Stenströ m C (2021) Homogenization of the 1D peri-static/dynamic bar with triangular micromodulus. J Peridyn Nonlocal Model 3: 85–112. https://doi.org/10.1007/s42102-020-00042-x doi: 10.1007/s42102-020-00042-x
    [156] Xia W, Oterkus E, Oterkus S (2021) 3-Dimensional bond-based peridynamic representative volume element homogenisation. Phys Mesomech 24: 45–51. https://doi.org/10.1134/S1029959921050052 doi: 10.1134/S1029959921050052
    [157] Xia W, Oterkus E, Oterkus S (2021) Ordinary state based peridynamic homogenization of periodic micro-structured materials. Theor Appl Fract Mec 113: 102960. https://doi.org/10.1016/j.tafmec.2021.102960 doi: 10.1016/j.tafmec.2021.102960
    [158] Buryachenko VA (2022) Computational homogenization in linear peridynamic micromechanics of periodic structure CMs, In: Buryachenko VA, Local and Nonlocal Micromechanics of Heterogeneous Materials, Cham: Springer, 849–899. https://doi.org/10.1007/978-3-030-81784-8_19
    [159] Li J, Wang Q, Li X, et al. (2022) Homogenization of periodic microstructure based on representative volume element using improved bond-based peridynamics. Eng Anal Bound Elem 143: 152–162. https://doi.org/10.1016/j.enganabound.2022.06.005 doi: 10.1016/j.enganabound.2022.06.005
    [160] Galadima YK, Oterkus S, Oterkus E, et al. (2024) Effect of phase contrast and inclusion shape on the effective response of viscoelastic composites using peridynamic computational homogenization theory. Mech Adv Mater Struct 31: 155–163. https://doi.org/10.1080/15376494.2023.2218364 doi: 10.1080/15376494.2023.2218364
    [161] Galadima YK, Oterkus S, Oterkus E, et al. (2023) A nonlocal method to compute effective properties of viscoelastic composite materials based on peridynamic computational homogenization theory. Compos Struct 319: 117147. https://doi.org/10.1016/j.compstruct.2023.117147 doi: 10.1016/j.compstruct.2023.117147
    [162] Galadima YK, Xia W, Oterkus E, et al. (2023) Peridynamic computational homogenization theory for materials with evolving microstructure and damage. Eng Comput 39: 2945–2957. https://doi.org/10.1007/s00366-022-01696-5 doi: 10.1007/s00366-022-01696-5
    [163] Galadima YK, Xia W, Oterkus E, et al. (2023) A computational homogenization framework for non-ordinary state-based peridynamics. Eng Comput 39: 461–487. https://doi.org/10.1007/s00366-021-01582-6 doi: 10.1007/s00366-021-01582-6
    [164] Buryachenko VA (2024) Generalized Mori-Tanaka approach in peridynamic micromechanics of multilayered composites of random structure. J Peridyn Nonlocal Model: 1–24. https://doi.org/10.1007/s42102-023-00114-8 doi: 10.1007/s42102-023-00114-8
    [165] Qi J, Li C, Tie Y, et al. (2024) A peridynamic-based homogenization method to compute effective properties of periodic microstructure. Comp Part Mech. https://doi.org/10.1007/s40571-023-00698-4 doi: 10.1007/s40571-023-00698-4
    [166] Oterkus S, Wang B, Oterkus E (2020) Effect of horizon shape in peridynamics. Procedia Struct Integr 28: 418–429. https://doi.org/10.1016/j.prostr.2020.10.049 doi: 10.1016/j.prostr.2020.10.049
    [167] Vazic B, Diyaroglu C, Oterkus E, et al. (2020) Family member search algorithms for peridynamic analysis. J Peridyn Nonlocal Model 2: 59–84. https://doi.org/10.1007/s42102-019-00027-5 doi: 10.1007/s42102-019-00027-5
    [168] Wang B, Oterkus S, Oterkus E (2023) Determination of horizon size in state-based peridynamics. Continuum Mech Therm 35: 705–728. https://doi.org/10.1007/s00161-020-00896-y doi: 10.1007/s00161-020-00896-y
    [169] Song Y, Yu H, Kang Z (2019) Numerical study on ice fragmentation by impact based on non-ordinary state-based peridynamics. J Micromech Mol Phys 4: 1850006. https://doi.org/10.1142/S2424913018500066 doi: 10.1142/S2424913018500066
    [170] Ye LY, Guo CY, Wang C, et al. (2020) Peridynamic solution for submarine surfacing through ice. Ships Offshore Struc 15: 535–549. https://doi.org/10.1080/17445302.2019.1661626 doi: 10.1080/17445302.2019.1661626
    [171] Vazic B, Oterkus E, Oterkus S (2020) In-plane and out-of-plane failure of an ice sheet using peridynamics. J Mech 36: 265–271. https://doi.org/10.1017/jmech.2019.65 doi: 10.1017/jmech.2019.65
    [172] Liu R, Yan J, Li S (2020) Modeling and simulation of ice–water interactions by coupling peridynamics with updated Lagrangian particle hydrodynamics. Comp Part Mech 7: 241–255. https://doi.org/10.1007/s40571-019-00268-7 doi: 10.1007/s40571-019-00268-7
    [173] Lu W, Li M, Vazic B, et al. (2020) Peridynamic modelling of fracture in polycrystalline ice. J Mech 36: 223–234. https://doi.org/10.1017/jmech.2019.61 doi: 10.1017/jmech.2019.61
    [174] Liu R, Xue Y, Han D, et al. (2021) Studies on model-scale ice using micro-potential-based peridynamics. Ocean Eng 221: 108504. https://doi.org/10.1016/j.oceaneng.2020.108504 doi: 10.1016/j.oceaneng.2020.108504
    [175] Guo CY, Han K, Wang C, et al. (2022) Numerical modelling of the dynamic ice-milling process and structural response of a propeller blade profile with state-based peridynamics. Ocean Eng 264: 112457. https://doi.org/10.1016/j.oceaneng.2022.112457 doi: 10.1016/j.oceaneng.2022.112457
    [176] Zhang Y, Wang Q, Oterkus S, et al. (2023) Numerical investigation of ice plate fractures upon rigid ball impact. Ocean Eng 287: 115824. https://doi.org/10.1016/j.oceaneng.2023.115824 doi: 10.1016/j.oceaneng.2023.115824
    [177] Song Y, Li S, Li Y (2023) Peridynamic modeling and simulation of thermo-mechanical fracture in inhomogeneous ice. Eng Comput 39: 575–606. https://doi.org/10.1007/s00366-022-01616-7 doi: 10.1007/s00366-022-01616-7
    [178] Xiong W, Wang C, Zhang Y, et al. (2023) Numerical simulation of impact process between spherical ice and a rigid plate based on the ordinary state-based peridynamics. Ocean Eng 288: 116191. https://doi.org/10.1016/j.oceaneng.2023.116191 doi: 10.1016/j.oceaneng.2023.116191
    [179] Zhang Y, Zhang G, Tao L, et al. (2023) Study and discussion on computational efficiency of ice–structure interaction by peridynamic. J Mar Sci Eng 11: 1154. https://doi.org/10.3390/jmse11061154 doi: 10.3390/jmse11061154
    [180] Rivera J, Berjikian J, Ravinder R, et al. (2019) Glass fracture upon ballistic impact: new insights from peridynamics simulations. Front Mat 6: 239. https://doi.org/10.3389/fmats.2019.00239 doi: 10.3389/fmats.2019.00239
    [181] Kazemi SR (2020) Plastic deformation due to high-velocity impact using ordinary state-based peridynamic theory. Int J Impact Eng 137: 103470. https://doi.org/10.1016/j.ijimpeng.2019.103470 doi: 10.1016/j.ijimpeng.2019.103470
    [182] Ha YD (2020) An extended ghost interlayer model in peridynamic theory for high-velocity impact fracture of laminated glass structures. Comput Math Appl 80: 744–761. https://doi.org/10.1016/j.camwa.2020.05.003 doi: 10.1016/j.camwa.2020.05.003
    [183] Altenbach H, Larin O, Naumenko K, et al. (2022) Elastic plate under low velocity impact: Classical continuum mechanics vs peridynamics analysis. AIMS Mater Sci 9: 702–718. 10.3934/matersci.2022043
    [184] Zheng J, Shen F, Gu X, et al. (2022) Simulating failure behavior of reinforced concrete T-beam under impact loading by using peridynamics. Int J Impact Eng 165: 104231. https://doi.org/10.1016/j.ijimpeng.2022.104231 doi: 10.1016/j.ijimpeng.2022.104231
    [185] Wu L, Huang D (2022) Energy dissipation study in impact: From elastic and elastoplastic analysis in peridynamics. Int J Solids Struct 234: 111279. https://doi.org/10.1016/j.ijsolstr.2021.111279 doi: 10.1016/j.ijsolstr.2021.111279
    [186] Jafaraghaei Y, Yu T, Bui TQ (2022) Peridynamics simulation of impact failure in glass plates. Theor Appl Fract Mec 121: 103424. https://doi.org/10.1016/j.tafmec.2022.103424 doi: 10.1016/j.tafmec.2022.103424
    [187] Candas A, Oterkus E, Imrak CE (2024) Modelling and analysis of wire ropes subjected to transverse impact load using peridynamic theory. J Fac Eng Archit Gaz 39: 847–858.
    [188] Xu Y, Zhu P, Wang W (2023) Study of multiple impact behaviors of CFRP based on peridynamics. Compos Struct 322: 117380. https://doi.org/10.1016/j.compstruct.2023.117380 doi: 10.1016/j.compstruct.2023.117380
    [189] Zhang J, Liu X, Yang QS (2023) A unified elasto-viscoplastic peridynamics model for brittle and ductile fractures under high-velocity impact loading. Int J Impact Eng 173: 104471. https://doi.org/10.1016/j.ijimpeng.2022.104471 doi: 10.1016/j.ijimpeng.2022.104471
    [190] Lu D, Song Z, Wang G, et al. (2023) Viscoelastic peridynamic fracture analysis for concrete beam with initial crack under impact. Theor Appl Fract Mec 124: 103757. https://doi.org/10.1016/j.tafmec.2023.103757 doi: 10.1016/j.tafmec.2023.103757
    [191] Cheng Z, Zhang J, Tang J, et al. (2024) Peridynamic model of ECC-concrete composite beam under impact loading. Eng Fract Mech 295: 109791. https://doi.org/10.1016/j.engfracmech.2023.109791 doi: 10.1016/j.engfracmech.2023.109791
    [192] Alebrahim R (2019) Peridynamic modeling of Lamb wave propagation in bimaterial plates. Compos Struct 214: 12–22. https://doi.org/10.1016/j.compstruct.2019.01.108 doi: 10.1016/j.compstruct.2019.01.108
    [193] Nguyen HA, Wang H, Tanaka S, et al. (2022) An in-depth investigation of bimaterial interface modeling using ordinary state-based peridynamics. J Peridyn Nonlocal Model 4: 112–138. https://doi.org/10.1007/s42102-021-00058-x doi: 10.1007/s42102-021-00058-x
    [194] Zhang H, Zhang X, Liu Y, et al. (2022) Peridynamic modeling of elastic bimaterial interface fracture. Comput Method Appl M 390: 114458. https://doi.org/10.1016/j.cma.2021.114458 doi: 10.1016/j.cma.2021.114458
    [195] Wu WP, Li ZZ, Chu X (2023) Peridynamics study on crack propagation and failure behavior in Ni/Ni3Al bi-material structure. Compos Struct 323: 117453. https://doi.org/10.1016/j.compstruct.2023.117453 doi: 10.1016/j.compstruct.2023.117453
    [196] Wang W, Zhu QZ, Ni T, et al. (2023) Numerical simulation of interfacial and subinterfacial crack propagation by using extended peridynamics. Comput Struct 279: 106971. https://doi.org/10.1016/j.compstruc.2023.106971 doi: 10.1016/j.compstruc.2023.106971
    [197] Masoumi A, Salehi M, Ravandi M (2023) Modified bond-based peridynamic approach for modeling the thermoviscoelastic response of bimaterials with viscoelastic–elastic interface. Eng Comput. https://doi.org/10.1007/s00366-023-01882-z
    [198] Liu S, Fang G, Liang J, et al. (2020) A new type of peridynamics: Element-based peridynamics. Comput Method Appl M 366: 113098. https://doi.org/10.1016/j.cma.2020.113098 doi: 10.1016/j.cma.2020.113098
    [199] Imachi M, Takei T, Ozdemir M, et al. (2021) A smoothed variable horizon peridynamics and its application to the fracture parameters evaluation. Acta Mech 232: 533–553. https://doi.org/10.1007/s00707-020-02863-9 doi: 10.1007/s00707-020-02863-9
    [200] Xia Y, Meng X, Shen G, et al. (2021) Isogeometric analysis of cracks with peridynamics. Comput Method Appl M 377: 113700. https://doi.org/10.1016/j.cma.2021.113700 doi: 10.1016/j.cma.2021.113700
    [201] Javili A, McBride AT, Steinmann P (2021) A geometrically exact formulation of peridynamics. Theor Appl Fract Mec 111: 102850. https://doi.org/10.1016/j.tafmec.2020.102850 doi: 10.1016/j.tafmec.2020.102850
    [202] Yang Z, Oterkus E, Oterkus S, et al. (2023) Double horizon peridynamics. Math Mech Solids 28: 2531–2549. https://doi.org/10.1016/j.cma.2016.12.031 doi: 10.1016/j.cma.2016.12.031
    [203] Wang B, Oterkus S, Oterkus E (2023) Derivation of dual horizon state-based peridynamics formulation based on Euler-Lagrange equation. Continuum Mech Therm 35: 841–861. https://doi.org/10.1007/s00161-020-00915-y doi: 10.1007/s00161-020-00915-y
    [204] Chen H (2018) Bond-associated deformation gradients for peridynamic correspondence model. Mec Res Commun 90: 34–41. https://doi.org/10.1016/j.mechrescom.2018.04.004 doi: 10.1016/j.mechrescom.2018.04.004
    [205] Madenci E, Dorduncu M, Phan N, et al. (2019) Weak form of bond-associated non-ordinary state-based peridynamics free of zero energy modes with uniform or non-uniform discretization. Eng Fract Mech 218: 106613. https://doi.org/10.1016/j.engfracmech.2019.106613 doi: 10.1016/j.engfracmech.2019.106613
    [206] Jafarzadeh S, Mousavi F, Larios A, et al. (2022) A general and fast convolution-based method for peridynamics: Applications to elasticity and brittle fracture. Comput Method Appl M 392: 114666. https://doi.org/10.1016/j.cma.2022.114666 doi: 10.1016/j.cma.2022.114666
    [207] Gu X, Zhang Q, Madenci E (2019) Non-ordinary state-based peridynamic simulation of elastoplastic deformation and dynamic cracking of polycrystal. Eng Fract Mech 218: 106568. https://doi.org/10.1016/j.engfracmech.2019.106568 doi: 10.1016/j.engfracmech.2019.106568
    [208] Gur S, Sadat MR, Frantziskonis GN, et al. (2019) The effect of grain-size on fracture of polycrystalline silicon carbide: A multiscale analysis using a molecular dynamics-peridynamics framework. Comp Mater Sci 159: 341–348. https://doi.org/10.1016/j.commatsci.2018.12.038 doi: 10.1016/j.commatsci.2018.12.038
    [209] Li M, Oterkus S, Oterkus E (2020) Investigation of the effect of porosity on intergranular brittle fracture using peridynamics. Procedia Struct Integr 28: 472–481. https://doi.org/10.1016/j.prostr.2020.10.056 doi: 10.1016/j.prostr.2020.10.056
    [210] Li M, Lu W, Oterkus E, et al. (2020) Thermally-induced fracture analysis of polycrystalline materials by using peridynamics. Eng Anal Bound Elem 117: 167–187. https://doi.org/10.1016/j.enganabound.2020.04.016 doi: 10.1016/j.enganabound.2020.04.016
    [211] Zhu J, He X, Yang D, et al. (2021) A peridynamic model for fracture analysis of polycrystalline BCC-Fe associated with molecular dynamics simulation. Theor Appl Fract Mec 114: 102999. https://doi.org/10.1016/j.tafmec.2021.102999 doi: 10.1016/j.tafmec.2021.102999
    [212] Premchander A, Amin I, Oterkus S, et al. (2022) Peridynamic modelling of propagation of cracks in photovoltaic panels. Procedia Struct Integr 41: 305–316. https://doi.org/10.1016/j.prostr.2022.05.036 doi: 10.1016/j.prostr.2022.05.036
    [213] Chen Z, Niazi S, Bobaru F (2019) A peridynamic model for brittle damage and fracture in porous materials. Int J Rock Mech Min 122: 104059. https://doi.org/10.1016/j.ijrmms.2019.104059 doi: 10.1016/j.ijrmms.2019.104059
    [214] Shen S, Yang Z, Han F, et al. (2021) Peridynamic modeling with energy-based surface correction for fracture simulation of random porous materials. Theor Appl Fract Mec 114: 102987. https://doi.org/10.1016/j.tafmec.2021.102987 doi: 10.1016/j.tafmec.2021.102987
    [215] Ni T, Sanavia L, Zaccariotto M, et al. (2022) Fracturing dry and saturated porous media, peridynamics and dispersion. Comput Geotech 151: 104990. https://doi.org/10.1016/j.compgeo.2022.104990 doi: 10.1016/j.compgeo.2022.104990
    [216] Ozdemir M, Oterkus S, Oterkus E, et al. (2023) Evaluation of dynamic behaviour of porous media including micro-cracks by ordinary state-based peridynamics. Eng Comput 39: 61–79. https://doi.org/10.1007/s00366-021-01506-4 doi: 10.1007/s00366-021-01506-4
    [217] Shangkun S, Zihao Y, Junzhi C, et al. (2023) Dual-variable-horizon peridynamics and continuum mechanics coupling modeling and adaptive fracture simulation in porous materials. Eng Comput 39: 3207–3227. https://doi.org/10.1007/s00366-022-01730-6 doi: 10.1007/s00366-022-01730-6
    [218] Gu X, Li X, Xia X, et al. (2023) A robust peridynamic computational framework for predicting mechanical properties of porous quasi-brittle materials. Compos Struct 303: 116245. https://doi.org/10.1016/j.compstruct.2022.116245 doi: 10.1016/j.compstruct.2022.116245
    [219] Altay U, Dorduncu M, Kadioglu S (2024) Dual horizon peridynamic approach for studying the effect of porous media on the dynamic crack growth in brittle materials. J Peridyn Nonlocal Model. https://doi.org/10.1007/s42102-023-00115-7
    [220] Yan H, Sedighi M, Jivkov AP (2020) Peridynamics modelling of coupled water flow and chemical transport in unsaturated porous media. J Hydrol 591: 125648. https://doi.org/10.1016/j.jhydrol.2020.125648 doi: 10.1016/j.jhydrol.2020.125648
    [221] Katiyar A, Agrawal S, Ouchi H, et al. (2020) A general peridynamics model for multiphase transport of non-Newtonian compressible fluids in porous media. J Comput Phys 402: 109075. https://doi.org/10.1016/j.jcp.2019.109075 doi: 10.1016/j.jcp.2019.109075
    [222] Sun W, Fish J (2021) Coupling of non-ordinary state-based peridynamics and finite element method for fracture propagation in saturated porous media. Int J Numer Anal Met 45: 1260–1281. https://doi.org/10.1002/nag.3200 doi: 10.1002/nag.3200
    [223] Ni T, Pesavento F, Zaccariotto M, et al. (2021) Numerical simulation of forerunning fracture in saturated porous solids with hybrid fem/peridynamic model. Comput Geotech 133: 104024. https://doi.org/10.1016/j.compgeo.2021.104024 doi: 10.1016/j.compgeo.2021.104024
    [224] Galadima Y, Oterkus E, Oterkus S (2019) Two-dimensional Implementation of the coarsening method for linear peridynamics. AIMS Mater Sci 6: 252–275. 10.3934/matersci.2019.2.252 doi: 10.3934/matersci.2019.2.252
    [225] Galadima YK, Oterkus E, Oterkus S (2021) Model order reduction of linear peridynamic systems using static condensation. Math Mech Solids 26: 552–569. https://doi.org/10.1177/1081286520937045 doi: 10.1177/1081286520937045
    [226] Galadima YK, Oterkus E, Oterkus S (2022) Static condensation of peridynamic heat conduction model. Math Mech Solids 27: 2689–2714. https://doi.org/10.1177/10812865221081160 doi: 10.1177/10812865221081160
    [227] Dong H, Wang H, Jiang G, et al. (2023) An adaptive partitioned reduced order model of peridynamics for efficient static fracture simulation. Eng Anal Bound Elem 157: 191–206. https://doi.org/10.1016/j.enganabound.2023.09.007 doi: 10.1016/j.enganabound.2023.09.007
    [228] Zhao T, Shen Y (2023) A reduced-order peridynamic model for predicting nonlocal heat conduction in nanocomposites. Compos Struct 323: 117477. https://doi.org/10.1016/j.compstruct.2023.117477 doi: 10.1016/j.compstruct.2023.117477
    [229] Dai MJ, Tanaka S, Oterkus S, et al. (2020) Mixed-mode stress intensity factors evaluation for flat shells under in-plane loading employing ordinary state-based peridynamics. Theor Appl Fract Mec 112: 102841. https://doi.org/10.1016/j.tafmec.2020.102841 doi: 10.1016/j.tafmec.2020.102841
    [230] Zhu N, Oterkus E (2020) Calculation of stress intensity factor using displacement extrapolation method in peridynamic framework. J Mech 36: 235–243. https://doi.org/10.1017/jmech.2019.62 doi: 10.1017/jmech.2019.62
    [231] Le MQ (2023) Mode-Ⅰ stress intensity factor by peridynamic stresses. Theor Appl Fract Mec 123: 103721. https://doi.org/10.1016/j.tafmec.2022.103721 doi: 10.1016/j.tafmec.2022.103721
    [232] Wang H, Tanaka S, Oterkus S, et al. (2023) Evaluation of stress intensity factors under thermal effect employing domain integral method and ordinary state based peridynamic theory. Continuum Mech Therm 35: 1021–1040. https://doi.org/10.1007/s00161-021-01033-z doi: 10.1007/s00161-021-01033-z
    [233] Kefal A, Diyaroglu C, Yildiz M, et al. (2022) Coupling of peridynamics and inverse finite element method for shape sensing and crack propagation monitoring of plate structures. Comput Method Appl M 391: 114520. https://doi.org/10.1016/j.cma.2021.114520 doi: 10.1016/j.cma.2021.114520
    [234] Oterkus S, Oterkus E (2023) Peridynamic surface elasticity formulation based on modified core-shell model. J Peridyn Nonlocal Model 5: 229–240. https://doi.org/10.1007/s42102-022-00089-y doi: 10.1007/s42102-022-00089-y
    [235] Javili A, Ekiz E, McBride AT, et al. (2021) Continuum-kinematics-inspired peridynamics: Thermo-mechanical problems. Continuum Mech Therm 33: 2039–2063. https://doi.org/10.1007/s00161-021-01000-8 doi: 10.1007/s00161-021-01000-8
    [236] Pathrikar A, Tiwari SB, Arayil P, et al. (2021) Thermomechanics of damage in brittle solids: A peridynamics model. Theor Appl Fract Mec 112: 102880. https://doi.org/10.1016/j.tafmec.2020.102880 doi: 10.1016/j.tafmec.2020.102880
    [237] Wang B, Oterkus S, Oterkus E (2021) Thermal diffusion analysis by using dual horizon peridynamics. J Therm Stresses 44: 51–74. https://doi.org/10.1080/01495739.2020.1843378 doi: 10.1080/01495739.2020.1843378
    [238] Chen W, Gu X, Zhang Q, et al. (2021) A refined thermo-mechanical fully coupled peridynamics with application to concrete cracking. Eng Fract Mech 242: 107463. https://doi.org/10.1016/j.engfracmech.2020.107463 doi: 10.1016/j.engfracmech.2020.107463
    [239] Martowicz A, Kantor S, Pieczonka Ł, et al. (2021) Phase transformation in shape memory alloys: A numerical approach for thermomechanical modeling via peridynamics. Meccanica 56: 841–854. https://doi.org/10.1007/s11012-020-01276-1 doi: 10.1007/s11012-020-01276-1
    [240] Wang B, Oterkus S, Oterkus E (2022) Thermomechanical phase change peridynamic model for welding analysis. Eng Anal Bound Elem 140: 371–385. https://doi.org/10.1016/j.enganabound.2022.04.030 doi: 10.1016/j.enganabound.2022.04.030
    [241] Liu QQ, Wu D, Madenci E, et al. (2022) State-based peridynamics for thermomechanical modeling of fracture mechanisms in nuclear fuel pellets. Eng Fract Mech 276: 108917. https://doi.org/10.1016/j.engfracmech.2022.108917 doi: 10.1016/j.engfracmech.2022.108917
    [242] Zhang J, Guo L (2023) A fully coupled thermo-mechanical peridynamic model for cracking analysis of frozen rocks. Comput Geotech 164: 105809. https://doi.org/10.1016/j.compgeo.2023.105809 doi: 10.1016/j.compgeo.2023.105809
    [243] Sun WK, Yin BB, Akbar A, et al. (2024) A coupled 3D thermo-mechanical peridynamic model for cracking analysis of homogeneous and heterogeneous materials. Comput Method Appl M 418: 116577. https://doi.org/10.1016/j.cma.2023.116577 doi: 10.1016/j.cma.2023.116577
    [244] Nikolaev P, Jivkov AP, Fifre M, et al. (2024) Peridynamic analysis of thermal behaviour of PCM composites for heat storage. Comput Method Appl M 424: 116905. https://doi.org/10.1016/j.cma.2024.116905 doi: 10.1016/j.cma.2024.116905
    [245] Wen Z, Hou C, Zhao M, et al. (2023) A peridynamic model for non-Fourier heat transfer in orthotropic plate with uninsulated cracks. Appl Math Model 115: 706–723. https://doi.org/10.1016/j.apm.2022.11.010 doi: 10.1016/j.apm.2022.11.010
    [246] Abdoh DA (2024) Peridynamic modeling of transient heat conduction in solids using a highly efficient algorithm. Numer Heat Tr B-Fund 1–16. https://doi.org/10.1080/10407790.2024.2310708
    [247] Kefal A, Sohouli A, Oterkus E, et al. (2019) Topology optimization of cracked structures using peridynamics. Continuum Mech Therm 31: 1645–1672. https://doi.org/10.1007/s00161-019-00830-x doi: 10.1007/s00161-019-00830-x
    [248] Oh M, Koo B, Kim JH, et al. (2021) Shape design optimization of dynamic crack propagation using peridynamics. Eng Fract Mech 252: 107837. https://doi.org/10.1016/j.engfracmech.2021.107837 doi: 10.1016/j.engfracmech.2021.107837
    [249] Silling SA (2019) Attenuation of waves in a viscoelastic peridynamic medium. Math Mech Solids 24: 3597–3613. https://doi.org/10.1177/1081286519847241 doi: 10.1177/1081286519847241
    [250] Behera D, Roy P, Madenci E (2021) Peridynamic modeling of bonded-lap joints with viscoelastic adhesives in the presence of finite deformation. Comput Method Appl M 374: 113584. https://doi.org/10.1016/j.cma.2020.113584 doi: 10.1016/j.cma.2020.113584
    [251] Yu H, Chen X (2021) A viscoelastic micropolar peridynamic model for quasi-brittle materials incorporating loading-rate effects. Comput Method Appl M 383: 113897. https://doi.org/10.1016/j.cma.2021.113897 doi: 10.1016/j.cma.2021.113897
    [252] Ozdemir M, Oterkus S, Oterkus E, et al. (2022) Fracture simulation of viscoelastic membranes by ordinary state-based peridynamics. Procedia Struct Integr 41: 333–342. https://doi.org/10.1016/j.prostr.2022.05.039 doi: 10.1016/j.prostr.2022.05.039
    [253] Huang Y, Oterkus S, Hou H, et al. (2022) Peridynamic model for visco-hyperelastic material deformation in different strain rates. Continuum Mech Therm 34: 977–1011. https://doi.org/10.1007/s00161-019-00849-0 doi: 10.1007/s00161-019-00849-0
    [254] Tian DL, Zhou XP (2022) A viscoelastic model of geometry-constraint-based non-ordinary state-based peridynamics with progressive damage. Comput Mech 69: 1413–1441. https://doi.org/10.1007/s00466-022-02148-z doi: 10.1007/s00466-022-02148-z
    [255] Azizi MA, Mohd Zahari MZ, Abdul Rahim S, et al. (2022) Fracture analysis for viscoelastic creep using peridynamic formulation. J Theor Appl Mech 60: 579–591. https://doi.org/10.15632/jtam-pl/152712 doi: 10.15632/jtam-pl/152712
    [256] Galadima YK, Oterkus S, Oterkus E, et al. (2023) Modelling of viscoelastic materials by using non-ordinary state-based peridynamics. Eng Comput 40: 527–540. https://doi.org/10.1007/s00366-023-01808-9 doi: 10.1007/s00366-023-01808-9
    [257] Zhang X, Xu Z, Yang Q (2019) Wave dispersion and propagation in linear peridynamic media. Shock Vib 2019: 1–9. https://doi.org/10.1155/2019/9528978 doi: 10.1155/2019/9528978
    [258] Wang B, Oterkus S, Oterkus E (2020) Closed-form dispersion relationships in bond-based peridynamics. Procedia Struct Integr 28: 482–490. https://doi.org/10.1016/j.prostr.2020.10.057 doi: 10.1016/j.prostr.2020.10.057
    [259] Li S, Jin Y, Lu H, et al. (2021) Wave dispersion and quantitative accuracy analysis of bond-based peridynamic models with different attenuation functions. Comp Mater Sci 197: 110667. https://doi.org/10.1016/j.commatsci.2021.110667 doi: 10.1016/j.commatsci.2021.110667
    [260] Oterkus S, Oterkus E (2023) Comparison of peridynamics and lattice dynamics wave dispersion relationships. J Peridyn Nonlocal Model 5: 461–471. https://doi.org/10.1007/s42102-022-00087-0 doi: 10.1007/s42102-022-00087-0
    [261] Alebrahim R, Packo P, Zaccariotto M, et al. (2022) Improved wave dispersion properties in 1D and 2D bond-based peridynamic media. Comp Part Mech 9: 597–614. https://doi.org/10.1007/s40571-021-00433-x doi: 10.1007/s40571-021-00433-x
    [262] Wang B, Oterkus S, Oterkus E (2023) Closed-form wave dispersion relationships for ordinary state-based peridynamics. J Peridyn Nonlocal Model. https://doi.org/10.1007/s42102-023-00109-5
  • This article has been cited by:

    1. Faiz Muhammad Khan, Amjad Ali, Ebenezer Bonyah, Zia Ullah Khan, Mohammad Rahimi-Gorji, The Mathematical Analysis of the New Fractional Order Ebola Model, 2022, 2022, 1687-4129, 1, 10.1155/2022/4912859
    2. S. Bhatter, K. Jangid, A. Abidemi, K.M. Owolabi, S.D. Purohit, A new fractional mathematical model to study the impact of vaccination on COVID-19 outbreaks, 2023, 6, 27726622, 100156, 10.1016/j.dajour.2022.100156
    3. Guangdong Sui, Xiaobiao Shan, Chengwei Hou, Haigang Tian, Jingtao Hu, Tao Xie, An underwater piezoelectric energy harvester based on magnetic coupling adaptable to low-speed water flow, 2023, 184, 08883270, 109729, 10.1016/j.ymssp.2022.109729
    4. Peng Wu, Anwarud Din, Taj Munir, M Y Malik, A. S. Alqahtani, Local and global Hopf bifurcation analysis of an age-infection HIV dynamics model with cell-to-cell transmission, 2022, 1745-5030, 1, 10.1080/17455030.2022.2073401
    5. Maryam Amin, Muhammad Farman, Ali Akgül, Mohammad Partohaghighi, Fahd Jarad, Computational analysis of COVID-19 model outbreak with singular and nonlocal operator, 2022, 7, 2473-6988, 16741, 10.3934/math.2022919
    6. Kottakkaran Sooppy Nisar, Muhammad Farman, Mahmoud Abdel-Aty, Chokalingam Ravichandran, A review of fractional order epidemic models for life sciences problems: Past, present and future, 2024, 95, 11100168, 283, 10.1016/j.aej.2024.03.059
    7. Yuqin Song, Peijiang Liu, Anwarud Din, Analysis of a stochastic epidemic model for cholera disease based on probability density function with standard incidence rate, 2023, 8, 2473-6988, 18251, 10.3934/math.2023928
    8. M. Latha Maheswari, K. S. Keerthana Shri, Mohammad Sajid, Analysis on existence of system of coupled multifractional nonlinear hybrid differential equations with coupled boundary conditions, 2024, 9, 2473-6988, 13642, 10.3934/math.2024666
    9. Lalchand Verma, Ramakanta Meher, Fuzzy computational study on the generalized fractional smoking model with caputo gH-type derivatives, 2024, 17, 1793-5245, 10.1142/S1793524523500377
    10. Shewafera Wondimagegnhu Teklu, Belela Samuel Kotola, Haileyesus Tessema Alemneh, Joshua Kiddy K. Asamoah, Smoking and alcoholism dual addiction dissemination model analysis with optimal control theory and cost-effectiveness, 2024, 19, 1932-6203, e0309356, 10.1371/journal.pone.0309356
    11. Abdelhamid Mohammed Djaouti, Zareen A. Khan, Muhammad Imran Liaqat, Ashraf Al-Quran, A Novel Technique for Solving the Nonlinear Fractional-Order Smoking Model, 2024, 8, 2504-3110, 286, 10.3390/fractalfract8050286
    12. A. Omame, F.D. Zaman, Analytic solution of a fractional order mathematical model for tumour with polyclonality and cell mutation, 2023, 8, 26668181, 100545, 10.1016/j.padiff.2023.100545
    13. Asad Khan, Anwarud Din, Stochastic analysis for measles transmission with Lévy noise: a case study, 2023, 8, 2473-6988, 18696, 10.3934/math.2023952
    14. Viswanathan Padmavathi, Kandaswami Alagesan, Samad Noeiaghdam, Unai Fernandez-Gamiz, Manivelu Angayarkanni, Vediyappan Govindan, Tobacco smoking model containing snuffing class, 2023, 9, 24058440, e20792, 10.1016/j.heliyon.2023.e20792
    15. I R Sofia, Shraddha Ramdas Bandekar, Mini Ghosh, Mathematical modeling of smoking dynamics in society with impact of media information and awareness, 2023, 11, 26667207, 100233, 10.1016/j.rico.2023.100233
    16. Jalal Al Hallak, Mohammed Alshbool, Ishak Hashim, Amar Nath Chatterjee, Implementing Bernstein Operational Matrices to Solve a Fractional‐Order Smoking Epidemic Model, 2024, 2024, 1687-9643, 10.1155/2024/9141971
    17. Muhammad Farman, Kottakkaran Sooppy Nisar, Mumtaz Ali, Hijaz Ahmad, Muhammad Farhan Tabassum, Abdul Sattar Ghaffari, Chaos and forecasting financial risk dynamics with different stochastic economic factors by using fractional operator, 2025, 11, 2363-6203, 10.1007/s40808-025-02321-2
  • Reader Comments
  • © 2024 the Author(s), licensee AIMS Press. This is an open access article distributed under the terms of the Creative Commons Attribution License (http://creativecommons.org/licenses/by/4.0)
通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索

Metrics

Article views(3166) PDF downloads(515) Cited by(5)

Figures and Tables

Figures(1)

Other Articles By Authors

/

DownLoad:  Full-Size Img  PowerPoint
Return
Return

Catalog